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We study the following packing problem: Given a collection of d-dimensional rectangles of specified sizes, pack them into
the minimum number of unit cubes. We show that unlike the one-dimensional case, the two-dimensional packing problem
cannot have an asymptotic polynomial time approximation scheme (APTAS), unless P = NP . On the positive side, we give
an APTAS for the special case of packing d-dimensional cubes into the minimum number of unit cubes. Second, we give
a polynomial time algorithm for packing arbitrary two-dimensional rectangles into at most OPT square bins with sides of
length 1+�, where OPT denotes the minimum number of unit bins required to pack these rectangles. Interestingly, this result
has no additive constant term, i.e., is not an asymptotic result. As a corollary, we obtain the first approximation scheme for
the problem of placing a collection of rectangles in a minimum-area encasing rectangle.
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1. Introduction. In the two-dimensional bin packing problem, rectangles of specified size (width, height)
have to be packed into larger squares (bins). The most interesting and well-studied version of this problem is
the so-called orthogonal packing without rotation, where each rectangle must be packed parallel to the edges of
a bin. The goal is to find a feasible packing, i.e., a packing where rectangles do not overlap, using the smallest
number of bins.
Bin packing and its d-dimensional variants have been extensively studied since the 1960s both in the context

of offline approximation algorithms and online algorithms (see, e.g., Baker et al. [1], Caprara [3], Caprara
et al. [4], Chung et al. [6], Coffman et al. [8], Epstein and van Stee [11], Ferreira et al. [13], Kenyon and
Rémila [18], Kohayakawa et al. [20], Leung et al. [23], Seiden and van Stee [29]). Detailed surveys can be
found in Coffman et al. [7] and Csirik and Woeginger [10]. Throughout this paper we only consider offline
algorithms.
Clearly the NP-hardness of two-dimensional bin packing follows from that of one-dimensional bin packing

(which is a special case, when all the heights are exactly 1). Furthermore, it is known that given a collection
of rectangles (in fact, squares), it is NP-hard to decide in polynomial time whether these can be packed in a
single bin or require two bins (Leung et al. [23]). Hence, no (2− �) approximation algorithm for the problem
can exist unless P =NP . These kind of hardness of approximation results are typical in bin packing problems;
nevertheless, one can usually prove much stronger performance guarantees when considering asymptotic analysis.
Therefore, the standard measure used to analyze the performance of a packing Algorithm A is the asymptotic
approximation ratio R�A defined as

Rn
A = max

L

{
A	L


OPT	L

� OPT	L
= n

}
�

R�A = lim
n→� supR

n
A�

where L ranges over the set of all problem instances and A	L
 (resp. OPT	L
) denotes the number of bins used
by A (resp. the optimal solution). Thus, the notion of asymptotic approximation ratio allows us to ignore the
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anomalous behavior of the algorithm for small instances. A problem admits an asymptotic approximation scheme,
APTAS for short, if for any �> 0, there is a polynomial time algorithm with an asymptotic approximation ratio
of 1+ �.
For one-dimensional bin packing, Fernandez de La Vega and Lueker [12] gave the first asymptotic approx-

imation scheme. Later, this was improved by Karmarkar and Karp [17] to give an algorithm that uses
OPT+O	log2	OPT

 bins. For the two-dimensional case, the first results were obtained by Chung et al. [6] who
gave a 2.125-approximation algorithm. For a long time this was the best known until a 2+ � (for any � > 0)
approximation was obtained (implicitly) by Kenyon and Rémila [18]. The recent breakthrough is an elegant
1.691-approximation algorithm due to Caprara [3]. Interestingly, many more results are known for some special
cases in which there is a restriction on how the rectangles can be packed in a bin. Two particular cases that
are widely studied are strip packing and shelf packing (details about these can be found in Caprara [3] and the
references therein). While clever asymptotic approximation schemes are known for some of these special cases,
it was unclear whether the general two-dimensional bin packing problem admits an approximation scheme.
For the special case of packing squares in square bins (which is also NP-hard by Leung et al. [23]), only

algorithms with constant factor approximation ratios were known prior to our work. The first guarantee better
than 2.125 was obtained by Ferreira et al. [13], who gave a 1.988-approximation algorithm. This was later
improved to 14/9 + � = 1�55 + � by Kohayakawa et al. [20] and by Seiden and van Stee [29]. Recently,
Caprara [3] gave an algorithm and showed that it has approximation ratio in the interval �1�490�1�507�, provided
a conjecture is true. The most recent (and best) known guarantee prior to our work is due to Epstein and
van Stee [11], who give a 16/11 + � = 1�454 + � algorithm for the two-dimensional case. The algorithm
in Kohayakawa et al. [20] also works in the d-dimensional case, and its asymptotic approximation ratio of
2− 	2/3
d was the best-known approximation ratio for d > 2 dimensions prior to our work.
Another relevant problem in the context of two-dimensional packing is the minimum rectangle placement

problem: Find the minimum area rectangle in which a given set of rectangles can be placed. This problem
has many applications in scheduling and maybe the most prominent one, in very large-scale integration (VLSI)
design. Despite the significant number of approximate and exact heuristic methods that have been proposed
for this problem (see, e.g., Korf [21], Murata et al. [26], and references therein), very few results that prove
worst-case approximation guarantees are known. Exceptions are the work of Kleitman and Krieger [19] and the
work by Novotny [27] that consider the special case of packing squares into a minimum area rectangle.
A related multidimensional packing problem is vector bin packing, described as follows: Given a set of

n rational, d-dimensional vectors p1� � � � � pn from �0�1�d, find a partition of the vectors into sets A1� � � � �Am

such that �Āi�� ≤ 1 for 1 ≤ i ≤ m, where Āi =
∑

j∈Ai
pj is the sum of the vectors in Ai. The objective is to

minimize m, the size of the partition. For d= 1, the vector bin packing problem is identical to the classical one-
dimensional bin packing, but this is not true for d > 1. Chekuri and Khanna [5] showed an interesting connection
between d-dimensional vector bin packing (for arbitrary d) and graph coloring, which implies that vector bin
packing is hard to approximate within O	d1/2−�
 for any �> 0. Woeginger [33] showed that the problem is APX
hard even for the case of d= 2. The best-known result for this problem is a 	1+�d+O	ln�−1

-approximation
for any fixed �> 0, by Chekuri and Khanna [5].
Another closely related problem is the packing problem where we are given a set of rectangles with nonneg-

ative profits. The goal is to maximize the total profit of rectangles that can be packed into a larger rectangle (or
square by scaling). The most recent paper on this problem is due to Jansen and Zhang [15]. They describe a few
constant factor approximation algorithms for this problem and provide references on the state of the art for it.

1.1. Our results. We now state the main result in each section of the paper.
1. In §2 we prove that the two-dimensional bin packing problem does not admit an asymptotic approximation

scheme. This directly implies the nonexistence of an asymptotic PTAS for all d ≥ 2.
2. We give the first asymptotic approximation scheme for packing squares into square bins in §3. More

generally, we give an APTAS for packing d-dimensional hypercubes into bins for any fixed d. Specifically, we
prove the following:

Theorem 1.1. There exists an Algorithm A that, given a list I of n d-dimensional cubes and a positive
number �, produces a packing of I into A	I
 copies of �0�1�d such that:

A	I
≤ 	1+ �
OPT	I
�+ 1�
The running time of A is O	n log	n

 for fixed d and �.
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We will also show that a slight variation of the algorithm achieves an absolute approximation guarantee of 2,
matching a recent result by van Stee [31]. Note that this algorithm achieves the best possible nonasymptotic
ratio. This follows directly due to the impossibility of distinguishing in polynomial time whether a collection of
squares can be packed in a single bin or requires two bins Ferreira et al. [13].
3. In §4 we design a resource-augmented approximation scheme for the general two-dimensional rectangle

packing problem, i.e., an algorithm which, given �> 0, packs rectangles into bins of size 	1+�
× 	1+�
. Our
result is found in Theorem 1.2.

Theorem 1.2. There exists an Algorithm A that, given a list I of n rectangles and a positive number �,
produces a packing of I into A	I
 copies of �0�1+ ��2 such that:

A	I
≤OPT	I
�
where OPT	I
 is the minimum number of unit cubes in which I can be packed. The running time of A is
polynomial in n for fixed �.

Unfortunately, it turns out that the running time of our algorithm is O	n2
2Õ	1/�



, which is rather impractical.
4. Observe that the result in Theorem 1.2 above is not asymptotic (there is no additive term in the expression

for the number of bins used by the algorithm). We use this observation to give a polynomial time approximation
scheme (PTAS) for the minimum rectangle placement problem. This is described in §5.

Theorem 1.3. There exists an Algorithm A that, given a list I of n rectangles and a positive number �,
finds a rectangle R, in which all rectangles in I fit and such that

Vol	R
≤ 	1+ �
OPT	I
�

Here Vol	R
 is the area of rectangle R and OPT	I
 is the area of the minimum area rectangle in which I can
be packed. The running time of A is polynomial in n for fixed �.

1.2. Techniques. Our result for the APX hardness of two-dimensional bin packing has ideas similar to
those used by Woeginger [33] to show the APX hardness of two-dimensional vector packing. However, our
construction is much more involved in Woeginger [33], as there is much less structure in how the rectangles can
be packed in a bin for two-dimensional bin packing, as compared with that for vector packing. For example,
given a collection of rectangles (or equivalently vectors) p1� � � � � pn, it is NP-hard to decide whether these
rectangles can be packed in a single bin, whereas this is trivial for vector bin packing (to do this, simply sum
up the vectors and verify that all coordinates are at most 1).
For hypercube packing, most previous approaches that obtain a constant factor approximation Ferreira

et al. [13], Seiden and van Stee [29], Kohayakawa et al. [20], and Epstein and van Stee [11] use the classical
techniques used for one-dimensional bin packing. That is, classify the objects into large and small. Find a pack-
ing of the large objects using rounding and exhaustive search and then pack the remaining small objects. In the
case when d > 1, the above approach does not directly yield an approximation scheme for the following reason:
The gaps left in the bin after packing the large objects can have arbitrary structure, and it is not clear how to
pack the small objects in these gaps without wasting a constant fraction of the space. Our approach extends the
ideas of Fernandez de la Vega and Lueker [12] and is based on a technique originally used by Sevastianov and
Woeginger [30] in the context of some problems in shop scheduling. We partition the objects into three sets,
large, medium, and small, such that the medium objects do make up a significant portion of the input instance,
and at the same time this gives us a sufficient gap between the sizes of the large objects and the small objects.
We pack the medium objects separately and then show how to pack the large and the small objects together.
We now consider the case of packing rectangles using resource augmentation. The main difficulty of obtaining

a PTAS in this case is that there is no natural total order on rectangles. Hence, the rounding techniques used
by Fernandez de la Vega and Lueker [12] and for the square packing above do not seem to extend here. We
adopt the following approach. Because we are allowed to enlarge the bin sizes from �0�1�2 to �0�1+ ��2, we
show that it is not a problem if we round the sides of rectangles that are both tall and wide (i.e., whose height
and width are both larger than a small constant �). This enables us to reduce the rectangles that are both wide
and tall to a constant number of types. The main problem is to deal with the rectangles that are either very
wide and flat or very thin and tall. For either kind of these rectangles, we show that we can essentially use the
strip-packing algorithm of Kenyon and Rémila [18]. Our algorithm thus relies on an appropriate partition of
rectangles into “large,” “small,” “horizontal,” “vertical,” and “medium,” in such a way that the medium rectangles
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are negligible. It only remains to mix gracefully the various kinds of rectangles; this requires discretizing a
near-optimal solution appropriately so as to be able to “guess” not only where the large rectangles go but also
the areas used to pack horizontal rectangles and the areas used to pack vertical rectangles.
Our result for the minimum encasing rectangle is obtained by using the previous algorithm for packing

rectangles using resource augmentation. Specifically, we use the previous algorithm to decide whether a list of
rectangles does not fit in a given rectangle or they fit in a slightly larger rectangle. We then do exhaustive search
over all possible rectangles and select the one of minimum area. This procedure takes care of all instances
having at least one “wide” and one “tall” rectangle. The rest of the instances are solved by a slight variation of
a strip-packing type result in Coffman et al. [8].

2. APX hardness of two-dimensional bin packing. We give an approximation preserving reduction from
the maximum bounded three-dimensional matching problem (MAX-3-DM). The MAX-3-DM problem is defined
as follows.
Input. Three sets X = �x1� � � � � xq�, Y = �y1� � � � � yq�, and Z = �z1� � � � � zq�. A subset T ⊆X × Y ×Z such

that any element in X, Y , Z occurs in one, two, or three triples in T . Note that this implies that q ≤ �T � ≤ 3q.
Goal. Find a maximum cardinality subset T ′ of T such that no two triples in T ′ agree in any coordinate.
Measure. Cardinality of T ′.
Kann [16] was the first who proved the MAX SNP hardness of the MAX-3-DM problem. Recently, explicit

lower bounds on the approximation ratio of MAX-3-DM have also been obtained Berman and Karpinski [2]
and Hazan et al. [14]. Petrank [28] (Theorem 4.4) proved a refined hardness result, where he showed that
it is NP-hard to distinguish between instances where �T ′� = q and instances where �T ′� ≤ 	1− �
q for some
constant �> 0.
Given an instance I of MAX-3-DM we will construct an instance of two-dimensional bin packing. The

following is a high-level description of the steps involved. First, we create a numerical version of the MAX-3-DM
instance by associating an integer with each element in X, Y , Z, and T . These integers will have the property that
any four of them sum up exactly to a number B, if and only if the integers correspond to a triple tl = 	xi� yj � zk
.
Let x′i (resp. y

′
j , z

′
k, t

′
l) denote the integer corresponding to xi (resp. xj , zk, tl). Next, with each integer we will

associate two rectangles. Each rectangle has width close to 1/4 and height close to 1/2. Each of the rectangles
will have an area of about 1/8, so no more than eight rectangles can fit in a bin. The exact width and height
of a rectangle is a small perturbation around 1/4 and 1/2, respectively, depending of the value of the integer
associated to it. Typically, one of the rectangles will be “thin” and “tall,” and the other rectangle will be “wide”
and “short.” These perturbations are chosen such that the following property is satisfied. If tl = 	xi� yj � zk
 or
equivalently t′l + x′i + y′j + z′k = B, then the eight rectangles corresponding to x′i, y

′
j , z

′
k, and t′l can fit in a

bin. Otherwise, each bin is suboptimal in the sense that it either contains at most seven rectangles or contains
at most three “tall” and “thin” rectangles. We begin by describing the construction and then prove some useful
structural properties of this construction. We then show how these properties, together with the APX hardness
of MAX-3-DM, imply the asymptotic hardness of two-dimensional bin packing.
We begin by defining the integers corresponding to xi, yj , zk, tl. Let r = 32q. Define

x′i = ir3+ i2r + 1� for 1≤ i≤ q�

y′j = jr6+ j2r4+ 2� for 1≤ j ≤ q�

z′k = kr9+ k2r7+ 4� for 1≤ k≤ q�

For every triple tl = 	xi� yj � zk
 in T , we define

t′l = r10− x′i − y′j − z′k+ 15= r10− kr9− k2r7− jr6− j2r4− ir3− i2r + 8�
Let �= 1/500 and let c = 	r10 + 15
/�. Observe that 0< x′i� y

′
j � z

′
k < �c/10 and t′l < �c hold for all i, j , k, l.

Intuitively, think of c as a scaling factor much larger than x′i, y
′
j , z

′
k, and b′l.

We now describe the rectangles in our instance. A rectangle of width w and height h will be denoted by
	w�h
. For each element xi ∈ X (resp. yi ∈ Y and zi ∈ Z), we define a pair of rectangles ax� i, a

′
x� i (resp. ay� i,

a′y� i, and az� i, a
′
z� i) as follows (the reader is encouraged to look at Figure 1):

ax� i =
(
1
4
− 4�+ x′i

c
�
1
2
+ 4�− x′i

c

)
and a′x� i =

(
1
4
+ 4�− x′i

c
�
1
2
− 4�+ x′i

c

)
�
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ay� i =
(
1
4
− 3�+ y′i

c
�
1
2
+ 3�− y′i

c

)
and a′y� i =

(
1
4
+ 3�− y′i

c
�
1
2
− 3�+ y′i

c

)
�

az� i =
(
1
4
− 2�+ z′i

c
�
1
2
+ 2�− z′i

c

)
and a′z� i =

(
1
4
+ 2�− z′i

c
�
1
2
− 2�+ z′i

c

)
�

As x′i/c, y
′
i/c, and z′i/c are all no more than �/10, observe that for each pair of rectangles, the first rectangle is

“thin” and “tall” and the second rectangle is “wide” and “short.” Also observe how the perturbations in height
and width are related to each other (this fact is made precise in Lemmas 2.1 and 2.2 below).
Next for each tl ∈ T we define two rectangles bl and b′l as

bl =
(
1
4
+ 8�+ t′l

c
�
1
2
+ �− t′l

c

)
and b′l =

(
1
4
− 8�− t′l

c
�
1
2
− �+ t′l

c

)
�

Finally, we define D to be a collection of �T � − q dummy rectangles di such that di = 	3/4− 10��1
. These
dummy rectangles will not play a significant role and will just serve as “garbage collectors.”
Formally, we say that two rectangles a and a′ are buddies iff �a�a′� is �ax� i� a

′
x� i� or �ay� j � a

′
y� j � or �az�k� a

′
z� k�

for 1≤ i� j� k≤ q or �a�a′�= �bl� b
′
l� for some 1≤ l≤ �T �.

Let Ax = �ax�1� � � � � ax�q� and A′x = �a′x�1� � � � � a
′
x�q�. Ay , A

′
y , Az, and A′z are defined similarly to be the set of

rectangles ay� i, a
′
y� i, az� i, and a′z� i respectively. Let A denote the collection Ax ∪Ay ∪Az and A′ =A′x ∪A′y ∪A′z

and, finally, let B = �b1� � � � � b�T �� and B′ = �b′1� � � � � b
′
�T ��. Having all the notation in place, we first list some

simple observations about these rectangles that follow directly from the choice of sizes of these rectangles.

Lemma 2.1. For each rectangle a ∈ A ∪ A′, w	a
+ h	a
 = 3/4. For any b ∈ B, w	b
+ h	b
 = 3/4+ 9�
and for any b′ ∈ B′, w	b′
 + h	b′
 = 3/4 − 9�. In particular, this implies that for any b ∈ B and b′ ∈ B′,
h	b
+h	b′
+w	b
+w	b′
= 3/2.
Lemma 2.2. For any two rectangles a, a′ in A∪A′ ∪B ∪B′, h	a
+h	a′
= 1 iff a and a′ are buddies.

Lemma 2.3. The width (resp. height) of any rectangle in the instance is at least 1/4− 10� (resp. at least
1/2−5�) and, hence, the area of any rectangle is at least 1/8−25/4�> 1/9. Thus, no bin can have more than
eight rectangles.

Lemma 2.4. For any packing of squares in a bin, every vertical line (i.e., of the form x = c), intersects
at most one rectangle from A ∪ B. This follows as the height of each rectangle in A ∪ B is strictly greater
than 1/2.

This observation implies that any bin can contain at most four rectangles in A ∪ B. Moreover, any bin can
contain at most three rectangles in B, as the width of each rectangle in A∪B is more than 1/5, and the width
of each rectangle in B is more than 1/4. Finally, it is easy to see that:

Lemma 2.5. If a rectangle di ∈ D lies in some bin S, then S contains at most two other rectangles and
at most one of them is a rectangle from A∪B.

Next, we give two less obvious consequences (Lemmas 2.6 and 2.7) of the choices of sizes of these rectangles.
The following definition is needed only for the next two lemmas. For a rectangle a, we now define 1	a
 which
allows us to relate the rectangle back to the integers x′i, y

′
j , z

′
k, or b

′
l. For a rectangle ax� i ∈Ax, let 1	ax� i
= x′i and

for a′xi ∈A′x, 1	a
′
x� i
=−x′i. Similarly, 1	ay� j 
= y′j , 1	az�k
= z′k, 1	bl
= t′l, and 1	a′y� j 
=−y′j , 1	a′z� k
=−z′k,

1	b′l
=−t′l.
Lemma 2.6. For any three rectangles a1� a2� a3 ∈ A and b ∈ B, we have that w	a1
 + w	a2
 + w	a3
 +

w	b
 = 1 iff there is a triple tl = 	xi� yj � zk
 in the instance I of MAX-3-DM and �a1� a2� a3� b� = �ax� i� ay� j �
az�k� bl�.

Proof. The “if” part follows directly from the choice of the sizes of the rectangles. In particular, if tl =
	xi� yj � zk
, then

w	ax� i
+w	ay� j 
+w	az�k
+w	bl
= 1− �+ 	x′i + y′j + z′k+ t′l


c
= 1− �+ r10+ 15

c
= 1�

For the “only if” part of the lemma, we first observe that

w	a1
+w	a2
+w	a3
+w	b
= 1− �+ 1	a1
+1	a2
+1	a3
+1	b


c
�
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Thus, if w	a1
+w	a2
+w	a3
+w	b
= 1, it must be that
3∑

i=1
1	ai
+1	b
= �c= r10+ 15�

Consider the quantity
∑3

i=11	ai
+1	b
 modulo r . Since r is a multiple of 32, it follows that there is exactly
one rectangle each from Ax, Ay , Az, and B since 15= 1+ 2+ 4+ 8 and this is the only way to represent 15
as a multisum (with possible repetitions) of four numbers from the set �1�2�4�8�. Next, considering the sum∑3

i=11	ai
 + 1	b
 modulo r2 it follows that i and l are such that xi ∈ tl. Similarly, considering modulo r4

and r7, it follows that yj ∈ tl and zk ∈ tl. As xi, yj , and zk determine tl uniquely, the result follows. �

Lemma 2.7. Let � = �a1� a2� a3� a4� be a set of any four rectangles lying in A ∪ A′, such that no two of
them are buddies. Then

∑4
i=1w	ai
 �= 1.

Proof. Suppose for the sake of contradiction that
∑4

i=1w	ai
= 1. As 0≤ �1	ai
� ≤ �c/10, it must be that∑4
i=11	ai
= 0. We first show that there cannot be more than one rectangle from Ax ∪A′x in the set � (later

we will show that the same argument works for Ay ∪A′y and Az ∪A′z), which contradicts that � contains four
rectangles in A∪A′. Consider the coefficient of r and r3 in

∑4
i=11	ai
. These coefficients depend on rectangles

in 	Ax ∪A′x
 ∩� only. Let i1, i2, i3, i4 denote the indices of rectangles from 	Ax ∪A′x
 ∩� (where an index
is 0, if fewer than 4 occur). Since no two rectangles are buddies, we cannot have both ax� ik

and a′x� ik in �. So,
for each ik, 1≤ k≤ 4, we associate a variable 2	ik
, where 2	ik
= 1 if ax� ik

∈� and −1 if a′x� ik ∈�.
Since the coefficients of r and r3 sum to 0, we must have that

∑4
k=12	ik
ik = 0 and

∑4
k=12	ik
i

2
k = 0, with

the constraints that all nonzero iks are distinct (since no two rectangles are buddies). We now claim that the
only feasible solution to this system is ik = 0 for all 1≤ k≤ 4. As all the iks are distinct, we need at least three
of the iks to be nonzero, else we cannot have

∑
k 2	ik
ik = 0. Also, it is not the case that all 2	ik
 are either −1

or that all are +1. Under these constraints, when there are exactly three nonzero iks, without loss of generality,
we have the following system of equations: i1+ i2 = i3 and i21+ i22 = i23 such that i1� i2� i3 > 0. However, squaring
the first equation and subtracting the second from it implies that 2i1i2 = 0, which contradicts that all of i1, i2,
and i3 are nonzero. Thus, there is no solution to this system of equations.
Finally, we consider the case when all the iks are nonzero. As not all 2	ik
 have the same sign, without loss

of generality we have only the following two cases.
(i) i1+ i2 = i3+ i4 and i21 + i22 = i23 + i24,
(ii) i1+ i2+ i3 = i4 and i21 + i22 + i23 = i24.

As all i1, i2, i3, and i4 are nonzero, the last case clearly does not have a solution. For the first case, rewrite the
equations as i1− i3 = i4− i2 and i21 − i23 = i24 − i22. As i1, i2, i3, and i4 are all pairwise distinct, this implies that
i1+ i3 = i4+ i2. Together with i1+ i2 = i3+ i4, this implies that i1 = i4, which gives a contradiction. Repeating
a similar argument for Ay ∪A′y and Az ∪A′z by considering the coefficients of r

4 and r6 and those of r7 and r9,
respectively, it follows that there can be at most one rectangle each from Ay ∪ A′y and Az ∪ A′z in �, which
contradicts the assumption that � contains four rectangles. �

We now have enough structural results about how rectangles can be packed in a bin. This will allow us to
show that if a bin does not contain eight rectangles corresponding to a triple, then it is suboptimally packed. We
make the notion of “suboptimally packed” precise with the following definition of a good bin.
Definition 2.1. Given a packing of the bins, call a bin good if it contains exactly eight rectangles and

additionally it has exactly four rectangles from A∪B.
The following crucial lemma characterizes the structure of good bins.

Lemma 2.8. A bin is good if and only if it contains the rectangles ax� i, ay� j , az�k, bl and the corresponding
rectangles a′x� i, a

′
y� j , a

′
z� k, b

′
l such that tl = 	xi� yj � zk
 corresponds to a triple in the MAX-3-DM instance.

Proof. We first show that the rectangles corresponding to a triple can be packed in a bin. Starting from the
bottom left corner of the bin and moving towards the right, we pack the rectangles ax� i, ay� j , az�k, and bl. Each
of these rectangles is placed such that it touches the bottom of the bin.
Figure 1 shows the packing. It is easy to verify that these four rectangles can be packed as described, as

w	ax� i
+w	ay� j 
+w	az�k
+w	bl
= 1− �+ 	x′i + y′j + z′k+ t′l


c
= 1�

Next we observe that each of the rectangles a′x� i, a
′
y� j , a

′
z� k, and b′l can be placed in the remaining gaps (as

shown in Figure 1). Clearly, a′x� i can be placed on top of ax� i because h	ax� i
+ h	a′x� i
= 1 and as h	ax� i
 >
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Figure 1. Packing of the rectangles corresponding to a triple.

h	ay� j 
 > h	az�k
 > h	bl
, this allows a
′
x� i to extend horizontally beyond ax� i. Arguing similarly and observing

that w	a′x� i
+w	a′y� j 
+w	a′z� k
+w	b′l
= 1, it is easy to see that rectangles a′y� j , a′z� k, and b′l also fit.
We now show that any good bin must correspond to a triple. We first give a way for labeling the eight

rectangles in a good bin. Consider the lines L1 = �y = 1/5� and L2 = �y = 4/5�. It is easy to see that in any
packing of a bin with eight rectangles, each rectangle must intersect exactly one of L1 or L2. This follows
because any rectangle has height at most 1/2+ 1/50 < 3/5 and at least 1/2− 1/50 > 2/5. Moreover, as any
rectangle has width strictly larger than 1/5, it follows that each L1 and L2 intersects exactly four rectangles.
Let �a1� a2� a3� a4� denote the rectangles that intersect L1 such that ai is to the left of aj for i < j . Similarly, let
�a5� a6� a7� a8� denote the rectangles that intersect L2 in the left-to-right order. Thus, we have that

w	a1
+w	a2
+w	a3
+w	a4
≤ 1� (1)

and that
w	a5
+w	a6
+w	a7
+w	a8
≤ 1� (2)

Finally, as the width of each rectangle is at least 1/5, for each 1≤ i ≤ 4, it must be that rectangle ai overlaps
with ai+4 in an x-coordinate (i.e., there is a vertical line x = c for some c that intersects both ai and ai+4),
implying that

h	ai
+h	ai+4
≤ 1 for 1≤ i≤ 4� (3)

We now show that any good bin must contain exactly one rectangle from B.
(i) Suppose that at least two rectangles in B lie in a good bin. As each rectangle in B has width at least

1/4+ 8�, two such rectangles use at least 1/2+ 16�. Thus, the width left for rectangles from A is at most
1/2−16� (we cannot put rectangles from A on top of the rectangles from B), and, hence, at most one rectangle
from A can fit. Similarly, if exactly three rectangles from B lie in the bin, there cannot be any rectangle from A.
Thus, in either case there are at most three rectangles from A∪B, which contradicts the fact that the bin is good.
(ii) Suppose that no rectangle in B lies in a good bin. We claim the bin cannot have more than three rectangles

from A. For the sake of contradiction suppose r1� r2� r3� r4 ∈A lie in the bin. Then no rectangle from B′ can lie
in the bin because any rectangle in A has height at least 1/2+ 2� while the height of any rectangle in B′ is
at least 1/2−� and, moreover, any rectangle in B′ must overlap in some x-coordinate with some ri for 1≤ i≤ 4.
Thus, all the eight rectangles lie in A∪A′.
Adding (1), (2), and (3) we have that

∑8
i=1	w	ai
+h	ai

≤ 6. Moreover from Lemma 2.1, as w	a
+h	a
=

3/4 for each rectangle a ∈A∪A′, we have that∑8
i=1	w	ai
+h	ai

= 6; thus it must be the case that each of the

inequalities (1), (2), and (3) must hold with equality. By Lemma 2.2, this implies that ai and ai+4 are buddies for
each i= 1� � � � �4. This in particular implies that no two rectangles are buddies among the rectangles a1, a2, a3,
and a4. Therefore, by Lemma 2.7, it is impossible that

∑4
i=1w	ai
= 1 and, hence, we have a contradiction.
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Thus, any good bin can contain exactly one rectangle from B. To finish the proof, we show that if bl lies in
a good bin, then it must contain rectangles corresponding to the triple tl = 	xi� yj � zk
.
First, by definition, any good bin with exactly one rectangle bl from B must contain exactly three other

rectangles from A. Because any rectangle from B′ cannot overlap in an x-coordinate with any rectangle in A, it
follows that there can be at most one rectangle from B′, which must overlap with bl. Next, we show that there
has to be at least one rectangle from B′. Suppose there are no rectangles from B′; then we claim that the total
width of all the rectangles must be strictly larger than 2, which is not possible. To see this, because there is no
rectangle from B′, there must be four rectangles from A′. As the width of any rectangle in A′ (resp. B) is strictly
more than 1/4+ � (resp. 1/4+ 8�), any four rectangles from A′, together with any rectangle from B, take up
width strictly larger than 5/4+12�. However, as the width of any rectangle in A is at least 1/4−4�, we do not
have sufficient total width to pack three rectangles from A, which contradicts the fact that the bin is good.
Hence, there is exactly one rectangle from B′. Call it b′l′ . By Lemma 2.1, we have that h	bl
 + w	bl
 +

h	b′l′
+ w	b′l′
 = 3/2. Moreover, observing that w	a
+ h	a
 = 3/4 for each a ∈ A ∪ A′, it follows that each
of the inequalities (1), (2), and (3) is satisfied with equality. To complete the argument, suppose bl intersects
line L1, let a1, a2, a3 denote the rectangles in A ∪ A′, which also intersect L1. Thus, we have that w	a1
+
w	a2
+w	a3
+w	bl
= 1. None of the ai, 1≤ i≤ 3 can lie in A′, because otherwise it is always the case that
w	a1
+w	a2
+w	a3
+w	bl
 > 1. Because all a1, a2, and a3 lie in A, by Lemma 2.6 it follows that these
rectangles correspond to a triple tl = 	xi� yj � zk
. �

Theorem 2.1. There is no asymptotic PTAS for the two-dimensional bin-packing problem unless P =NP .

Proof. If the MAX-3-DM problem has a matching consisting of q triples, then we can get a bin-packing
solution that uses �T � bins as follows. For each of the triples in the matching, create a good bin as described in
Lemma 2.8. For each tl not in the matching, we put bl and b′l along with a dummy rectangle and, hence, we
use q+ 	�T � − q
= �T � ≤ 3q bins.
Assume now that every feasible solution of the MAX-3-DM problem has at most 	1− �
q triples. We will

show that any solution to the corresponding bin packing problem uses at least 	1+ �/33
�T � bins. Consider
any feasible solution to the bin-packing instance. There will be exactly nd = �T � − q bins with dummy objects.
Let ng denote the number of good bins. Because the set of good bins corresponds to some feasible solution by
Lemma 2.8 we have ng ≤ 	1− �
q. By Lemmas 2.3 and 2.4, and Lemma 2.8, it follows that if a bin is not
good, then it either has at most seven rectangles or else it has at most three rectangles from A∩B. Among the
bins that are not good let nb1

denote the number of bins (other than the bins with dummy objects) that contain
at most seven rectangles and let nb2

denote bins that have eight rectangles but three and fewer rectangles from
A∪B.
Because any solution must cover all of the rectangles in A∪B and any bin with a dummy rectangle can have

at most one rectangle from A∪B, we have that

4ng + 4nb1
+ 3nb2

+ nd ≥ 3q+ �T ��

Equivalently,

4ng + 4nb1
+ 3nb2

≥ 4q�
Finally, since all the rectangles in A∪A′ ∪B ∪B′ must be covered, we have that

8ng + 7nb1
+ 8nb2

+ 2nd ≥ 6q+ 2�T ��

Equivalently,

8ng + 7nb1
+ 8nb2

≥ 8q�
Adding the inequalities above, 12ng + 11nb1

+ 11nb2
≥ 12q. Equivalently, ng + nb1

+ nb2
≥ 12q/11− ng/11.

Adding the bins with dummy objects, this implies that the total number of bins used is at least �T � − q +
12q/11− ng/11= �T � + 	q− ng
/11≥ �T � + �q/11≥ �T �	1+ �/33
.
Now if there is an APTAS for two-dimensional bin packing, then for every �> 0, there exists an algorithm A�

and a constant c�, such that for instances I if �OPT	I
�> c�, then A� ≤ 	1+ 2�
�OPT	I
�. Thus, for any �> 0,
if q > c� we can distinguish between two instances of the MAX-3-DM problem with �T ′� = q and �T ′� ≤
	1− 66�
q, which is an NP-hard problem by Petrank [28]. �
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3. Hypercube packing. In this section we describe our asymptotic approximation scheme for packing a
collection of d-dimensional cubes into a minimum number of unit cubes. Our result will consist of three parts.
In §3.2 we show how to pack small cubes into rectangular regions without wasting too much space. In §3.3 we
show how to compute an almost optimum packing of large cubes into unit bins. Finally, in §3.4 we show how
to combine these two ideas together to get a close-to-optimum packing of large and small cubes simultaneously.
We begin with some preliminaries.

3.1. Definitions and preliminaries. We adopt two standard assumptions in multidimensional bin packing:
first, items are allowed to “touch,” i.e., they can intersect in a face; second, items cannot be rotated (orthogonal
packing without rotation).
A d-dimensional cube is given by a positive number a, representing the length of its side. Since we will pack

squares into unit squares, we need to assume a≤ 1. Given an input list I of n d-dimensional cubes with sides
of length ai ∈ 	0�1� for i = 1� � � � � n, the volume of the list is defined as: Vol	I
=∑n

i=1 a
d
i . Given two cubes

and their positions in the space, we say that they are nonoverlapping if their interiors are disjoint.
A packing of I into k bins is a positioning of the cubes into k copies H1� � � � �Hk of the unit hypercube

�0�1�d, so that no two cubes overlap. The d-dimensional cube-packing problem consists of finding a packing
of I into the minimum number of bins, OPT	I
. We denote by A	I
 the number of bins algorithm A uses to
pack I .
We now establish a simple result that will be needed later.

Lemma 3.1. Let P be a packing of m d-dimensional cubes in �0�1�d. Then the unused space in the bin,
denoted by �0�1�d\P , can be divided into at most 	2m
d nonoverlapping d-dimensional rectangles.

Proof. Extending each facet of each cube in P , we obtain a grid in �0�1�d consisting of 	2m+1
d cells. By
pushing cubes toward the origin, in Lemma 3.1 we can assume without loss of generality that in the packing P
there is a cube touching each of the hyperplanes xi = 0, for i = 1� � � � � d. Thus, �0�1�d\P can be seen as the
union of no more than 	2m
d nonoverlapping d-dimensional rectangles. �

We can make a stronger statement for the two-dimensional case.

Lemma 3.2 (The Two-Dimensional Case). Let P be a packing of m squares in �0�1�2. Then, �0�1�2\P
can be divided into at most 3m nonoverlapping rectangles.

Proof. For each square in P draw a horizontal line at its top and bottom until it intersects some other
square, as in Figure 2. Assuming the bottom-most square is at height 0, we have drawn 2m−1 horizontal lines.
This partitions the unit square into at most 3m rectangles (two to the side of each square and another to the top
of each square in P ) plus the original m squares. �

3.2. Packing small cubes. In this section we look at multidimensional cube packing in case all cubes are
small. In this setting we are given an input list S = 	a1� � � � � an
 of cubes with sides ai ≤ � for some positive
(small) constant �. We will use a multidimensional version of the next-fit-decreasing-height shelf heuristic
(NFDH). Coffman et al. [8] analyzed this heuristic in the context of strip packing, pointing out properties closely
related to what we extend here to higher dimensions.

Figure 2. Decomposing the used space in the bin into rectangular regions.
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Let us assume that the cubes are sorted according to nonincreasing order of sizes. In two dimensions, the
NFDH algorithm is a level algorithm that uses the next-fit approach to pack the sorted list of cubes. The cubes
are packed, left-justified on a shelf, until the next rectangle will not fit. This rectangle is used to define a
new shelf, and the packing continues on this shelf. The earlier shelves are not revisited. In general, for higher
dimensions, we define the NFDH heuristic inductively. Assume we know how to perform NFDH in d − 1
dimensions. The d-dimensional NFDH heuristic will consider a facet � of the bin and pack cubes on it using
its 	d− 1
-dimensional version. For that, one of the dimensions (say, the height) of the d-dimensional cubes is
ignored, and these cubes are seen as 	d− 1
-dimensional cubes. After it finishes packing in this facet, it will
cut off from the bin a d-dimensional rectangle (shelf ) with base � and height a1. It will proceed to pack the
remaining list in the rest of the bin. The following lemma illustrates a fundamental property of NFDH. It is a
consequence of a result of Meir and Moser [24], but we include a proof for completeness.

Lemma 3.3. Let C be a set of d-dimensional cubes (where d ≥ 2) with sides smaller than �. Consider the
NFDH heuristic applied to C. If NFDH cannot place any other cube in a rectangle R of size r1× r2× · · · × rd
(with ri ≤ 1), the total wasted (unfilled) volume in that bin is at most:

�
d∑

i=1
ri�

Proof. Let h1� h2� � � � � hl denote the height of the shelves generated by the algorithm. Similarly, let ci
and di denote the sides of the largest and smallest cube, respectively, in shelf i. Clearly, since the cubes are
packed according to nonincreasing sizes, we have that ci+1 ≤ di for all i= 1� � � � � l− 1. Similarly, we have that∑l

i=1 hi ≥ rd − cl+1 ≥ rd −dl; otherwise, the algorithm would open another shelf.
We will prove the required result by induction on the number of dimensions. For d = 2, from the result

of Coffman et al. [8], we know that the wasted volume is at most �	r1 + r2
. Suppose the result is true for
d− 1; hence, for each 	d− 1
-dimensional facet, the wasted volume along the first d− 1 dimensions is at most
�
∑d−1

i=1 ri. We now bound the wasted volume in d dimensions. First, the volume wasted in the topmost shelf
(that cannot be packed with any cube) is at most dl

∏d−1
i=1 ri. Second, for each shelf i≤ l, the wasted volume in

the 	d − 1
-dimensional facet contributes at most hi · �	
∑d−1

j=1 rj
, and the additional volume wasted along the
dth dimension can be bounded by 	ci − di
 ·

∏d−1
j=1 rj . Adding all of the contributions of all the shelves and the

topmost unpacked shelf, we get that the total wasted volume is at most c1 ·
∏d−1

j=1 rj + �	
∑d−1

j=1 rj
. Without loss
of generality, suppose that r1 ≤ r2 ≤ · · · ≤ rd. Because c1 ≤ � and

∏d−1
j=1 rj ≤ rd, the total waste is bounded by

�	
∑d

i=1 ri
, which implies the result. �

3.3. Packing large cubes. We now concentrate on the case of packing large cubes. In this case we are
given an input list L of n cubes whose sides are at least �. For simplicity, we split the analysis into two steps
(as in Fernandez de la Vega [12] and Vazirani [32]).

Lemma 3.4. Suppose the input list L contains large cubes only, say, ai ≥ � for all i = 1� � � � � n, and there
are only K different cube sizes for some constant K. Then, we can solve the cube-packing problem optimally in
time O	polylog	n

.

Proof. Clearly, the number of cubes that fit in a bin is bounded by M = �1/�d�. For a cube of type i, we
denote its side length by 2i. Given a packing of cubes in a bin, its bin type will be described by the number of
cubes of each type in that bin. This will be denoted by a vector 	x1� x2� � � � � xK
, which means that there are
x1 cubes of type 1, x2 cubes of type 2, up to xK cubes of type K in that bin. Clearly, there are at most MK

(a constant) bin types. We now show that, given a vector 	x1� x2� � � � � xK
 such that xi ≤M for each 1≤ i≤K,
we can test in constant time whether it denotes a valid bin type. To see this, we show that there are only a
constant number of possible positions for each cube in a bin at which it can be placed. We can then test in
constant time whether a vector is valid, by exhaustively trying all possible positions for the cubes in that vector.
If a given vector of cubes fit in a bin, without loss of generality we can assume that their vertices lie at

coordinates belonging to the set:

� =
{ K∑

i=1
8i2i� 8i ∈�+ and 0≤

K∑
i=1

8i2i ≤ 1
}
�

Indeed, given a general placement of the cubes in the bin, fix a dimension l= 1� � � � � d and sort the cubes by
their leftmost point in their lth coordinate. Now, consider each cube in this sorted order and push them one-by-
one to the left until the cube touches another cube, which always happens at a coordinate in �. By doing this
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for all coordinates we obtain the claimed result. Let C denote the cardinality of the set �. Since 2i ≥ �, any
point

∑K
i=1 8i2i in � will satisfy 8i ≤ 1/� for all i = 1� � � � �K. Thus C ≤ 	1/�
K , which is a (huge) constant.

Thus there are at most 	Cd
M ways to specify the position of each possible cube in a bin.
As mentioned above, we can thus check in constant time if a given vector 	x1� � � � � xK
 is a bin type or not.

Thus, by exhaustive enumeration we can generate in constant time a list � = �T1� � � � � TQ� consisting of all
valid bin types.
It only remains to see how to find an optimal packing. To this end we will use an integer program of size

O	polylog	n

 with a fixed number of variables and constraints. For 1 ≤ j ≤ K, let Tij denote the number of
type j cubes in bin type Ti and let nj denote the number of cubes of type j in the problem instance. Let xi

correspond to the number of bins that have configuration corresponding to the type Ti. We can formulate an
integer program (denoted by IP) in the x variables as follows:

min
Q∑
i=1

xi� (4)

Q∑
i=1

Tijxi ≥ nj for j = 1� � � � �K�

xi ≥ 0 for i= 1� � � � �Q�

xi ∈ �+ for i= 1� � � � �Q�

Clearly the size of IP is O	log	n

. Moreover, it only has a constant number of variables. Therefore, by Lenstra’s
algorithm for integer programming in fixed dimension Lenstra [22], we can find an optimum integer solution
to IP in time O	polylog	n

. It is straightforward to see that such a solution represents an optimal packing. �

Lemma 3.5. Suppose the input list L contains large cubes (ai ≥ � for all i= 1� � � � � n) only. Then, for any
�> 0, there is a 	1+ �
-approximation algorithm for packing cubes into a minimum number of unit cubes that
runs in time O	n log	n

.

Proof. Let L denote the given instance list. The algorithm is as follows:
(i) Sort the n cubes in nonincreasing order of sizes and partition them in K = 1/	��d
� groups, each

containing at most Q= n/K� cubes.
(ii) Construct an instance J by rounding up all items in each group to the largest cube in the group. By

construction, the cubes in J have at most K distinct sizes.
(iii) Apply the algorithm of Lemma 3.4 to solve the rounded instance and output the packing found by it.
To analyze the algorithm, we use the argument of Fernandez de la Vega and Lueker [12]. Consider two

instances J and J ′ derived from the sorted input list L. As in the algorithm, J is constructed by rounding up all
items in each group to the largest cube in the group. On the other hand, J ′ is constructed by rounding down all
items in each group to the smallest cube in the group. Clearly,

OPT	J ′
≤OPT	L
≤OPT	J 
�
Now, each cube in group g of J ′ has size at least that of the cubes in group g+ 1 of J . Thus, possibly placing
each of the largest Q cubes from J in a bin by itself, it follows that

OPT	J 
≤OPT	J ′
+Q≤OPT	L
+Q≤ 	1+ �
OPT	L
��
The last inequality follows directly from OPT	L
≥ n�d together with Q= n/K� ≤ n��d� ≤ �OPT	L
�. �

3.4. Packing small and large cubes together. In this section we prove Theorem 1.1. Although we already
know how to construct almost-optimal packings of only large and only small cubes separately, we cannot directly
apply the algorithms in the previous sections to construct a packing in the general case. One extra step will be
required to allow the combination of the previously seen algorithms.
For the sake of simplicity in the notation we work in this section only in the two-dimensional case. The

extension to higher dimensions is straightforward and is discussed at the end of the section.
The general asymptotic polynomial time approximation scheme for square packing is as follows:

Algorithm for Square Packing.
(1) Let I be the input list and � > 0 fixed. Let r = 1/��. Consider the sequence ���3� � � � � �2

i−1� � � � for
i= 1� � � � � r + 1. Let Mi = �j� aj ∈ ��2

i+1−1� �2i−1
�, for i= 1� � � � � r .
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(2) Take M �=Mi for some index 1 ≤ i ≤ r satisfying Vol	Mi
 ≤ �Vol	I
. Define the set of large items as
L= �j� aj ≥ �2

i−1� and the set of small items as S = �j� aj < �2
i+1−1�.

(3) Find an almost-optimal packing of L as in Lemma 3.5.
(4) Partition the remaining space in the opened bins into rectangular regions using Lemma 3.2. Use NFDH

to pack as many squares in S as possible into the rectangular free space. Let S ′ ⊂ S denote the subset of the
small items that could not be packed (S ′ could possibly be empty).
(5) Open new bins and use NFDH to pack M ∪ S ′.
From now on, we refer to this algorithm as Algorithm A. We show that it achieves the desired approximation

ratio and running time, as given in Theorem 1.1.

Analysis of the running time. First, it requires time O	n logn
 to sort the cubes according to their sizes.
Next, it is easy to see that Steps (1) and (2) take at most O	n
 time. By Lemma 3.5, Step (3) requires
O	polylog	n

 time. Finally, the running time in Steps (4) and (5) is dominated by the running time of the
NFDH shelf heuristic, which is also dominated by the time to sort the list of cubes and, hence, is at most
O	n logn
.

Analysis of the algorithm. First observe that since we have 1/�� groups Mi, there exists an i such that Mi

satisfies Vol	Mi
≤ �Vol	I
.
To prove that Algorithm A satisfies the result in Theorem 1.1, we need to distinguish two cases depending

on what the set S ′ was after Step (4). In both cases we will show that the bound in the theorem holds.
(i) After Step (4), S ′ is empty. In this case, by Lemma 3.5, the number of bins Algorithm A has opened by

Step (4) is bounded by

A	L∪ S
=A	L
≤ 	1+ �
OPT	L
� ≤ 	1+ �
OPT	I
��
It only remains to account for the bins used to pack the cubes in M . Since the size of each cube in M is
at most �, and these are packed using NFDH, the number of bins required by Algorithm A to pack M is at most

Vol	M
/	1− 2�
� ≤ �OPT	I
/	1− 2�
� ≤ 2�OPT	I
�
new bins. The last step of the inequality follows by assuming that � < 1/4 (clearly, if the result holds for
�< 1/4, then it also holds for any �′ ≥ 1/4). It follows that the total number of bins used by Algorithm A is no
more than

	1+ 3�
OPT	I
�+ 1�
(ii) After Step (4), S ′ is nonempty. In this case we derive a volume argument for the bins opened to pack L.

Consider a bin obtained after Step (4) and let L′ ⊆ L denote the set of large cubes packed in this bin. Clearly,
�L′� ≤ 	1/�	2i−1

2 = 1/�2	2i−1
. From Lemma 3.2, �0�1�2\L′ can be decomposed into no more than 3/�	2i−1
2

rectangles; these are filled in Step (4) of the algorithm (by NFDH) with cubes from the set S. Lemma 3.3 tells
us that for each rectangle in the partition we will cover everything but a volume of at most 2�2

i+1−1 (since each
rectangle in the partition has side with length no more than 1). Adding over all rectangles, the total wasted
volume can be bounded by 2�2

i+1−1×3/�	2i−1
2 ≤ 6�. This last bound implies that for each bin containing cubes
in L, at least a fraction 	1− 6�
 of its volume is filled with cubes from L∪ S. Moreover, by the argument in
the previous case, the cubes in M ∪ 	S ′
 can be packed such that 	1− 2�
 fraction of volume is used, except
possibly for the last bin,

A	I
≤
⌈
Vol	I

1− 6�

⌉
≤ 	1+ 12�
OPT	I
+ 1�

The last step follows by assuming without loss of generality that � < 1/12. This proves Theorem 1.1 for the
two-dimensional case.

The higher-dimensional analysis. The asymptotic approximation scheme in the d-dimensional case is
almost the same as the one described above. The only difference lies in the sequence we need to consider in
Step (1) used to define L, M , and S (the large, medium, and small cubes). In d dimensions, we need to use the
decomposition in Lemma 3.1. Hence, Steps (1) and (2) should be replaced by:
(1′) Let I be the input list and � > 0. Consider the sequence 	2i
 satisfying 20 = � and 2i+1 = 22di �. Such

sequence is:
2i = �		2d
	i+1
−1
/	2d−1
 for i≥ 0�

Let Mi = �j� aj ∈ �2i+1�2i
�.
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(2′) Take M �=Mi for some i such that Vol	Mi
≤ �OPT	I
. Define the set of large items as L= �j� aj ≥ 2i�
and the set of small items as S = �j� aj < 2i+1�.
Clearly, the running time of the algorithm is again polynomial in the input size if d and � are fixed constants.
Finally, the analysis of the algorithm is exactly the same in Case (i) and very similar in Case (ii) above. The

only difference is that we will need to use the bounds from Lemma 3.1 and the definition of large and small
cubes in the d-dimensional setting.

An exact 2-approximation algorithm. Recently, van Stee [31] gave a (nonasymptotic) 2-approximation
algorithm for square packing. Due to the impossibility of distinguishing in polynomial time whether a collection
of squares can be packed in a single bin or requires two bins Ferreira et al. [13], this constant is the best that
can be obtained. We describe in what follows how a slight variation of our algorithm also achieves such an
approximation result, even for hypercubes.
Take � small (in particular �< 1/12 so that Theorem 1.1 holds). Let I be the instance and Vol	I
 be the total

volume of the instance. The new algorithm should check in Step (1) whether Vol	I
 > 1 or Vol	I
≤ 1. In the
former case the algorithm continues exactly as described before. In the latter case, Step (3) in the algorithm is
replaced by: (3′) Find an optimum packing of L. Note that, from Lemma 3.4, this new Step (3′) can be executed
in polynomial time since L only contains a constant number of items.
Clearly if Vol	I
 > 1, then OPT	I
≥ 2 implying that

	1+ �
OPT	I
�+ 1≤ 2 ·OPT	I
�
Thus, in this case, our algorithm is a 2-approximation. On the other hand, if Vol	I
≤ 1, the modified algorithm
will find a packing using no more than OPT	I
+1≤ 2 ·OPT	I
 bins (specifically, it will use at most OPT	I
+
Vol	M
/	1−2�
� ≤OPT	I
+�/	1−2�
� =OPT	I
+1 bins in case S ′ = �, and at most Vol	I
/	1−6�
� ≤
1/	1− 6�
� ≤ 2 bins in case S ′ �= �).

4. Packing rectangles. By our results in §2 we know that we cannot hope to get an asymptotic approxi-
mation scheme for the general problem of packing rectangles. Hence, we now consider a relaxed version of the
problem, where we are allowed to pack in slightly larger square bins of size 1+ �. We will give an algorithm
that uses no additional bins than those required by the optimum possible packing using unit size bins. We begin
by describing our algorithm.

4.1. The algorithm. The following algorithm packs any list I of rectangles into no more than OPT	I
 bins
of size 	1+15�
× 	1+15�
, where OPT	I
 is the minimum number of unit squares in which I can be packed.
Of course, to obtain the exact result in Theorem 1.2 it is enough to reassign �← �/15 and apply the algorithm
to this newly defined �.
The algorithm will first decompose the input into “large,” “horizontal,” “vertical,” “medium,” and “small,”

rectangles in such a way that medium rectangles are negligible. So we will pack medium rectangles in thin
strips that will be added to the bins along their sides. Large, horizontal, and vertical rectangles will be rounded
so that there are few different large rectangles, few different widths of horizontal rectangles, and few different
heights of vertical rectangles. Then, a bin of size 	1+O	�

× 	1+O	�

 will be seen as a grid consisting of
cells of size ��′ × ��′. We will guess labelings of these cells and attempt to pack all rectangles of each type
(large, horizontal, and vertical) into cells having the corresponding label. After that, small rectangles will be
packed in the remaining space using the NFDH heuristic. Eventually, a correct labeling together with a desired
packing will be found.

Algorithm for Rectangle Packing.
Input. Let I denote the input list consisting of n rectangles to be packed and let � > 0. Assume that the ith

rectangle has width ai and height bi, with 0≤ ai� bi ≤ 1. Denote also by Vol	I
=
∑n

i=1 aibi, the total area of the
input.
Partitioning the input. For j ∈ �1�2� � � � �2/��, let Mj denote the set of rectangles in I such that ai ∈

	�2	j+1
+1� �2j+1� or bi ∈ 	�2	j+1
+1� �2j+1�. Let j0 ∈ �1�2� � � � �2/�� be such that the total area of the rectangles
of Mj0

is minimum. Let �′ = �2j0+1, and define the partition I =Mj0
∪L∪H ∪V ∪ S, where:

• L= �i� ai > �′ and bi > �′�,
• S = �i� ai < �′�2 and bi < �′�2�,
• H = �i� ai > �′ and bi < �′�2�,
• V = �i� ai < �′�2 and bi > �′�.
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Rounding the input. For each rectangle in I , we round every side greater than �′ up to the nearest multiple
of �′�. Denote by I ′ the instance containing only the rounded rectangles, i.e., L∪H ∪V .
Let C denote the number of distinct rectangles in L: thus, L contains <i rectangles of type i, for 1≤ i ≤ C.

Also, note that the rectangles in H have a constant number of widths and the rectangles in V have a constant
number of heights.
Rounding and partitioning the output. We define bin types by decomposing squares of size 	1+ 2�
×

	1+ 2�
 as follows:
• We consider all possible packings of (large) rectangles of type i, 1 ≤ i ≤ C, into a 	1+ 2�
× 	1+ 2�


square, such that the corners of the rectangles are placed at coordinates that are integer multiples of �′�.
• For each possible packing into a 	1+ 2�
× 	1+ 2�
 square, we decompose the area of the bin that is

still uncovered as a union of small square cells of side length �′� (where each square is positioned at integer
multiples of �′�) and consider all possible labelings of each cell with labels H or V .
Each packing of large rectangles together with a labeling of the uncovered area defines a bin type. Let K

denote the total number of bin types (which is a constant that we will estimate later).
Main loop. For each 	n1� � � � � nK
 such that

∑
j nj ≤ n, we attempt to construct a packing of I ′ ∪ S ∪Mj0

using nj bins of type j , such that the rectangles from L are packed in the spaces reserved for them in the bin
type, the cells labeled H are only used for rectangles from H ∪ S and the cells labeled V are only used for
rectangles from V ∪ S. Almost all rectangles in I ′ are packed in Steps (1) to (3), rectangles in S are packed in
Step (4), while the rest is packed in Step (5). This is done as follows.
(1) To decide whether the rectangles from L can be placed, we check that for every rectangle type i, 1≤ i≤C,

the number <i of type i rectangles in I ′ is less than or equal to the total space available for them:

<i ≤
∑

1≤j≤K
nj ·

(
number of type i rectangles
positioned in type j bins

)
�

(2) We use the following algorithm for packing the rectangles from H .
(a) For each bin type j , consider the union U of the cells labeled H . Drawing horizontal lines at

y-coordinates integer multiples of �′�, we can interpret U as a union of horizontal strips of height �′� and width
multiple of �′�. For each integer multiple < of �′�, let h	j


< denote the sum of the heights of the strips of width <
in a type j bin. Let h< denote the total height of the strips of width < in the packing that we are currently
constructing:

h< =
∑

1≤j≤K
njh

	j

< �

(b) We now consider the problem of packing rectangles from H with rounded widths into two-dimensional
bins of height h< and width <; moreover, the number of different width types for rectangles in H is bounded
above by a constant. To do this we will solve the following fractional strip-packing problem. Consider all
configurations 	w1�w2� � � � 
 of widths (including empty configurations) which are multiples of �

′� and sum to
at most 1+�. Note that the number of such configurations is constant. Let Ai�r denote the number of occurrences
of the width i�′� in configuration r . Let Bi denote the sum of all heights of the rectangles of H whose width
equals i�′�. We define one variable x	<


r for each strip width < and for each configuration r whose widths sum
to at most <. We find, in polynomial time, a basic feasible solution to the following system of linear constraints,
if it exists. 



	∀ i
 ∑
<� r

Ai�rx
	<

r ≥ Bi�

	∀<
 ∑
r

x	<

r ≤ h<�

	∀ r� <
 x	<

r ≥ 0�

(c) We place rectangles from H in the configurations thus defined, proceeding in a greedy fashion.
(d) We cut back bins of height hl into strips of height �

′� and place them back into the bins. If a rectangle
is cut we throw it away from the packing and pack it later.
(3) Similarly, we pack the rectangles of V into the parts of the bins labeled V .
Let MH ⊆ H denote the set of rectangles which either did not fit in the fractional packing after (c) or are

cut in the process (d). Analogously, we define the set of rectangles MV ⊆ V which remained unpacked after
Step (3).
(4) We pack the rectangles of S into all the �′�× �′� cells which have available space, using the next-fit-

decreasing-height (NFDH) algorithm.
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(5) We expand each bin by adding 13 thin 1× � horizontal strips and also 13 thin �× 1 vertical strips and
use them to pack the rectangles from Mj0

∪MH ∪MV using an O	1
-approximation algorithm such as NFDH in
the horizontal strips and next-fit-decreasing-width (NFDW) in the vertical strips.
Output. We output the best packing among all feasible packings of I thus constructed.

4.2. Analysis of the running time. The running time is relatively easy to analyze. As j0 ≤ 2/�, we have
that �′ ≥ �4/� = >	1
. The number C of large rectangle types is at most 	1/�′�
2 = O	1
. A bin type can
be defined by labeling each �′� × �′� cell by H , V , or i ≤ C; thus the number K of bin types is at most
	C + 2
		1+2�
/	�′�

2 = O	1
, and so the number of iterations through the main loop is at most nK , which is
polynomial in n. Note that since log	1/�′
 ≤ 	4/�
 log	1/�
, then 		1+ 2�
/	�′�

2 log	C + 2
= Õ	1/	�′
2
.
Thus, we estimate the number of iterations as

nK = n	C+2
		1+2�
/	�′�

2 = n2
		1+2�
/	�′�

2 log	C+2
 = n2

Õ	1/	�′
2
 = n2
2Õ	1/�


�

The number of strip widths is at most 1/�′�=O	1
. The number of configurations is at most 22/	�
′�
 =O	1
.

Multiplying, the number of variables in the linear program is O	1
. The number of constraints is at most
2/	�′�
=O	1
. The coefficients Ai� r are bounded by O	1
 and Bi are written on at most O	log	n

 bits; hence,
the linear program can be solved efficiently in polylogarithmic time.
The next-fit-decreasing-height and next-fit-decreasing-width algorithms run in time O	n log	n

.
Overall, we conclude that the algorithm thus runs in time:

O
(
n log	n
 · polylog	n
 · n22Õ	1/�
)= n2

2Õ	1/�


�

4.3. Analysis of correctness.

Lemma 4.1. The area of Mj0
satisfies

Vol	Mj0

≤ �Vol	I
�

Proof. Each rectangle of I belongs to at most two sets Mj ; thus
∑

1≤j≤2/�Vol	Mj
≤ 2Vol	I
. The minimum
area is less than the average area, which is bounded by �Vol	I
. �

Lemma 4.2. Let I ′ denote the rounded input. If I can be packed into OPT unit size bins, then I ′ ∪ S ∪Mj0

can be packed into OPT bins of size 	1+ 2�
× 	1+ 2�
, in such a way that any rectangle with a′i ≥ �′ is
positioned at an x-coordinate that is an integer multiple of �′�, and any rectangle with b′i ≥ �′ is positioned at
a y-coordinate that is an integer multiple of �′�.

Proof. Consider the optimal packing of I . Define a partial order ≺H on rectangles as the transitive closure
of the relation: i is in relation with i′ if rectangle i, when translated horizontally to the right by 2�′�, intersects i′.
Note that any chain in ≺H contains at most 1/�

′ rectangles with ai ≥ �′.
Consider a linear order ≤ that extends ≺H . We take the rectangles (such that ai > �′) one by one in that

order and deal with i as follows: we extend i horizontally to the right so that its width becomes a′i; we translate
it horizontally to the right so that it is positioned at an integer multiple of �′�; and then, for each i′ ≥ i in
increasing order, if i′ intersects some rectangle i′′ ≤ i′, then we translate i′ to the right by 2�′�. This construction
produces a feasible packing because rectangles are shifted every time infeasibility occurs.
By induction we can show that the number of times a rectangle i is shifted is upper bounded by the number

of rectangles in a longest chain in the partially ordered set �j ≺H i� aj > �′� under the partial order ≺H . Since
such chains contain at most 1/�′ rectangles, each rectangle is translated at most 1/�′ times, hence in total by
at most 	2�′�
/�′ = 2�. Thus, the final packing fits in bins of size 	1+ 2�
× 1.
We then proceed similarly for rounding the bis into b′i. �

Lemma 4.3. Consider a packing of I ′ into bins of size 	1 + 2�
 × 	1 + 2�
, satisfying the condition of
Lemma 4.2. Consider any cell � = �m�′�� 	m+ 1
�′��× �p�′�� 	p+ 1
�′�� in any bin. Then either H ∩� =�
or V ∩� =�; i.e., if a rectangle in H intersects cell �, then no rectangle in V can intersect it.

Proof. Assume, for a contradiction, that there are rectangles i ∈H ∩� �= � and i′ ∈ V ∩� �= �. Because
i has width and starting point integer multiples of �′�, it must be that i spans the whole width of �. Similarly,
i′ must span the whole height of �. However, in this case i and i′ must intersect, which gives a contradiction. �
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Lemma 4.4. The areas of MH and MV can be estimated as:

Vol	MH
=O	�
Vol	I
 and Vol	MV 
=O	�
Vol	I
�

Proof. Let us only prove the first equation; the second is analogous. Consider the sets Mc and Md denoting
the rectangles that were discarded in Steps 2(c) and 2(d), respectively. Then Mc ∪Md =MH . We prove that both
Vol	Mc
=O	�
Vol	I
 and Vol	Md
=O	�
Vol	I
.
To see the first equality, we recall the strip-packing analysis by Kenyon and Rémila [18]. Consider a fractional

strip packing (i.e., a solution to the linear program in Step (2)(b)) x	<

r for all r and <. Clearly, such a solution

has at most 	2/�′�
 nonzero coordinates. Fix < and let x	<

1 � � � � � x

	<

k be the nonzero variables corresponding to

that <. To construct an integer strip packing we proceed as follows: Let x	<

j > 0 be the variable corresponding to

the current configuration. This configuration will be used between levels l<j = 	x
	<

1 + �′�2
+ · · · + 	x

	<

j−1+ �′�2


and l<j+1 = l<j +x
	<

j +�′�2. For each i such that Aij �= 0 we draw Aij columns of width i�′� going from level l<j to

level l<j+1. After this is done for all < and all configurations, we take all columns of width i�′� and start filling
them up with the corresponding rectangles of the same width in a greedy manner; as the maximum height of a
rectangle in H is �′�, it is not difficult to see that all rectangles fit. Now, we take all rectangles whose top end
belongs to the interval 	l<j −�′�2� l<j �, for any < and j , and set them aside (they are put in Mc). The total area of
the removed rectangles is clearly no more than

2 · 	number of constraints
 · 	max item height
= 2 · 2
�′�
· �′�2 = 4��

This proves that a fractional strip packing where strips of width < are of height h< (the linear program in
Step (2)(b)), can be turned into an integer strip packing of almost all rectangles where strips of width < are of
height no more than h<. We can conclude that the total area of rectangles in H that may not fit after Step (2)(c)
is bounded by 4�. In other words, Vol	Mc
≤ 4�Vol	I
.
Noting that rectangles in H have height smaller than �′�2 and the cut strips of Step (2)(d) are of height �′�,

the area of the rectangles put aside in Step (2)(d) is no more than a fraction � of the area of H . Therefore,
Vol	Md
= �Vol	I
 and the total area of MH is no more than a fraction O	�
 (indeed 5�) of the total area of
the instance. �

Lemma 4.5. The rectangles in Mj0
∪MH ∪MV fit into the thin strips added along the bins in Step (5).

Proof. Clearly, the whole area of Mj0
∪MH ∪MV is no more than O	�
Vol	I
. Moreover, we can partition

Mj0
∪MH ∪MV into two sets A and B such that:
• A contains only rectangles with ai < �′ < �2 and Vol	A
 ≤ Vol	MV 
+Vol	Mj0


 ≤ 6�Vol	I
 (A contains
MV and part of Mj0

).
• B contains only rectangles with bi < �′ <�2 and Vol	B
≤Vol	MH
+Vol	Mj0


≤ 6�Vol	I
 (B contains MH

and part of Mj0
).

As all rectangles in A have width smaller than �2, for small enough �, the NFDW heuristic packs A into the
13 ·OPT	I
 added strips of size �× 1. On the other hand, NFDH does the work for the rectangles in B. Note
that the number of thin strips that we need to add to the 	1+2�
× 	1+2�
 bins depends on the algorithm used
to pack rectangles in Mj0

∪MH ∪MV . �

Lemma 4.6. Consider the two-dimensional NFDH heuristic applied to rectangles in S. When NFDH cannot
place any other rectangle in a bin of size a× b, then the total unused area in that bin is no more than

�′�2 · 	a+ b
�

Proof. The result is very similar to Lemma 3.3 and to a result in Coffman et al. [8]. �

We are now ready to give the overall analysis of the algorithm.

Proof of Theorem 1.2. Consider an input list I and let I ′ be the rounded input. From Lemma 4.2 we know
that there is a packing of I ′ ∪ S ∪Mj0

into no more than OPT	I
 bins of size 	1+ 2�
× 	1+ 2�
. Consider
then the optimal packing in such bins for I ′ ∪ S ∪Mj0

satisfying the conditions of Lemma 4.2. By Lemma 4.3
we know that in such packing all cells intersect either a rectangle in L, H , or V but not two of them. In other
words in a packing of I ′ ∪ S ∪Mj0

satisfying the conditions of Lemma 4.2 each cell is labeled either V , H , or i
for i= 1� � � � �C (where C was the number of distinct large rectangles); or will have no label at all.
Clearly, our algorithm will eventually guess a labeling of the cells that coincides with the labeling in the

optimal packing. At that point the algorithm will find a feasible packing of all rectangles in L and almost all
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rectangles in H and V . By Lemmas 4.4 and 4.5 the unpacked rectangles Mj0
, MH , and MV are of small area

and they can be packed in the extra space added in Step (5) of the algorithm.
It only remains to see that the small rectangles S will be successfully packed by NFDH. We prove that is

not possible that in Step (4) a new bin is opened if already OPT	I
 bins of size 	1+ 2�
× 	1+ 2�
 have been
used. We do this by a volume argument. Suppose by contradiction that such a new bin is opened in Step (4).
At this step we distinguish four types of �′�× �′� cells: the ones completely filled with a rectangle in L, the
ones filled with only rectangles in S, the ones filled only with rectangles in H or V , and the ones partly filled
with rectangles in H or V and partly with rectangles in S. By the arguments in Lemmas 4.4 and 4.6 all cells
are almost filled. Namely, a fraction 	1− 2�
 of their area is filled. Overall this implies that a fraction 	1− 2�

of the first OPT	I
 bins is filled, and then the total area that has been filled in the first OPT	I
 bins of size
	1+ 2�
× 	1+ 2�
 is at least

	1− 2�
OPT	I
	1+ 2�
2 > 	1− 2�
	1+ 4�
OPT	I
 >OPT	I
�
The inequality follows because �< 1/4.

5. A related rectangle packing problem. The algorithm presented in §4 is closely related to the optimiza-
tion version of the following question posed by Moser [25]: Determine the smallest number x such that any
system of squares with total area 1 may be packed in parallel into a rectangle of area x.
Bounds for this problem have been obtained by Kleitman and Krieger [19] and by Novotny [27]. Indeed, the

first authors proved that any such system of squares can be packed in a rectangle of size
√
2×√4/3, while the

latter author proved that they can be packed in a rectangle of area no more than 1.53.
Although we do not obtain absolute bounds (i.e., independent of the input) for this problem, our algorithm

can easily be adapted to obtain approximate solutions for a related optimization problem: the minimum rectangle
placement problem. The problem can be formally stated as follows: Given a system of n rectangles with total
area 1, determine the smallest number x such that all n rectangles may be packed in parallel into a rectangle R
of area x.
We now proceed to prove Theorem 1.3; i.e., we present a PTAS for the minimum rectangle placement problem.

Proof of Theorem 1.3. Let I denote the instance. For each rectangle, let ai ∈ 	0�1� denote its width and
bi ∈ 	0�1� its height; the total area of the instance, denoted by Vol	I
, equals 1. To solve this problem note first
that the techniques in §4 can be easily adapted to solve the underlying approximate decision problem: Given
n rectangles with sides ai� bi ∈ 	0�1�, given a rectangle R of size a× b, and given �> 0, determine whether all
n rectangles can be packed in a rectangle of size �	1+�
a+��× �	1+�
b+�� or they cannot be packed in R.
Consider a given �> 0, and let 2=min�maxi=1� � � � �n ai�maxi=1� � � � �n bi�. We distinguish two cases:
(i) 2 > �. In this case, we ensure that the sides of the minimum area rectangle in which all n items can

be packed are at least �. It is then enough to solve the decision problem, taking � = �2, for all rectangles R
such that:

—Their lower-left corner is 	0�0
 and their upper-right corner is on or below the curve xy = 4Vol	I
= 4
(because the NFDH shelf packing heuristic can always pack I in a square of area 4Vol	I
).

—The coordinates of their upper-right corner are at least �.
—Their side lengths are integer multiples of �2.

The number of such rectangles is clearly no more than the total number of points with coordinates multiples
of �2 contained in the square ���4/��× ���4/��, which is less than 4/�3 · 4/�3 = 16/�6 (a slightly more careful
analysis shows that the number of rectangles with the above properties is less than

∫ 1/�
�

	4/x
dx · 	1/�4
 =
	4/�4
 ln	1/�2
≤ 	8/�4
 ln	1/�
). Since 16/�6 is constant, it suffices to solve the decision problem for a constant
number of rectangles: we can then choose the one with minimum area. Since in this case a and b are guaranteed
to be large, �	1+�
a+��≤ 	1+2�
a and �	1+�
b+��≤ 	1+2�
b. Therefore, the best rectangle is guaranteed
to have an area within a factor of 	1+O	�

 that of the optimal one.
(ii) 2≤ �. In this case either all rectangles are flat or all are narrow. Without loss of generality, assume they

are all narrow. We will pack all rectangles using the FFDH heuristic for strip packing in a strip of width
√
�.

A slight adaptation of the following theorem—essentially shown by Coffman et al. [8]—proves that all items
can be placed in a rectangle of area roughly equal to Vol	I
.

Theorem 5.1. If all rectangles in I have width less than or equal to �, then the height FFDH	I
 achieved
by the FFDH heuristic (on a strip of width 1) satisfies:

FFDH	I
≤ 	1+ 2�
Vol	I
+ 1�



Bansal, Correa, Kenyon, and Sviridenko: Bin Packing in Multiple Dimensions
48 Mathematics of Operations Research 31(1), pp. 31–49, © 2006 INFORMS

In our case the width of the strip is
√
�, and then FFDH finds a packing in a rectangle of size:

√
�×

[
	1+ 2√�


Vol	I
√
�
+ 1

]
�

The area of such a rectangle is then

	1+ 2√�
Vol	I
+√�= 	1+ 3√�
�

Again the result follows in this case.

6. Open problems. Even though the result on cube packing in this paper holds in general (fixed) dimension,
this is not the case for the results on rectangle packing in §§4 and 5. An interesting open question is, therefore,
to generalize Theorems 1.2 and 1.3 to higher-dimensional rectangle packing. We have not been able to do so
because the interaction of, say, 3-dimensional rectangles, which are long in one direction but short in the other
two, seems much more complicated than in the two-dimensional case. Another interesting open problem is to
find explicit asymptotic inapproximability gaps for the two-dimensional rectangle packing problem. For the d-
dimensional rectangle packing problem, the best-known approximation algorithms, due to Csirik and van Vliet
[9], have an asymptotic approximation ratio of 	1�691� � � 
d (which is exponential in d). However, the only
lower bound on the achievable approximation ratio follows from our hardness result in §2. It would be very
interesting to close this gap, in particular, to find out whether the lower bound construction can be extended
to higher dimensions to yield a bound exponential in d, or whether an algorithm for d-dimensional rectangle
packing with an approximation ratio subexponential in d can be obtained.
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