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We analyze a Wardrop equilibrium model for passenger assignment in general tran-
sit networks, including the effects of congestion over the passengers’ choices. The

model is based on the common-line paradigm, which is applied to general networks using
a dynamic programming approach. Congestion is treated by means of a simplified bulk
queue model described in the appendix. We provide a complete characterization of the set of
equilibria in the common-line setting, including the conditions for existence and uniqueness.
This characterization reveals the existence of ranges of flow in which a Braess-like paradox
appears, and in which a flow increase does not affect the system performance as measured
by transit times. The congested common-line model is used to state an equilibrium model
for general transit networks, and to establish the existence of a network equilibrium.

Introduction
Passenger assignment models aim to describe the way
users of a public transportation system employ the
available infrastructure for traveling between differ-
ent origins and destinations in the network. Several
models have been proposed, differing with respect
to the assumptions on passenger behavior, network
structure, and modeling of congestion. Here is a short
overview of work in this area.
Earlier studies, such as those of Dial (1967),

Fearnside and Draper (1971), and Le Clercq (1972),
neglected congestion and assumed that passen-
gers traveled along shortest paths on each origin-
destination (OD) pair. The length of a path in this
context corresponds to the total transit time including
waiting as well as in-vehicle travel time. Later, con-
sidering a single corridor served by a set of bus lines,
Chriqui and Robillard (1975) introduced the notion of
common-lines suggesting that passengers could bun-
dle together a subset of the available lines in order

to reduce the waiting and hence the overall tran-
sit time. The assignment of passengers to bus lines
was done proportionally to the nominal frequencies
of each common-line. The extension of the common-
line idea to general networks led Spiess (1984) and
Spiess and Florian (1989) to introduce the notion of
strategy, which was later expressed in graph-theoretic
language by Nguyen and Pallottino (1988) under the
denomination of hyperpath, namely, an acyclic sub-
graph connecting a given OD pair. In these models—
which can handle simultaneously several OD pairs,
overlapping bus lines, and transfers at intermediate
nodes on each trip—passengers are assumed to travel
along shortest hyperpaths. Despite this generality, the
models did not consider explicitly the increase in
waiting times induced by congestion, and the assign-
ment of passengers to bus lines was done propor-
tionally to the nominal frequencies. However, Nguyen
and Pallottino consider flow-dependent travel times,
modeling the on-board crowding of buses which may
affect the passengers’ choices.
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The first attempt to incorporate the congestion
effects on the passenger distribution and waiting
times at bus stops seems to be Gendreau (1984). This
study was based on a bulk queue model describing
the waiting process, but its complexity prevented the
analysis of the network equilibrium. To overcome
this difficulty and the complexity of dealing with
hyperpaths, De Cea and Fernández (1993) studied a
network model in which passengers travel by fol-
lowing a sequence of intermediate transfer nodes.
To move between successive transfer nodes, passen-
gers are supposed to solve a common-line problem
in which waiting times as well as passenger distri-
bution depend not only on the flow boarding at the
node but also on the flow already on the bus. While
this work may be considered as the first network
model to incorporate congestion, it has some impor-
tant drawbacks. First, the functional form used to rep-
resent congestion is only justified heuristically, and
practical computations show that the model may pro-
duce line loads beyond the line capacities. Second,
the common-lines between transfer nodes are com-
puted according to a heuristic method which does
not guarantee the Wardrop equilibrium condition to
be fulfilled. Third, and related to the previous point,
all passengers traveling between two transfer nodes
are assumed to use the same set of common-lines (we
shall see that in general there may be no equilibrium
of this form).
More recently Wu et al. (1994) studied a con-

gested network assignment model in which passen-
gers travel according to shortest hyperpaths. Travel
times as well as waiting times are considered to
be flow dependent, but the passenger assignment is
based on the nominal frequencies of the lines. Finally,
Bouzaïene-Ayari et al. (1995 a–c) extended this model
to study existence, uniqueness, and computation of
network equilibria for the case in which the assign-
ment is also flow dependent: the flow distribution
is done proportionally to the inverses of the waiting
times of each line. This congestion model assumes
that waiting times obey an inverse additive law of the
form

1
Ws�v�

=∑
i∈s

1
W�i��v�

where v represents the vector of line-flows, Ws

denotes the waiting time corresponding to the set

of lines s, and W�i� is the waiting time of line i

taken individually. The model is based on evidence
obtained from simulations, and the functions W�i� are
calibrated empirically. To establish the existence of
an equilibrium the authors assume these functions
to have uniformly bounded gradients. This assump-
tion precludes the use of congestion functions based
on queuing theory, which exhibit a level of flow sat-
uration at which queue lengths and waiting times
explode to infinity. Additionally, the travel-time func-
tions are assumed to be strongly monotone, which
prevents the model from being used in the simplest
case of constant travel times. Moreover, uniqueness of
equilibrium is established only for the case in which
this strongly monotone term dominates over the wait-
ing time.
The goal of this paper is to study a network equi-

librium model with congestion, in which travel times
are not necessarily monotone and congestion affects
both the waiting times and the flow distribution. Pas-
sengers are assumed to travel according to short-
est hyperpaths, which are described in a simplified
form in terms of local strategies. The model—an out-
growth of Correa (1999)—exploits the common-line
idea in a dynamic programming approach and it can
handle congestion functions obtained from queuing
models as the ones proposed by Gendreau (1984). In
Appendix A we provide a queue-theoretic support
and discuss the limitations of our treatment of conges-
tion, justifying the additive law for inverses of waiting
times as well as the flow distribution proportionally
to these inverses.
The plan of the paper is as follows. In §1 we analyze

the common-line problem under congestion, prov-
ing the existence of equilibria in terms of strategy-
flows and giving a complete characterization in terms
of an equivalent optimization problem satisfied by
the equilibrium line-flows. This characterization shows
that the set of equilibrium line-flows forms a sim-
ple convex polytope, and readily gives the conditions
for uniqueness. Moreover, it reveals some unexpected
features such as the existence of ranges of flow in
which no single set of common lines can yield an
equilibrium, and also the fact that a flow increase
need not induce larger transit times. More interest-
ingly, in those ranges the equilibrium is not the social
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optimum since by appropriately restricting the user’s
choices everyone can strictly improve his transit time.
In other words, the equilibrium need not be Pareto
optimal. This can be seen as an analog for Braess’
paradox in the setting of congested public transporta-
tion networks.
It is worth pointing out that the congested

common-line equilibrium model could be stated as
a variational inequality which is however nonmono-
tone as well as nonsymmetric. This fact prevents the
use of the existing machinery for monotone varia-
tional inequalities. In particular, the set of equilibrium
strategy-flows is in general a nonconvex subset of
a smooth (nonlinear) manifold. The existence of an
optimization equivalent for the corresponding equi-
librium line-flows is therefore a very fortunate fact,
which is extremely convenient for stating an equilib-
rium model for general transit networks. The latter
is done in §2, where the common-line model is used
as a building block exploiting a dynamic program-
ming approach. The resulting network model consists
of a set of common-line problems (one for each OD
pair) linked together by flow conservation constraints.
The philosophy behind the model is closely related to
the strategy/hyperpath approach. However, using the
common-line framework we avoid handling explic-
itly the flows on strategies and we write a concise
model directly in terms of line-flows. The existence
of a network equilibrium is obtained by using fixed
point arguments.

1. The Common-Line Problem
Under Congestion

Consider the simplest network consisting of an ori-
gin O connected to a destination D by n bus lines
li i ∈ A = �1 � � � n�, each one characterized by an
in-vehicle travel time ti and a frequency fi (Figure 1).
According to Chriqui and Robillard (1975), for the
purpose of traveling from O to D, passengers select a
subset of common lines s ⊂A boarding the first incom-
ing bus from this set. The chosen strategy s should
minimize the expected transit time Ts , including the
waiting time 1/

∑
i∈s fi and the expected in-vehicle

Figure 1 The Common-Line Problem

travel time
∑

i∈s ti�
s
i , where �

s
i = fi/

∑
j∈s fj is the prob-

ability of boarding line li, i.e.,

Ts =
1+∑

i∈s tifi∑
i∈s fi

�

Notice that some models adopt a waiting time of the
form �/

∑
i∈s fi with � ∈ �01�, which can be easily

reduced to the present setting by changing the fre-
quencies to fi/�. Now, intuitively, a passenger con-
senting to board li should also consider the faster
lines lj with tj < ti (see Lemma 1.2 below), leading to
a linear-time algorithm for computing an optimal s∗

(see Chriqui and Robillard 1975): initialize s∗ = ∅ and
repeat the update s∗ ← s∗ ∪ �i 	∈ s∗ � ti = min

j 	∈s∗
tj� until

min
j 	∈s∗

tj ≥ Ts∗ .

This model neglects congestion and assumes that
passengers can effectively board the first incoming
bus. However, large flows and limited bus capacity
may prevent (from time to time) a passenger from
boarding the bus that comes first, increasing his wait-
ing time. A simple approach to model this situation is
to suppose that the frequency of line li is a decreasing
function of the flow vi on this line. In Appendix A we
provide a queue-theoretic support for such a model
and discuss its limitations.
Let us then assume that each line li is charac-

terized by a differentiable effective frequency function
fi � �0 v̄i�→ �0�, with f ′i �·� < 0 and fi�vi�→ 0 as
vi → v̄i. The constant v̄i > 0 (eventually v̄i = +) is
called the saturation flow of the line. In this setting, the
expected transit time of strategy s becomes a function
of the line-flows

Ts�v� �=
1+∑

i∈s tifi�vi�∑
i∈s fi�vi�

�T�

so that the optimal decision of each passenger is
affected by the choices of the others, and then one
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must think of the common-line problem in terms of
equilibrium. Specifically, consider a total flow x > 0
of passengers going from O to D and denote by �

the set of nonempty subsets s⊂A (the possible strate-
gies). The flow x splits into flows ys ≥ 0 along the
strategies so that x =∑

s∈� ys . Assuming that a pas-
senger from strategy s boards each line i ∈ s with
probability �s

i = fi�vi�/
∑

j∈s fj�vj� (see Appendix A),
and denoting by �i �= �s ∈ � � i ∈ s� the set of strate-
gies containing line li, the vector of strategy-flows
y = �ys�s∈� determines a unique vector of line-flows
v = v�y� through the system of equations (see §1.1)

vi =
∑
s∈�i

ys
fi�vi�∑
j∈s fj�vj�

for i = 1 � � � n� �E�

Using Wardrop’s principle, we say that the strategy-
flow vector y∗ is an equilibrium if and only if all strate-
gies carrying flow are of minimal time, that is,

y∗s > 0⇒ Ts�v�y
∗��= T̂ �v�y∗�� �W�

where T̂ �v� �=mins∈� Ts�v�.
We refer to the model above as the TEW equilib-

rium model. In §1.2 we prove the existence of equi-
libria y∗ and we characterize the corresponding line
flows v�y∗� as the optimal solutions of an equiv-
alent optimization problem. This characterization
reveals some remarkable features of the equilibrium,
including the conditions for having uniqueness. For
instance, a priori one could expect that the only effect
of congestion would be a change in the optimal strat-
egy, which could then be computed by using Chriqui
and Robillard’s algorithm with suitable frequencies
fi�vi� (eventually by an iterative process adjusting the
flows vi). This view, which assumes that all passen-
gers use the same strategy, is adopted for example by
De Cea and Fernández (1993). However we will see
that in some ranges of flow there cannot be an equi-
librium where all passengers adopt the same strat-
egy, and x must necessarily split among two or more
strategies. Moreover, in such ranges the equilibrium
transit time remains constant, i.e., an increase in the
flow x does not deteriorate the performance of the
system.

1.1. Relation Between Strategy-Flows
and Line-Flows

For the TEW equilibrium model to be well defined
we must check that (E) defines an implicit function
v = v�y�. To this end we consider the change of vari-
ables zi �= ln fi�vi� defined for vi < v̄i (we set fi�vi�=
fi�0�−vi for vi < 0). In these new variables system (E)
becomes

0 = −f−1i �ezi �+∑
s∈�i

ys
ezi∑
j∈s e

zj

for all i = 1 � � � n (1)

which amounts to  q�z� = 0, where q � �n → � is
defined as

q�z� �=
n∑
i=1

hi�e
zi �+∑

s∈�
ys ln

(∑
j∈s
ezj

)
with hi � �+ → � given by

hi�u� �=−
∫ u

1

f−1i �$�

$
d$�

It is easy to see that hi�u� is strictly convex for i =
1 � � � n, hence q�z� is also strictly convex and the
solution of (1) is the unique minimizer of q, provided
it exists. The next result establishes conditions for the
existence of this minimum.

Theorem 1.1. For y ≥ 0, the following are
equivalent:
(a)

∑
s∈� ysminj∈s xj <

∑n
i=1 v̄ixi for all x ∈ & �= �x ∈

�n � x ≥ 0
∑n

i=1 xi = 1�.
(b) There exist vsi ≥ 0 such that ys =

∑
i∈s vsi for all

s ∈� and
∑

s∈�i
vsi < v̄i for i = 1 � � � n.

(c)
∑

s′⊂s ys′ <
∑

i∈s v̄i for all s ∈� .
These conditions are necessary and sufficient for the exis-
tence and uniqueness of a minimum of q, and hence of a
solution v = v�y� of system �E�.

Proof. Since q is convex, its minimum is attained
iff L�d� �= limt→� q�td�d�>0 for all d 	=0. A
straightforward computation gives

L�d�=
−

∑n
i=1 v̄idi+

∑
s∈S ysmaxj∈s dj if d ≤ 0

+ otherwise
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so that q attains its minimum if and only if

−
n∑
i=1

v̄idi+
∑
s∈S

ysmax
j∈s

dj > 0 ∀d ≤ 0d 	= 0�

Normalizing so that
∑n

i=1 di = −1 and multiplying
by −1, this is precisely condition (a).
(a) ⇐⇒ (b): Notice that (a) can be equivalently

stated as L > 0 with

L �=min
x)

{ n∑
i=1

v̄ixi−
∑
s∈�

ys)s � x ∈ &*)s ≤ xi

for all s ∈�  i ∈ s
}
�

This is a bounded linear program whose dual is

L = max
+∈�

�vsi �≥0

{
+ �

∑
i∈s
vsi = ys for all s ∈� *

∑
s∈�i

vsi ≤ v̄i−+ for i = 1 � � � n
}

so that L > 0 is also equivalent to (b).
(a) �⇒ (c): For s ∈� let xi = 1/�s� if i ∈ s and xi = 0

otherwise. Then (a) gives
∑

s′⊂s ys′ <
∑

i∈s v̄i.
(c) �⇒ (b): Consider an auxiliary graph (Figure 2)

with node sets � and A, and two extra nodes f p.
Connect these nodes by the arcs E1 = ��f  s� � s ∈ � �
E2 = ��i p� � i ∈A�, and E3 = ��s i� � s ∈�  i ∈ s� assign-
ing to each arc e a capacity

c�e�=


ys if e = �f  s� ∈ E1
v̄i−. if e = �i p� ∈ E2
 if e ∈ E3

with . > 0 chosen so that∑
s′⊂s

ys′ ≤
∑
i∈s
v̄i−. ∀ s ∈� � (2)

Clearly, proving (b) amounts to showing that the max-
imum flow from f to p is

∑
s∈� ys . By the maxflow-

mincut theorem this is equivalent to proving that
every �f  p�-cut �WWc� has capacity c�W�≥∑

s∈� ys .
Observe that it suffices to consider those cuts con-
taining only arcs from E1 and E2, since otherwise
c�W�= . In this case, letting U =W ∩A we get

c�W�=∑
i∈U
�v̄i−.�+

(∑
s∈�

ys−
∑
s′⊂U

ys′

)

Figure 2 The Auxiliary Graph

so that using (2) we conclude

c�W�−∑
s∈�

ys =
∑
i∈U
�v̄i− .�−

∑
s′⊂U

ys′ ≥ 0� �

Remark 1.1. Condition (b) amounts to saying that
the strategy-flow vector y = �ys�s∈� may be decom-
posed into line-flows without saturating any line.
To interpret condition (c) observe that the quantity∑

s′⊂s ys′ must flow through the set of lines s, so that
the condition requires that each subset of lines has
enough capacity to carry the flow required from them.

1.2. Existence and Characterization of Equilibria
Let w��� = �wi����

n
i=1 with wi � �0� → �0 v̄i� the

inverse of the differentiable and strictly increasing
function vi �→ vi/fi�vi�, and let h � �0�→ �0� be
defined as

h��� �=
n∑
i=1

∫ �

0
�T̂ �w�1��− ti2+w′

i�1� d1 (3)

where �x2+ denotes the positive part of x (equal to x

if x≥ 0 and 0 otherwise). We shall prove that the line-
flows v= v�y∗� corresponding to solutions y∗ of TEW
coincide with the optimal solutions of

min
v≥0

{
n∑
i=1

tivi+h
(
max
i=1��� n

vi
fi�vi�

)
�

n∑
i=1

vi = x

}
� �Px�

This equivalence will give the existence as well as a
complete characterization of equilibria, including the
conditions for uniqueness. To proceed we establish
some elementary preliminary lemmas. In the sequel
we call a strict convex combination (scc) any convex
combination with strictly positive coefficients.
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Lemma 1.1. If s ⊂ s′, then Ts′�v� is a scc of Ts�v� and
�tj � j ∈ s′\s�.
Proof. It suffices to remark that

Ts′�v�=
(∑

i∈s fi�vi�∑
i∈s′ fi�vi�

)
Ts�v�+

∑
j∈s′\s

(
fj�vj�∑
i∈s′ fi�vi�

)
tj � �

Lemma 1.2. A strategy s is optimal (i.e., Ts�v�= T̂ �v�)
iff ti ≤ Ts�v�≤ tj for all i ∈ s j 	∈ s.
Proof. Let s be optimal. For each i ∈ s the time

Ts�v� is a scc of Ts\�i��v� and ti. Since Ts\�i��v� ≥ Ts�v�,
we must have ti ≤ Ts�v�. Similarly, for j 	∈ s we have
that Ts∪�j��v� is a scc of Ts�v� and tj with Ts∪�j��v� ≥
Ts�v�, and then tj ≥ Ts�v�.
Conversely, suppose that ti ≤ Ts�v� ≤ tj for all

i ∈ s j 	∈ s. Let s’ be an optimal strategy and set u =
s ∩ s′ so that Ts′�v� is a scc of Tu�v� and �tj�j∈s′\s . The
latter times are larger than Ts�v�, and also Tu�v� ≥
Ts�v� since Ts�v� is a scc of Tu�v� and the times �ti�i∈s\u
which are smaller than Ts�v�. Therefore Ts′�v�≥ Ts�v�,
proving that s is also optimal. �

Corollary 1.1. Let ŝ �= �i � ti < T̂ �v�� and š �= �i � ti ≤
T̂ �v��. Then s is optimal iff ŝ ⊂ s ⊂ š.

Proof. Lemma 1.2 implies that ŝ ⊂ s ⊂ š for each
optimal s. In particular T̂ �v� = Ts�v� is a scc of Tŝ�v�
and �tj�j∈s\ŝ = �T̂ �v��, so that Tŝ�v�= T̂ �v�. But then, for
any s̃ with ŝ ⊂ s̃ ⊂ š the time Ts̃�v� is a scc of Tŝ�v� =
T̂ �v� and �tj�j∈s̃\ŝ = �T̂ �v��, so that Ts̃�v� = T̂ �v� and s̃

must be optimal. �

Lemma 1.3. � �→ T̂ �w���� is continuous and strictly
increasing, with T̂ �w����→ as �→.

Proof. Clearly wi�·� is differentiable with w′
i�·�>0

and wi���→ v̄i when �→ . It follows that each
function Ts�w�·�� is continuous with Ts�w����→
when �→, and therefore the same properties
hold for their minimum T̂ �w�·��. To prove that
T̂ �w�·�� is strictly increasing it suffices to show that
d
d�
Ts�w����>0 for all s such that Ts�w���� = T̂ �w����.

A straightforward computation gives

d

d�
Ts�w����=

1∑
j∈s fj�wj����

∑
i∈s
�ti−Ts�w����2

×f ′i �w����w′
i����

Figure 3 The Functions x̂��� and x̌���

Lemma 1.2 implies ti ≤ Ts�w���� for all i ∈ s,
while in general Ts�w���� > ti0 for the fastest line
i0 ∈ s. Since f ′i �wi���� < 0 and w′

i��� > 0, the
conclusion follows. �

We are ready to state our main result. Consider the
strictly increasing functions

x̂��� �=∑
i

�wi��� � ti < T̂ �w�����

x̌��� �=∑
i

�wi��� � ti ≤ T̂ �w������

These functions are continuous and equal, except at
the values �k such that T̂ �w��k��= tk where we have
x̌��k� > x̂��k� (Figure 3). Moreover, x̂�0�= x̌�0�= 0 and
x̂���= x̌���→∑n

i=1 v̄i when �→.
Theorem 1.2. Let x ∈ �0∑n

i=1 v̄i�. Set T̂x �= T̂ �w��x��

with �x the unique solution of x ∈ �x̂��� x̌���2. Then the
optimal set Vx of �Px� is the nonempty bounded polytope
of all v’s such that

∑n
i=1 vi = x and 0 ≤ vi ≤ wi��x�, with

vi =wi��x� if ti < T̂x and vi = 0 if ti > T̂x. Moreover, every
TEW-equilibrium y∗ has equilibrium time T̂ �v�y∗�� = T̂x
and we have Vx = �v�y∗� � y∗ solves TEW�.

Proof. Since h�·� is strictly increasing, problem �Px�

is equivalent to

min
v�

{ n∑
i=1

tivi+h��� �
n∑
i=1

vi = x*0≤ vi ≤wi���

}
� �P̃x�

It is easy to check that every optimal solution �v��

is such that � = maxi vi/fi�vi� > 0 and satisfies the
Mangasarian-Fromovitz constraint qualification, so
that the Karush-Kuhn-Tucker (KKT) conditions hold:
there exist multipliers ) ∈ �61

i ≥ 062
i ≥ 0 with

(a) 61
i vi = 0 and 62

i �vi−wi����= 0 for i = 1 � � � n,
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(b) )− ti = 62
i −61

i for i = 1 � � � n,
(c) h′���=∑n

i=16
2
i w

′
i���.

Since � > 0 we have wi��� > 0 for all i’s, and then
(a) implies that 61

i and 62
i cannot both be positive.

This, combined with (b), yields 62
i = �)− ti2+ and 61

i =
�)− ti2−, and then equation (c) becomes

n∑
i=1
�T̂ �w����− ti2+w′

i���=
n∑
i=1
�)− ti2+w′

i���

which gives ) = T̂ �w����. These relations, together
with (a), imply that vi = 0 if ti > T̂ �w���� and
vi=wi��� if ti < T̂ �w����, while for the remaining lines
we have 0≤ vi ≤wi���. Hence∑

�wi��� � ti < T̂ �w�����≤
n∑
i=1

vi

≤∑
�wi��� � ti ≤ T̂ �w�����

so that x̂���≤ x≤ x̌���, and therefore �=�x. The only
variables which are not completely specified by KKT
are the flows vi for the lines li such that ti = T̂x. How-
ever, whatever value vi ∈ �0wi��x�2 is assigned to
these variables will give the same objective value, and
therefore we obtain the stated characterization for Vx.
We have proved in fact that every feasible point �v��
satisfying the KKT conditions is optimal for �P̃x�.
Let us show that T̂x is the equilibrium time for the

TEW model and Vx = �v�y∗� � y∗ solves TEW�. Con-
sider first an optimal v ∈ Vx and let y∗ be constructed
by the following algorithm.

Initialize: y∗s ← 0 for all s*�i← vi/fi�vi� for all i
while s �= �i � �i > 0� is nonempty
set y∗s �= 7

∑
j∈s fj�vj� with 7 �=min��i � �i > 0�

update �i← �i−7= �i−y∗s /
∑

j∈s fj�vj�
for all i ∈ s

end

The update stage reduces the value of the positive
�i’s, setting to zero the smallest among them. Hence
the algorithm is finite and the generated y∗ and v sat-
isfy Equation �E� so that v = v�y∗�. Notice also that
the strategies s found along the iterations are strictly
decreasing, with all of them contained in š �= �i � ti ≤
T̂x� (since �i = 0 if ti > T̂x) and containing ŝ �= �i �
ti < T̂x� (since these lines have the largest value of

�i, initially set to �x). Thus, the times Ts�v� are a
scc of Tŝ�v� and �tj�j∈s\ŝ = �T̂x�. Now, Corollary 1.1
implies Tŝ�v� = Tŝ�w��x�� = T̂x so that Ts�v� = T̂x, and
then ti ≤ Ts�v�≤ tj for all i ∈ s j 	∈ s. Lemma 1.2 implies
that the strategies generated by the algorithm are opti-
mal, and therefore y∗ is an equilibrium.
Conversely, let y∗ be an equilibrium and v = v�y∗�.

Defining � = maxi vi/fi�vi� we have
∑n

i=1 vi = x and
0 ≤ vi ≤ wi��� so that �v�� is feasible for �P̃x�. Also,
defining ) = T̂ �v�62

i = �)− ti2+ and 61
i = �)− ti2−, it

is evident that KKT conditions (b) and (c) hold. Since
y∗ is an equilibrium, Corollary 1.1 implies ŝ ⊂ s ⊂ š

for all s with y∗s > 0, and using Equation (E) it follows
that vi/fi�vi� is maximal (equal to �) for i ∈ ŝ and is 0
for j 	∈ š. Hence vi =wi��� for i ∈ ŝ and vj = 0 for j 	∈ š,
proving that condition KKT (a) is also satisfied. As
noticed above, this implies that �v�� is optimal for
�P̃x�, and consequently v ∈ Vx as was to be proved. A
fortiori �=�x and T̂ �v�= T̂x so that every equilibrium
y∗ has the same equilibrium time T̂x, completing the
proof. �

Remark 1.2. Theorem 1.2 implies that for each x ∈
�0

∑n
i=1 v̄i� there exists at least one equilibrium. This

equilibrium will be unique unless there are two or
more lines li with ti = T̂x. Of course this may not occur
if all travel times ti are different, in which case we
always have uniqueness.
Remark 1.3. For each tk > T̂0 there is a unique �k

with T̂ �w��k��= tk. If x does not belong to any of the
intervals �x̂��k� x̌��k�2, the unique equilibrium y∗ is
such that all the flow x is assigned to the strategy s∗ =
�i � ti ≤ T̂x� = �i � ti < T̂x�. When x ∈ �x̂��k� x̌��k�2 we
have �x = �k and T̂x = tk (notice that a flow increment
in that range will not increase the equilibrium time).
In this situation it may happen that every v ∈ Vx has
0 < vi/fi�vi� < �x for some line li, so that at equilib-
rium the flow x must necessarily split among two or
more strategies (this follows from Equation (E)).
Remark 1.4. We notice that for x ∈ �x̂��k� x̌��k��

the equilibrium is not the social optimum: if we force
the flow x to use only the strategy š = �i � ti ≤ T̂x�,
the time Tš will be smaller than the equilibrium time
T̂x. Thus, by restricting the passenger’s choices the
system would reach a state where each and every
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Figure 4 Equilibrium Strategy-Flows, Line-Flows, and Transit Time

passenger would be better off than in the equilibrium
situation. This can be seen as an analog for Braess’
paradox in the case of public transportation networks.
This restricted state is not an equilibrium though,
since the strategy ŝ = �i � ti < T̂x� has a still smaller
time Tŝ < Tš < T̂x, inducing a transfer of flow from š to
ŝ. This flow transfer increases the time of both strate-
gies, and the equilibrium is reestablished when they
reach the level T̂x.
Remark 1.5. Theorem 1.2 provides a direct char-

acterization of the equilibrium line-flows v, without
using explicitly the strategy-flows y (although these
can be recovered if necessary). This fact will be use-
ful for stating a simple equilibrium model for general
transit networks, by working directly in terms of arc-
flows and avoiding dealing explicitly with the notion
of strategy/hyperpath.
Example 1. Consider two bus line with times

t1<t2, Poisson arrivals of intensities 61 and 62,
and equal capacity K. According to (9) and (8) in
Appendix A we have wi��� = 6i��1− ��/�1+ ��2K�

and fi�vi� = vi�1/9i�vi�− 12 with v̄i = K6i and 9i�vi�

the unique solution 9 ∈ �01� of the equation

6i�9+92+· · ·+9K�= vi�

For every x ∈ �0 v̄1 + v̄2� there exists a unique
equilibrium, which may only use the strategies
s = �1� and/or s = �12�. To compute it explicitly,
set ) = 61/�61 + 62� and let �2 be the solution of
T̂ �w����= t2, or equivalently f1�w1����= 1/�t2− t1�. If
61�t2− t1� < 1, there is no such �2, and the equilibrium
is y∗�12� = x with corresponding line-flows v∗1=)x and
v∗2= �1−)�x. Otherwise we have �2 = 7/�1−7� with

7 �= �1−1/61�t2− t1�21/K , and setting l �= x̂��2�u �=
x̌��2�, and t) = )t1+ �1−)�t2 we get

y∗�1� =


x if x ≤ l

l− 92�x−l�
�t2−t12�1−92�x−l�2 if l < x < u y∗�12� = x−y∗�1�*

0 if x ≥ u*

v∗1 =


x if x ≤ l

l if l < x < u v∗2 = x−v∗1*
)x if x ≥ u*

T̂x =


t1+ 91�x�

x�1−91�x�2 if x ≤ l

t2 if l < x < u

t)+ 91�)x�
x�1−91�)x�2 if x ≥ u�

Note that for all x ∈ �lu� both s∗ = �1� and s∗ = �12�
carry a positive flow, so that the existence of an equi-
librium using two strategies may not be considered
as an isolated degenerate situation (Figure 4).

1.3. Dealing with Infinite Frequencies
When modeling general transit networks (see §2) one
usually considers different types of arcs: boarding,
alight, on-board, and walk arcs. The waiting processes
affect mainly the boarding arcs, while the other arcs
correspond to services which are always available
so that their waiting times are either zero or negli-
gible. This can be modeled by attaching an infinite
frequency fi�·� ≡  to those arcs, with v̄i = . The
formulas and results in the previous section must be
revised accordingly.
Denote by AF and AI respectively the finite and infi-

nite frequency lines in A. To define the transit time Ts
and boarding probabilities �s

i for a strategy s contain-
ing one or more lines from AI , we replace the infinite
frequencies by a constant f and consider the limit of

Transportation Science/Vol. 35, No. 3, Summer 2001 257



COMINETTI AND CORREA
Common-Lines and Passenger Assignment

Ts and �s
i as f →. Hence, Ts is the average of the

travel times of the lines in s∩AI and ys is distributed
uniformly among these lines. Then, the flow on each
line i ∈ AI can be computed directly, and system �E�
must only be solved for �vi�i∈AF . Defining wi�·�≡ for
all i ∈AI , Theorem 1.2 remains valid in this extended
setting. The proof follows the same lines as before and
is left to the reader. However, a few points must be
kept in mind, namely:
(a) Lemmas 1.1 and 1.2, as well as Corollary 1.1,

apply only to finite frequency strategies s ⊂AF .
(b) In Lemma 1.3, � �→ T̂ �w���� is strictly increas-

ing until a point � where it reaches the value t �=
min�ti � i ∈AI�. Beyond that point it remains constant
and equal to t.
(c) Since T̂ �w�1�� ≤ t, only the lines in AF con-

tribute to the definition of h�·� in (3).

2. Passenger Assignment
and Equilibrium in
General Networks

In this section we study an equilibrium model for
transit networks, supporting multiple origins and
destinations, overlapping bus lines, as well as trans-
fers at intermediate nodes on any given trip. The
model exploits the common-line scheme using a
dynamic programming approach. The idea is as fol-
lows. Consider a passenger heading towards destina-
tion k and reaching an intermediate node i in his trip.
To exit from i he can use the arcs a ∈ A+i to reach
the next node j�a�. Denoting by ta the travel time
of arc a and by $kj�a� the transit time from j�a� to k,
the decision problem faced at node i is a common-
line problem with travel times ta+ $kj�a� and effective
frequencies corresponding to the services attached to
the arcs a ∈ A+i . The solution of this problem deter-
mines the transit time from i to k, which can be used
recursively to solve the common-line problems for
the upstream nodes. The variables $ki and the equi-
librium flows must be determined simultaneously for
each node i and every destination k. Thus, the transit
network model consists of a family of TEW equilib-
rium models (one for each pair i k) linked together
by flow conservation equations. A detailed descrip-
tion follows.

Network. We state the model for a general directed
graph G= �NA�. However, to make the model more
concrete, the reader may think of a graph G built as
follows (Spiess and Florian 1989). Let S be a set of
nodes representing the bus stops in the network. A
bus line l is defined by a set of line-nodes Bl repre-
senting the sequence of stop-nodes visited by this line.
Each line-node in Bl connects to the corresponding
stop-node in S through boarding and alight arcs, as
well as to the next line-node in the sequence through
an on-board arc. Eventually, one may consider walk
arcs connecting directly a pair of nodes in S. In the
sequel we denote by i�a� and j�a� respectively the tail
and head nodes of a ∈A, and we let A+i = �a � i�a�= i�
and A−i = �a � j�a� = i� be the sets of arcs leaving and
entering node i ∈ N .
Demand. K⊂N denotes the set of destinations and

�dk�k∈K ⊂�N the corresponding demands: dki ≥ 0 is the
demand flow rate from node i 	= k to destination k,
and dkk =−

∑
i 	=k d

k
i .

Flows. V �= �0�A is the space of arc-flows, and
� �=VK is the space of destination-arc-flows. A vector
v = �vk�k∈K ∈ � is said to be feasible iff vka = 0 for all
a ∈ A+k (no flow with destination k leaving node k)
with each vk satisfying flow conservation

dki +
∑
a∈A−i

vka =
∑
a∈A+i

vka for all i ∈ N�

The quantity on the left is the flow entering node i
with destination k and will be denoted xkvi .

Time-to-Destination. Given a frequency vector
f = �fa�a∈A with fa ∈ �02 and a travel time vector
t = �ta�a∈A with ta ∈ �0�, the time-to-destination cor-
responding to a given k ∈ K is the unique solution
$k�f  t�= �$ki �i∈N of the generalized Bellman equations
(see Nguyen and Pallotino 1988, Spiess and Florian
1989, and §3)

$kk = 0

$ki =min
s⊂A+i

1+∑
a∈s�ta+$kj�a��fa∑

a∈s fa
for all i 	= k�

�B�

When s includes infinite frequency arcs the expression
inside the minimum is interpreted as the average of
the times ta+ $kj�a� corresponding to these arcs, while
for s = ∅ this quantity is taken as .
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Figure 5 The Local TEW Equilibrium Problem

Travel Times and Effective Frequencies. Each arc
a ∈ A is characterized by a continuous travel time
function ta � � → �0 t̄a�, where t̄a is a finite upper
bound, and an effective frequency function fa � �a ⊂
� → �02which is either identicallywith �a = � ,
or everywhere finite and differentiable on int��a�

with �@fa/@v
k
a2 < 0 for all k ∈ K. Let t�v� = �ta�v��a∈A

and f �v� = �fa�v��a∈A, and denote by AF and AI the
sets of finite and infinite frequency arcs respectively.
The dependence of fa�·� on the vector v reflects the
fact that flow on other arcs may use part of the capac-
ity of the service (think of the on-board passengers on
a bus arriving at a given stop). Similarly, the depen-
dence of ta�·� on v can be used to model the passen-
ger discomfort produced by the on-board crowding
of buses. We make no assumption (except continuity)
on the functions ta�·�, which may eventually be taken
as constant.
Given v ∈ �a and k ∈ K, we denote by f kva �·� the

mapping fa�·� taken as a function of the flow vka alone,
the remaining variables being fixed at the values spec-
ified by v. For a ∈AF the domain of f kva �·� is assumed
to be of the form �0 v̄kva � with f kva �z�→ 0 as z→
v̄kva . Moreover, f kva �·� is supposed to be maximal in
the fully uncongested situation, namely f k0a �·�≥ f kva �·�
for all v ∈ � . Finally, we denote by wkv

a �·� � �0�→
�0 v̄kva � the inverse of z �→ z/f kva �z� for a ∈ AF and
wkv
a �·�≡ for a ∈AI .

Local Equilibrium. Given a destination-arc-flow
v ∈ � we let E�v� �=∏

k∈K*i∈N E
k
i �v� ⊂ � , where Eki �v�

is the solution set of a TEW model (Fig. 5) defined
by the flow xkvi entering node i with destination k,
and by the arcs a ∈A+i with travel times tkva �= ta�v�+
$kj�a��f �v� t�v�� and effective frequencies f kva �·�. This
applies for i 	= k, while for i = k we set Ekk �v�= �0�.

According to Theorem 1.2, for i 	= k and provided
that xkvi <

∑
a∈A+i v̄

kv
a , we have

Eki �v� =


∑

a∈A+
i
ṽka = xkvi  0≤ ṽka ≤wkv

a ��
kv
i �

�ṽka�a∈A+
i
� ṽka = 0 if tkva > T̂ kv

i ��kv
i �

ṽka =wkv
a ��

kv
i � if tkva < T̂ kv

i ��kv
i �

 (4)

where

T̂ kv
i ��� �=min

s⊂A+i

1+∑
a∈s tkva f

kv
a �wkv

a ����∑
a∈s f kva �wkv

a ����

and �kvi denotes the unique �≥ 0 such that∑{
wkv
a ��� � t

kv
a < T̂ kv

i ���
}≤ xkvi

≤∑{
wkv
a ��� � t

kv
a ≤ T̂ kv

i ���
}
� (5)

Thus, the set-valued map E �� ⇒� has compact con-
vex values with domain

dom�E�= �v ∈ � � xkvi <
∑
a∈A+i

v̄kva for all k ∈ K i 	= k��

Observe that a vector ṽ ∈ E�v� may fail to satisfy flow
conservation, but we have∑

a∈A+i
ṽka = xkvi = dki +

∑
a∈A−i

vka for all i 	= k� (6)

Global Equilibrium. Given the graph G = �NA�,
the demands �dk � k ∈ K�, the arc travel time functions
ta�·�, and the effective frequency functions fa�·�, we
say that the destination-arc-flow v ∈ � is an equi-
librium iff v ∈ E�v�. Using (6), this amounts to say-
ing that v satisfies flow conservation with no flow
towards k leaving node k (conservation at k results by
adding (6)) and with �vka�a∈A+i an equilibrium assign-
ment at each node i and for each destination k.
Remark 2.1. Although hyperpaths and strategy-

flows are underlying the model, we formulated it
directly in terms of arc-flows. However, let us point
out a difference with respect to previous models
based on strategies/hyperpaths (Bouzaı̈ene et al.
1995c, Nguyen and Pallotino 1988, Spiess and Florian
1989, Wu et al. 1994) namely, in the model above all
passengers reaching an intermediate node i and head-
ing towards the same destination k are mixed in xkvi ,
and we do not distinguish them in terms of their ori-
gin. This reduction allows for a simpler description of
the system since we do not have to keep track of the
different origins.
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2.1. Existence of a Transit Network Equilibrium
To prove the existence of an equilibrium, we
use Kakutani’s fixed-point theorem (Berge 1997,
Chapter VIII, §2). We shall restrict ourselves to the
case where each destination k ∈K can be reached from
every i 	= k by following a path of infinite frequency
arcs. This assumption implies dom�E�=� and estab-
lishes a uniform bound on the time-to-destination
$ki �f �v� t�v�� ≤ $ for all v ∈ � . This provides in
turn a priori bounds on the arc-flows, needed for the
fixed point argument. The condition may look strin-
gent but it suffices for practical purposes: a passenger
can always walk to his destination even if it takes
very long. This is not to say that at equilibrium such
“walking-paths” will be used, which is rather unlikely
given the optimal character of equilibrium strategies.
Let us establish some preliminary lemmas.

Lemma 2.1. Let �̄ki be such that
∑

a∈AF
i
f k0a �w

k0
a ��̄

k
i �� ≤

1/$ with AF
i =AF ∩A+i . Then �kvi ≤ �̄ki .

Proof. The assumption f k0a �·� ≥ f kva �·� implies
wkv
a �·�≤wk0

a �·� so that
1∑

a∈AF
i
f k0a �w

k0
a ����

= �∑
a∈AF

i
wk0
a ���

≤ �∑
a∈AF

i
wkv
a ���

= 1∑
a∈AF

i
f kva �wkv

a ����


and then

$ ≤
1∑

a∈AF
i
f kva �wkv

a ��̄
k
i ��

≤min
s⊂AF

i

1+∑
a∈s tkva f

kv
a �wkv

a ��̄
k
i ��∑

a∈s f kva �wkv
a ��̄

k
i ��

�

Using remark (b) in §1.3 we get �kvi ≤ �̄ki as
claimed. �

Lemma 2.2. E�·� is upper-semicontinuous (usc) and the
following functions are continuous:
(a) v �→ xkvi .
(b) �v�� �→wkv

a ���.
(c) �f  t� �→ $k�f  t�.
(d) v �→ tkva .
(e) �v�� �→ T̂ kv

i ���.
(f) v �→ �kvi .

Proof. Upper semicontinuity of E�·� follows easily
from (4) and the continuity of (a)–(f). Now, (a) and (b)
are straightforward while (c) will be proved in Corol-
lary 3.1. Also (d) follows immediately from (c) while
(e) is an easy consequence of (d) and (b), so we must
only prove (f).
Let vn→ v and set �n �= �

kvn
i , xn �= x

kvn
i , and wn

a �=
w

kvn
a ��

kvn
i �. Consider an accumulation point � =

lim�nj with nj →. If tkva < T̂ kv
i ��� or tkva > T̂ kv

i ���,
using (d) and (e) we see that the same inequalities
hold for j large enough with v and � replaced by
vnj and �nj respectively, and then (5) implies∑{

w
nj
a � tkva < T̂ kv

i ���
}

≤ xnj ≤∑{
w

nj
a � tkva ≤ T̂ kv

i ���
}
�

Continuity of (a) and (b) gives xnj → xkvi and w
nj
a →

wkv
a ��

�, so that letting j→ we get � = �kvi . Since
Lemma 2.1 implies that �n is bounded, we conclude
�n→ �kvi which completes the proof. �

Since E�·� is usc with compact convex values, prov-
ing the existence of a transit network equilibrium
reduces to finding a compact convex set � ⊂ � with
E��� ⊂ �. The difficulty with such a priori bounds
comes from the fact that a local equilibrium ṽ ∈ E�v�
need not satisfy flow conservation. To overcome this
problem we analyze the general equilibrium problem
by reduction to the following special case.

Lemma 2.3. Suppose that for each i j ∈ N there is a
unique infinite frequency arc from i to j, and that all these
arcs have the same travel time t > 0. Then there exists an
equilibrium.

Proof. Let �̄ki be taken as in Lemma 2.1 with $ =
t. Setting v̄ka �= wk0

a ��̄
k
i �, for each v ∈ � and ṽ ∈ E�v�

we have ṽka ≤wkv
a ��

kv
i �≤wk0

a ��
kv
i �≤ v̄ka for a∈AF . Now,

since all the infinite frequency arcs have the same
travel time, the only arcs a ∈ AI which may carry a
positive flow ṽka > 0 towards k are the ones connect-
ing directly to this destination. Thus, for a ∈ AI we
have ṽka ≤ v̄ka with v̄ka equal to the sum of the bounds
v̄ka′ , on the finite frequency arcs a′ entering the tail
node of a. Hence the compact convex set � = �v ∈
� � vka ≤ v̄ka� satisfies E��� ⊂ �, and Kakutani’s fixed
point theorem implies the existence of v ∈� such that
v ∈ E�v�. �
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We may now prove the announced result on the
existence of transit network equilibria.

Theorem 2.1. Let G = �NA� be a graph with arc
travel time functions ta�·� and effective frequency functions
fa�·� as before, and let �dk � k ∈ K� be a family of demand
vectors. Suppose that for each k ∈ K and every i 	= k there
is a path from i to k in the infinite frequency subgraph
GI = �NAI�. Then there exists a transit network equilib-
rium v ∈ � , i.e., a solution of v ∈ E�v�.
Proof. The existence of infinite frequency paths

joining each i and k implies dom�E� = � as well as
$ki �f �v� t�v�� ≤ $̄ ki for each v ∈ � , where $̄ ki denotes
the time of a shortest path from i to k in GI computed
with the arc travel time bounds t̄a.
Using Lemma 2.3, for each r > 0 we may find an

equilibrium v�r� for an auxiliary network Gr con-
structed from G by assigning arc travel time functions
tra�v� �= ta�v�+1/r to each a ∈A, finite frequency func-
tions f ra �v� �= r/�1+∑

k∈K vka� to the arcs a ∈ AI , and
adding artificial arcs from each i ∈ N to every j ∈ N
with infinite frequency and travel time t = r .
Since each arc in Gr has strictly positive travel time,

a flow vka�r� > 0 implies that the transit time from
j�a� to k is strictly smaller than the time from i�a�

to k. It follows that v�r� cannot send flow along a
directed cycle for any destination k ∈ K, which com-
bined with flow conservation implies that v�r� is
uniformly bounded. This implies in turn that when
r→ the time of a shortest path from i to k in GI

computed with times tra�v�r��+ 1/f ra �v�r�� will even-
tually become smaller than $̄ ki and a fortiori smaller
than t = r , so that the artificial arcs cannot carry a
positive flow.
Redefine the vector v�r� by removing the zero com-

ponents corresponding to the artificial arcs. Clearly,
this restricted v�r� is an equilibrium in the network
G, namely
∑

a∈A+i v
k
a�r�= xkv�r�i  0≤ vka�r�≤wkv�r�

a ��kv�r�i �

vka�r�= 0 if tkv�r�a > T̂ kv�r�
i ��kv�r�i �

vka�r�=wkv�r�
a ��kv�r�i � if tkv�r�a < T̂ kv�r�

i ��kv�r�i �

�Sr�

with all the involved functions computed according
to the modified frequencies f ra �·� and times tra�·�.

Let v = limv�rn� be an accumulation point of v�r�
with rn→. We claim that v satisfies the equilibrium
conditions �Sr � for the original network G with travel
time functions ta�·� and infinite frequencies on the arcs
a ∈ AI . To prove this it suffices to let n→ in the
conditions �Srn� satisfied by v�rn�, provided that all
the involved quantities converge to the appropriate
limits.
To check the latter set vn = v�rn� and tn = trn �vn�,

and let f n be the vector with components fa�vn� for
a ∈ AF and f

rn
a �vn� for a ∈ AI . Clearly tn → t�v� and

f n→ f �v� so that Corollary 3.1 implies

tkvna �= tna +$kj�a��f n tn�−→ tkva

�= ta�v�+$kj�a��f �v� t�v���

It is also clear that xkvni → xkvi . Now, a slight modifi-
cation of the proof of (f) in Lemma 2.2 to take into
account the variation of frequencies f n → f �v� and
times tn → t�v�, implies that the equilibrium values
�
kvn
i converge towards �kvi . From this it follows easily

that wkvn
a ��

kvn
i �→ wkv

a ��
kv
i � and T̂

kvn
i ��

kvn
i �→ T̂ kv

i ��kvi �.
All these convergences allow us to pass to the limit
in �Srn�. �

3. Time-to-Destination and
Shortest Hyperpaths

Let G = �NA� be a directed graph with each arc
a ∈ A having an associated frequency fa ∈ �0� and
a travel time ta ∈ �0�. Set f = �fa�a∈A and t = �ta�a∈A,
and denote � = �0�A and � = �0�A. Consider a
fixed k ∈ N and suppose that for each i 	= k there is a
directed path from i to k in G. The time-to-destination
for destination k is the solution of the generalized
Bellman equations (see Nguyen and Pallotino 1988,
Spiess and Florian 1989)

$k = 0

$i =min
s⊂A+i

1+∑
a∈s�ta+$j�a��fa∑

a∈s fa
for all i 	= k�

�B�

Proposition 1. For each �f  t� ∈ � × � there is a
unique solution $k�f  t�= �$i�i∈N of �B� which, moreover,
depends continuously on �f  t�.
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Proof. Let M � �02N → �02N with Mi�$� =
mins⊂A+i �1 +

∑
a∈s�ta + $j�a��fa2/

∑
a∈s fa for i 	= k and

Mk�$� = 0. Then, �B� corresponds to the fixed point
equation $ =M�$�. Notice that M is componentwise
monotone: $1 ≤ $2⇒M�$1�≤M�$2�.
Existence. Consider the iteration $n+1 =M�$n� with

$0 given by $0i = for all i. Clearly $1 ≤ $0 and induc-
tively we get $n+1 ≤ $n. Moreover, since every node i
can be connected to k by a path with at most �N �−1
arcs, it follows that for n ≥ �N � the vector $n is finite.
Then $n monotonically converges towards a certain
$ ≥ 0, and continuity of M implies $ =M�$�.
Uniqueness. Let $1 	= $2 be two solutions and set d=

maxi∈N $1i −$2i . Exchanging $1 and $2 we may suppose
d > 0. Let i0 be such that $1i0−$2i0 = d, and take s0 ⊂A+i0
attaining the minimum for Mi0

�$2�. Then

d ≤ 1+∑
a∈s0�ta+$1j�a��fa∑

a∈s0 fa
− 1+∑

a∈s0�ta+$2j�a��fa∑
a∈s0 fa

=
∑

a∈s0 fa�$
1
j�a�−$2j�a��∑

a∈s0 fa
�

The right-hand side is a strict convex combination
of the quantities $1j�a�− $2j�a�, which are bounded from
above by d so they must all be equal to d. Take i1 =
j�a� with a ∈ s0 having minimal ta+ $2j�a�. Proceeding
inductively from this i1, we find a sequence of nodes
with $1i − $2i = d for i = i0 i1 i2 � � � . Since the quan-
tities $2i are strictly decreasing along this sequence,
the nodes are all different so that at some point we
get ij = k, and then $1k − $2k = d > 0, which gives a
contradiction.
Continuity. Let �f n tn� → �f  t� and set $n �=

$k�f n tn�. Consider the mapping M as a function of
�$ f  t�, namely, �$ f  t� �→M�$f  t� which is clearly
continuous on �0�N ×� ×� . Let $ = lim $nj be an
accumulation point of $n with nj →. Letting j→
in the equality $nj = M�$nj  f nj  tnj � we obtain $ =
M�$f  t�, so that by uniqueness we get $ = $k�f  t�.
Since the sequence $n is clearly bounded, we deduce
$n→ $k�f  t� and therefore $k�· ·� is continuous. �

It is easy to see that $k�· ·� is nondecreasing with
respect to each time variable ta separately, and also
nonincreasing with each frequency fa. As a matter
of fact, if ta+ $kj�a��f  t� < $ki�a��f  t�, then an increment
in ta or fa will induce respectively an increase or a

decrease of $k at the tail node i�a�, and inductively at
any other node whose optimal strategy leads to i�a�.
Otherwise, an increase in ta or fa will not affect $k.
This monotonicity allows us to define $k�f  t� when
some components of f are infinite. Namely, for t ∈ �
and f ∈ � �= �02A we let f r be the vector with
components f ra =min�fa r� and define $k�f  t� as the
monotonically decreasing limit

$k�f  t�= lim
r→

$k�f r t��

Corollary 3.1. The extended mapping $k ��×� →
�0�N is continuous.

3.1. Hyperpath-Dijkstra
Time-to-destination and shortest hyperpaths can be
computed using the algorithm given in Spiess (1984)
and Spiess and Florian (1989). The existence proof
in Proposition 3.1 suggests the alternative method
$n+1 =M�$n� which can be proved to be finitely con-
vergent, but not very efficient in terms of computa-
tional complexity. We propose a third method which
is an adaptation of Dijkstra’s shortest path algorithm.
The method iteratively updates a time vector $ and
a set of solved nodes S—containing those j’s for which
the current $j already gives the time-to-destination—
adjusting the times $i to give the optimal transit time
from i to k by using a strategy si that jumps directly
from i to S. An auxiliary variable f i accumulates the
frequencies of the arcs in si.

Hyperpath-Dijkstra
Initialize: $i =, si = ∅, and f i = 0 for i 	= k;

$k = 0; S = ∅;
while �S 	= N� do
�find j 	∈ S with smallest $j and update S← S∪ �j�

for (a ∈A with j�a�= j and i�a� 	∈ S) do
�set i = i�a� and t̃a = ta+$j

if �t̃a < $i� then add�a�
while �∃ b ∈ si with t̃b ≥ $i� do remove�b�

�
�

The for loop updates $i and si for those i’s connected
to the newly incorporated node j ∈ S, in order to
keep $i equal to the optimal time from i to k using a
strategy si jumping directly into S. The add�a� phase
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incorporates the arc a to the strategy si (if this helps
reducing $i) as follows:

�si← si ∪ �a�* $i← �f i$i+fat̃a�/�f i+fa�* f i← f i+fa�
with the convention f i$i = 1 for the initial case
f i = 0 $i =. As a consequence of the reduction of
$i, some arcs b added to si on previous iterations may
no longer be advantageous and are eliminated in the
remove�b� phase by doing

�si← si\�b�* $i← �f i$i−fbt̃b�/�f i−fb�* f i← f i−fb��
Notice that remove�b� further reduces the time $i
affecting the test in the inner while loop, implying
eventually the removal of some additional arcs. The
justification for the add and remove steps is given by
Lemma 1.1.
The selection of j 	∈ S with minimal $j can be done

efficiently by keeping Sc as an ordered list. Using
a heap-list (where insertion has logarithmic compu-
tational cost; Cormen et al. 1991) the overall effort
is O��N � ln �N �� comparisons. Similarly, for the inner
while loop we may keep the si’s as ordered heap-
lists, involving a total work of O�

∑
i∈N �A+i � ln �A+i ��

comparisons, which can be bounded from above by
O��A� ln7+�, where 7+ =max��A+i � � i ∈N� denotes the
maximal out-degree. Notice that 7+ ≤ �N �.
Proposition 2. Hyperpath-Dijkstra computes the

time-to-destination $k�f  t� and corresponding optimal
strategies in at most O��N � ln �N �+�A� ln7+� comparisons
and O��A�� arithmetic operations.

Proof. Let us prove inductively that on each stage
we have $j = $kj �f  t� for all j ∈ S. This is obvious for
the first iteration in which node k is added to S with
$k = 0. Suppose by induction that at a given stage all
nodes in S have the correct time-to-destination and
let j 	∈ S with minimal $j . Consider for each i ∈ N
the optimal strategy ŝi given by Corollary 1.1, so that
$kj�a��f  t� ≤ ta+ $kj�a��f  t� < $ki �f  t� for all a ∈ ŝi. These
strict inequalities imply that starting from j and fol-
lowing the strategies ŝi, we must reach a node i 	∈ S
having all its successors by ŝi in S. For this i we clearly
have $i = $ki �f  t�, and then $

k
j �f  t�≥ $ki �f  t�= $i ≥ $j .

Since obviously $j ≥ $kj �f  t�, we get $j = $kj �f  t� and
j can be added to S, completing the induction step.

To estimate the worst-case complexity of the
method we notice that each arc a is processed at most
twice: once in the add phase and possibly a second
time in a remove step. The overall work involved
in these operations is O��A�� (in fact, at most 11�A�
arithmetic operations). Handling Sc and the si’s as
heap-lists dominates the number of comparisons with
complexity O��N � ln �N �+ �A� ln7+�. �

The algorithm can be easily adapted to handle infi-
nite frequencies as follows:

Hyperpath-Dijkstra
Initialize: $i = $i =, si = si = ∅, and f i = 0

for i 	= k*$k = $k = 0*S = ∅;
while �S 	= N� do
� find j 	∈ S with smallest $̄j =min�$j $j �

and update S← S∪ �j�
for �a ∈A with j�a�= j and i�a� 	∈ S� do
{set i = i�a� and t̃a = ta+ $̄j

if �fa =� and �t̃a < $i � then �si ← �a�;
$i ← t̃a}
if �fa <� and �t̃a < $i� then add�a�
while �∃ b ∈ si with t̃b ≥ $i� do remove�b�

�

�

Remark 3.1. The algorithm proposed by Spiess and
Florian (1984, 1989) is based on a different idea: after
initializing as in Hyperpath-Dijkstra, each loop of the
method selects an arc a = �i j� with minimal ta+ $j
among the arcs not previously processed. If ta+ $j is
smaller than the current $i, then add�a� is used to
incorporate a to the strategy si and to update $i and
f i. Otherwise a is simply discarded.
In contrast with our method, this algorithm does

not require a remove�b� phase and the optimal si and
$i are only obtained upon completion of the algo-
rithm while Hyperpath-Dijkstra solves one node per
loop (just like the classical shortest path Dijkstra).
Concerning the worst-case computational complex-
ity, a heap-list implementation runs in O��A� ln �A��
=O��A� ln �N �� comparisons and O��A�7−� arithmetic
operations, with 7− =max��A−i � � i ∈ N� the maximal
in-degree. Thus Hyperpath-Dijkstra attains a better
complexity bound, at the price of a slightly more
complex programming. In any case, both methods
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attain low computational complexities, proving in fact
that shortest hyperpath is not harder than shortest path.
From a practical perspective, the apparently useless
work involved in Hyperpath-Dijkstra when adding
an arc which may eventually be removed later, bal-
ances against the fact that not all arcs will be pro-
cessed (after j is added to S the arcs in A+j are no
longer considered). Thus, it is probably the case that
each method outperforms the other depending on the
particular instance being solved. Such an empirical
comparison has not been done.
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4. Appendix A: Waiting Times and Effective
Frequencies

In this section we provide a queue-theoretic support for the con-
gestion model adopted in §1, justifying the formulas

Ws =
1∑

i∈s fi�vi�


�s
i =

fi�vi�∑
j∈s fj �vj �

and giving analytic expressions for the effective frequency func-
tions fi�vi� as well as for the inverse wi��� of vi �→ vi/fi�vi�.

Most of this material is a slight variation of standard models
which can be found e.g. in Serfozo (1999) and Tijms (1994). The
analysis concerns only the case of Poisson queues, so that further
investigation is required to validate the congestion model in other
situations. Furthermore, we point out a limitation of the TEW equi-
librium model coming from the fact that, in the case of several
overlapping strategies, the effective frequency functions fi�·� may
depend on the strategy-flow variables ys and not only on the line-
flows vi.

4.1. Waiting Time and Effective Frequency
for a Bus Line

Consider a bus stop with passengers arriving according to a Pois-
son process of rate v (Figure 6). The bus stop is served by a bus line
with independent Poisson arrivals of rate 6 and variable capacity
C with ��C = j�= qj for j = 0 � � � K.

Figure 6 Queuing for a Single-Line Service

If the available capacity of an arriving bus is larger than the
queue length, the latter reduces to zero. Hence, the queue length is
a continuous time Markov chain with transition rates

pkk+1 = v for k ≥ 0

pk+j k = 6qj for k ≥ 1 and 0≤ j ≤ K

pk0 = 6
∑K

j=k qj for 1≤ k ≤ K

and therefore its stationary distribution ��k�k≥0 is characterized by
the balance equations{

�v+6��k = v�k−1+6
∑K

j=0 qj�k+j for k ≥ 1

�v+6��0 = 6
∑K

j=0 qj
[∑j

k=0�k

]


whose solution is ��k = �1−9�9k�k≥0 with 9= 9�v� ∈ �01� such that

6
K∑
j=0

qj�9+· · ·+9j�= v� (7)

The expression on the right-hand side is a convex increasing func-
tion of 9, so that (7) has a unique solution in [01) provided v ∈
�0 v̄�, where v̄ �=6

∑
j=0 jqj is the expected flow capacity of the line.

The expected queue length may be computed explicitly as

Ɛ�L�=
∑
k=0

k�k = �1−9�v��
∑
k=1

k9�v�k = 9�v�

1−9�v�

which explodes as v→ v̄, so that v̄ can be interpreted as the sat-
uration flow of the line. Also, using Little’s formula, the expected
waiting time turns out to be

W�v�= 1
v
Ɛ�L�= 1

v

9�v�

1−9�v�
which also tends to  as v→ v̄. This function is differentiable with
W�v� > 0 and W ′�v� > 0 for v ∈ �0 v̄�, so that we may define the
effective frequency function f � �0 v̄�→ �0� as

f �v� �= 1
W�v�

= v

[
1

9�v�
−1

]
(8)

which is also differentiable with f ′�v� < 0 and f �v�→ 0+ when
v→ v̄.

To compute the inverse w��� of v �→ v/f �v� we observe that
v/f �v� = � iff 9�v� = �/�1+��, whose solution is easily obtained
by replacing 9 = �/�1+�� in (7), yielding the concave increasing
function

w���= 6�
K∑
j=0

qj

[
1−

(
�

1+�
)j
]
� (9)
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4.2. Waiting Time and Boarding
Probabilities for a Strategy

Consider now a bus stop served by a set of lines �li � i ∈ s� with
independent Poisson arrivals of rate 6i and variable capacities Ci

with ��Ci = j�= qij for j = 0 � � � Ki . Passengers arrive according to
an independent Poisson process of rate y (Figure 7).

The balance equations for the stationary distribution of the
queue length are in this case{

�y+∑
i∈s 6i��k = y�k−1+

∑
i∈s 6i

∑Ki
j=0 q

i
j�k+j for k ≥ 1

�y+∑
i∈s 6i��0 =

∑
i∈s 6i

∑Ki
j=0 q

i
j �
∑j

k=0�k2

whose solution is again of the form ��k = �1− 9�9k�k≥0 with 9 =
9�y� ∈ �01� such that

∑
i∈s
6i

Ki∑
j=0

qij �9+· · ·+9j�= y�

As before, using Little’s formula we obtain the expected waiting
time

W�y�= 1
y
Ɛ�L�= 1

y

9�y�

1−9�y� �

Now, the probability of boarding line i is �s
i = vi/y with vi the

expected flow on line i. The latter is equal to 6izi with zi the aver-
age number of passengers boarding on each arrival of line i so that,
conditioning on the available capacity of the bus and the queue
length, a straightforward computation yields

vi = 6izi = 6i

Ki∑
j=0

qij

[ j∑
k=0

k�k+ j
∑
k>j

�k

]

= 6i

Ki∑
j=0

qij �9�y�+· · ·+9�y�j 2�

Thus, denoting by 9i�·� and fi�·� the root and effective frequency
functions corresponding to line li as defined by (7) and (8), we have
9i�vi�= 9�y� and therefore

vi
fi�vi�

= 9i�vi�

1−9i�vi�
= 9�y�

1−9�y� = yW�y� for all i ∈ s�

since
∑

i∈s vi = y, we deduce

W�y�= 1∑
j∈s fj �vj �

as well as
�s
i =

fi�vi�∑
j∈s fj �vj �

with the expected flow v = �vi�i∈s being the unique solution of the
system

vi = y
fi�vi�∑
j∈s fj �vj �

for all i ∈ s� �E�

Figure 7 Queuing for a Multiple-Line Service

Figure 8 Queuing for Multiple Overlapping Strategies

4.3. Waiting Times for Multiple
Overlapping Strategies

Consider next a bus stop served by a set of lines �l1 � � �  ln� as in
§4.2, but where arriving passengers may have different strategies
s ⊂A= �1 � � � n�, each one corresponding to an independent Pois-
son process �N s�t��t≥0 of rate ys (Figure 8). In this situation one has a
different queue for each strategy s, and these queues interfere with
one another as soon as they share one or more lines. The explicit
computation of the stationary distribution for the queue lengths
Ls�t� becomes rather intricate, so we adopt a different approach.

Let �Bi�t��t≥0 denote the Poisson process corresponding to the
number of arrivals of line li up to time t, and let �Bs�t��t≥0 be the
merging of �Bi�t� � i ∈ s�, which is also Poisson with intensity 6s �=∑

i∈s 6i . Consider a specific passenger joining the queue Ls , and let
ps be his probability of boarding the first incoming bus from s. Let
Ys be the random variable representing the time between the arrival
of this passenger and the next arrival of a bus from strategy s (the
excess life), and let X1

s X
2
s  � � � be the subsequent interarrival times

for the process Bs�t�. Then, the waiting time of this passenger will
be Ys with probability psYs +X1

s with probability �1− ps�psYs +
X1
s +X2

s with probability �1−ps�2ps , and so on. Since all the involved
processes are Poisson and independent, the variables Ys and Xk

s are
exponentially distributed with Ɛ�Ys� = Ɛ�Xk

s � = 1/6s , and then the
expected waiting time for strategy s may be computed as

Ws =
1
6s

∑
k=0
�k+1��1−ps�kps =

1
6sps

� (10)

The probability ps = ps�y� is a function of the rate vector y= �ys�s (as
well as the rates and capacities of the services, which are however
considered as fixed). In particular, the expression of Ws for strategy
s = �i� suggests defining fi�y� �= 1/W�i� = 6ip�i� as the effective fre-
quency function of line i. With this we obviously have W�i� = 1/fi�y�
but also, more generally, for every strategy s we get

Ws =
1∑

i∈s fi�y�
� (11)

Indeed, consider a passenger in queue Ls . The conditional proba-
bility that a bus from strategy s arriving at the bus stop belongs to
line i ∈ s is 6i/6s . Once such a bus arrives, the boarding probability
of this passenger is the same as the passengers in queue L�i�, and
therefore Bayes’ formula gives

ps =
∑
i∈s

6i

6s

p�i� =
1
6s

∑
i∈s
fi�y�

which plugged into (10) yields (11).
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Let us compute next the probability �s
i that a passenger of strat-

egy s boards line i ∈ s. Conditioning on the first arrival of a bus
from strategy s we have

�s
i =

∑
j∈s

� �boarding li/lj comes first2
6j

6s

�

The probability � �boarding li/lj comes first2 is equal to �1− p�j���s
i

for j 	= i (not boarding the present bus from line lj and boarding
line li later on), and equal to p�i�+ �1−p�i���s

i for j = i (boarding the
present bus from line li or not boarding it and boarding line li later
on). Therefore,

�s
i =

p�i�6i+�s
i

∑
j∈s �1−p�j��6j

6s

from which we get

�s
i =

6ip�i�∑
j∈s 6jp�j�

= fi�y�∑
j∈s fj �y�

� (12)

According to these probabilities the expected value of the flow on
line li is

vi =
∑
s∈�i

ys�
s
i =

∑
s∈�i

ys
fi�y�∑
j∈s fj �y�

which corresponds to �E� but with frequency functions fi�·�
depending on y and not just on vi .

Comments.We have not been able to obtain analytic expressions
nor closed form solutions for the functions fi�y� appearing in the
expressions for Ws and �s

i . Using simulation we have confirmed
all the previous results including the fact that, when there is flow
on two or more strategies, the effective frequency function of line i
cannot be expressed as a function of vi alone as in the previous sub-
sections, nor even as a function of the whole vector of line flows v.
It appears that fi�y� depends in an essential and subtle manner on
the whole rate vector y, reflecting the complex interactions among
the different queues Ls .

As a consequence, the model presented in §1 may only be con-
sidered as a first approximation. However, in view of the results
in §4.2, the equilibrium predicted by the TEW equilibrium model
is fully justified when there is a unique strategy s∗ carrying flow.
As seen from Theorem 1.2 and the remark following it (see also
Example 1.1), this occurs when the total flow x does not belong
to the intervals �x̂��k� x̌��k��. In contrast, when x belongs to such
intervals the equilibrium carries flow on more than one strategy
and the congestion model is not mathematically correct. Neverthe-
less, in the latter situation, our simulation experiences show that
the deviation of the line flows predicted by the model with respect
to the “true” equilibrium flows is relatively small. In any case, more
investigation is required to obtain precise estimates of this error
or, even better, to analyze an equilibrium model with the effective
frequency functions depending on y and not just on v. Notice that
several of the preliminary results in §1 as well as some of the struc-
tural properties of the equilibrium do not depend on the particular
functional form of fi�·�. For instance, the fact that more than one
strategy may have to be used at equilibrium as well as the existence
of ranges for the flow x where the equilibrium time will remain

constant, are some of the features that one must expect from a more
general model where fi�·� is a function of y.

Let us also point out that the previous inaccuracy of the model
may be negligible compared to other sources of error. Indeed, the
analysis of congestion in this section concerns exclusively the case
of independent Poisson queues. This assumption may be reason-
able when the processes are independent, since the merging of
many independent processes with small rates converges to a Pois-
son process. However, when the independence assumption does
not hold as in the case of scheduled services, the analysis becomes
much harder and the model adopted in the paper may be far from
the real situation. Hence, the specific form of the effective frequency
functions to be considered in the model may have to be adjusted
and empirically calibrated. Notice however that the model and
results derived in the paper support very general forms for the
effective frequency functions fa�·� providing a relative freedom in
the modeling process.

Finally let us mention that, in the case of general networks, the
waiting time at each stop node depends on the on-board loads of
the incoming buses and, indirectly, on the queuing processes occur-
ring throughout the network. In our model, these dependencies can
be handled through the functional dependence of the effective fre-
quency functions fa�·� on the complete destination-arc-flow vector
v, and not only on the corresponding component va. For instance,
in the queuing model above these effects may be incorporated by
assuming that the capacity distribution of the lines �qij � depend on
v. However, a formal treatment of these issues requires the study
of complex stochastic networks which seem out of reach for the
present state-of-the-art network queuing models (see Serfozo 1999,
Tijms 1994).

References
Berge, C. 1997. Topological Spaces. Dover Publications Inc., Mineola,

NY.
Bouzaïene-Ayari, B., M. Gendreau, S. Nguyen. 1995a. On the mod-

eling of bus stops in transit networks, Part I: a survey of
literature and new formulations. Technical Report CRT-95-55,
Centre de Recherche sur les Transports, Univ. de Montréal.
, , . (1995b). On the modeling of bus stops in transit
networks, Part II: a numerical comparison of different mod-
els. Technical Report CRT-95-56, Centre de Recherche sur les
Transports, Univ. de Montréal.
, , . (1995c). An equilibrium-fixed point model for
passenger assignment in congested transit networks. Techni-
cal Report CRT-95-57, Centre de Recherche sur les Transports,
Univ. de Montréal.

Chriqui, C., P. Robillard. 1975. Common bus lines. Transportation
Sci. 9 115–121.

Cormen, T., Ch. Leiserson, R. Rivest. 1991. Introduction to Algo-
rithms. McGraw-Hill, MIT Press, Boston, MA.

Correa, J. 1999. Asignación de flujos de pasajeros en redes de trans-
porte público congestionadas, M.A. thesis, Univ. de Chile, San-
tiago, Chile.

266 Transportation Science/Vol. 35, No. 3, Summer 2001



COMINETTI AND CORREA
Common-Lines and Passenger Assignment

De Cea, J., E. Fernández. 1993. Transit assignment for congested
public transport systems: An equilibrium model. Transportation
Sci. 27(2) 133–147.

Dial, R. B. 1967. Transit pathfinder algorithms. Highway Res. Record
205 67–85.

Fearnside, K., D. P. Draper. 1971. Public transport assignment—A
new approach. Traffic Engrg. Control 298–299.

Gendreau, M. 1984. Etude approfondie d’un modèle d’équilibre
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