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Game Theory and Mechanism Design are by now standard tools for studying and designing
massive decentralized systems. Unfortunately, designing mechanisms that induce socially
efficient outcomes often requires full information and prohibitively large computational
resources. In this work we study simple mechanisms that require only local information.
Specifically, in the setting of a classic scheduling problem, we demonstrate local mecha-
nisms that induce outcomes with social cost close to that of the socially optimal solution.
Somewhat counter-intuitively, we find that mechanisms yielding Pareto dominated
outcomes may in fact enhance the overall performance of the system, and we provide
a justification of these results by interpreting these inefficiencies as externalities being
internalized. We also show how to employ randomization to obtain yet further improve-
ments. Lastly, we use the game-theoretic insights gained to obtain a new combinatorial
approximation algorithm for the underlying optimization problem.

© 2013 Elsevier Inc. All rights reserved.

1. Introduction

1.1. Multiagent resource allocation

The efficient allocation of resources has long been one of the main goals of Economics, Operations Research, and Com-
puter Science. Recently, the study of multiagent resource allocation (Chevaleyre et al., 2006), which aims to achieve efficient
allocation of resources among a set of self-interested agents, has been receiving increasing attention. Different types of re-
sources, agent preferences, measures of efficiency, and allocation procedures give rise to different settings. One important
distinction among allocation procedures, which will also play an important role in our work, is whether they are centralized
or decentralized.

It is the centralized approach that has been traditionally followed, especially in Computer Science and Operations Re-
search. Here, all related information is gathered (or elicited) by one entity which then aims to compute an allocation that
optimizes some objective. Research along these lines has attempted to understand the computational complexity of such
processes, drawing the boundary between what is tractable and what is not. For settings where this information is private
and needs to be elicited from the users the main concern has been truthful implementation.
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On the other hand, as the world becomes increasingly interconnected, a much more (geographically) distributed set of
resources has become available, leading to a rising need for decentralized allocation processes. One of the main reasons
is that centralized control in such distributed systems, examples of which include the Grid (Foster and Kesselman, 1998)
and PlanetLab (Peterson et al., 2003), severely impacts their scalability. The obvious drawback of decentralization, besides
the limited communication among the allocation processes which may lead to inefficient solutions, is that such systems
are more prone to strategic manipulation by their users. Our goal in this paper is to measure the inefficiency of the re-
source allocations that arise as equilibrium points of the induced game and to apply decentralized mechanisms aiming to
minimize it.

1.2. Price of anarchy and coordination mechanisms

Given a game and a social cost function, the price of anarchy (Koutsoupias and Papadimitriou, 2009) has become a
standard way to measure the deterioration due to selfish behavior. The price of anarchy of an instance of a game is simply
the worst-case ratio of the social cost at an equilibrium to that at the social optimum. The price of anarchy of a game is
then the worst-case value of the price of anarchy over all instances of the game.

The games that arise within large-scale distributed systems like the ones mentioned above can take different forms but
it is well known that strategic behavior by the users often leads to significant inefficiencies in the final allocation, i.e.,
a high price of anarchy. Since there is no centralized “benevolent dictator” to enforce the good behavior of the participating
users, incentive design becomes a critical tool for achieving efficiency. To this end, several approaches have been proposed,
including some approaches enforcing strategies on a fraction of users as a Stackelberg strategy (Bagchi, 1984; Korilis et
al., 1997; Roughgarden, 2004; von Stackelberg, 1934) and others using monetary transfers (Beckman et al., 1956; Cole et
al., 2006; Fleischer et al., 2004; Caragiannis et al., 2010). The primary drawback of these methods is the need for global
knowledge of the system: the mechanism itself is still centralized.

To alleviate this problem Christodoulou, Koutsoupias and Nanavati (2009) proposed a different approach, which they
called coordination mechanisms. More specifically, they consider settings where users can choose (part of) which resource
they are going to be allocated. A strategy profile then corresponds to an assignment of users to resources and a coordination
mechanism aims to provide the incentives that lead to more efficient equilibrium allocations. What makes coordination
mechanisms a purely decentralized solution for this setting is that they consist of several independent and decentralized
allocation processes, one for each of the available resources. That is, each resource has its own decentralized policy which
decides how the resource will be allocated to the users that seek it. These policies eschew any form of monetary side
payment and thus the manipulation of the users’ incentives is instead achieved only through appropriate regulation of how
much of their chosen resource they are allocated. This means that, for example, instead of requiring a player to contribute
some form of payment, the policy would choose to provide a less valuable allocation of the resource it controls. We stress
again that these policies only consider local information, i.e. the allocation choice is a function only of the users that demand
it, thus remaining completely oblivious to the state of the rest of the system.

Given this decentralized regulation of the resource allocation, different coordination mechanisms induce different games,
and thus lead to different sets of equilibrium allocations. Even for a fixed set of users and resources, two different coordi-
nation mechanisms may yield very different user costs for exactly the same strategy profile. It is these mechanism-specific
costs that determine the social cost of a given equilibrium allocation. In evaluating the efficiency of these equilibrium points,
one needs a well defined benchmark to compare this social cost against. The definition of the price of anarchy of the in-
duced game would point to the social optimum with respect to these same costs (specific to the mechanism). The price of
anarchy of a coordination mechanism is instead defined not as the price of anarchy of the induced game, but as the worst-
case ratio of the social cost at an equilibrium to the optimal social cost that could possibly be achieved by the centralized
optimization approach. We will sometimes use the synonym coordination ratio as a reminder of this distinction.

1.3. Machine scheduling

In this paper, we study methods for the efficient allocation of a type of resource aiming to model machines or servers
of some distributed system (such as the Internet) which offer a service that its users need. All the user tasks or jobs need
to be scheduled on such machines and competition for these machines may lead to delays in servicing the users’ demands.
This model of machine scheduling (Pinedo, 2008) has been extensively studied since the 1950’s, and it is generally considered
a canonical model for studying settings related to job scheduling and processing.

In this model there are n jobs and m machines; each job must be assigned to a single machine. The processing time
of a job can differ depending on the machine it is executed on; let pij denote the processing time of job j on machine i.
Each job can also have an associated weight, which may be interpreted as a measure of importance. A resource allocation
for such a problem instance (a schedule) consists of an assignment of jobs to machines, and a specification of the order
according to which the jobs on each machine will be processed. For any such assignment and ordering, the completion time
of each job is now determined; if on machine i the assigned jobs are in the order j1, . . . , jr , then the completion time of
job j1 is pij1 , the completion time of job j2 is pij1 + pij2 , and so on.

The most basic model is that of identical machines, where the processing time of any job is the same on all of the
machines. In the more general model of related machines each machine has a speed, and the processing time of a job on
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a machine is inversely proportional to the speed of that machine. The main scheduling model that we study is unrelated
machine scheduling in which the processing times are arbitrary, thus capturing all the above models as special cases.

In this work we consider the scheduling game that is induced due to the lack of centralized control. Each job is a fully
informed player wanting to minimize its individual completion time, and its set of strategies correspond to the set of
machines. A job’s completion time on a machine depends not only on the strategies chosen by other players (in particular,
which other players chose that machine), but also on the order that the jobs are run on the machine1; in other words, this
is a setting with externalities. The cost of a job will be its weighted completion time; its completion time multiplied by
its weight. The objective function that research on this setting has mostly focused on is the makespan, i.e. the maximum
completion time over all jobs, which, for unweighted jobs, corresponds to the egalitarian social cost (see Section 1.5). This
paper studies the utilitarian social cost instead, i.e. the unweighted or weighted sums of completion times.

A coordination mechanism for this setting is a set of local policies, one per machine, specifying how the jobs assigned to
that machine are scheduled. We will actually consider the slightly more restrictive class of strongly local policies. For such
policies the schedule on machine i must be a function of only the processing times pij and weights w j of the jobs assigned
to the machine. In contrast, in simply local policies the schedule on a machine may in addition depend on the full vector
p j = (p1 j, p2 j, . . . , pmj) of processing times of each job j assigned to the machine. This is a somewhat weaker notion of
locality, providing the policies with more information about the given problem instance.

1.4. Our results

We begin by studying Smith’s rule, a policy according to which machines process jobs in increasing order of their pro-
cessing time to weight ratio. This is a natural first candidate to analyze since it is known that, for any given assignment
of jobs to machines, this is the policy that minimizes our social cost function (Smith, 1956). We prove that the coordi-
nation ratio for this policy is exactly 4, improving upon a result by Correa and Queyranne (2012), who showed the same
bound but for the less general model of restricted related machines (see Section 2). The constant coordination ratio for
the weighted sum of completion times is in sharp contrast to the negative results that have been shown for the makespan
objective, for which no natural coordination mechanism can achieve a constant coordination ratio (Abed and Huang, 2012)
(see Section 1.5).

We also show that if we restrict ourselves to deterministic policies which always run jobs one after the other in some
order, regardless of how this ordering depends on the weights and processing times of the assigned jobs—then this factor
of 4 cannot be improved. We overcome this barrier in two ways; the first is deterministic, and adds artificial delays; the
second is randomized, and achieves an even better total welfare.

Among them, the deterministic policy is most naturally described as a preemptive one. In our context, preemption really
refers to time multiplexing: the machine runs the jobs “in parallel”, dividing its processing resources among the active
jobs. The preemptive policy that we consider (ProportionalSharing) splits the processing capacity of a machine among its
uncompleted jobs in proportion to their weights. This generalizes the EqualSharing policy (Dürr and Thang, 2009), which
splits the processing capacity equally amongst the jobs; what ProportionalSharing does for the unweighted case. We uncover
a close connection of this policy to Smith’s rule, allowing us to apply a similar proof strategy, but yielding a significantly
improved coordination factor of 2.618. This improvement using preemption is somewhat counter-intuitive if one considers
the fact that, for any preemptive policy, there is a non-preemptive one that Pareto dominates it for any given assignment of
jobs to machines. This result is also in contrast to the makespan case, where even in the unweighted case the EqualSharing
policy achieves a coordination ratio of Θ(m) (Dürr and Thang, 2009), no better than Smith’s rule. To make sense of this
phenomenon we show that, for a fixed assignment, the cost that each job suffers according to this very natural preemptive
policy actually equals the cost that it would suffer if Smith’s rule were instead being used, plus the externalities that this
job would cause to the jobs that would have been scheduled after it. Each job is therefore forced to internalize externalities
that it causes to jobs on the same machine, leading to improved incentives. We also show an improved bound of 2.5 for
the coordination ratio in the unweighted case.

On the other hand, we show that, under some restrictions, no deterministic policy can achieve a factor better than 2.166.
To break this new barrier we consider a policy we call Rand, in which jobs are randomly (but non-uniformly) ordered, based
on their processing time to weight ratio. This randomized policy also forces jobs which have a higher priority according to
Smith’s rule to suffer delays due to externalities that they cause, again leading to better incentives and even more efficient
equilibrium allocations. One of the benefits of randomization is that although the jobs are made to suffer for (part of)
their externalities, the schedule that the policy produces is always Pareto efficient. We give a bound of 32/15 ≈ 2.133
for the coordination ratio of this policy, a significant improvement over ProportionalSharing. In addition, in the case where
the weighted sum of processing times is negligible compared to the total cost, our randomized policy has a much better
coordination ratio of π/2, which is tight. The proofs here are perhaps the most interesting, involving a connection to the
classic Hilbert matrix.

We prove all of the upper bound results in a common framework that brings out the structure in the scheduling games
we consider. Once the framework has been set up, our proofs become short and elegant, and we anticipate that the approach

1 Actually, we will allow schedules that are more general than just executing the jobs in some order, but this simplifies the discussion for now.
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may prove useful elsewhere too. We are able to relate the games induced by each of the policies we consider to certain
inner product spaces. Proving upper bounds on the price of anarchy then becomes much simpler, in most cases involving an
application of Cauchy–Schwartz and some form of “norm distortion” inequality to relate back to the Smith’s rule cost. While
we present our proofs for pure strategies and pure Nash equilibria, we observe that all the results can be stated within
the smoothness framework of Roughgarden (2009) (see Section 2). This implies that all the bounds hold for more general
equilibrium concepts including mixed Nash equilibria and correlated equilibria.

The game obtained when using Smith’s rule as the policy has a defect: it does not necessarily possess pure Nash equi-
libria (Correa and Queyranne, 2012). Nevertheless, we show that the other policies we consider all induce exact potential
games, giving another indication that ProportionalSharing and Rand are very natural policies. In fact, we can use these prop-
erties, along with other game-theoretic insights we have gained to give a result for the underlying centralized optimization
problem.

From a purely centralized optimization perspective, the problem of minimizing the weighted sum of completion times
has been extensively studied. The problem is APX-hard (Hoogeveen et al., 2001) on unrelated machines, and the current
best polynomial time algorithm has an approximation factor of 3

2 (Sethuraman and Squillante, 1999; Skutella, 2001). All
previous constant-factor approximation algorithms are based on rounding linear or convex programs. Complementing all
these known non-combinatorial approximation algorithms, we design a new combinatorial (2 + ε)-approximation algorithm
for optimizing the weighted sum of completion times on unrelated machines.

In designing our approximation algorithm we take advantage of the fact that the best response dynamics of the induced
game are related to local search algorithms. Starting from an initial solution, a local search algorithm iteratively moves
to neighboring solutions which improve the global objective. This is based on a neighborhood relation that is defined on
the set of solutions. Now, if one considers the strategy profiles of the game induced by the coordination mechanism as
solutions, the best response moves of the users in this game implicitly define the set of possible local moves. The speed of
convergence and the approximation factor of local search algorithms for scheduling problems have been studied mainly for
the makespan objective function (Davis and Jaffe, 1981; Even-Dar et al., 2007; Finn and Horowitz, 1979; Ibarra and Kim,
1977; Sahni and Cho, 1980; Schuurman and Vredeveld, 2007; Vredeveld, 2002; Aspnes et al., 1997; Azar et al., 1995). Our
combinatorial approximation algorithm for the weighted sum of completion times is the first local search algorithm for this
problem, and is different from the previously studied algorithms for the makespan objective. The neighborhood implicitly
defined by the coordination mechanism at hand is non-trivial and it seems unlikely that such a simple algorithm could be
designed without the initial game-theoretic intuition.

1.5. Related work

Previous work on scheduling games mainly concerned the makespan social cost. One of the first such games to be
considered was the one induced by the Makespan policy (Koutsoupias and Papadimitriou, 2009), according to which all jobs
are released at the same time; each job’s completion time is equal to the sum of the processing times of the jobs assigned to
its machine. This scheduling game gathered significant attention, eventually leading to a sequence of tight price of anarchy
bounds for different machine models (Czumaj and Vöcking, 2007; Gairing et al., 2010; Awerbuch et al., 2006). The games
induced by Makespan are also known as load balancing games. In their paper introducing coordination mechanism design,
Christodoulou, Koutsoupias and Nanavati (2009) analyzed mechanisms for identical machines using the ShortestFirst and
LongestFirst policies, which process jobs in non-decreasing and non-increasing order of their processing times respectively.
Immorlica et al. (2009) studied these three coordination mechanisms, along with a randomized one which orders jobs
randomly in a uniform fashion, for several different machine scheduling models. They surveyed the known results for these
settings, uncovering connections of these local policies with greedy and local search algorithms (Ibarra and Kim, 1977; Finn
and Horowitz, 1979; Sahni and Cho, 1980; Davis and Jaffe, 1981; Aspnes et al., 1997; Azar et al., 1995; Borodin et al., 2003;
Vredeveld, 2002). Apart from price of anarchy related results, they also studied the speed of convergence to equilibria and
the existence of pure Nash equilibria for the ShortestFirst and LongestFirst policies. Azar, Jain and Mirrokni (2008) showed
that the ShortestFirst policy and in fact any strongly local fixed ordering policy (defined in Section 2) does not achieve a
coordination ratio better than Ω(m). Additionally, they presented a non-preemptive local policy that achieves a coordination
ratio of O (log m) and a policy that induces potential games and gives a coordination ratio of O (log2 m). Caragiannis (2012),
among other results, showed an alternative coordination mechanism that guaranteed a coordination ratio of O (log m) for
unrelated machines, while still inducing potential games. Fleischer and Svitkina (2010) showed a lower bound of Ω(log m)

for all local fixed ordering policies, thus proving that Caragiannis’ mechanism is optimal with respect to the price of anarchy
within this class. This bound had already been overcome by Caragiannis (2012) who presented a local preemptive policy
with an approximation factor of O (logm/ log log m). Very recent work by Abed and Huang (2012) showed that this factor is
the best that can be achieved by any natural policy, including preemptive and randomized ones.

Our work concerns the utilitarian social cost, or (weighted) sum of completion times. For this objective, Correa and
Queyranne (2012) studied Smith’s rule for the restricted related machine model and they exhibited an instance for which the
induced game does not possess a pure Nash equilibrium. They also presented bounds for the price of anarchy of SmithRule
in this model. Finally, Hoeksma and Uetz (2011) showed better price of anarchy bounds for the less general setting of
unweighted jobs and related machines using ShortestFirst; the unweighted variant of SmithRule.
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2. Preliminaries

Throughout this paper, let J be a set of n jobs to be scheduled on a set I of m machines. Let pij denote the processing
time of job j ∈ J on machine i ∈ I and w j denote its weight (or importance). The shorthand notation ρi j will be used for
the ratio pij/w j . Jobs that have both the same processing time and the same weight can be distinguished from one another
only if they have been assigned a unique ID; otherwise, the jobs are called anonymous.

We will refer to the following standard scheduling models:

Identical machines. All machines are identical, meaning each job needs the same processing time on each machine: pij =
pi′ j for all i, i′ ∈ I . The model of restricted identical machines is a variant according to which each job can be run
only on some specified subset of machines.

Related machines. The machines may have different speeds, and the processing time of a job is inversely proportional to
the speed: pij = p j/σi , where σi represents the speed of machine i, and p j the processing requirement of job j.
The restricted related machines variant is again obtained by possibly restricting the set of machines to which each
job can be assigned.

Unrelated machines. The processing times are arbitrary. This is the most general of these models. There is no need to
distinguish between restricted and unrestricted variants, since we allow specifying that a job takes infinite time
on a machine.

A coordination mechanism for this setting is a set of local policies, one for each machine. Each such policy determines
how to schedule the set of jobs assigned to the machine it controls, thus defining the completion time c j of each job j in
that set. A coordination mechanism thereby gives rise to a scheduling game in which there are n agents (jobs) and each
agent’s strategy set is the set of machines I . A strategy profile (or configuration) corresponds to an assignment of jobs to
machines, represented by a vector x, where x j gives the machine to which job j is assigned. Given such an assignment x,
the cost of job j is its weighted completion time, as determined by the policy on the machine x j . We let w jcα

j (x) and
Cα(x) denote the cost for player j and the social cost respectively, where α ∈ {SR,PS, SF,ES, R} denotes the policy, namely
SmithRule, ProportionalSharing, ShortestFirst, EqualSharing and Rand, respectively.2 The agent controlling each job aims to
choose a strategy (i.e., a machine) that minimizes its cost or, in the case of randomized policies, its expected cost. The
mechanisms that we analyze are designed with the goal of minimizing the utilitarian social cost, i.e. Cα(x) = ∑

j∈ J w jcα
j (x).

A strategy profile x of a scheduling game instance is a pure Nash equilibrium (PNE) if no player has an incentive to
unilaterally change its strategy. Formally, if this instance is induced by coordination mechanism α, then for all j ∈ J and
all i ∈ I we get cα

j (x) � cα
j (x− j, i), where (x− j, i) denotes the assignment x, except modified so that job j is assigned to

machine i.
In order to measure the efficiency of a coordination mechanism α for a given scheduling game instance, we study its

social cost in PNE assignments. We are interested in the worst-case ratio of the social cost in a PNE assignment divided by
the optimal social cost achievable from a centralized optimization approach. It is known that the optimal solution of the
centralized optimization problem schedules jobs on machines according to SmithRule (Smith, 1956), so the optimal social
cost can be expressed as CSR(x∗), where x∗ = arg minx′ CSR(x′). If we also let E(α) be the set of equilibria induced by α, and
x = arg maxx′∈E(α) Cα(x′) be the worst equilibrium assignment with respect to the social cost induced by α, then this ratio
is equal to Cα(x)/CSR(x∗) for the given game instance. Following the definition of Christodoulou et al. (2009) the (pure)
price of anarchy or coordination ratio of coordination mechanism α is defined to be the maximum such ratio, taken over all
the scheduling game instances that the mechanism may induce. Slightly abusing notation, we use Xi = { j ∈ J | x j = i} to
denote the set of jobs allocated to machine i in configuration x, and X∗

i analogously for x∗ .
Adapting the work of Roughgarden (2009) to this setting, we define a coordination mechanism α to be (λ,μ)-smooth if

for any two configurations x and x′ ,∑
j∈ J

w jc
α
j

(
x− j, x′

j

)
� λCSR(x′) + μCα(x).

If a coordination mechanism is (λ,μ)-smooth, then this yields an upper bound of λ
1−μ which applies not only to its pure

price of anarchy, but also to its robust price of anarchy. This, among other things, implies that it is not only the social
cost of PNE that is bound to be at most λ

1−μ times the optimal social cost, but also the social cost of any correlated
equilibrium (Roughgarden, 2009).

A game is a potential game if there exists a potential function over the set of strategy profiles such that any player’s
unilateral deviation leads to a drop of the potential function if and only if that player’s cost drops. A potential game is exact
if after each move, the changes to the potential function and to the player’s cost are equal. It is easy to see that a potential
game always possesses a pure Nash equilibrium, corresponding to a local minimum of the potential function.

2 The coordination mechanisms we study in this paper use the same local policy on each machine, so henceforth we refer to a coordination mechanism
using the name of the policy.
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2.1. Classification of policies

It will be useful (particularly for discussing lower bounds) to identify the main classes of strongly local policies that will
concern us in this work.

Fixed ordering policies. 3 These policies assign an order on all jobs, based on the jobs’ characteristics on the machine (process-
ing time, weight, and possibly ID). Then, for a given assignment, the jobs assigned to the machine are executed according
to this order. One motivation for these policies is that they satisfy the independence of irrelevant alternatives (IIA) property:
for any pair of jobs, their relative ordering is independent of which other jobs are assigned to the machine. This property
appears as an axiom in voting theory, bargaining theory and logic (Shoham and Leyton-Brown, 2008).

Flexible ordering policies. In this class, policies still execute jobs in some fixed order, but that order may depend arbitrarily
on the set of jobs assigned to the machine. Here we require that the jobs on a machine are executed consecutively in some
deterministic order. Moreover, we require that there be no idle time between jobs, and that jobs are released immediately
upon completion. The reason for this restriction is to distinguish from the next case.

Preemptive policies. Preemption refers to the ability to suspend a job before it completes in order to execute another job.4

The initial job can then be resumed later. Preemption allows for time multiplexing: by switching between a number of jobs
very quickly, the illusion is given that the jobs are being run simultaneously on the machine. Preemptive policies can also
introduce idle time intervals during which no job is being processed (e.g. Caragiannis, 2012); we call the ones that do not
prompt. In fact, any preemptive policy yields a schedule which is Pareto dominated by that of some policy that does not
use preemption. Thus, as we explain in more detail in Section 4, such policies can equally well be considered as flexible
ordering policies, but where jobs may be held back after completion.

Randomized policies. Here, the policy may schedule the jobs randomly, according to a distribution depending only on the
processing times and weights of the jobs on the machine. While more general schedules are possible, it’s helpful to think
of simply a random ordering of the jobs.

We also call, e.g., a coordination mechanism consisting of fixed ordering policies a “fixed ordering coordination mecha-
nism”.

3. Smith’s rule

Smith’s rule is a fixed ordering policy that schedules jobs on machine i in increasing order of ρi j = pij/w j . In the
unweighted case, this reduces to the ShortestFirst policy. It is known that given an assignment of jobs to machines, in order
to minimize the weighted sum of completion times, using Smith’s rule is optimal (Smith, 1956). It is therefore natural to
consider this policy as a good first candidate to study. Our first theorem shows that using this rule will result in Nash
equilibria with social cost at most a constant factor of 4 away from the optimum.

Our price of anarchy related proofs will use a common framework. The proof for Smith’s rule is the simplest, but it will
introduce a number of aspects of this framework. In the following two proofs, for notational simplicity we assume that all
jobs assigned to the same machine have distinct ratios (of processing time to weight) on that machine.5 Also, we index
some of the intermediate inequalities in the derivations of these proofs in order to refer to them in subsequent discussion.

We will construct a mapping from the set of configurations to a certain inner product space, such that the norm of the
mapping will closely correspond to the cost of the configuration. To wit, define the map ϕ : I J → L2([0,∞))I , which maps
every strategy profile x to a vector of functions (one for each machine) as follows. If f = ϕ(x), then for each i ∈ I

f i(y) =
∑

j∈Xi : ρi j�y

w j (recall that ρi j = pij/w j).

Notice that f i(ρi j), multiplied by pij , is simply the marginal social cost due to job j, i.e., its own cost plus the cost it
induces on other jobs. We let 〈 f , g〉 := ∫ ∞

0 f (y)g(y)dy denote the usual inner product on L2, and in addition define
〈 f , g〉 := ∑

i∈I 〈 f i, gi〉. In both cases, ‖ · ‖ refers to the induced norm. Next, define η(x) to be the weighted processing
time of all the jobs:

η(x) =
∑
j∈ J

w j px j j .

We can then write the cost of a configuration in terms of ϕ(x) and η(x):

3 These were called simply ordering policies in Azar et al. (2008), but we wish to emphasize the distinction with the superset of flexible ordering policies,
defined next.

4 Note that, unlike in some literature on machine scheduling, preemption here does not imply that a job can be processed on a different machine after
it is suspended.

5 The proofs can be adapted to the case of non-distinct ratios by replacing the condition ρik < ρi j that appears in the terms of sums with the condition
ρik � ρi j , and introducing a tie-breaking rule.
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Lemma 3.1. For any configuration x, CSR(x) = 1
2 ‖ϕ(x)‖2 + 1

2 η(x).

Proof. Let f = ϕ(x). We have

∥∥ϕ(x)
∥∥2 =

∑
i∈I

∞∫
0

f i(y)2 dy

=
∑
i∈I

∞∫
0

∑
j∈Xi

ρi j�y

w j

∑
k∈Xi
ρik�y

wk dy =
∑
i∈I

∑
j∈Xi

∑
k∈Xi

w j wk

∞∫
0

1ρi j�y1ρik�y dy

=
∑
i∈I

∑
j∈Xi

∑
k∈Xi

w j wk min{ρi j,ρik} =
∑
i∈I

∑
j∈Xi

w j

(
2

∑
k∈Xi

ρik<ρi j

wkρik + w jρi j

)

=
∑
i∈I

∑
j∈Xi

w j

(
2

∑
k∈Xi

ρik�ρi j

pik − pij

)
= 2CSR(x) − η(x). (1)

The result follows. �
Theorem 3.2. The price of anarchy of SmithRule for unrelated machines is at most 4.

Proof. Let x and x∗ be two assignments, with x being a Nash equilibrium, and write f = ϕ(x), and f ∗ = ϕ(x∗). We first
calculate a job j’s completion time according to x, and then we use the Nash condition that cSR

j (x) � cSR
j (x− j, x∗

j ) for every
job j.

cSR
j (x) =

∑
k∈ J : xk=x j
ρx jk<ρx j j

px jk + px j j �
∑

k∈ J : xk=x∗
j

ρx∗j k<ρx∗j j

px∗
j k + px∗

j j.

So

CSR(x) =
∑
j∈ J

w jc
SR
j (x) �

∑
i∈I

∑
j∈X∗

i

w j

( ∑
k∈Xi

ρik<ρi j

pik + pij

)

�
∑
i∈I

∑
j∈X∗

i

( ∑
k∈Xi

ρik<ρi j

w j wkρik + w j pij

)

�
∑
i∈I

∑
j∈X∗

i

∑
k∈Xi

w j wk min{ρik,ρi j} +
∑
i∈I

∑
j∈X∗

i

w j pi j (2)

=
∑
i∈I

∑
j∈X∗

i

∑
k∈Xi

w j wk

∞∫
0

1ρi j�y1ρik�y dy + η
(
x∗)

=
∑
i∈I

∞∫
0

∑
j∈X∗

i
ρi j�y

w j

∑
k∈Xi
ρik�y

wk dy + η
(
x∗)

=
∑
i∈I

∞∫
0

f i(y) f ∗
i (y)dy + η

(
x∗)

= 〈
f , f ∗〉 + η

(
x∗). (3)

Now applying Cauchy–Schwartz, followed by the inequality ab � a2 + b2/4 for a,b � 0, we obtain

CSR(x) � ‖ f ‖∥∥ f ∗∥∥ + η
(
x∗) � ∥∥ f ∗∥∥2 + 1

4
‖ f ‖2 + η

(
x∗)� 2CSR(x∗) + 1

2
CSR(x) by Lemma 3.1.

Hence CSR(x) � 4CSR(x∗). �
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Fig. 1. Three jobs scheduled on some machine i, which uses SmithRule in the first case and ProportionalSharing in the second. Their processing times and
weights are pi1 = 4 and w1 = 7 for the first job, pi2 = 2 and w2 = 3 for the second, and pi3 = 2 and w3 = 2 for the third.

Notice that in this proof, the cost CSR(x) of an assignment x is closely related to the norm of ϕ(x), and the inequality
obtained from the Nash condition is bounded by a term involving the inner product 〈ϕ(x),ϕ(x∗)〉. This will be a common
feature of all our proofs.

For simplicity, the proof above was written as a pure price of anarchy bound; x was taken to be a pure Nash equilibrium.
However, it is clear that the proof in fact yields a robust price of anarchy bound, as defined by Roughgarden (2009). More
precisely, the above proof shows that SmithRule is (2,1/2)-smooth.

The following result, proved in Appendix A, shows that no fixed ordering coordination mechanism can do better than
SmithRule. (In fact, the result can be extended to all flexible ordering coordination mechanisms, but we will not discuss this
here.) This also implies that the bound of Theorem 3.2 is tight.

Theorem 3.3. The pure price of anarchy of any set of fixed ordering policies is at least 4. This is true even for the case of restricted
identical machines with unweighted jobs.

We note that for the unit weight case, a constant upper bound on the coordination ratio of Smith’s rule can be obtained
via a reduction from the priority routing model of Farzad et al. (2008). However, the resulting bound is not optimal.

4. Improvements with preemption and randomization

4.1. Preemptive coordination mechanism

In this section, we study the power of preemption (or equivalently, delays) and present the following preemptive policy,
named ProportionalSharing. Jobs are scheduled in parallel using time multiplexing, and, at any moment in time, each uncom-
pleted assigned job receives a fraction of the processor time equal to its weight divided by the total weight of uncompleted
jobs on the machine. In the unweighted case, this gives the EqualSharing policy.

We will show that ProportionalSharing has a better coordination ratio than any fixed ordering policy. These results create
a clear dichotomy between such policies and ProportionalSharing. This may seem counter-intuitive at first, since, given an
assignment of jobs to machines, the schedule produced by ProportionalSharing is Pareto dominated by that of SmithRule.
To be more precise, on each machine, every job apart from the one that SmithRule would schedule last, strictly prefers
SmithRule to ProportionalSharing; the one scheduled last is indifferent between the two schedules. This can also be seen in
Fig. 1 which compares how the two policies would schedule a given set of jobs on the same machine.

Lemma 4.1. Given an assignment x, the weighted completion time of a job j on some machine i using ProportionalSharing (whether
currently assigned there or not) is

w jc
PS
j (x− j, i) =

∑
k∈Xi\{ j}

w j wk min{ρi j,ρik} + w j pij.

Proof. First, observe that for two jobs k and k′ with ρik � ρik′ , job k will complete before (or at the same time as) job
k′ when ProportionalSharing is used. To see this, consider the situation at the time when the earlier of the two jobs is
completed. Let q and q′ be the amount of processing time that has been allocated to k and k′ by this time. Then q′ = wk′

wk
q.

If k is not completed, then q < wkρik , and so q′ < wk′ρik � pik′ , and k′ is not completed either.
Let t be the time when job j is completed. All jobs k with ρik � ρi j have completed by this time; thus each such job has

received pik units of processing time. On the other hand, all jobs k with ρik > ρi j are not yet complete at time t , and for
each w j units of processing time job j receives, job k receives wk units. Thus by time t , the processing time spent on any
such job k will be exactly

pij wk
w j

. Since the total processing time is the sum of the processing times allocated to all the jobs,

we thus have that
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t =
∑

k∈Xi\{ j}
ρik�ρi j

pik +
∑
k∈Xi

ρik>ρi j

wk

w j
pij + pij.

Thus

w jc
PS
j (x− j, i) =

∑
k∈Xi\{ j}
ρik�ρi j

w j pik +
∑
k∈Xi

ρik>ρi j

wk pij + w j pij =
∑

k∈Xi\{ j}
w j wk min{ρi j,ρik} + w j pij. �

A better understanding of why ProportionalSharing performs better despite the Pareto inefficiency of the schedules it
produces can be obtained by examining the following corollary of Lemma 4.1.

Corollary 4.2. Given an assignment x, the weighted completion time of a job j on some machine i using ProportionalSharing is

w jc
PS
j (x− j, i) = w jc

SR
j (x− j, i) +

∑
k∈Xi

ρik>ρi j

wk pij.

This corollary precisely quantifies what cost, in addition to the SmithRule cost, this job is forced to suffer. A closer
look reveals that this additional cost (the rightmost term) is exactly equal to externalities that job j would cause if the
assignment of jobs to machines remained the same but SmithRule was used instead. That is, the sum for each job k that
would have been scheduled after job j (ρik > ρi j), of the cost increase that job j causes to that job (wk pij ). From this
perspective, ProportionalSharing can be thought of (and also implemented) as using SmithRule to determine the processing
order, but then delaying the release of each job after it is completed until the additional cost equals these externalities.
Since we already know that, for any given assignment, SmithRule would produce the social welfare-maximizing schedule,
one may expect that our preemptive policy exactly “internalizes the externalities” of the players and should therefore lead
to the optimal assignment in equilibrium. The reason why this is not the case is that the participation of job j in the
game does not cause externalities only to jobs that are assigned to its machine. Nevertheless, our policies are necessarily
oblivious to what the state of the system is beyond the machine they control, so these “local externalities” may be the best
possible alternative. By taking these local externalities into consideration, ProportionalSharing better aligns the interests of
a player with those of the system, leading not only to better assignments than SmithRule but also to a better social cost,
despite the (otherwise unnecessary) delays suffered. Another perspective on the delays is that they are a form of money
that the players are forced to pay, but this is money that can only be “burned” and not transferred. From this perspective,
our setting is similar to that of money burning mechanisms (Hartline and Roughgarden, 2008), with the added restriction
that the “payments” have to be a function of local information alone. These two restrictions preclude the implementation of
welfare-maximizing mechanisms like VCG, but nonetheless our mechanisms define payments that lead to surprisingly low
social cost.

From Lemma 4.1 and (1) we also immediately obtain the following corollary (note the factor 2 difference compared to
the main term in the cost of Smith’s rule in Lemma 3.1), which will be used in proving the two subsequent theorems:

Corollary 4.3. For any assignment x, CPS(x) = ‖ϕ(x)‖2 .

Theorem 4.4. The price of anarchy of ProportionalSharing for unrelated machines is at most φ + 1 = 3+√
5

2 ≈ 2.618. Moreover, this
bound is tight even for the restricted related machines model.

Proof. Let x be an equilibrium assignment, and x∗ any arbitrary assignment. From the Nash condition,

CPS(x) �
∑
j∈ J

w jc
PS(x− j, x∗

j

)

�
∑
i∈I

∑
j∈X∗

i

( ∑
k∈Xi

w j wk min{ρi j,ρik} + w j pij

)
by Lemma 4.1

= 〈
ϕ(x),ϕ

(
x∗)〉 + η

(
x∗) by steps (2)–(3). (4)

Following the same method of analysis as for Smith’s rule, we obtain

CPS(x)�
∥∥ϕ(x)

∥∥∥∥ϕ(
x∗)∥∥ + η

(
x∗)

� α
∥∥ϕ(

x∗)∥∥2 + 1 ∥∥ϕ(x)
∥∥2 + η

(
x∗)
4α
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� 2αCSR(x∗) + 1

4α
CPS(x) + (1 − α)η

(
x∗)

� (1 + α)CSR(x∗) + 1

4α
CPS(x),

using the Cauchy–Schwartz inequality and the fact that η(x∗) � CSR(x∗). Setting α = (1 + √
5 )/4 yields CPS(x)/CSR(x∗) �

3+√
5

2 .
The tightness of this bound follows from a construction in Caragiannis et al. (2011), where in fact they show that even

if CPS is used as the benchmark, i.e., we consider the ratio CPS(x)/CPS(x∗), this can be arbitrarily close to 1 + φ. �
The reader will observe how similar the proof above was to the proof of Theorem 3.2, once the relevant costs have been

described in terms of the inner product. In particular, (4) is obtained by following precisely the same steps followed in the
proof of Theorem 3.2 to get from (2) to (3). In that proof, (2) can be interpreted as a kind of symmetrization step, which
is needed since the inner product 〈ϕ(x),ϕ(x∗)〉 is symmetric. ProportionalSharing is already symmetric in the appropriate
sense, and so there is a tighter connection between the Nash condition and the inner product. This same symmetry property
will be shared in the randomized policy we consider in the next section.

Notice also that since SmithRule and ProportionalSharing were described in terms of the same mapping and inner product,
it was very easy to relate ‖ϕ(x∗)‖ back to the cost of SmithRule. This will be less straightforward for the randomized policy
discussed in the next section.

The coordination ratio obtained may remind the reader of similar bounds for weighted congestion games (Awerbuch et
al., 2005). It is important to stress that our bounds do not follow from these results. What can be deduced by applying the
arguments of Awerbuch et al. (2005) to our setting is that CPS(x)/CPS(x∗) � φ + 1 for any Nash assignment x for the very
restricted set of instances in which every pair of jobs j, j′ satisfy ρi j = ρi j′ on each machine i, or in other words, all jobs
scheduled on the same machine face the same completion time. Our result shows that, for arbitrary ρi j values, the ratio
does not get any worse even when we compare against the stronger benchmark of CSR(x∗).

In the case of equal weights, we obtain a slightly improved bound using the following lemma instead of the Cauchy–
Schwartz inequality. This is a tighter version of an inequality initially used by Christodoulou and Koutsoupias (2005):

Lemma 4.5. For every pair of nonnegative integers k and k∗ ,

k∗(k + 1) � 1

3
k2 + 5

6
k∗(k∗ + 1

)
.

Proof. This translates to showing that for all nonnegative integers k and k∗ ,

5k∗2 + 2k2 − 6k∗k − k∗ � 0.

Rewriting the left hand side as 2(k − 3
2 k∗)2 + 1

2 k∗2 − k∗ , we see immediately that the inequality holds for k∗ � 2 and k∗ = 0.
In the case k∗ = 1, the required inequality simplifies to k2 − 3k + 2 � 0 which is true for all integral k. �
Theorem 4.6. The price of anarchy of EqualSharing for unrelated machines is at most 2.5. This bound is tight even for the restricted
related machines model.

Proof. Let x be any some assignment, and let f = ϕ(x). Since w j = 1 for all j,

f i(y) = ∣∣{ j ∈ J : x j = i and pij � y}∣∣,
and also

η(x) =
∑

i

∑
j∈Xi

pi j =
∑
i∈I

∞∫
0

∑
j∈Xi

1y�pij dy =
∑
i∈I

∞∫
0

f i(y)dy.

For the unweighted case, just like ProportionalSharing reduces to EqualSharing, SmithRule reduces to ShortestFirst. Adapting
Corollary 4.3 and Lemma 3.1 to these unweighted counterparts, we get

CES(x) =
∞∫

0

f 2
i (y)dy and CSF(x) = 1

2

∞∫
0

f i(y)
(

f i(y) + 1
)

dy. (5)

Now suppose x is a Nash equilibrium; take x∗ to be any assignment, with f ∗ = ϕ(x∗). We continue from (4):
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CES(x) �
〈

f , f ∗〉 + η
(
x∗)

=
∞∫

0

f i(y)
(

f ∗
i (y) + 1

)
dy

�
∞∫

0

1

3
f 2

i (y) + 5

6
f ∗

i (y)
(

f ∗
i (y) + 1

)
dy by Lemma 4.5

= 1

3
CES(x) + 5

3
CSF(x∗) by (5).

This gives a price of anarchy bound of 2.5.
The tightness of the bound follows from Theorem 3 of Caragiannis et al. (2011). The authors present a load balancing

game lower bound, which is equivalent to assuming that all jobs have unit processing times and the machines are us-
ing EqualSharing; thus the same proof yields a (pure) price of anarchy lower bound for restricted related machines and
unweighted jobs. �

Once again, all of the upper bounds also hold for the robust price of anarchy. On the negative side, we have the following
(the proof of which can be found in Appendix A). Recall that a coordination mechanism is prompt if on any machine, the
completion time of all jobs assigned to the machine are never larger than the sum of processing times of jobs on the
machine. Equivalently, each machine uses its full capacity and does not delay the release of a job after its completion.

Proposition 4.7. When jobs are anonymous, the coordination ratio of any deterministic prompt coordination mechanism is at least
13/6.

4.2. Randomized coordination mechanism

In this section we examine the power of randomization and present Rand, a randomized policy that satisfies the follow-
ing property: if two jobs j and j′ are assigned to machine i, then

P
{

j precedes j′ in the ordering
} = ρi j′

ρi j + ρi j′
. (6)

Recall ρi j = pij/w j . A distribution over orderings with this property can be constructed as follows. Starting from the set of
jobs Xi assigned to machine i ∈ I , select job j ∈ Xi with probability ρi j/

∑
k∈Xi

ρik , and schedule j at the end. Then remove
j from the list of jobs, and repeat this process. Note that this policy is different from a simple randomized policy that orders
jobs uniformly at random. In fact, this simpler policy is known to give an Ω(m) price of anarchy bound for the makespan
objective (Immorlica et al., 2009), and the same family of examples developed in Immorlica et al. (2009) gives an Ω(m)

lower bound for this policy in our setting.
As we show below, this randomized policy outperforms any deterministic strongly local policy that has the “prompt”

property defined above. In an attempt to explain this success, it is straightforward to verify that, unlike ProportionalSharing,
this policy produces Pareto efficient schedules. One can actually show that Rand Pareto dominates ProportionalSharing. Yet,
contrary to SmithRule, for any pair of jobs assigned to the same machine, there is positive probability that any one of the
two is scheduled later, thus suffering a delay because of the other. In this sense, Rand gives high priority jobs the incentive
to avoid crowded machines if they have better alternatives, but it does so without introducing very long delays.

Theorem 4.8. The price of anarchy when using the Rand policy is at most 32/15 = 2.133 . . . . Moreover, if the sum of the processing
times of the jobs is negligible compared to the social cost of the optimal solution—more precisely, η(x∗) = o(CSR(x∗))—this bound
improves to π/2 + o(1), which is tight.

The high level approach for obtaining these upper bounds is in exactly the same spirit as the previous section: find an
appropriate mapping ϕ from an assignment into a convenient inner product space. To make the mapping and inner product
space easier to describe, we assume in this section that the processing times have been scaled so that the ratios ρi j are
all integral. We also take κ large enough so that, except for infinite processing times, ρi j � κ for all i ∈ I , j ∈ J . These
assumptions are inessential and easily removed.

4.2.1. An inner product space
The map ϕ we use gives the signature for each machine: in the unweighted case, this simply describes how many jobs

of each size are assigned to the machine.
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Definition 4.9. Given an assignment x, its signature ϕ(x) ∈ R
m×κ+ is a vector indexed by a machine i and a processing time

over weight ratio r; we denote this component by ϕ(x)i
r . Its value is then defined as

ϕ(x)i
r :=

∑
j∈Xi
ρi j=r

w j.

We also let ϕ(x)i denote the vector (ϕ(x)i
0,ϕ(x)i

1, . . . , ϕ(x)i
κ ).

Let M be the κ × κ matrix given by

Mrs = rs

r + s
.

Lemma 4.10. Let x be some assignment, and let u = ϕ(x). If job j is assigned to machine i, its expected completion time is given by

cR
j (x) = (

Mui)
ρi j

+ 1

2
pij. (i)

If j is not assigned to i, then its expected completion time upon switching to i would be

cR
j (x) = (

Mui)
ρi j

+ pij. (ii)

Proof. We consider case (i); case (ii) is similar. So x j = i. The expected completion time of job j on machine i is

cR
j (x) =

∑
k∈Xi\{ j}

pikP{job k ahead of job j} + pij

=
∑

k∈Xi\{ j}
pik

ρi j

ρi j + ρik
+ pij

=
∑
k∈Xi

pik
ρi j

ρi j + ρik
+ 1

2
pij.

We can rewrite this in terms of the signature as

cR
j (x) =

∑
s

ui
s Mρi j s + 1

2
pij = (

Mui)
ρi j

+ 1

2
pij. �

A crucial observation is the following:

Lemma 4.11. The matrix M is positive definite.

Proof. Let D be the diagonal matrix with Drr = r. Then we have M = DHD, where the κ × κ matrix H is given by Hrs =
1

r+s . This is a submatrix of the infinite Hilbert matrix ( 1
r+s−1 )r,s∈N . The Hilbert matrix has the property that it is totally

positive (Choi, 1983), meaning that the determinant of any submatrix is positive. It follows that H is positive definite, and
hence so is M . �

Thus we may define an inner product by

〈u, v〉R :=
∑
i∈I

(
ui)T

M v i, (7)

with an associated norm ‖ · ‖R . In addition, the total cost
∑

j w jcR
j (x) of an assignment x may be written in the convenient

form

C R(x) = ∥∥ϕ(x)
∥∥2

R + 1

2

∑
j∈ J

w j px j j = ∥∥ϕ(x)
∥∥2

R + 1

2
η(x).
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4.2.2. Competitiveness of Rand on a single machine
An interesting extra complication that occurs with this policy is that, unlike with ProportionalSharing, the inner product

describing the cost of Rand is quite different to the one describing SmithRule. Since we ultimately need to compare against
CSR(x∗), we need to relate the cost of Rand and SmithRule. For this reason, the performance of Rand on even a single
machine, compared to SmithRule, plays an important role.

So suppose we have n jobs with processing times p j and weight w j , for j � n. The signature u is given by just ur =∑
j:p j/w j=r w j . By considering (1), it follows that the weighted sum of completion times according to SmithRule is

uT Su + 1

2

∑
j

w j p j,

where Srs = 1
2 min{r, s}. Compare this to the corresponding formula for Rand:

uT Mu + 1

2

∑
j

w j p j .

The extra
∑

j w j p j terms only help, and in fact turn out to be negligible in the worst-case example; ignoring them, the

goal is to determine supu�0
uT Mu
uT Su

. So the question is closely related to the worst-case distortion between two norms (not
quite, because of the nonnegativity constraint).

Interestingly, it turns out that this problem has been considered, and solved, in a different context. In Chung et al. (1988),
Chung, Hajela and Seymour consider the problem of self-organizing sequential search. In order to prove a tight bound on the
performance of the “move-to-front” heuristic compared to the optimal ordering, they show:

Theorem 4.12. (See Chung et al., 1988.) For any sequence u1, u2, . . . , uk with ur > 0 for all r,

∑
r,s

urus
rs

r + s
<

π

4

∑
r,s

urus min{r, s}.

(We also present a quite different proof of the theorem in Appendix B.) Thus on a single machine, Rand costs at most
a factor π

2 more than SmithRule. Moreover, this is tight (Gonnet et al., 1981) (take p j = 1/ j2, w j = 1, and let n → ∞). Of
course, it follows immediately that for any number of machines and any assignment x,

C R(x) � π

2
CSR(x). (8)

All in all, we find that π/2 is a tight upper bound on the competitiveness of Rand on a single machine. The following
lemma (which may also be cast as a norm distortion question), is much more easily demonstrated:

Lemma 4.13. For any assignment x, we have C R(x)� 2CSR(x) − η(x).

Proof. Consider a particular machine i. We have

∑
j,k∈Xi

w j wk
ρi jρik

ρi j + ρik
=

∑
j �=k∈Xi

w j wk
ρi jρik

ρi j + ρik
+ 1

2

∑
j∈Xi

w j pi j

�
∑

j �=k∈Xi

w j wk min{ρi j,ρik} + 1

2

∑
j∈Xi

w j pi j

=
∑

j,k∈Xi

w j wk min{ρi j,ρik} − 1

2

∑
j∈Xi

w j pi j.

Summing over all machines gives

C R(x) − 1

2
η(x)� 2

(
CSR(x) − 1

2
η(x)

)
− 1

2
η(x)

from which the bound is immediate. �
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4.2.3. The upper bound
We are now ready to prove the main theorem of this section.

Proof of Theorem 4.8. Let x be the assignment at a Nash equilibrium, and x∗ be any arbitrary assignment, and let u = ϕ(x)

and u∗ = ϕ(x∗).
From the Nash condition and Lemma 4.10, we obtain

C R(x) �
∑
j∈ J

w jc
R
j

(
x− j, x∗

j

)

�
∑
i∈I

∑
j∈X∗

i

w j M
(
ui)

ρi j
+ η

(
x∗)

=
∑
i∈I

(
u∗i)T

Mui + η
(
x∗)

= 〈
u∗, u

〉
R + η

(
x∗).

Applying the Cauchy–Schwartz inequality,

C R(x) �
∥∥u∗∥∥

R‖u‖R + η
(
x∗) � 2

3

∥∥u∗∥∥2
R + 3

8
‖u‖2

R + η
(
x∗). (9)

Now recalling the definition of ϕ and applying Lemma 4.13, we obtain

C R(x) � 2

3

(
C R(

x∗) − 1

2
η
(
x∗)) + 3

8

(
C R(x) − 1

2
η(x)

)
+ η

(
x∗)

� 2

3

(
2CSR(x∗) − 3

2
η
(
x∗)) + 3

8

(
C R(x) − 1

2
η(x)

)
+ η

(
x∗)

� 4

3
CSR(x∗) + 3

8
C R(x).

This gives a coordination ratio of 32/15.
Suppose now that η(x∗) is very small; η(x∗)� εCSR(x∗) for some ε > 0. Then we may continue from (9):

C R(x) �
∥∥u∗∥∥

R‖u‖R + εCSR(x∗)� √
C R

(
x∗) · C R(x) + ε

√
C R

(
x∗) · C R(x).

Thus

C R(x)/C R(
x∗)� (1 + ε)2.

So if η(x∗) = o(CSR(x)), we obtain from (8) that C R(x)/CSR(x∗)� π/2 + o(1). �
As noted in Appendix A, a slight modification of the construction used to prove Proposition 4.7 can be used to show that

the worst-case price of anarchy of Rand is at least 5/3.

5. Potential games and an algorithmic application

5.1. Potential games

Under SmithRule it may happen that no pure Nash equilibrium exists (Correa and Queyranne, 2012). Here we show that
ProportionalSharing and Rand both induce exact potential games, which hence always have pure Nash equilibria. This also
implies that certain natural best response dynamics quickly converge to solutions whose social cost is not much worse than
the social cost in equilibrium; we discuss this in more detail at the end of this section.

The following theorem generalizes (Dürr and Thang, 2009, Theorem 3), which addresses EqualSharing (i.e., the un-
weighted case).

Theorem 5.1. The ProportionalSharing mechanism induces exact potential games, with potential

ΦPS(x) = 1

2
CPS(x) + 1

2
η(x). (10)

Likewise, the Rand mechanism yields exact potential games with potential

ΦR(x) = 1

2
C R(x) + 1

2
η(x). (11)
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Proof. We give the proof for ProportionalSharing; the proof for Rand is similar.
Consider an assignment x and a job j ∈ J , and let i be the machine to which j is assigned. Define x′ as the assignment

differing from x only in that job j moves to some machine i′ �= i.
We may write the change in the potential function as

ΦPS(x′) − ΦPS(x) =
∑
k∈ J

Dk + 1

2
w j(pi′ j − pij), (12)

where

Dk = 1

2
wk

(
cPS

k

(
x′) − cPS

k (x)
)
.

Consider a job k �= j on machine i. Since only job j left the machine, we have from Lemma 4.1 that

cPS
k

(
x′) − cPS

k (x) = −w j min{ρi j,ρik}.
Thus ∑

k∈Xi\{ j}
Dk = −1

2
w j

∑
k∈Xi\{ j}

wk min{ρi j,ρik} = −1

2
w j

(
cPS

j (x) − pij
)
.

Similarly, considering jobs on i′ yields∑
k∈Xi′

Dk = 1

2
w j

∑
k∈Xi′

wk min{ρi′ j,ρi′k} = 1

2
w j

(
cPS

j

(
x′) − pi′ j

)
.

All other jobs are unaffected by the change, and so do not contribute to (12). Summing all terms (including D j ), we obtain

ΦPS(x′) − ΦPS(x) = w j
(
cPS

j

(
x′) − cPS

j (x)
)
,

exactly the change in the cost of job j. �
5.2. A combinatorial approximation algorithm

Minimizing the unweighted sum of completion times is polynomial time solvable, even for unrelated machines (Horn,
1973; Bruno et al., 1974). For identical parallel machines, the ShortestFirst policy leads to an optimal schedule at any
pure Nash equilibrium (Conway et al., 1967; Immorlica et al., 2009). On the other hand, minimizing the weighted sum of
completion times is NP-complete even for identical machines (Lenstra et al., 1977). This special case does admit a polynomial
time approximation scheme (PTAS) however: for any ε > 0, a solution only a factor 1 + ε more expensive than the optimal
one can be found in polynomial time (Skutella and Woeginger, 2000). Recall that the cost of the optimal solution, which we
will denote by OPT , is simply CSR(x∗).

By contrast, the general case of unrelated machines is APX-hard (Hoogeveen et al., 2001)—no PTAS is possible. A sequence
of papers gave improving constant-factor approximation algorithms, all based on rounding a linear or convex programming
relaxation. The first was a 16/3-approximation algorithm (Hall et al., 1997), based on rounding an appropriate linear pro-
gramming relaxation. An improvement to 3

2 + ε , again based on linear programming, was given in Schulz and Skutella
(2002). Finally the best currently known factor, a 3

2 -approximation, was obtained based on a convex quadratic relaxation of
the problem (Sethuraman and Squillante, 1999; Skutella, 2001).

In this section, we will give a very simple and combinatorial approximation algorithm. While it does not quite match the
best factor of 3

2 , it achieves a factor of 2 + ε , for any ε > 0.
The basic idea is as follows. If we could compute a Nash equilibrium of the game induced by a policy with a coordination

ratio of γ , this Nash equilibrium schedule would have a social cost at most γ times the optimum. The algorithm computing
this Nash equilibrium would therefore be a γ -approximation algorithm for the optimization problem. Of course, there is no
longer any need to keep to the suboptimal scheduling that any policy apart from SmithRule would yield. Once we have the
Nash assignment x, we can switch to using SmithRule, as this step will always decrease the social cost. In what follows we
carefully choose a policy that has a small coordination ratio, but at the same time guarantees that the cost will decrease by
half after switching to SmithRule. In this way, we can guarantee an approximation factor that is better than the best price
of anarchy bound that we managed to achieve.

The policy we use, which we call Approx, is a variation of ProportionalSharing with some additional delays. Schedule the
jobs exactly as in ProportionalSharing, but hold each job j back by an additional duration equal to its processing time. In
other words, the completion time of any job j under an assignment x is

c A(x) = cPS(x) + px j.
j j j
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Comparing Lemma 3.1 and Corollary 4.3, we see that

CPS(x) = 2CSR(x) − η(x).

Thus

C A(x) = CPS(x) + η(x) = 2CSR(x).

This will give us a saving of a factor of 2 when we switch from using the Approx policy to SmithRule. It turns out that
Approx has a coordination ratio of 4; thus for any Nash equilibrium x with respect to this policy, CSR(x)� 2OPT .

Unfortunately we do not know how to compute an equilibrium allocation to this game (similarly for ProportionalSharing
and Rand, in fact). Despite this, we will show that a natural best response dynamics will converge in polynomial time to
some assignment of cost at most (2 + ε)OPT for any ε > 0. This will follow from general results on the robust price of
anarchy proved by Roughgarden (2009), drawing on work by Awerbuch et al. (2008) and Chien and Sinclair (2011). We will
actually prove everything we need, primarily in order to be able to give a precise stopping condition for our algorithm,
something which is not quite explicit in Roughgarden (2009). It also demonstrates that there is no difficulty in extending
the proofs to price of anarchy bounds on coordination mechanisms rather than games, although this is fairly immediate
from a consideration of the original proofs.

Consider the following natural best response dynamics: simply pick the job which can improve its disutility (weighted
completion time) the most by deviating, and allow that job to move. Following Roughgarden (2009) we will call this the
maximum-gain best response dynamics. Given some coordination mechanism α and configuration x, let

�α
j = w j

(
cα

j (x) − cα
j

(
x− j, x′

j

))
for any j ∈ J ,

where x′
j is the best response move for player j. Also let

�α(x) =
∑
j∈ J

�α
j .

Definition 5.2. An assignment x is an ε-equilibrium if �α(x) < εCα(x).

The full algorithm using these dynamics is described in Algorithm 1. Note that this is nothing more than a local search
algorithm, and it could have been stated without reference to any game-theoretic notions. However, the cost structure is
defined by the Approx coordination mechanism; this choice is based heavily on the game-theoretic intuition explained in
previous sections. It is not clear how such an algorithm could be discovered without the game-theoretic perspective.

Algorithm 1: A factor 2 + ε approximation algorithm for minimizing
∑

j∈ J w jcSR
j (x).

1 Assign each job to a machine on which it has minimum processing time.
2 Using the Approx policy, run basic dynamics until an ε/4-equilibrium x is obtained.
3 Return assignment x, scheduled according to SmithRule.

In order to bound the running time of our local search algorithm we use the following theorem, slightly adapted from
Roughgarden (2009, Proposition 2.6), which is in turn based on Awerbuch et al. (2008).

Proposition 5.3. (See Roughgarden, 2009.) Let α be a (λ,μ)-smooth coordination mechanism, let x0 be any initial configuration, and
let x̂ be the global minimizer of Φα . Then for any ε > 0, maximum-gain best response dynamics generates an ε-equilibrium x in at

most O ( n
ε log (

Φα(x0)

Φα(x̂)
)) steps, and this assignment satisfies Cα(x)� λ

1−μ−ε OPT.

Proof. By the definition of (λ,μ)-smooth, we have∑
j∈ J

w jc
α
j

(
x− j, x∗

j

)
�μCα(x) + λOPT.

Thus �α(x)� (1 − μ)Cα(x) − λOPT , and so if x is an ε-equilibrium,

εCα(x) ��α(x) � (1 − μ)Cα(x) − λOPT,

implying the required cost bound.
Let xt be the assignment after t steps of basic dynamics. Suppose that xt is not an ε-equilibrium, so �α(xt) > εCα(xt).

Then if j is the player which can improve the most, we must have �α
j (xt) � ε

n Cα(xt). Then since Cα(xt) � Φα(xt) and

Φα(xt+1) = Φα(xt) − �α(xt), we have
j
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Φα
(
xt+1)� (

1 − ε

n

)
Φα

(
xt).

Thus if no ε-equilibrium is found in the first T steps,

Φα(x̂) � Φα
(
xT )

�
(

1 − ε

n

)T

Φα
(
x0).

This yields the required bound on the number of steps. �
We omit the proofs of the following two lemmas, which are essentially identical to those of Theorem 5.1 and Theorem 4.4

respectively:

Lemma 5.4. The Approx coordination mechanism induces an exact potential game, with potential function

Φ A(x) = 1

2
C A(x) + η(x).

Lemma 5.5. The Approx coordination mechanism is (3,1/4)-smooth.

We may now prove the main result of this section.

Theorem 5.6. For any 0 < ε < 1, Algorithm 1 runs in polynomial time, and returns a schedule of cost at most (2 + ε)OPT.

Proof. We first argue that Φ A(x0)� (n + 1)Φ A(x̂), where x̂ is a global minimizer of Φ A . Consider two jobs j and k assigned
to some machine i under x0, such that j is processed before k under Smith’s rule. Then ρi j � ρik . The total contribution to
the cost CSR(x0) due to the delay of job k by job j is wk pij . But we have

wk pij = w j wkρi j �
1

2

(
w2

j + w2
k

)
ρi j �

1

2
(w j pij + wk pik).

Summing over all pairs of jobs processed on the same machine, the total contribution to CSR(x0) due to delays is at most∑
i∈I

∑
j �=k∈X0

i

1

2
(w j pij + wk pik) � (n − 1)

∑
i∈I

∑
j∈X0

i

w j pi j = (n − 1)η
(
x0).

Hence CSR(x0)� nη(x0), and so

Φ A(
x0)� CSR(x0) + η

(
x0)

� (n + 1)η
(
x0)

� (n + 1)η(x̂)
(
since x0 minimizes η

)
� (n + 1)Φ A(x̂).

Since Approx is (3,1/4)-smooth, by Proposition 5.3 the algorithm returns an assignment x of cost C A(x) � 3
1−1/4−ε/4 OPT

in O (
n log n

ε ) steps of best response dynamics. Thus the algorithm runs in polynomial time, and simplifying, CSR(x) � (2 +
ε)OPT . �

Since we also have robust price of anarchy bounds for ProportionalSharing and Rand, and these both induce exact po-
tential games, fast convergence statements can be made for these policies as well. As well as the maximum-gain best
response dynamics used in Algorithm 1, best response dynamics where a random player is chosen at each round also leads
to convergence, with high probability (Roughgarden, 2009).

6. Concluding remarks

On mapping machines to edges of a parallel link network, the machine scheduling problem for the case of related ma-
chines becomes a special case of general selfish routing games. In this context, the ordering policies on machines correspond
to local queuing policies at the edges of the network. From this perspective, it would be interesting to generalize our results
to network routing games. Designing such local queuing policies would be an important step toward more realistic models of
selfish routing games when the routing happens over time (Hoefer et al., 2011; Farzad et al., 2008; Koch and Skutella, 2011;
Cominetti et al., 2011). We hope that our new technique along with the policies proposed in this paper could serve as a
building block toward this challenging problem.
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Fig. 2. Lower bound instance for m = 4, k = 2, showing the optimal solution and a Nash equilibrium with high social cost.

All the mechanisms discussed here are strongly local. For the case of the makespan objective, one can improve the
coordination ratio from Θ(m) to Θ(log m) by using local policies instead of just strongly local policies. It remains open
whether there are local policies that perform even better than our strongly local ones. In particular, we do not know of any
local policy that does better than Rand.
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Appendix A. Lower bounds

Proof of Theorem 3.3. We begin by presenting the family of game instances that leads to a pure price of anarchy approach-
ing 4 for games induced by SmithRule in the restricted identical machines model (Correa and Queyranne, 2012), and then
show how to generalize the lower bound based on this construction.

There are m machines and k groups of unweighted unit-length jobs g1, . . . , gk , where group gr has m/r2 jobs. We assume
that m is such that all groups have integer size and let jrs denote the s-th job of the r-th group. A job jrs can be assigned
to machines 1, . . . , s, and we assume that for two jobs jrs and jr′s′ with s < s′ , jr′s′ has higher priority than jrs (if s = s′ ,
the ordering can be arbitrary).

If every job jrs is assigned to machine s, there are exactly m/r2 jobs with completion time r (1 � r � k), which leads
to a total cost of m

∑k
r=1 1/r. On the other hand, consider the following assignment. Process the jobs in order of priority,

highest to lowest. For each, consider the set of machines which minimizes its completion time (given the already assigned
jobs), and assign it to the machine in this set with smallest index. This gives a (pure) Nash equilibrium by construction,
since the completion time at the point when a job is assigned is unaffected by the assignment of later jobs. In Correa and
Queyranne (2012), it is shown that this assignment has total cost Ω(4m

∑k
r=1 1/r). Fig. 2 demonstrates the case k = 2. �

Fixed ordering policies. Let I denote an arbitrary instance of the family defined above, and let x and x∗ denote its pure Nash
equilibrium assignment and its optimal assignment respectively, as described above. We seek to reproduce instance I in a
setting in which each machine has its own ordering of the jobs. We will think of each job j of I as defining a job slot; then,
for any given set of fixed ordering policies of the machines we construct an instance I ′ by matching jobs to these slots. We
conclude by showing that the pure price of anarchy of I ′ with respect to the given fixed ordering policies is at least as high
as that of I with respect to SmithRule.

Given a set of ordering policies, each machine has its own strictly ordered list of all n jobs. We start from the job slot
j of I with the greatest machine index x j ; in the case of a tie, that is if there is more than one job with the same x j , we
first consider the slot with greater x∗

j machine index. We match the first job in the ordered list of machine x j to this slot.
Denote the job matched to slot j by j′ , and restrict this job j′ so that it can be assigned only to either machine x j or x∗

j .
We then erase job j′ from all the machines’ lists and we repeat this process until all jobs have been matched; we denote
the induced problem instance by I ′ .

Note that if each job j′ is assigned to machine x∗
j , then the social cost of this assignment in I ′ is equal to that of

assignment x∗ in I; similarly, if each job j′ is assigned to machine x j , the social cost of the assignment in I ′ is equal to
that of assignment x in I . Therefore, to conclude the proof we only need to show that the latter assignment is a pure Nash
equilibrium in I ′ . To do this, it is sufficient to argue that the cost of each job j′ in this assignment is the same as that of
job j in x, and that the cost of j′ if it deviates from this assignment to machine x∗

j is the same as that of job j if it deviates
from assignment x by selecting x∗ instead. It therefore suffices to show that for any machine i, and any pair of jobs j and
j
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k of I , each of which is assigned to i in either the pure Nash equilibrium or the optimal assignment, the relative ordering
of j and k on i according to SmithRule is the same as that of the corresponding jobs j′ and k′ of I ′ according to the fixed
ordering of machine i. Considering the structure of instance I , this reduces to showing that if x∗

j < x∗
k , then k′ has higher

priority than j′ on i. If i = x j = xk , then this holds by the tie-breaking rule of the job to slot matching. Otherwise, since
x j � x∗

j (again due to the structure of I)6, the only other possibility is that i = x∗
j = xk . But then either x j < xk , or x j = xk

and x∗
j < x∗

k ; once again k′ will be assigned before j′ , ensuring that k′ has higher priority on i.

Proof of Proposition 4.7. The construction is a slight variant of one given in Caragiannis et al. (2011) for load balancing
games. We define the construction in terms of the game graph; a directed graph, with nodes corresponding to machines,
and arcs corresponding to jobs. The interpretation of an arc (i∗, i) is that the corresponding job is run on i at the Nash
equilibrium, and i∗ in the optimal solution (all jobs can only be run on at most two machines in the instance we construct).

Our graph consists of a binary tree of depth �, with a path of length � appended to each leaf of the tree. In addition,
there is a loop at the endpoint of each path. All arcs are directed towards the root; the root is considered to be at depth
zero. In the binary tree, on a machine at depth i, the processing time of any job that can run on that machine is (3/2)�−i .
In the chain, on a machine at distance k from the tree leaves all processing times are (1/2)k .

By slightly perturbing the processing times of jobs on different machines, it is easily checked that if every job is run on
the machine pointed to by its corresponding arc, the assignment is a pure Nash equilibrium. The latter holds for arbitrary
prompt strongly local coordination mechanisms so long as jobs are anonymous. On the other hand, if all jobs choose their
alternative strategy, we obtain the optimal solution. A straightforward calculation shows that, in the limit � → ∞, the ratio
of the cost of the Nash equilibrium to the optimal cost converges to 13/6 > 2.166. �
Rand. The previous instance can be easily modified to give a lower bound on the performance of Rand. Simply take the
same instance but replace 3/2 by 4/3 and 1/2 by 2/3. The same assignment then gives a Nash equilibrium, and in this case
the ratio of interest approaches 5/3.

Appendix B. The performance of Rand on a single machine

Proof of Theorem 4.12. We want to prove that for any sequence u1, . . . , uk , ui � 0, the following inequality holds:∑
i

∑
j

uiu j
i j

i + j
� π

4

∑
i

∑
j

uiu j min{i, j}.

We will in fact prove that for any sequence x1, x2, . . . , xn , xi ∈N,∑
i

∑
j

xi x j

xi + x j
<

π

4

∑
i

∑
j

min{xi, x j}. (13)

This implies the inequality in the statement, for the choice ur = |{i: xi = r}|, and hence clearly for any integer sequence
(ui). An obvious scaling argument then gives it for general nonnegative ui .

Since both summations in (13) are symmetric, we may assume without loss of generality that x1 � · · · � xn � 0. Then,
we note that

∑n
i=1

∑n
j=1 min{xi, x j} = 2

∑n
i=1 xi(i − 1/2). Also, observe that the inequality is homogeneous so that proving

the inequality is equivalent to proving that the optimal value of the following concave optimization problem is less than
π/2:

z = max

{
n∑

i=1

n∑
j=1

xi x j

xi + x j
: s.t.

n∑
i=1

xi(i − 1/2) = 1, x1 � · · · � xn � 0

}
.

Clearly z � z′ , where

z′ = max

{
n∑

i=1

n∑
j=1

xix j

xi + x j
: s.t.

n∑
i=1

xi(i − 1/2) = 1, xi � 0 for all i = 1, . . . ,n

}
.

Furthermore, we may assume that in an optimal solution all variables satisfy xi > 0. Otherwise, we could consider the
problem in a smaller dimension. Thus, the KKT optimality conditions state that for all i = 1, . . . ,n we have

μ(i − 1/2) = 2
n∑

j=1

(
x j

xi + x j

)2

. (14)

6 According to the equilibrium assignment of instance I , each job j is assigned to a machine with an index (x j ) which is less than or equal to that of
the machine to which job j is assigned in the optimal assignment (x∗

j ).
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Multiplying by xi , summing over all i, and using
∑n

i=1 xi(i − 1/2) = 1, we obtain:

μ = 2
n∑

i=1

n∑
j=1

xi

(
x j

xi + x j

)2

=
n∑

i=1

n∑
j=1

xi x j

(xi + x j)
2
(xi + x j) = z′.

Now consider (14) with i∗ = arg maxi xi(i − 1/2)2. We have that

z′ = 2

i∗ − 1/2

n∑
j=1

(
x j

xi∗ + x j

)2

� 2
(
i∗ − 1/2

)3
∞∑
j=1

(
1

(i∗ − 1/2)2 + ( j − 1/2)2

)2

.

Using standard complex analysis it can be shown that the latter summation equals

(π/2)
((

i∗ − 1/2
)
π tanh

(
π

(
i∗ − 1/2

))2 + tanh
(
π

(
i∗ − 1/2

)) − π
(
i∗ − 1/2

))
,

which is less than π/2. �
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