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Abstract

Let G = (V, E) be a undirected k-edge connected graph with weights ce on edges and wv on nodes. The minimum 2-edge
connected subgraph problem, 2ECSP for short, is to find a 2-edge connected subgraph of G, of minimum total weight. The 2ECSP
generalizes the well-known Steiner 2-edge connected subgraph problem. In this paper we study the convex hull of the incidence
vectors corresponding to feasible solutions of 2ECSP. First, a natural integer programming formulation is given and it is shown
that its linear relaxation is not sufficient to describe the polytope associated with 2ECSP even when G is series-parallel. Then,
we introduce two families of new valid inequalities and we give sufficient conditions for them to be facet-defining. Later, we
concentrate on the separation problem. We find polynomial time algorithms to solve the separation of important subclasses of the
introduced inequalities, concluding that the separation of the new inequalities, when G is series-parallel, is polynomially solvable.
c© 2006 Elsevier B.V. All rights reserved.

Keywords: Combinatorial optimization; Polyhedral combinatorics; Graph connectivity

1. Introduction

Let G = (V, E) be a undirected graph. G is said to be k-edge (resp. k-node) connected if, for any pair of nodes
i, j ∈ V , there exists at least k edge-disjoint (resp. node-disjoint) paths from i to j . Associate with each edge e ∈ E
a weight ce and with each node v ∈ V a weight wv . The node-edge weighted 2-edge connected subgraph problem,
denoted by 2ECSP, consists of finding a 2-edge connected subgraph of G (not necessarily spanning all the nodes
in V ), whose total weight of both nodes and edges is minimized. So the graphs considered in this paper are 2-edge
connected. A related problem is to find a 2-node connected subgraph of G whose total weight of both nodes and edges
is minimized. This problem is discussed in Section 4, where it is shown how the results obtained for 2ECSP may be
applied.

To our knowledge this problem has never been considered in the literature, although some related problems have
been studied. For instance, in the case where the node weights are large negative numbers for some nodes v ∈ T
(terminals) and 0 for nodes v ∈ V \ T , the 2ECSP reduces to the well-known Steiner 2-edge connected subgraph
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problem (STECSP) introduced by Monma et al. in [9]. Given a graph and a set of terminals T ⊂ V , the problem is
to find a minimum (edge) weight 2-edge connected subgraph of G spanning T . Polyhedral characterizations of the
STECSP may be found in [1,2] and in [8,3] when T = V . Closely related problems to the STECSP in network design
were introduced by in [6,11]. Stoer [10] surveys related work.

The Steiner 2-edge connected subgraph problem, where the only costs pertain to edges, arise in the design of
reliable telecommunications networks: to link (to establish edges between) centers (nodes) that are already determined,
at the least total cost but ensuring that all phone centers (a subset of special nodes) remain connected when one link
fails. The 2ECSP is a direct generalization that recognizes that centers are built with costs too, so that a more realistic
goal is to minimize the total costs of establishing nodes and links.

Let Z∗ be the value of the optimal solution to 2ECSP. In what follows, we fix a node r ∈ V called the root. Consider
the problem of finding a 2-edge connected subgraph of G containing r whose total weight, of both nodes and edges,
is minimized. We will refer to this problem as the r-2-edge connected subgraph problem (r -2ECSP). If Z∗

r denotes
the value of the optimal solution of the r -2ECSP, then clearly Z∗

= minr∈V {Z∗
r }. The idea of fixing a node r was

introduced in [4,7]. It makes it easy to deal with the connectivity of the solutions and leads to a simple formulation of
the r -2ECSP as an integer linear program.

We now give some standard definitions used throughout the paper. Consider F ⊆ E and U ⊆ V , then
(x F , yU ) ∈ R|E |+|V | denotes the incidence vector of the subgraph (U, F) of G, i.e., x F

e = 1 if e ∈ F and 0
otherwise, and yU

v = 1 if v ∈ U and 0 otherwise. As usual, for any subset of edges (resp. nodes) F ⊆ E (resp.
U ⊆ V ), x(F) =

∑
e∈F xe (resp. y(U ) =

∑
v∈U yv). The set E(W ), for W ⊆ V , will denote the set of edges having

both end-nodes in W and the set δ(W ), called a cut, will denote the edges having one end-node in W and the other
in V \ W . Also, by abuse of notation, δ(v) = δ({v}) for v ∈ V . G(W ) will stand for the subgraph of G induced by
W and V (F) the set of nodes incident to the edge set F . If W ⊂ S ⊆ V , the set of edges having one end-node in
W and the other in S \ W is called an S-cut and denoted by δS(W ) (i.e., δS(W ) is the cut defined by W in the graph
G(S)). Also, if A and B are two node sets, (A, B) denotes the set of edges having one end-node in A and the other in
B. Finally, for any set A, denote its complement by Ā.

With the above definitions, the r -2ECSP can be formulated as an integer programming problem:

minimize
∑
e∈E

wexe +

∑
v∈V

cv yv

subject to

x(δ(W )) − 2yv ≥ 0 for all W ⊂ V, r ∈ W, v 6∈ W, (1)

xe ≤ yv, for all v ∈ V, e ∈ δ(v), (2)

xe ≥ 0 for all e ∈ E, (3)

yv ≤ 1 for all v ∈ V, (4)

xe, yv ∈ {0, 1} for all e ∈ E, v ∈ V . (5)

Let r -2ECSP(G) = conv{(x, y) ∈ R|E |+|V |
: (x, y) satisfies (1)–(5)} be the polytope associated with the

r -2ECSP.
Consider the polytope defined by inequalities (1)–(4), called the linear relaxation of r -2ECSP(G) and denoted by

P(G). The projection of P(G) onto the edge variables is given by

0 ≤ xe ≤ 1 for all e ∈ E,

x(δ(W )) ≥ 2xe for all W ⊆ V, r ∈ W, e 6∈ E(W ).

}
(6)

In [2], it was shown that the above polytope is integral when G is series-parallel. One may be tempted to claim that the
same holds for P(G); unfortunately, the following example shows the contrary. Let H = (V, E) be the series-parallel
graph defined in Fig. 1, where V = {r, v1, v2, v3}. Let x∗

e =
1
2 , for all e ∈ E , y∗

r = y∗
v3

= 1 and y∗
v1

= y∗
v2

=
1
2 : clearly

(x∗, y∗) ∈ P(H). Moreover, (x∗, y∗) is an extreme point of P(H), but it violates the following valid constraint of
r -2ECSP(H):

yv1 + yv2 − x f ≥ yv3 .
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Fig. 1. Example: the graph H .

Fig. 2. Edges of E i
2c represented by bold edges. The squares are nodes in V i

2c .

In Section 2 we give a general form for this valid constraint. The above inequality defines, in fact, a facet of
r -2ECSP(H), as will be shown in Theorem 6 (in a more general setting).

This paper studies the polytope r -2ECSP(G). First, in Section 2, we introduce a family of valid inequalities and give
sufficient conditions for these inequalities to define facets of r -2ECSP(G). Section 3 shows that the separation problem
associated with a subset of these inequalities is polynomially solvable. Using this result, we obtain a polynomial
time algorithm for separating the inequalities in the case of series-parallel graphs. Concluding remarks are given in
Section 4.

2. The polytope r-2ECSP(G)

We begin by discussing the dimension of r -2ECSP(G). Later, we introduce classes of valid inequalities and give
conditions under which they define facets.

2.1. The dimension

Let G = (V, E) be a 2-edge connected graph. Call a 2-cut a cut containing exactly 2 edges, and let E2c = {e ∈

E : e belongs to a 2-cut of G}. We define the relation R between any two edges in E2c as follows:

eR f ⇐⇒ there exists a 2-cut defined by e, f.

Clearly, R is an equivalence relation, and hence it induces a partition of E2c = E1
2c ∪ E2

2c ∪ · · · ∪ E l
2c into disjoint

equivalence classes. The removal of the edge set E i
2c disconnects G into |E i

2c| 2-edge connected components; the
set E i

2c induces a cycle when these 2-edge connected components are contracted into single nodes. Let Ri be the
component containing r and let V i

2c ⊆ V \ Ri be such that the removal of any node in V i
2c transforms the cycle

induced by E i
2c into a path (V i

2c contains the end-nodes of the edges in E i
2c that do not belong to Ri and possibly

other nodes; see Fig. 2). Note that, since G is 2-edge connected: for all i 6= j , E j
2c is included in one of the 2-edge

connected components of G = (V, E \ E i
2c) and that V i

2c ∩ V j
2c = ∅. Let V2c = ∪

l
i=1 V i

2c.

Lemma 1. Given a graph G = (V, E) and a fixed node r ∈ V , if
∑

e∈E αexe +
∑

v∈V βv yv = γ is a valid equality
of r -2ECSP(G), then:
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• γ = 0,
• αe = 0 for all e 6∈ E2c, and
• βv = 0 for all v 6∈ V2c.

Proof. Since the zero vector is a feasible solution, it follows that γ = 0. The equation βr = 0 is obvious, since r itself
constitutes an r -2-edge connected subgraph.

Since G and G \ {e}, for all e 6∈ E2c, are 2-edge connected, it follows that αe = 0 for all e 6∈ E2c. Hence∑
e∈E2c

αe +
∑

v∈V βv = 0.
Let w ∈ V \ V2c, w 6= r . If G-w is 2-edge connected, then also

∑
e∈E2c

αe +
∑

v∈V \{w}
βv = 0, implying βw = 0.

So suppose the contrary. Let S be a connected component of G-w containing r (S may consist of all the nodes of
G-w). Remark that |(S, {w})| ≥ 3, otherwise w ∈ V2c. S may be partitioned into S1, S2, . . . , Sp, where each G(Si ) is
a maximal 2-edge connected subgraph of G(S); that is, if G(W ) is 2-edge connected for W ⊂ S, then Si 6⊂ W .

Let r ∈ S1 and T (S) be the graph obtained from G(S) by shrinking the components Si , i = 1, . . . , p, and replacing
them by nodes si . T (S) is connected and, by the maximality of each G(Si ), it contains no cycles. So T (S) is a tree
with no edges in E i

2c, i = 1, . . . , l, otherwise the removal of w will transform the cycle induced by E i
2c into a

path. We conclude that T (S) + w is 3-edge connected, hence there exists three edge-disjoint paths P1, P2 and P3 in
T (S) + w from s1 to w. These paths are also node-disjoint, since T (S) is a tree. Denote the nodes of each path Pi by
{s1, si1 , . . . , siki

, w} and let Vi = {S1, Si1 , . . . , Siki
, w} for i = 1, . . . , 3. The following subgraphs of G are r -2-edge

connected: G(Vi ∪ V j ), i, j = 1, 2, 3 and i 6= j . These graphs have in common only the nodes S1 and w. This yields
the equations:∑

e∈E(Vi ∪V j )∩E2c

αe +

∑
v∈(Vi ∪V j )

βv = 0 for all i, j = 1, 2, 3 and i 6= j. (7)

Also, G(V1 ∪ V2 ∪ V3) is r -2-edge connected, so∑
e∈E(V1∪V2∪V3)∩E2c

αe +

∑
v∈(V1∪V2∪V3)

βv = 0. (8)

The sum of the equations in (7) minus 2 times Eq. (8) gives∑
e∈E(S1)∩E2c

αe +

∑
v∈S1

βv + βw = 0,

and, since G(S1) is r -2-edge connected, we also have
∑

e∈E(S1)∩E2c
αe +

∑
v∈S1

βv = 0, therefore βw = 0. �

Theorem 2. r -2ECSP(G) is of full dimension if and only if G is 3-edge connected.

Proof. Necessity. Suppose that G is not 3-edge connected. If G is not connected or contains a bridge, then it is clear
that dim(r -2ECSP(G)) < |E | + |V |. So suppose that G contains a 2-cut δ(W ); that is, δ(W ) = {e1, e2}. Every
r -2-edge connected subgraph of G verifies xe1 − xe2 = 0. Thus dim(r -2ECSP(G)) ≤ |E | + |V | − 1.

Sufficiency. Let G be a 3-edge connected subgraph, and suppose that dim(r -2ECSP(G)) < |E | + |V |. Then there
must exist at least one valid equality of r -2ECSP(G) and, from Lemma 1, this equality is the trivial equation 0 = 0.

�

Let G = (V, E) be a 2-edge connected graph where the set E2c contains at least one equivalence class, E1
2c. Let

G1 = (V1, E1) be the graph induced by R1 with an additional edge, ē, joining the end-nodes of the two edges in E1
2c

incident to R1. Let G2 = (V2, E2) be the graph obtained from G by shrinking R1, and let r̄ be the resulting node (see
Fig. 3).

Lemma 3.

dim(r -2ECSP(G)) = dim(r -2ECSP(G1)) + dim(r̄ -2ECSP(G2)) − 2.

Proof. Let
∑

e∈E1
α1

e xe +
∑

v∈V1
β1

v yv = γ 1 (resp.
∑

e∈E2
α2

e xe +
∑

v∈V2
β2

v yv = γ 2) be a hyperplane containing
r -2ECSP(G1) (resp. r̄ -2ECSP(G2)). Since G(R1) is 2-edge connected, then

∑
e∈E1\{ē} α1

e xe +
∑

v∈V1
β1

v yv = γ 1 and∑
e∈E2

α2
e xe +

∑
v∈V2\{r̄}

β2
v yv = γ 2 are hyperplanes containing r -2ECSP(G). Hence

dim(r -2ECSP(G)) ≤ dim(r -2ECSP(G1)) + dim(r̄ -2ECSP(G2)) − 2.
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Fig. 3. Decomposition of G into G1 and G2.

Let C1 (resp. C2) be a collection of dim(r -2ECSP(G1)) (resp. dim(r̄ -2ECSP(G2))) linear independent r -2ECSP
(resp. r̄ -2ECSP) subgraphs of G1 (resp. G2). Any graph H of C1 may be extended to an r -2ECSP subgraph of G by
adjoining to H the edges E2 and the nodes V2 \ r̄ if ē is an edge of H , otherwise H itself is an r -2ECSP subgraph
of G. Also, if H is a graph of C2, then one can replace r̄ by G(R1) and obtain an r -2ECSP subgraph of G. Now it
is easily seen that there exists at least dim(r -2ECSP(G1)) + dim(r̄ -2ECSP(G2)) − 2 linear independent r -2ECSP
subgraphs of G. �

Theorem 4.

dim(r -2ECSP(G)) = |E | + |V | −

l∑
i=1

[
|E i

2c| + |V i
2c| − 1

]
= |E \ E2c| + |V \ V2c| + l.

Proof. We proceed by induction on the number of equivalence classes in E2c. If E2c = ø, the result is shown by
Theorem 2. Let us see the case of exactly one equivalence class (we call it E2c).

It is easy to see that dim(r -2ECSP(G)) ≤ |E |+|V |−[|E2c| + |V2c| − 1]. Indeed, the cycle defined by E2c induces
|E2c| + |V2c| − 1 linear independent hyperplanes. These are: x(e1) = x(e2) = · · · = x(ek) = y(v1) = y(v2) = · · · =

y(vl), where E2c = {e1, . . . , ek} and V2c = {v1, . . . , vl}.
Let us see that dim(r -2ECSP(G)) ≥ |E | + |V | − [|E2c| + |V2c| − 1]. Let αx + βy = γ be an equality satisfied by

all the incidence vectors of feasible solutions of r -2ECSP(G). Using Lemma 1, one may rewrite this equality as∑
e∈E2c

αexe +

∑
v∈V2c

βv yv = 0,

where
∑

e∈E2c
αe +

∑
v∈V2c

βv = 0. Hence, the equation is implied by the hyperplanes described above.
Suppose that the theorem is true for graphs with no more than m equivalence classes E2c and suppose that

G = (V, E) contains exactly m + 1 equivalence classes of E2c. W.l.o.g. let Em′
+1

2c be an equivalence class such
that E(Rm′+1) includes at least another equivalence class. Say that E(Rm′+1) includes m′ equivalence classes. From
Em′

+1
2c , construct the graphs G1 and G2 as in Lemma 3. Thus

dim(r -2ECSP(G)) = dim(r -2ECSP(G1)) + dim(r̄ -2ECSP(G2)) − 2.

Notice that G1 and G2 contain, respectively, m′ and m′′ equivalence classes, such that m′
+ m′′

= m + 1. By the
induction hypothesis, we have

dim(r -2ECSP(G1)) = |E1| + |V1| −

m′∑
i=1

[
|E i

2c| + |V i
2c| − 1

]
,

and

dim(r̄ -2ECSP(G2)) = |E2| + |V2| −

m+1∑
i=m′+1

[
|E i

2c| + |V i
2c| − 1

]
,

where E1
2c, . . . , Em+1

2c are the equivalence classes of E2c.
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The combination of the equalities above gives the claimed result

dim(r -2ECSP(G)) = |E1| + |V1| + |E2| + |V2| −

m+1∑
i=1

[
|E i

2c| + |V i
2c| − 1

]
− 2

= |E | + |V | −

m+1∑
i=1

[
|E i

2c| + |V i
2c| − 1

]
. �

2.2. Facet defining inequalities

Given a graph G = (V, E), a root vertex r and r ∈ S ⊆ V , if G(S̄) is not connected, denote by S̄1, . . . , S̄k the
connected components of G(S̄); with S̄1 = S̄ when G(S̄) is connected. Consider the following inequalities:

x(δS(W )) + 2y(S̄) − 2
k∑

i=1

x(Ti ) ≥ 2yv, (9)

x(δS(W ) \ {e}) + y(S̄) −

k∑
i=1

x(Ti ) ≥ yv, (10)

where Ti ⊆ E(S̄i ) is a tree spanning S̄i , i = 1, . . . , k, W ⊂ S ⊆ V is a proper subset of S, v ∈ S \ W and r ∈ W . In
inequalities (10), also add the condition that e is any edge in δS(W ). Clearly, inequalities (9) are a generalization of
inequalities (1); they are the same when S = V .

Lemma 5. Given a graph G = (V, E) and a root vertex r then, for all S ⊆ V with r ∈ S, inequalities (9) and (10)
are valid for r -2ECSP(G).

Proof. One can prove the validity of (9) and (10) by using the fact that the incidence vector of any r -2-edge connected
subgraph of G satisfies y(S̄i ) − x(Ti ) ≥ maxv∈S̄i

yv , for all i = 1, . . . , k, and the structure of the r -2-edge connected
subgraph of G. Indeed, let us see this for inequalities (9). If yv = 0, the validity is trivial. Otherwise, if yv = 1, in this
case, assume that x(δS(W )) < 2. From the 2-edge connectivity of the graph, this implies that at least one node, say u,
in S̄, satisfies yu = 1. Then 2y(S̄) − 2

∑k
i=1 x(Ti ) ≥ 2 maxv∈S̄ yv ≥ 2yu = 2, and the inequality follows.

The validity of inequalities (10) is proved similarly. Nevertheless, interestingly, inequalities (10) can be derived
by combining inequalities (1)–(4), as Chvátal-Gomory cuts of rank 1. For the sake of completeness, we include this
proof for the case where G(S̄) is connected (the extension to general G(S̄) is straightforward). That is, we show that

x(δS(W ) \ {e}) + y(S̄) − x(T ) ≥ yv,

is valid for r ∈ W ⊂ S ⊆ V , v ∈ S \ W and T a spanning tree in G(S̄).
Remember that, for two node sets A and B, (A, B) denotes the set of edges having one end-node in A and the other

in B. Let e = uw ∈ δS(W ) with w ∈ S \ W . From (1),

x(W, S̄) + x(δS(W )) = x(δ(W )) ≥ 2yv,

and

x(W, S̄) + x(δS(W )) = x(δ(W )) ≥ 2yw.

It follows that x(W, S̄)+x(δS(W )) ≥ yv+yw and, by combining with yw ≥ xe, we obtain x(W, S̄)+x(δS(W )\{e}) ≥

yv . Also, inequalities (2) yield x(W, S̄) ≤
∑

u∈S̄ dgW (u)yu , where dgW (u) denotes |({u}, W )|. Hence

x(δS(W ) \ {e}) +

∑
u∈S̄

dgW (u)yu ≥ yv. (11)

To complete the proof, the following definitions are needed.

• Let v0 be a special node of S̄ and p be the length of the longest path in T having v0 as an end-node.
• Define L0 = {v0} and L i = {v ∈ S̄ : ∃u ∈ L i−1 with e = uv ∈ T }, for i = 1, . . . , p. Note that L i is the i th level

of T when rooted at v0.
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• Let v ∈ L i , i 6= 0, then the father of v, fv , is the neighbor of v in L i−1 with e = fvv ∈ T .
• Let v ∈ L i , i 6= p, and define s0(v) = {v} and sl(v) = {w ∈ L i+l : ∃ u ∈ sl−1(v) with e = uw ∈ T }, for

l = 1, . . . , p − i . Let S̄v = ∪
p−i
l=0 sl(v). s1(v) may be seen as the sons of v and S̄v as the progeny of v.

Inequalities (2) imply that

(|(W, S̄)| − |(W, S̄u)|)yu ≥ (|(W, S̄)| − |(W, S̄u)|)x fuu ∀u ∈ S̄ \ {v0}, (12)

|(W, S̄v)|yu ≥ |(W, S̄v)|xuv ∀u ∈ S̄ \ L p, v ∈ s1(u). (13)

Summing, carefully, inequalities (11)–(13) yields

|(W, S̄)|
(
y(S̄) − x(T )

)
+ x(δS(W ) \ {e}) ≥ yv.

Hence, |(W, S̄)|
(
y(S̄) − x(T ) + x(δS(W ) \ {e})

)
≥ yv and, by dividing by |(W, S̄)| and rounding up, the result is

obtained. �

For particular values of S, W , v, e and F =
⋃k

i=1 Ti (F is then a forest spanning S̄), we will refer to (9) as
(S, W, v, F) and to (10) as (S, W, v, e, F). When we write (S, W, v, T ) or (S, W, v, e, T ) we mean that G(S̄) is
connected and T is a spanning tree of G(S̄). Note that when: (i) δS(W ) = ∅, then inequalities (9) and (10) coincide,
(ii) δS(W ) = {e}, then inequalities (9) are implied by (10) and xe ≥ 0; (iii) S = V , then inequalities (9) and (1) are
the same and inequalities (10) are implied by (1) and (2).

Inequalities (9) are a generalization of the well-known cut inequalities. In [8], Mahjoub gives necessary and
sufficient conditions for the cut inequalities to define facets for the polytope associated with STECSP when T = V .
One can extend these results to get sufficient conditions for inequalities (9) to define facets of r -2ECSP(G). In the
following, we give sufficient statements under which inequalities (10) are facet-defining for r -2ECSP(G). These
conditions may be weakened, but this would require more technical details and longer proofs. Our interest here is to
show that inequalities (9) and (10) are necessary in a polyhedral description of r -2ECSP(G).

For the next results, some definitions are needed. Consider the inequality (S, W, v, e, ∪k
i=1 Ti ). A path P =

{v1, e1, v2, e2, . . . , et−1, vt } of Ti has the 2-edge connected property with respect to v, if there exists graphs Gl ,
Gl , for all l = 1, . . . , t , such that :

• Gl is an r -2-edge connected subgraph of G containing the subpath {vl , el , . . . , et−1, vt } and v, and none of the
nodes in S̄ \ {vl , . . . , vt }.

• Gl is an r -2-edge connected subgraph of G containing the subpath {v1, e1, . . . , el−1, vl} and v, and none of the
nodes in S̄ \ {v1, . . . , vl}.

If there exists a collection of paths of Ti having the 2-edge connected property with respect to v, such that any edge
of Ti is contained in at least one path of that collection, then Ti has the 2-edge connected property with respect to v.

Theorem 6. An inequality (S, W, v′, e′, ∪k
i=1 Ti ) with |δS(W )| ≤ 1 defines a facet of r -2ECSP(G) if the following

conditions hold:
(i) G(S ∪ S̄i ) is 3-edge connected, for i = 1, . . . , k,

(ii) at least one of the graphs G(S̄i ∪ {v′
}), i = 1, . . . , k, is 2-edge connected and,

(iii) for i = 1, . . . , k, Ti has the 2-edge connected property with respect to v′.

Proof. Remark that (i) implies that G is 3-edge connected. Consider an inequality (S, W, v′, e′, ∪k
i=1 Ti ) verifying

the hypotheses of the theorem. Note that the inequality becomes
∑k

i=1 y(S̄i ) −
∑k

i=1 x(Ti ) ≥ yv′ .
Consider the incidence vectors, (x, y), of an r -2-edge connected subgraph, satisfying

k∑
i=1

y(S̄i ) −

k∑
i=1

x(Ti ) = yv′ . (14)

We shall prove that the only valid inequalities, satisfied at equality by all such incidence vectors, are equivalent
to (S, W, v′, e′, ∪k

i=1 Ti ). Assume that αx + βy = γ for all (x, y) ∈ r -2ECSP(G) satisfying (14). (0, 0) and the
incidence vector of G(S ∪ S̄i ) verify (14), which implies that γ = 0 and∑

e∈E(S)∪E(S̄i )

αe +

∑
v∈S∪S̄i

βv = 0 for all i = 1, . . . , k. (15)
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Also, since G(S ∪ S̄i ) \ { f }, for all f ∈ E(S) ∪ E(S̄i ) \ Ti , are r -2-edge connected subgraphs and their incidence
vectors verify (14), this implies that∑

e∈(E(S)∪E(S̄i ))\{ f }

αe +

∑
v∈S∪S̄i

βv = 0,

which, combined with (15), yields

α f = 0 for all f 6∈

k⋃
i=1

Ti .

From above, we know that all (x, y) ∈ r -2ECSP(G) that satisfy (14) verify∑
v∈S∪S̄i

βv yv +

∑
e∈Ti

αexe = 0 for all i = 1, . . . , k. (16)

Let G(S̄t ∪ {v′
}) be the 2-edge connected graph among the graphs G(S̄i ∪ {v′

}), for i = 1, . . . , k. Define G∗ to
be the graph obtained from G(S ∪ S̄t ) by shrinking S̄t ∪ {v′

} and let v∗ be the resulting node. Note that G∗ is 3-edge
connected. We claim that∑

v∈S\{v′}

βv y∗
v + βv∗ y∗

v∗ = 0 for all (x∗, y∗) ∈ r -2ECSP(G∗), (17)

where βv∗ =
∑

v∈(S̄t ∪{v′}) βv +
∑

e∈Tt
αe. In fact, suppose that (x∗, y∗) ∈ r -2ECSP(G∗) does not satisfy (17). Define

yv = y∗
v if v 6∈ (S̄t ∪ {v′

}); otherwise yv = y∗
v∗ , and xe = y∗

v∗ if e ∈ E(S̄t ∪ {v′
}), otherwise xe = x∗

e . Finally, set to 0
all node-variable and edge-variable of G(S̄i ), i 6= t . Then (x, y) belongs to r -2ECSP(G) (since G(S̄t ∪ v′) is 2-edge
connected); moreover, (x, y) satisfies (14) but not (16) with respect to i = t , which is a contradiction. Now, applying
Lemma 1 to G∗ and the equality (17), it follows that

βv = 0 for all v ∈ S \ {v′
}.

Next, we show that, for all i = 1, . . . , k, βv = −αe = −βv′ for all v ∈ S̄i , e ∈ Ti . Let P = v1, e1, v2, e2, . . . , et−1, vt
be a path of Ti having the 2-edge connected property with respect to v′. Then the incidence vectors of the graphs Gl
(resp. Gl ), for l = 1, . . . , t , verify (14) and thus αx + βy = γ , which implies βvi + αei = 0 for i = 1, . . . , t − 1 and
βvt = −βv′ (resp. βvi + αei−1 = 0 for i = 2, . . . , t , βv1 = −βv′ ). Combining these equalities, we obtain βvi = −βv′

for i = 1, . . . , t and αei = βv′ for i = 1, . . . , t − 1. Moreover, since any edge of Ti is contained in a path of Ti having
the 2-edge connected property with respect to v′,

βv = −αe = −βv′ for all v ∈ S̄i and e ∈ Ti .

The above holds for all i = 1, . . . , k. We have shown that αx + βy = γ is βv′ times (14). This means that
(S, W, v′, e′, ∪k

i=1 Ti ) defines a facet of r -2ECSP(G). �

Note that Theorem 6 may be used to generate a large class of graphs where inequalities (1)–(4) are not sufficient to
describe r -2ECSP(G). The next lemma gives necessary conditions for inequalities (9) and (10) to define facets. The
applicability of this result will become evident towards the end of the paper.

Lemma 7. Let G = (V, E) be a graph and r a fixed node. Inequalities (S, W, v, F) and (S, W, v, e, F) (F =

∪
k
i=1 Ti ) define facets of r -2ECSP(G) only if

(i) G(W ) is connected and,
(ii) every pendant node of Ti , for i = 1, . . . , k, is connected to W and to the connected component of G(S \ W )

containing v.

Proof. Let (S, W, v, F) (resp. (S, W, v, e, F)) be an inequality of type (9) (resp. (10)).
(i) If G(W ) is not connected, let W1 be the connected component of G(W ) containing r , then the inequality

(S, W, v, F) is implied by (S, W1, v, F). If δS(W1) = ∅, then (S, W, v, e, F) is implied by (S, W1, v, F). In the case
where δS(W1) is not empty, (S, W, v, e, F) is implied by (S, W1, v, e, F) if e ∈ δS(W1), otherwise by (S, W1, v, g, F)

for some edge g ∈ δS(W1).



M. Baı̈ou, J.R. Correa / Discrete Optimization 3 (2006) 123–135 131

(ii) Let vl ∈ S̄l be a pendant node of Tl and el be the edge of Tl incident to vl , for 1 ≤ l ≤ k. Suppose that vl is not
connected to W . Define S′

= S ∪{vl}; S̄′

i = S̄i for i = 1, . . . , k, i 6= l; S̄′

l = S̄l \ {vl}; T ′

i = Ti , for i = 1, . . . , k, i 6= l;
T ′

l = Tl \ {el}. Note that T ′

l is a tree spanning S̄′

l , so that y(S̄′

l ) − x(T ′

l ) ≤ y(S̄l) − x(Tl) is valid. Hence the inequality
(S, W, v,∪k

i=1 Ti ) (resp. (S, W, v, e, ∪k
i=1 Ti )) is implied by (S′, W, v,∪k

i=1 T ′

i ) (resp. (S′, W, v, e, ∪k
i=1 T ′

i )). Thus
it may be assumed that vl is connected to W .

Call W̄1 the connected component of G(S \ W ) containing v. Let vl ∈ S̄l be a pendant node of Tl and el be the
edge of Tl incident to vl , for 1 ≤ l ≤ k. Suppose that vl is not connected to W̄1. Let W̄2, . . . , W̄r be the connected
components of G(S \ W ) that are connected to vl . Notice that these components may be empty. Define S′, S̄′

l and
T ′

l as above and let W ′
= W ∪ {vl}

⋃r
i=2 W̄i . As vl is connected to W , it follows that G(W ′) is connected. Since

y(S̄′

l ) − x(T ′

l ) ≤ y(S̄l) − x(Tl) and x(δS′(W ′)) ≤ x(δS(W )), then the inequality (S, W, v,∪k
i=1 Ti ) is implied by

(S′, W ′, v,∪k
i=1 T ′

i ). If δS′(W ′) = ∅, then (S, W, v, e, ∪k
i=1 Ti ) is implied by (S′, W ′, v,∪k

i=1 T ′

i ). Now if e ∈ δS′(W ′),
then x(δS′(W ′)\{e}) ≤ x(δS(W )\{e}) and hence (S, W, v, e, ∪k

i=1 Ti ) is implied by (S′, W ′, v, e, ∪k
i=1 T ′

i ), otherwise
(S, W, v, e, ∪k

i=1 Ti ) is implied by (S′, W ′, v, f, ∪k
i=1 T ′

i ), for some edge f ∈ δS′(W ′). �

Before beginning the next section, two subclasses of inequalities (9) and (10) are given. We shall see later that they
can be separated in polynomial time. Given a graph G = (V, E), S ⊆ V , W a proper subset of S, v ∈ S \ W and
r ∈ W . Consider the following inequalities:

x(δS(W )) + 2y(S̄) ≥ 2yv, (18)

x(δS(W ) \ {e}) + y(S̄) ≥ yv. (19)

Inequality (18) will be denoted by (S, W, v) and inequality (19) will be denoted by (S, W, v, e). Inequalities (18)
(resp. (19)) are either included in inequalities (9) (resp. (10)) (when S̄ is an independent set) or implied by (9) (resp.
(10)).

3. Separation

The separation problem of a given set of inequalities is to determine whether a given vector satisfies this set
of inequalities and, if not, to find an inequality in the set that is violated. It follows from the equivalence between
separation and optimization [5] that, if the separation problem is solvable in polynomial time, then the optimization
over this system of inequalities is also polynomial.

The number of inequalities (2)–(4) is polynomial, thus their separation is straightforward. Also, the separation
problem of inequalities (1) can easily be reduced to a min-cut problem and hence can be solved in polynomial time
as well. From now on, we are given a point (x̄, ȳ) satisfying inequalities (1)–(4). First, consider the separation of
inequalities (9).

Let G = (V, E) be a graph and r ∈ V a root vertex. Let (x̄, ȳ) ∈ R|E |+|V | be a solution verifying inequalities
(1)–(4). For v ∈ V \ {r} and S ⊆ V , let f v(S) be the function defined as follows:

f v(S) =

{
+∞ if {r, v} 6⊂ S

min
r∈W⊂S\{v}

x̄(δS(W )) + 2ȳ(S̄) − 2 max
F⊆E(S̄),Fforest

x̄(F) otherwise.

Note that, given S and v, the value f v(S) can be computed in polynomial time by a single minimum r -v cut
computation in G(S), plus a maximum forest computation in G(S̄).

Separating inequalities (9) reduces to the minimization of f v(S) among all subsets S of V and for every v ∈ V .
If one finds w ∈ V and Ŝ with f w(Ŝ) < 2ȳw, then (Ŝ, W, w, F) defines a violated inequality of type (9), where
δŜ(W ) is a cut of minimum capacity (equal to x̄(δŜ(W ))) separating r and w, and F = ∪

k
i=1 Ti is a maximum forest

(of weight x̄(F)) spanning ¯̂S. Otherwise, there exists no violated inequality of type (9). In the same manner, one can
define a function whose minimization solves the separation problem associated with inequalities (10). Unfortunately,
f v(·) is not a submodular function in general. However, there are some cases where the minimization of f v can still
be done in polynomial time.

In what follows, the separation problem of inequalities (18) and (19) is discussed. Construct a network D(x̄,ȳ) =

(N , A) from G and the vectors x̄ and ȳ as follows. Duplicate every node v of G into two nodes v′, v′′. Add two arcs
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Fig. 4. The values associated with the arcs of D(x̄,ȳ) represent the capacities.

(v′, v′′) with capacity c(v′, v′′) = ȳv and (v′′, v′) with capacity c(v′′, v′) = ∞. Replace every edge e = vw of G by
two arcs (v′′, w′) and (w′′, v′) both having the capacity c(v′′, w′) = c(w′′, v′) = x̄e. An example is shown in Fig. 4.

If U is a subset of N , δ+(U ) = {(u, v) ∈ A : u ∈ U and v ∈ N \U } is called a directed-cut. Let V ′
= {u1, . . . , uk}

be a node subset of V . DV ′

(x̄,ȳ) is the network obtained from D(x̄,ȳ) by identifying u′

i with u′′

i and the resulting node is
ui , for i = 1, . . . , k.

Separation of inequalities (18)

Define the function gv(·):

gv(S) =

{
+∞ if {r, v} 6⊂ S

min
r∈W⊂S\{v}

{x̄(δS(W ))} + 2ȳ(S̄) otherwise.

Let gv(S∗) = minS⊆V gv(S) for v ∈ V . If gv(S∗) ≥ 2ȳv for all v ∈ V , then there is no violated inequality (18).
Otherwise, we can show a violated inequality. It remains to see how to solve the minimization problem of gv(.). We
show that this reduces to a min-cut problem in the network D{r,v}

(x̄,2ȳ) defined from G and the vectors x̄ and 2ȳ.

Lemma 8. For all S ⊆ V , W ⊂ S, r ∈ W and v ∈ S \ W , there exists a directed-cut δ+(U ′) of D{r,v}

(x̄,2ȳ) separating r

from v such that c(δ+(U ′)) = x̄(δS(W )) + 2ȳ(S̄).

Proof. Take U ′
= {r} ∪ (

⋃
v∈W {v′, v′′

}) ∪ (
⋃

v∈S̄{v′
}). �

Lemma 9. Let δ+(U∗) be a minimum capacity directed-cut of D{r,v}

(x̄,2ȳ) separating r from v. Then there exists

W ⊂ S′
⊆ V , r ∈ W and v ∈ S′

\ W with x̄(δS′(W )) + 2ȳ(S̄′) = c(δ+(U∗)).

Proof. By Lemma 8, c(δ+(U∗)) 6= ∞. Hence v′′
∈ U∗ implies that v′

∈ U∗. Define S̄′ as the set of nodes v such
that v′

∈ U∗ and v′′
6∈ U∗, and W as the set of nodes v such that v′, v′′

∈ U∗. Add r to W . Now, by the definition of
D{r,v}

(x̄,2ȳ), we have x̄(δS′(W )) + 2ȳ(S̄′) = c(δ+(U∗)). �

From the two lemmas above, what had to be shown follows:

gv(S∗) = c(δ+(U ′)) ≥ c(δ+(U∗)) ≥ gv(S∗).

Separation of inequalities (19)

The separation of inequalities (19) is along the same lines as that of inequalities (18). To separate all inequalities
(S, W, v, e) corresponding to a fixed v and e, consider G ′

= (V, E \ {e}) (i.e. G ′ is obtained from G by removing e).
Then fix v and minimize the function

hv(S) =

{
+∞ if {r, v} 6⊂ S

min
r∈W⊂S\{v}

{x̄(δS(W ))} + ȳ(S̄) otherwise,
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where δS(·) is taken in G ′. As for gv(.), this problem reduces to a minimum capacity directed-cut problem separating
r from v in the network D{r,v}

(x̄,ȳ) defined from G ′, the restriction of x̄ on G ′, and the vector ȳ.

Let hv(S∗) = minS⊆V hv(S) for v ∈ V . If hv(S∗) ≥ ȳv , then x̄(δS(W ) \ {e}) + ȳ(S̄) ≥ ȳv for all S. Hence there
is no violated inequality (S, W, v, e) (for fixed v and e). If, on the other hand, hv(S∗) < ȳv , we can exhibit a violated
inequality (19). Repeating the procedure for every v and e, the separation problem for inequalities (19) is solved.

Remark. Say that an inequality (S, W, v, F) or (S, W, v, e, F) is of class 1 if the nodes of S̄ are pairwise non-
adjacent. It is easy to see that inequalities (S, W, v) and (S, W, v, e) contain all inequalities of class 1. It follows that
the separation problem for inequalities of class 1 is solvable in polynomial time.

Next, another family of inequalities (9) and (10) is introduced with the associated separation problem.
Consider inequalities (S, W, v, T ) or (S, W, v, e, T ) with δS(W ) = ∅, G(S̄) connected, and where T is a path

spanning S̄. Only the pendant nodes of T are connected with W and the connected component of G(S \ W ) that
contains v. This subclass will be called inequalities of class 2.

If u and w represent the pendant nodes of T , then G(V \ {u, w}) contains at least two connected components:
W1 containing r and W2 containing v. The separation problem reduces to finding a path P = {u =

v1, e1, v2, . . . , vk−1, ek−1, vk = w} in G(V \ (W1 ∪ W2)) that minimizes

k∑
i=1

ȳvi −

k−1∑
i=1

x̄ei . (20)

If ȳu + ȳw +
∑k−1

i=2 ȳvi −
∑k−1

i=1 x̄ei < ȳv , then a violated inequality of class 2 is obtained, where S = V \

{u, v2, . . . , vk−1, w}, W = W1, S̄ = {u, v2, . . . , vk−1, w} and T = {e1, . . . , ek−1} is a path spanning S̄. Otherwise,
there is no violated inequality of class 2, where u and w are the pendant nodes of the path T spanning S̄.

How can (20) be solved? Given a triplet v, u and w such that G\{u, w} contains at least two connected components,
W1 containing r and W2 containing v, construct the network D̄(x̄,ȳ) from the graph G ′

= G(V \ (W1 ∪ W2)) as
follows: replace each edge of G ′, e = u1u2, not incident to u nor to w, by two arcs (u1, u2) associated with a cost
c(u1, u2) = ȳu1 − x̄e and a reverse arc (u2, u1) with cost c(u2, u1) = ȳu2 − x̄e. If e = uu1 (resp. e = u1w) is an edge
of G ′ incident to u (resp. w), then replace e by an arc (u, u1) (resp. (u1, w)) having a cost c(u, u1) = ȳu − x̄e (resp.
c(u1, w) = ȳu1 + ȳw − x̄e).

Problem (20) reduces to a min-cost path problem from u to w in D̄(x̄,ȳ). Since (x̄, ȳ) verifies inequalities (2)–(4),
it follows that the cost associated with each arc of D̄(x̄,ȳ) is nonnegative. One can apply, for example, Dijkstra’s
algorithm to find such a path.

Using the results above, it will be shown that separating inequalities (9) and (10) in series-parallel graphs may be
done in polynomial time. Given a graph G, we say that G contains a graph H as a minor if H is a subgraph of a graph
obtained from G by a sequence of edge-contractions. A graph is called series-parallel if it does not contain K4 (the
complete graph on four nodes) as a minor.

Theorem 10. If G = (V, E) is a series-parallel graph, then inequalities (9) and (10) are either of class 1 or of
class 2.

Proof. Consider an inequality (S, W, v,∪k
i=1 Ti ) or (S, W, v, e, ∪k

i=1 Ti ). Let W̄1 be the connected component of
G(S \ W ) that contains v. Suppose that this inequality is neither of class 1 nor of class 2. Thus, there must exist Tl ,
1 ≤ l ≤ k, containing at least two pendant nodes v1 and v2 and such that S̄l \ {v1, v2} is connected to at least one of
the sets W or W̄1. Suppose that Tl is connected to W . By Lemma 7(ii), v1 and v2 are connected to W and to W1. By
definition, G(W̄1) and G(S̄l \ {v1, v2}) are connected and, by Lemma 7(i), G(W ) is connected too. Shrink the sets
S̄l \ {v1, v2}, W̄1 ∪ {v2} and W . The resulting graph contains K4 as a minor (see Fig. 5). If S̄l \ {v1, v2} is connected
to W̄ instead of W then, by shrinking W ∪ {v1} instead of W̄1 ∪ {v2}, the same result is obtained. A K4 is obtained by
shrinking the following connected components: W , W̄1 ∪ {v2} and S̄l \ {v1, v2}. If G(S \ W ) is connected, the same
is obtained by replacing W̄1 by S \ W .

Consequently, Ti is a path such that only its pendant nodes are connected to W and to W̄1, for i = 1, . . . , k.
Similarly one can show that, in this case, δS(W ) = ∅ and k = 1 (we have only one path). It follows that S̄ is either an
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Fig. 5. K4 as subgraph.

independent set of G (class 1) or k = 1, T1 a path such that only the end-nodes are connected with W and W̄1, and
δS(W ) = ∅ (class 2). �

4. Concluding remarks

Given a graph G = (V, E), the node-edge weighted 2-edge connected subgraph problem has been introduced. This
problem reduces to a sequence of |V |r -edge connected subgraph problems (r -2ECSP). Inequalities (1)–(4) define a
linear relaxation of the convex hull of the solutions of the r -2ECSP, r -2ECSP(G). These inequalities are based on
a direct interpretation of the 2-edge connected property of the solutions. Unfortunately, this linear relaxation does
not suffice to solve the problem, even in particular classes of graphs (such as series-parallel graphs). Moreover, the
graph given in Fig. 1 is outer-planar, so it is more restricted than series-parallel graphs. Valid inequalities (9) and
(10) of r -2ECSP(G) have been added in Section 2. We defined two classes among these inequalities, classes 1 and 2,
and showed that their separation problem is polynomially solvable. This provides a new linear description, given by
(1)–(4) plus inequalities of class 1 and 2, where the optimization can be performed in polynomial time. This linear
relaxation provides better lower bounds on the value of the optimal solution of the problem. It has been shown that
inequalities (9) and (10) are of class 1 and 2 when the underlying graph is series-parallel. An interesting question
arises: are inequalities (1)–(4), (9) and (10) sufficient to describe r -2ECSP(G) when G is series-parallel? If the
answer is positive, then there is a polynomial time algorithm to solve the node-edge weighted 2-edge connected
subgraph problem in series-parallel graphs.

A consequence of the results of Section 2.1 regards the dimension of the Steiner 2-edge connected subgraph
polytope discussed in the introduction. For a graph G = (V, E) and a set of terminals T , call STECSP(G, T ) the
convex hull of incidence vectors of 2-edge connected graphs spanning T . Mahjoub [8] showed that, when T = V ,
dim(STECSP(G, V )) = |E |−|E2c|. Following the ideas in Section 2.1, it is straightforward to extend this result to the
general case. Indeed, let E i

2c for i = 1, . . . , l be the partition of E2c induced by the relationR. Let E i
2c for i = 1 . . . , l1

be the equivalence classes such that all nodes in T belong to the same connected component of Gi
= (V, E \ E i

2c);
and let E i

2c for i = l1 + 1 . . . , l be the other equivalence classes. We thus have the following.

Lemma 11. dim(STECSP(G, T )) = |E | − |E2c| + l1.

Note that, if G is 3-edge connected, then STECSP(G, T ) is full dimensional.
On a different matter, let us now look at a closely related problem to r -2ECSP. Find a 2-node connected subgraph of

G containing a fixed node r which minimizes the overall weight of both edges and nodes. Call this problem r -2NCSP
and the associated polytope r -2NCSP(G). Each solution of r -2NCSP(G) is also a solution of r -2ECSP(G). Thus all
valid inequalities (1)–(4), (9) and (10) of r -2ECSP(G) are also valid for r -2NCSP(G). Consider the following valid
inequalities for r -2NCSP(G) (which are not valid for r -2ECSP(G)):

x(δV \{v}(W )) ≥ yw, for all v ∈ V \ {r}, r ∈ W ⊂ V \ {v}, w ∈ (V \ {v}) \ W.

Note that (1)–(5) plus this inequality gives an integer linear formulation for r -2NCSP. However, the example of Fig. 1
is a fractional extreme point of its linear relaxation, which violates inequalities of class 1 and 2. Thus, inequalities
(1)–(4), together with the above class and those of classes 1 and 2, provide a tighter linear relaxation for r -2NCSP(G).
Moreover, note that the separation problem of the above inequalities reduces to a minimum cut problem. Thus, it would
be interesting to study the description of r -2NCSP(G) in series-parallel graphs.
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The two linear relaxations associated with r -2ECSP(G) and r -2NCSP(G) may be used to solve the Steiner 2-edge
and the Steiner 2-node connected subgraph problems.

We finish by noting that the separation problem of inequalities (9) and (10) is polynomially solvable in series-
parallel graphs and that inequalities (17) and (18) can be separated in polynomial time for general graphs. What can
be said about the separation of (9) and (10) in the general case?
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