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We study a principal–agent problem with discrete outcome and effort level spaces. The 
principal and the agent are risk neutral and the latter is subject to limited liability. 
Quantifying welfare loss as the ratio between the first-best social welfare and that arising 
from the principal’s optimal pay-for-performance contract, we provide simple parametric 
bounds for problem instances with moral hazard. Relying on that, we compute the worst-
case welfare loss ratio among all problem instances with a fixed number of effort and 
outcome levels as a function of the number of possible effort levels and the likelihood 
ratio evaluated at the highest outcome. As extensions, we look at linear contracts and at 
cases with multiple identical tasks. Our work constitutes an initial attempt to quantify the 
losses arising from moral hazard when the agent is subject to limited liability, and shows 
that these losses are non-negligible in the worst case.
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1. Introduction

The principal–agent model with moral hazard has been the workhorse paradigm to understand many interesting eco-
nomic phenomena where incentives play a crucial role, such as the theory of insurance under moral hazard (Spence and 
Zeckhauser, 1971), the theory of managerial firms (Alchian and Demsetz, 1972; Jensen and Meckling, 1979), optimal share-
cropping contracts between landowners and tenants (Stiglitz, 1974), the efficiency wages theory (Shapiro and Stiglitz, 1984), 
financial contracting (Holmström and Tirole, 1997; Innes, 1990), and job design and multi-tasking (Holmström and Milgrom, 
1991). Casual observation also suggests that moral hazard could be of practical importance. In fact, most sales workers are 
paid according to a fixed wage and either a bonus paid when a certain sales target is achieved or a commission rate over 
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total sales. Franchisees are also motivated by contracts that entail a fixed payment and an agreement about how to share 
profits or sales. Additionally, managerial contracts usually consist of a combination of fixed wages and payments that are 
conditioned on performance. In short, incentive contracts are ubiquitous to market economies.

Regardless of the reason for moral hazard, in most cases it entails welfare losses that remain as far as we know quanti-
tatively uncounted for. This paper begins the task of quantifying the welfare losses implied by the existence of moral hazard 
in a principal–agent relationship with risk neutral individuals and limited liability. The main consequences of moral hazard 
are by now well understood and deeply rooted in the economics of information literature, thus the moral-hazard paradigm 
is ripe for a deeper analysis of the quantitative, rather than qualitative, consequences of it.

The setting we consider consists of a risk-neutral principal who hires a risk-neutral agent subject to limited liability 
to exert costly effort. The effort level and outcome space are discrete and finite, and effort influences the distribution of 
output. Because the agent’s effort is not observable, the principal can only design contracts based on the agent’s observable 
performance. If the principal wishes to induce the agent to choose a given effort level, he should reward the agent when 
the realization of output is most indicative of the desired effort level having been chosen, and he should punish him when 
a different outcome is observed. We assume throughout that the probability distribution of output, which is parameterized 
by the effort level, satisfies the monotone likelihood ratio property (MLRP).1 This implies that the highest output is the most 
indicative that the highest effort level has been chosen and therefore the principal pays the agent a salary in excess of 
the limited-liability amount only when the highest outcome is observed, and pays the limited-liability amount otherwise. 
Because limited liability imposes a lower bound on the size of the punishment, the equilibrium contract leaves a limited-
liability rent to the agent. As a result, the equilibrium contract might not maximize social welfare and the first-best outcome 
might not be attained; instead, the constrained contract will be second-best.2

Before going into the main results it is worthwhile to notice that the contract considered here is quite implausible in 
the empirically relevant case of a continuous-outcome space. Under the assumptions considered and a continuous-outcome 
space, the principal pays a bonus only when the highest outcome takes place, which is a measure-zero event. The incentive 
compatibility will require the principal to pay an infinite bonus in this state, which is unrealistic. This unappealing feature 
could be avoided, for example, by introducing risk aversion or by assuming that agents will behave perversely to reward 
systems that are not properly monotonic. The model considered here is still useful as a first step towards a more general 
study of the welfare loss arising from moral hazard in settings that are more plausible in the real world.

Finally, the model here can be interpreted in a very intuitive way as a situation where the principal is a monopsonist 
and the agent is a multi-product firm supplying the monopsonist.3 In this context, states of nature correspond to poten-
tial markets, probabilities correspond to quantities sold in each market and the principal-monopsonist restrict itself to use 
linear-pricing contracts. The agent-supplier’s outputs in the potential markets are joint outputs determined by his single 
effort level, and his production function is given by the vector of probability distribution conditional on the effort level 
chosen. Under this interpretation, the optimal contract follows from the standard intermediate microeconomics analysis of 
a monopsonist where the agent-supplier is a competitive price-taking firm and the principal-monopsonist pays the supplier 
a price equal to the marginal cost corresponding to the principal’s target effort level. Compared with the case of a com-
petitive input market, inefficiency is introduced because the principal-monopsonist buys a positive quantity from just one 
market and this is lower than the welfare-maximizing quantity. Therefore our results also quantify the efficiency loss of the 
competitive input market relative to a monopsonized input market.

1.1. Main contributions

To quantify the inefficiencies introduced by moral hazard and limited liability, we measure the welfare loss introduced 
by a given contract, and rely on the concept of price of anarchy. The latter refers to the worst-case welfare loss in a non-
cooperative game, that is, the worst possible equilibrium welfare versus that of a socially-optimal solution. The idea of 
using worst-case analysis to study situations under competition was introduced by Koutsoupias and Papadimitriou (1999)
and has gained followers over the last decade. The use of the price of anarchy as a metric of the welfare loss has been 
widely applied in economics to problems such as the study of competition and efficiency in congested markets (Acemoglu 
and Ozdaglar, 2007), games with serial, average and incremental cost sharing (Moulin, 2008), price and capacity competi-
tion (Acemoglu et al., 2009), Vickrey–Clarke–Groves mechanisms (Moulin, 2009), resource allocation problems (Kelly, 1997;
Johari and Tsitsiklis, 2004), and congestion games (Roughgarden and Tardos, 2004; Correa et al., 2008). In our setting, we 
define the welfare-loss ratio as the ratio between the social welfare of a socially-optimal solution—the sum of the principal’s 
and agent’s payoffs when the first-best effort level is chosen—and that of the sub-game perfect equilibrium in which the 
principal offers the agent a performance-pay contract and then the agent chooses the effort level.

The goal of this paper is two-fold. First, we provide simple parametric bounds on the welfare-loss ratio in a given 
instance of the problem in the presence of limited-liability and moral hazard. These bounds allow one to directly quantify 

1 The MLRP assumption is pervasive in the principal–agent literature (Grossman and Hart, 1983; Rogerson, 1985).
2 When the participation constraint—rather than the limited-liability constraint—binds, providing incentives is costless since the agent cares only about 

the expected compensation and the participation constraint binds on his expected payoff. Thus, we focus on the case in which the parameters are such 
that this does not occur.

3 We thank an anonymous referee for this novel interpretation of the model.
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the inefficiency in a given instance of the problem without the need to determine its first-best and second-best effort levels, 
and additionally, they shed some light on the structure of those problem instances with high welfare loss. Second, we study 
the worst-case welfare-loss ratio (i.e., the price of anarchy), which is defined as the largest welfare-loss ratio among all 
instances of the problem that satisfy our assumptions. In our model, an instance of the problem is given by the outcome 
vector, the vector of agent’s costs of effort, and the probability distribution of outcomes for each effort level.

In order to obtain our bounds for the welfare-loss ratio, we assume throughout that the probability distribution of output, 
which is parameterized by the effort level, satisfies MLRP—under this property, a higher output is a better signal that the 
agent has chosen a higher effort level—and that the marginal cost per unit increase in the highest outcome probability is 
non-decreasing in the effort level (IMCP).4 The latter assumption ensures that local incentive compatibility constraints are 
sufficient to induce an effort level, and is weaker than the well-known convexity of the distribution function condition (CDFC) 
that is also related to the idea of decreasing marginal returns to effort (see, for instance, Rogerson, 1985 and Mirrlees, 1999). 
Furthermore, it is assumed that the sequence of prevailing social welfare levels, as effort levels increase, is quasi-concave 
(QCSW); i.e., social welfare is single-peaked in the effort level.

Under our assumptions, inefficiency is introduced when the socially-optimal effort level is high and the principal finds 
it optimal to induce a low effort level. This happens when the net social gain of increasing the expected output is smaller 
than the rent given to the agent when inducing a higher effort level. Inducing a higher effort level is costly for the principal 
because of the agent’s limited-liability constraint; the principal cannot severely punish the agent when a bad outcome is 
realized. Therefore the principal is restricted to rewarding the agent when a good outcome is realized, which may not be 
enough to compensate for the opportunity cost incurred when a bad outcome is observed.

An unbounded welfare loss would arise if the social welfare of the high effort level were arbitrarily larger than that of 
the low effort level and, regardless, the principal prefers to induce the lower effort level. Because social welfare is the sum 
of the principal’s and the agent’s utilities, the latter implies that the agent is capturing most of the social welfare at the 
high effort level. Our results preclude an arbitrarily large welfare loss because the principal’s utility at the high level cannot 
be arbitrarily small when the social inefficiency at the low effort level is arbitrarily large. Under assumptions MLRP, IMCP
and QCSW, we establish that for any instance of the problem, the welfare-loss ratio is bounded from above by a simple 
formula involving the probabilities of the highest possible outcome. The results arise from the fact that MLRP implies that 
the principal pays a bonus only when the highest outcome is observed.5

Subsequently, we show that the worst-case welfare-loss ratio among all problem instances with a fixed number of effort 
and outcome levels that satisfy our assumptions is equal to the number of effort levels E . As a consequence, the social 
welfare of a subgame perfect equilibrium is guaranteed to be at least 1/E of that of the social optimum. We prove that the 
worst-case is attained by a family of problem instances in which the highest outcome probability increases at a geometric 
rate with the effort level. A disadvantage of the previous bound is that it grows unboundedly with the number of effort 
levels. Thus, we study the worst-case welfare-loss ratio among problem instances with an arbitrary number of effort levels 
and the likelihood ratio of the highest outcome bounded from above by r ≥ 1. Here, r is defined as the ratio of the highest 
outcome probability when the highest effort level is exerted to that when the lowest effort level is exerted. We show that 
the worst-case welfare-loss ratio within the previous family is equal to 1 + ln(r) independently of the number of effort 
levels. Our results suggest that moral hazard is more problematic in situations where the agent’s available actions are more 
numerous, or when the informational problem is such that the highest outcome is much more likely under the highest than 
under the lowest effort level.

As an extension to the basic model, we study the welfare loss when contracts are restricted to be linear. This is motivated 
by the prevalence of simple contracts in real life (see, e.g., Salanié, 2003). Surprisingly, we show that a similar bound on 
the welfare loss holds when the principal is restricted to choose linear contracts, and that the worst-case welfare-loss ratio 
is again equal to the number of effort levels E . Our results provide bounds on the welfare loss but do not shed light on 
whether, for the same instance of the problem, the restriction to linear contracts increases or decreases welfare loss. In 
another extension, we study the welfare loss when there are multiple identical and independent tasks, and for each task 
the agent chooses between two effort levels. We give a simple bound on the welfare loss involving the probabilities that all 
tasks are successful when the agent exerts a high and a low effort level, and find that the worst-case welfare-loss ratio is 2, 
regardless of how many tasks the agent has to work on.

In related work, Demougin and Fluet (1998) derive the optimality of the bonus contract in the setting considered here; 
i.e., with a discrete outcome space. Kim (1997) presents conditions that guarantee the existence of a bonus contract that 
achieves a first-best allocation under limited liability but for a continuous outcome and effort space. Our results extend this 
work by quantifying the impact on efficiency when the first-best allocation is not achieved. In this context, our work should 
be viewed as a preliminary step in a broader agenda of how to quantify the welfare loss of moral hazard in different settings. 
Along those lines, Babaioff et al. (2009, 2012) study a principal–agent problem with an approach similar to ours. They 
introduce a combinatorial agency problem with multiple agents performing two-effort–two-outcome tasks, and study the 
combinatorial structure of dependencies between agents’ actions and the worst-case welfare loss for a number of different 

4 IMCP stands for Increasing Marginal Cost of Probability. In the monopsonist-supplier interpretation of the principal–agent problem, assumption IMCP
simply requires that the agent-supplier’s marginal cost of output in the highest gross-revenue market is increasing in the effort level.

5 In addition to this, the extended version of the current paper shows that our results are robust by relaxing some assumptions of the model presented 
here (Balmaceda et al., 2012).
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classes of action dependencies. They show that this loss may be unbounded for technologies that exhibit complementarities 
between agents, while it can be bounded from above by a small constant for technologies that exhibit substitutabilities 
between agents. In contrast, our model deals with a single agent and its complexity lies in handling more sophisticated 
tasks, rather than the interaction between tasks.

The rest of the paper is organized as follows. In Section 2, we introduce the model with its main assumptions and present 
some preliminary results that will prove useful in the rest of the paper. Section 3 presents our main results on bounds for 
the welfare loss. Section 4 extends our results in several directions, while Section 5 concludes with some remarks and future 
directions of study.

2. The principal–agent model

2.1. The basic setup

We consider a risk-neutral principal and a risk-neutral agent in a setting with E ≥ 2 effort levels and S ≥ 2 outcomes.6

The agent chooses an effort level e ∈ E � {1, . . . , E} and incurs a personal nonnegative cost of ce . Effort levels are sorted in 
increasing order with respect to costs; that is, ce < c f if e < f . Thus, a higher effort level demands more work from the 
agent. We denote by c = (c1, . . . , cE) the vector of agent’s costs. The task’s output depends on a random state of nature 
s ∈ S � {1, . . . , S} whose distribution in turn depends on the effort level chosen by the agent. Each state has an associated 
nonnegative dollar amount that represents the principal’s revenue. We denote the vector of outputs indexed by state by 
y = (y1, . . . , yS). Without loss of generality, the outputs are sorted in increasing order: ys < yt if s < t; hence, the principal’s 
revenues are higher under states with a larger index. Finally, we let π s

e > 0 be the common-knowledge probability of state 
s ∈ S when the agent exerts effort level e ∈ E . The probability mass function of the outcome under effort level e is given 
by π e = (π1

e , . . . , π S
e ). To simplify the exposition we set c0 = 0 and π0 = 0. An instance of the principal–agent problem is 

characterized by the tuple I = (π ,y, c), and we denote by IE,S ⊂ R
E×S ×R

S ×R
E the set of all valid problem instances with 

E effort levels and S outcomes, that is, π = {π e}E
e=1 is the matrix of probability vectors, and the outputs y and costs c are 

nonnegative and increasing.
Because the agent’s chosen effort level e cannot be observed by the principal, he cannot write a wage contract based on 

it. However, the principal can write a contract that conditions payments on the output. The timing is as follows. First, the 
principal makes a take-it-or-leave-it offer to the agent that specifies a state-dependent wage schedule w = (w1, . . . , w S ). 
The contract is subject to a limited liability (LL) constraint specifying that the wage must be nonnegative in every possible 
state. The LL constraint excludes contracts in which the agent ends up paying back to the principal. Second, the agent 
decides whether to accept or reject the offer, and if accepted, then he chooses the effort level e ∈ E , before learning the 
realized state, and incurs a personal cost ce . Third, the random state s ∈ S is realized, the agent is paid the wage ws and the 
principal collects the revenue ys . The agent should accept the contract if it satisfies an individual rationality (IR) constraint 
specifying that the contract must yield an expected utility to the agent greater than or equal to that of choosing the outside 
option, which is assumed for the sake of simplicity equal to zero.7 Furthermore, he will choose the effort level e ∈ E that 
maximizes his expected payoff π ew − ce; that is, the difference between the expected wage and the cost of the effort level 
chosen.

The principal’s problem consists on choosing a wage schedule w and an induced effort level e for the agent that solve 
the following problem:

uP � max
e∈E,w

π e(y − w) (1)

s.t. π ew − ce ≥ 0, (IR)

e ∈ arg max
f ∈E

{
π f w − c f

}
, (IC)

w ≥ 0. (LL)

The objective function measures the difference between the principal’s expected revenue and payment, which is his ex-
pected utility. Constraints (IR) and (LL) were described earlier. The incentive compatibility (IC) constraint guarantees that the 
induced effort level maximizes the agent’s utility. As is standard in the literature, we assume throughout the paper that 
when the agent is indifferent between two or more effort levels, he always picks the one preferred by the principal. Re-
sults can be extended to hold under strong IC without further gain in intuition and much more cumbersome mathematical 
derivations.

Following Grossman and Hart (1983), one can equivalently formulate the principal’s problem as

6 The extended version of the current paper considers other assumptions, including continuous effort levels and some other relaxations (Balmaceda et 
al., 2012).

7 The extended version of the current paper generalizes these results by incorporating a nonzero outside option, and provides bounds that capture the 
dependence on this parameter (Balmaceda et al., 2012).



F. Balmaceda et al. / Games and Economic Behavior 95 (2016) 137–155 141
uP = max
e∈E

{π ey − ze} ,

where ze is the minimum expected payment incurred by the principal that induces the agent to exert effort level e. We 
denote by uP

e � π ey − ze the principal’s maximum expected utility when effort level e is induced, and by EP the set of 
optimal effort levels for the principal. Hence, uP = maxe∈E {uP

e } and EP = arg maxe∈E {uP
e }. We denote by uA

e � ze − ce the 
agent’s expected utility when effort level e is induced.

Exploiting the fact that the effort level set is finite, we write the IC constraint explicitly to obtain the minimum payment 
linear program corresponding to e, which is independent of the output y:

(MPLPe) ze = min
w∈RS

π ew (2)

s.t. π ew − ce ≥ 0, (IR)

π ew − ce ≥ π f w − c f ∀ f ∈ E \ e, (IC)

w ≥ 0. (LL)

We say that the principal implements effort level e ∈ E when the wage schedule w is consistent with the agent choosing 
effort level e. For a fixed effort level e, constraints (IR), (IC), and (LL) characterize the set of feasible wages that implement e. 
The principal will choose a wage schedule belonging to that set that achieves ze by minimizing the expected payment π ew. 
We denote an effort level as implementable if it is attainable under some wage schedule, that is, its set of feasible wages is 
nonempty.

From the perspective of the system, the social welfare when implementing effort level e ∈ E is given by uSW
e � π ey −

ce , which corresponds to the sum of the principal’s utility π ey − ze and the agent’s utility ze − ce . This follows because 
preferences are quasi-linear and wages are a pure transfer of wealth between the principal and the agent. The optimal 
social welfare is given by

uSO � max
e∈E {uSW

e },

and the set of first-best efficient effort levels is given by ESO � arg maxe∈E {uSW
e }. Notice that since ze is the optimal objective 

value of MPLPe , we have by the agent’s IR condition that ze ≥ ce . Thus, the agent’s utility is always non-negative, and the 
social welfare is at least the principal’s utility; i.e., uSW

e ≥ uP
e for all effort levels e ∈ E .

2.2. Assumptions

We assume that the probability distributions {π e}e∈E satisfy the well-known monotone likelihood-ratio property.8

Assumption 1 (MLRP). The distributions {π e}e∈E satisfy 
π s

e

π s
f

>
π t

e

π t
f

for all states s > t and effort levels e > f .

The MLRP is pervasive in the economics of information literature, and in particular in the principal–agent literature (see, 
e.g., Grossman and Hart, 1983; Rogerson, 1985). This property ensures that the higher the observed level of output, the 
more likely it is that the agent exerted a higher effort level.

Any distribution satisfying MLRP also satisfies the weaker first-order stochastic dominance (FOSD) property. Let F s
e �∑s

s′=1 π s′
e be the cumulative distribution function for effort level e. Rothschild and Stiglitz (1970) proved that for a fixed 

outcome the cumulative distribution function is non-increasing in the effort level under MLRP; or equivalently, F s
f ≥ F s

e for 
all states s and effort levels f < e. A simple consequence of this that plays an important role in our derivations is that 
probabilities for the highest outcome S are sorted in increasing order with respect to effort levels; i.e., π S

f < π S
e for f < e. 

Note that in the case of two outcomes, MLRP and FOSD are equivalent.
The following ratios are central in the analysis that follows so we refer to them explicitly. We let the ratio of marginal 

cost to marginal probability of the highest outcome be equal to

me � ce − ce−1

π S
e − π S

e−1

for all e ∈ E .

In the case of two outcomes and an arbitrary number of effort levels, our results hold under the Assumption IMP that 
requires that all effort levels are implementable (see Section B.2 of Supplementary Material). For the general case (arbitrary 
number of outcomes and effort levels) we impose the following two additional assumptions.

8 Our results also hold under the weaker assumption that the largest likelihood ratio is given by the highest outcome, that is, π S
e /π S

f > π s
e /π s

f for all 
states s < S and effort levels e > f . We thank an anonymous referee for suggesting this point.
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Table 1
Assumptions required for our results to hold.

Assumption name Description Assumption number Case it applies to

MLRP Monotone Likelihood Ratio Property 1 (§2.2) general
IMCP Increasing Marginal Cost of Probability 2 (§2.2) > 2 outcomes
QCSW Quasi-Concave Social Welfare 3 (§2.2) > 2 outcomes
IMP All efforts level are IMPlementable 4 (Supplementary §B.2) 2 outcomes
FOSD First-Order Stochastic Dominance (§4) extensions
IMPL IMP with Linear contracts (§4.1) general linear

Assumption 2 (IMCP). The ratio of marginal cost to marginal probability of the highest outcome is non-decreasing with the 
effort level; i.e., me ≤ me+1 for all effort levels 1 ≤ e < E .

This assumption establishes that the marginal cost of increasing the probability of outcome S from π S
e−1 to π S

e , expressed 
in terms of per-unit increase in probability, is non-decreasing with the effort level. This assumption is satisfied, for instance, 
when the marginal cost of effort is constant and there are decreasing marginal returns to effort. It is also satisfied when 
the marginal cost of effort is increasing and there are constant marginal returns to effort. Hence, this assumption is the 
natural analogue of the standard convexity of the distribution function assumption (CDFC).9 In fact, one can easily show 
that CDFC together with convexity of the cost function implies IMCP. Our condition is weaker than CDFC since we only 
impose a restriction on the likelihoods for the highest outcome while the latter requires convexity of the distribution for 
every outcome.

The assumptions CDFC together with MLRP are standard conditions for the validity of the first-order approach (see, 
for instance, Rogerson, 1985, Mirrlees, 1974, 1999, 1976, Laffont and Martimort, 2001 and Salanié, 2003).10 This is meant 
to ensure that critical points are global maxima, making local conditions enough to characterize the global optima for 
the agent’s effort level. Here, assumption IMCP plays a similar role. That is, an effort level satisfying the local incentive 
compatibility constraint is a global maximum in the agent’s optimization problem. This allows one to order the effort 
levels in a manner that facilitates the computations upon deviations.11 Furthermore, IMCP implies that any effort level is 
implementable since the incentive constraints are ordered.

Assumption 3 (QCSW). The sequence of prevailing social welfare levels under increasing effort levels is quasi-concave.

This assumption establishes that the social welfare is unimodal, or equivalently for some effort level eSO, social welfare 
is monotonically non-decreasing for effort levels e ≤ eSO and monotonically non-increasing for effort levels e ≥ eSO. This 
technical assumption excludes the possibility of local maxima in the social welfare and greatly simplifies our results.

To summarize, Table 1 lists the assumptions needed for the different results we show.

2.3. Optimal contract

A critical step needed to derive our results involves characterizing the minimum expected payment ze incurred by 
the principal when inducing an effort level e ∈ E . From the theory of linear programming, we know that the optimal wage 
schedule is given by an extreme point of the constraint set. In general, the IC constraints of many other effort levels f ∈ E \e
may be binding at the optimal wage schedule, not allowing one to compactly characterize the minimum expected payment. 
While not needed,12 assumption IMCP greatly simplifies the analysis since it implies that the IC constraint relative to the 
immediately lower effort level is necessary and sufficient to implement effort level e. That is, to implement the effort level 
e > 1, the principal only needs to check that the agent’s utility for the effort level at hand dominates that of the previous 
effort level e − 1. Missing proofs are available in the appendix.

Proposition 1. Assume that MLRP and IMCP hold. For every effort level e ∈ E the following holds:

1. The minimum expected payment that the principal makes to the agent when he induces effort level e is ze = π S
e me.

2. The optimal contract pays ws
e = 0 for all s < S and ws

e = me for s = S.

9 The assumption CDFC requires that the distribution function is convex with respect to the effort level for any given fixed outcome; that is, F s
e+1 − F s

e ≥
F s

e − F s
e−1 for all outcomes s and effort levels 1 < e < E .

10 See, Jewitt (1988) for a less stringent but much less used condition ensuring that the first-order approach is valid. One advantage of Jewitt’s conditions 
is that they are closer to the economic notion of decreasing returns.
11 However as Rogerson (1985, p. 1362) points out, “if output is determined by a stochastic production function with diminishing returns to scale in 

each state of nature, the implied distribution function over output will not, in general, exhibit the CDFC.” Thus, the CDFC in general requires more than 
diminishing returns (see Conlon, 2009 for a more detailed discussion).
12 For details, see the extended version of the current paper (Balmaceda et al., 2012).
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The optimal wage schedule in Proposition 1 rewards the agent only when the highest outcome is realized. Specifically, 
the principal will only reward the highest outcome (due to the MLRP), and he will impose the maximum penalty for all 
other outcomes. Because of the agent’s liability limit, this maximum penalty is equal to zero.

It is worthwhile to say a few words on the structure of the optimal contract. While the optimal payment scheme is very 
intuitive, from an empirical point of view it is implausible to pay a bonus only when the highest outcome is observed. In 
fact, if we extend the model to the empirically-relevant case of a continuous outcome space, the optimal contract under 
our assumptions will require the principal to pay an infinite bonus when the highest outcome is observed, which occurs 
with probability zero.13 The literature on financial contracts with moral hazard and limited liability avoids this unappealing 
feature by considering monotonicity constraints, in which case a threshold contract (i.e., debt contract) is optimal (Innes, 
1990; Matthews, 2001; Poblete and Spulber, 2012). However, within the literature on moral hazard with limited liability 
that deals with employment contracts, monotonicity constraints are usually disregarded and many papers focus on the two 
outcome case, in which case the bonus-type contract derived here is the natural solution. Our paper deals with bounds on 
the welfare loss that relate to this latter literature, and our results are useful as a first step towards a more general study of 
the welfare loss from moral hazard in more plausible settings.

To close this section we show that a simple consequence of the previous result is that the agent’s utility is non-decreasing 
with respect to the effort level.

Corollary 1. Assume that MLRP and IMCP hold. The agent’s utility uA
e is nondecreasing in the effort level implemented by the principal; 

that is, uA
e ≤ uA

e+1 for all 1 ≤ e < E.

This implies that in order to induce higher effort levels the principal must increase the agent’s revenue at a higher rate 
than the increase in cost experienced by the agent. As we will discuss in more detail later, this creates an incentive for the 
principal to induce a lower-than-optimal effort level.

2.4. Monopsony interpretation

The principal–agent model can be alternatively interpreted as a situation where the principal is a monopsonist and the 
agent is a multi-product firm supplying the monopsonist. In this context there is no uncertainty: the S possible states of 
nature correspond to S potential markets and π s

e is the deterministic quantity sold in market s ∈ S . The agent-supplier’s 
outputs in the S markets are joint outputs determined by his single effort level e, and his production function is given 
by the vector π e = (π1

e , . . . , π S
e ). The principal-monopsonist is assumed to offer a linear price ws and has a gross rev-

enue ys per-unit of output π s
e in market s ∈ S . As a result, the agent-supplier’s total profit is given by π ew − ce and the 

principal-monopsonist’s total profit is π e(y − w).
A priori the problem of determining the optimal prices and effort level seems challenging because the agent-supplier’s 

joint outputs for the S markets are determined by a single effort level. Since players are risk neutral, however, the MLRP14

implies that the principal-monopsonist only rewards the output of market S (the market with the highest gross revenue) and 
pays nothing for the outputs of the other markets. Hence, the agent-supplier problem simplifies to that of a single-output 
competitive firm facing competitive price w S for output π S

e supplied at total cost ce and marginal cost me . Because of IMCP, 
marginal costs are increasing so local conditions are sufficient for global optimality and the agent-supplier chooses the 
greatest effort level e ∈ E such that me+1 > w S ≥ me . It follows that the principal-monopsonist’s cost-minimizing contract 
to induce effort level e ∈ E is given by w S

e = me and ws
e = 0 for all other markets s < S . As a result, the principal pays 

the agent-supplier the marginal cost of production at effort level e, as in Proposition 1. The principal then becomes a 
single-market monopsonist who offers price me to his supplier and whose production function is π ey, so that its marginal 
revenue product is

MRPe � π ey − π e−1y

π S
e − π S

e−1

. (3)

Later we will show that the principal-monopsonist implements an inefficient effort level, which is consistent with the 
fact that the quantity demanded by the monopsonist is inefficiently low.

3. Bounding the welfare loss

The goal of this section is two-fold. First, we aim to provide simple parametric bounds on the welfare-loss ratio of a 
given instance of the problem in the presence of limited-liability and moral hazard under the previous assumptions. Second, 

13 In the case of a continuous outcome space, Kim (1997) showed that, under the assumption that the first-best effort is achievable, there exists an 
optimal contract that pays a fixed wage plus a bonus when the outcome exceeds a given threshold. If the first-best is not achievable, as it happens here, 
then an optimal contract would consist of an infinite payment in the zero-probability event that the highest outcome occurs.
14 In this context MLRP imposes that the ratio of output between high gross-revenue markets and low gross-revenue markets is increasing in the agent-

supplier’s effort level.
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we study the worst-case welfare-loss ratio among all problem instances satisfying our assumptions, which is commonly 
referred to as the Price of Anarchy in the computer science literature (Nisan et al., 2007).

3.1. The welfare loss

For a given instance of the problem I = (π ,y, c) ∈ I
E,S we quantify the welfare-loss ratio, denoted by ρ(I), as the ratio 

of the social welfare under the socially-optimal effort level to that of the socially worst second-best effort level; that is,

ρ(I) � uSO

mine∈EP uSW
e

. (4)

Note that the minimum in the denominator corresponds to taking a worst-case perspective which reflects that, among the 
possibly multiple outcomes, one cannot know which one the principal will choose. The welfare-loss ratio is clearly at least 
one because the social welfare of any sub-game perfect equilibrium cannot be larger than the socially-optimal one.

The worst-case welfare-loss ratio of a class of problem instances I ⊆ I
E,S is defined as the supremum of the welfare-loss 

ratios over all problem instances in the class15:

ρ(I) � sup
I∈I

ρ(I). (5)

In particular, we are interested in the worst-case welfare-loss ratio for the class of problem instances IE,S
MIQ ⊂ I

E,S with E
effort levels and S outcome levels satisfying assumptions MLRP, IMCP and QCSW.

It is worth noting that, without limited liability, moral hazard does not affect the efficiency of the optimal contract. 
That is, if the principal and the agent are risk-neutral and there is no limited-liability constraint, the minimum expected 
payment ze incurred by the principal when inducing a implementable effort level e is ce (see, e.g., Laffont and Martimort, 
2001, p. 154). Thus, without the constraint (LL), the principal implements the socially-optimal effort level and he fully 
captures all social surplus, leaving no rent to the agent. As a consequence, the worst-case welfare-loss ratio is 1.

In the monopsonist interpretation of our model the first-best coincides with the competitive equilibrium case where the 
principal-monopsonist acts as if he is price taking, and he determines the optimal effort level by equating the marginal 
revenue product MRPe to the marginal cost of the output me . Therefore the welfare-loss ratio ρ(I) of a problem instance I
gives the loss of efficiency of the monopsonized industry relative to the competitive industry.

3.2. The main result

Situations with high inefficiency may arise under our assumptions when the socially-optimal effort level is high, but the 
optimal choice for the principal is to induce a low effort level. In view of Corollary 1, inducing a high effort level is costly 
for the principal because the agent’s limited-liability rent increases, so the agent’s payment must increase at a higher rate 
than the agent’s cost. As a result the principal may find it optimal to induce a low effort level because the net social gain 
of increasing the expected output is smaller than the rent to the agent when inducing the high effort level.

We bound the welfare-loss ratio when the effort level is chosen from a discrete set that takes E ≥ 2 possible values, and 
give a bound on the welfare-loss ratio that involves the sum of the relative marginal returns to effort given by

RMREe �
π S

e − π S
e−1

π S
e

,

for effort levels 1 < e ≤ E . A salient feature of this bound, called RMRE from now on, is that it provides some structural 
insights into problem instances with high welfare loss. Additionally, we show that welfare-loss ratio is bounded from above 
by 1 + ln

(
π S

E /π S
1

)
, which depends on the probabilities of the lowest and highest effort levels, but not on the total number 

of effort levels. An advantage of this last bound is that, in some problem instances, it may achieve a well-behaved limit 
as we increase the number of effort levels. Overall, the next result is appealing because it provides upper bounds on the 
inefficiency that only depend on the basic parameters of the problem instance at hand, without having to compute first or 
second-best contracts.16

Theorem 1. Let I = (π , y, c) ∈ I
E,S
MIQ be an instance of the problem satisfying assumptions MLRP, IMCP and QCSW. Then, the welfare-

loss ratio is bounded from above by

15 While the worst-case inefficiency corresponding to a family of problem instances ρ(I) has been dubbed the ‘price of anarchy,’ the computer science 
literature refers to the welfare-loss ratio ρ(I) corresponding to a problem instance I ∈ I

E,S shown in (4) by the ‘coordination ratio.’ Further, note that the 
price of anarchy for a maximization problem such as the one we work with in this article is often defined as the inverse of the ratio in (5). We define the 
ratio in this way so ratios and welfare losses point in the same direction. Other definitions such as the relative gap between the first-best and second-best 
solutions are possible, but we keep the standard one for consistency.
16 In Section B.1 of Supplementary Material we provide a similar bound in terms of the agent’s personal cost.
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ρ(I) ≤ 1 +
E∑

e=2

π S
e − π S

e−1

π S
e

≤ 1 + ln
π S

E

π S
1

.

The message of Theorem 1 is that the welfare loss cannot be arbitrarily large, because when the social inefficiency at 
the lowest effort level is arbitrarily large, the principal’s utility at the highest effort level cannot be smaller than his utility 
at the lowest effort level. To fix ideas let us consider the case of two effort levels. An unbounded welfare loss would imply 
that the social welfare of the high effort level is arbitrarily larger than that of the low effort level. Inefficiency is introduced 
if the principal still prefers to induce the lower effort, which implies that his utility derived for implementing the higher 
effort is even smaller. Because social welfare is the sum of the principal’s and agent’s utility, the latter implies that the 
agent is capturing all of the increase in social welfare at the high effort level, which our result precludes. Indeed, we will 
later show that uP

e ≥ uSW
e − uSW

e−1, which implies that when the welfare loss of implementing the lower effort level (i.e., 
uSW

e − uSW
e−1) is large, the principal’s utility for the higher effort level (i.e., uP

e ) is large too, thus giving the principal an 
incentive to implement the higher (and efficient) effort level.

In order to provide some intuition for our main result we discuss the proof of the weaker result ρ(I) ≤ E , which follows 
from writing the RMRE bound as E −∑E

e=2 π S
e−1/π

S
e . First note that because the utility of the agent increases with his effort 

level (from Corollary 1), the principal has no incentive to implement any effort level higher than eSO = maxESO defined as 
the largest of the socially-optimal effort levels. We obtain the bound by lower bounding the social welfare under the optimal 
effort level for the principal, which we denote by e∗ .

Let e be any effort level bigger than e∗ , but no bigger than the welfare-maximizing effort level eSO. We first bound the 
principal’s utility in terms of the difference in social welfare as uP

e ≥ uSW
e − uSW

e−1. Since under the cost-minimizing contract 
implementing effort level e, the agent is indifferent between e and e − 1, we obtain that the agent’s utility is

uA
e = meπ

S
e − ce = meπ

S
e−1 − ce−1. (6)

Observe that the right-hand side is close to the welfare when effort e − 1 is implemented. We know that the marginal cost 
is bounded from above by the marginal revenue product, that is,

me ≤ MRPe. (7)

This holds because uSW
e−1 ≤ uSW

e since e < eSO and uSW
e is quasi-concave from QCSW. Denoting the principal-monopsonist 

average revenue product by ARPe � π ey/π S
e , remarkably MLRP implies that

MRPe ≤ ARPe−1. (8)

In other words, the marginal revenue product when effort e is exerted is lower than the average revenue product when 
effort e − 1 is chosen. To see this, first note that ARPe is decreasing in the effort level, that is,

ARPe = π e

π S
e

y ≤ π e−1

π S
e−1

y = ARPe−1,

because MLRP implies that π s
e /π S

e ≤ π s
e−1/π

S
e−1 for any outcome s ≤ S and y ≥ 0. Therefore the marginal revenue product 

satisfies

MRPe = π S
e ARPe − π S

e−1ARPe−1

π S
e − π S

e−1

≤ ARPe−1
π S

e − π S
e−1

π S
e − π S

e−1

= ARPe−1,

as claimed. Combining equations (6), (7), and (8) it follows that

uA
e ≤ ARPe−1π

S
e−1 − ce−1 = π e−1y − ce−1 = uSW

e−1.

That is, the agent’s welfare from effort level e is bounded by the social welfare from e − 1. Because uSW
e = uP

e + uA
e from 

quasilinearity we obtain

uP
e = uSW

e − uA
e ≥ uSW

e − uSW
e−1, (9)

as we claimed.
The social welfare of the second-best effort level can be bounded from below by the difference in social welfare between 

effort levels e and e − 1 as follows

uSW
e∗ ≥ uP

e∗ ≥ uP
e ≥ uSW

e − uSW
e−1,

where we used the facts that social welfare is at least the principal’s utility, effort level e∗ is optimal for the principal and 
inequality (9). Rearranging and then adding over e = e∗ + 1, . . . , eSO results in the following
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uSO − uSW
e∗ ≤ (eSO − e∗)uSW

e∗ ,

which implies that ρ(I) ≤ E as we claimed.
This derivation makes it clear that the result hinges on (i) the optimal contract implementing effort level e leaves the 

agent indifferent between e and e − 1; (ii) me ≤ MRPe since social welfare is increasing in e for all e ≤ eSO; (iii) the fact 
that MRPe ≤ ARPe−1, that is, the marginal revenue product of effort e is lower than the average revenue product of effort 
e − 1; and (iv) the fact that the principal prefers e∗ to any e > e∗ so that the second-best social welfare uSW

e∗ is at least the 
principal utility at e. The RMRE bound on the statement of the theorem follows similarly by replacing inequality (7) by the 
equality me = MRPe − (uSW

e − uSW
e−1)π

S
e /RMREe .

We finish this section by discussing the welfare loss in terms of the monopsony interpretation of the model. Theorem 1
shows that the welfare-loss ratio of the monopsony relative to the competitive market is at most 1 + ln(π S

E /π S
1 ), that is, 

the welfare-loss ratio is bounded from above by the ratio of the highest possible output in market S to the lowest possible 
output in the same market. Thus the bound on the welfare-loss ratio depends on the sensitivity to the input level of the 
output in the market with highest gross revenue.

3.3. Instances with worst-case welfare loss

In remainder of this section we discuss the tightness of the bounds on the welfare-loss ratio in terms of the number of 
effort levels and in terms of the likelihood ratio of the highest outcome.

The previous derivation shows that the welfare-loss ratio for any problem instance I ∈ I
E,S
MIQ satisfies ρ(I) ≤ E . The RMRE 

bound in Theorem 1 provides some insight into the structure of the worst-case instance of the problem. For the bound 
to be close to the number of effort levels, the RMRE should be as large as possible, which suggests that the likelihood of 
the highest outcome should increase at a geometric rate with the effort level and the likelihood ratio π S

E /π S
1 should grow 

unbounded. In Appendix A.7 we provide a family of problem instances with a fixed number of effort levels E exhibiting 
these properties, whose welfare-loss ratio is arbitrarily close to the upper bound E . This implies that the latter bound is 
tight, and the worst-case welfare-loss ratio is ρ(I

E,S
MIQ ) = E .

For a fixed number of effort levels the bound on the welfare-loss given by 1 + ln
(
π S

E /π S
1

)
is not tight in general, except 

in the trivial case when the welfare-loss ratio is one. However, if we are allowed to increase the number of effort levels 
arbitrarily, while holding fixed the likelihood ratio r = π S

E /π S
1 , then it is possible to construct problem instances whose 

welfare-loss ratio converges to 1 + ln(r) as the number of effort levels grows to infinity. In particular, consider the class 
of problem instances with an arbitrary number of efforts levels and likelihood ratio bounded from above by r ≥ 1, as 
given by Ir,S

MIQ = ⋃
E≥2

{
I ∈ I

E,S
MIQ : π S

E /π S
1 ≤ r

}
. Appendix A.8 shows that the worst-case welfare-loss ratio of this class is 

ρ(I
r,S
MIQ ) = 1 + ln(r).

4. Extensions

In this section we look at different extensions of our results, which illustrate the flexibility of our approach. First, we 
establish that the worst-case welfare-loss ratio does not change if we restrict the contracts to be linear. The motivation to 
look at this class of contracts arises from their prevalence in practice. Then, we show how our bounds can be tightened if the 
agent has to work on many identical tasks with two effort levels each. In Supplementary Appendix B.2 we show that in the 
case of two outcomes our bounds hold under weaker assumptions. Finally, in the extended version of the current paper we 
establish that our results generalize to arbitrary (potentially negative) costs for effort, to the case when the outside option 
has nonzero utility, and to more general limited-liability constraints, for which we can provide a more refined parametric 
bound that captures the dependence between the inefficiency of a contract and the lower bound on payments (Balmaceda 
et al., 2012).

4.1. Linear contracts

Linear contracts are simple to analyze and implement, are observed in many real-world settings, and have an appealing 
property, which is to create uniform incentives in the following sense. Think of y as aggregate output over a given period 
of time (say a year), and think of the agent taking several actions during this period (say one per day). In this setting, a 
non-linear contract may create unintended incentives over the course of the year, depending on how the agent has done so 
far. For instance, suppose the contract pays a bonus if the output exceeds a given target level. Given this contract, once the 
agent reaches the target, he will stop working. He will also stop working if he is far from reaching the target in a date close 
to the end of the year. Neither of these two things will occur when the agent faces a linear incentive contract.17

17 A growing body of empirical evidence is consistent with the prediction that non-linear contracts create history-dependent incentives: see Healy (1985)
on bonus plans with ceilings and floors, Asch (1990) and Oyer (1998) on bonuses tied to quotas, and Brown et al. (1996) and Chevalier and Ellison
(1999) on how the convex relationship between mutual fund performance and assets under management caused risk-taking portfolio choices by ostensibly 
conservative funds. For a nice theoretical discussion about this point see Holmström and Milgrom (1987).
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However, focusing on linear contracts is not free of problems. Mirrlees (1999) showed that the best linear contract, 
w = a + by, is worse than various non-linear contracts. Why, then, are linear contracts so common in practice? A principal 
could pay a large premium for “simplicity” if he adopts a linear contract in settings where nonlinear contracts are optimal. 
A partial explanation arises by comparing the welfare loss when the principal attempts to motivate a risk-neutral worker 
subject to limited liability with a linear contract rather than an unrestricted contract. Naturally, this does not fully answer 
the question since this would necessitate a tight bound on the principal’s profit loss. A plausible explanation of why firms 
do not deviate from linear contracts may be the fact that non-linear contracts are expensive to manage, lend themselves to 
gaming, and the ensuing worst-case bound is the same as that when the optimal nonlinear contract is used. In addition, 
linear contracts, when the outcome space is continuous, avoid the implausible feature that the contract considered here will 
pay an infinite bonus when the highest outcome is realized, which is a measure-zero event.

A linear contract is characterized by two parameters, an intercept a and a slope b, such that the wage at state s ∈ S is 
given by ws = a + bys . The parameters of the contracts are not restricted in any way other than by the limited-liability con-
straint. Given an instance of the problem I ∈ I

E,S we denote by ρL(I) the welfare-loss ratio when the principal implements 
the optimal linear contract. The next result bounds the welfare-loss ratio under linear contracts under assumptions FOSD
and IMPL, where IMPL requires that all effort levels e ∈ E are implementable by the principal via a linear contract.

Theorem 2. Let I = (π , y, c) ∈ I
E,S
FIL be an instance of the problem restricted to linear contracts satisfying assumptions FOSD and IMPL . 

Then, denoting the vector of all ones by 1, the welfare-loss ratio satisfies

ρL(I) ≤ 1 +
E∑

e=2

(π e − π e−1)(y − y11)

π e(y − y11)
.

The bound on the welfare-loss ratio when restricted to linear contracts is similar to the RMRE bound of Theorem 1. 
However, since contracts are linear in the output, the relative marginal returns to efforts are a function of the expected 
normalized output π e(y − y11) instead of the probability of the highest outcome π S

e . In the two-outcome case (S = 2) 
these bounds are equivalent because y − y11 = (0, y2 − y1), as expected since linearity imposes no restriction in the space 
of contracts. The proof of Theorem 2 proceeds by exploiting the fact that an instance of the problem I ∈ I

E,S restricted to 
linear contracts with an arbitrary number of outcomes and effort levels can be reduced to an unrestricted problem Ĩ ∈ I

E,2

with the same number of effort levels but only two outcomes (one for each parameter). As a result we show that the 
welfare-loss ratio when restricted to linear contracts is equal to the unrestricted welfare-loss ratio of the reduced instance 
of the problem, or equivalently ρL(I) = ρ( Ĩ).18

Next, we characterize the worst-case welfare-loss ratio when restricted to linear contracts of the class of instances 
I

E,S
FIL ⊂ I

E,S with E effort levels and S outcome levels satisfying assumptions FOSD and IMPL. The previous theorem yields 
that ρ L(I

E,S
FIL ) ≤ E . When the original problem has two outcomes there is a one-to-one correspondence between any wage 

schedule and the two parameters of the linear contract.19 As a result we obtain that the worst-case welfare-loss ratio 
restricted to linear contracts is ρ L(I

E,S
FIL ) = E , as before.

Recall that in Section 3, we proved bounds for the welfare-loss ratio under non-linear contracts. Combining those bounds 
with Theorem 2, we have that the worst-case welfare-loss ratio under linear contracts coincides with that for the general 
case. Therefore, our results suggest that with respect to the worst-case scenario, restricting attention to linear contracts 
does not generate more inefficiency from a social point of view. Our results, however, do not shed light on whether, for a 
fixed instance of the problem I , the unrestricted welfare-loss ratio ρ(I) and the welfare-loss ratio when restricted to linear 
contracts ρL(I) coincide or not.

To put our bounds in perspective we conclude by comparing the unrestricted RMRE bound of Theorem 1 with that 
parametric bound restricted to linear contracts of Theorem 2. Let the relative marginal return to effort for linear contracts 
be defined as

RMREL
e � (π e − π e−1)(y − y11)

π e(y − y11)
,

for effort levels 1 < e ≤ E . If we strengthen FOSD to MLRP we can show that RMREL
e ≤ RMREe for effort levels e > 1, and 

thus the same RMRE bound of Theorem 1 applies in the case of linear contracts.20

18 In view of the result in the Section B.2 of Supplementary Material for instances of the problem with two outcomes, we only need IMP and FOSD for 
our results to hold, which, as we show, translate to the reduced instance of the problem. Assumption IMP is formally defined in Supplementary §B.2 and 
requires that all effort levels are implementable by the principal when he is not restricted to linear contracts. Alternatively, we could require that IMCP
holds for the reduced instance of the problem instead of IMP, however, we believe that our assumption on the implementability of the effort levels is more 
natural for this setting.
19 The instance of the problem in the Supplementary Material Section B.2 applies and the bound for welfare-loss ratio is tight.
20 Letting y′ = y − y11, the condition RMREL

e ≤ RMREe can be written after some algebra as (π S
e π e−1 −π S

e−1π e)y′ ≥ 0, which follows because y′ ≥ 0 from 
outputs being increasing, and π S

e π e−1 ≥ π S
e−1π e from MLRP.



148 F. Balmaceda et al. / Games and Economic Behavior 95 (2016) 137–155
4.2. Multiple tasks

Often principal–agent relationships require that the agent performs different tasks, each endowed with different actions. 
In this section, we consider a principal–agent relationship with multiple tasks, adopting a model proposed by Laux (2001). 
The principal is endowed with N identical and stochastically independent tasks. Each task has two possible outcomes: 
success or failure. The corresponding payoffs for the principal are y if the task is successful, and y in the case of failure, 
with y > y. For each task, the agent can exert two effort levels: either high or low. The high effort level entails a cost ch
for the agent, while the cost of the low effort level is cl . Since a higher effort level demands more work, ch > cl . Finally, we 
denote by ph the probability of success when the effort level is high, and by pl the probability of success when the effort 
level is low. We assume that FOSD holds for each task, which means that ph > pl (the higher the effort level, the greater 
the likelihood of success).

The principal hires an agent to perform the N tasks. Since tasks are identical, the principal offers a compensation that 
depends only on the number of tasks that end up being successful, denoted by s ∈ S = {0, . . . , N}; the identity of each task 
is irrelevant. Hence, the agent is paid a wage ws when s tasks turn out to be successful. The total revenue for the principal 
is thus ys = sy + (N − s)y for s ∈ S . In view of the tasks’ symmetric nature, the agent is indifferent between tasks and he 
is only concerned about the total number of tasks in which he exerts high effort level. We define the aggregated effort level
e ∈ E = {0, . . . , N} as the number of tasks in which the agent works hard. Notice that, for notational simplicity, we adopt 
indices that start at zero for both effort levels and states. We assume that costs are additive, and linear in the number of 
tasks. Hence, the aggregate costs for the agent are ce = ech + (N − e)cl for e ∈ E . Finally, note that the probability of having 
s successful tasks, given that the agent works hard on e tasks, is given by

π s
e =

s∑
i=0

(
e

i

)
pi

h(1 − ph)
e−i

(
N − e

s − i

)
ps−i

l (1 − pl)
N−e−s+i,

where we let 
(n

k

) = 0 if k > n for notational simplicity.
This model can be fully reduced to a principal–agent model with a single task, N + 1 states and N + 1 effort levels. 

To map the multiple-task model into the model of Section 2 we show that the aggregate instance of the problem satisfies
MLRP, which implies that the larger the observed number of successful tasks, the more likely it is that the agent works 
hard in many tasks.

Lemma 1. Assume that FOSD holds for each of the identical tasks, that is, ph > pl. When the principal hires one agent to perform N of 
these independent tasks, the probability distribution of the outcome satisfies MLRP for the aggregated problem.

Assumption IMCP does not hold in this setting since the ratios me are non-increasing with the aggregate effort level. 
Laux (2001) shows that when the agent exerts the high effort level in all tasks (aggregate effort level N), the only binding 
constraint is the one that corresponds to choosing a low effort level for the N tasks (aggregate effort level 0). As a result, 
in equilibrium the principal induces either the lowest or highest aggregate effort level. Using this characterization of the 
optimal payments we can show that 2 is a tight bound for the welfare-loss ratio, regardless of the number of tasks. Note 
that assumption QCSW is always guaranteed to hold since social welfare is linear in the number of tasks for which the 
agent exerts a high effort level.

Theorem 3. Assume that FOSD holds for each of the identical tasks, that is, ph > pl . In the principal–agent problem in which both play-
ers are risk-neutral and there are N identical and independent tasks, the welfare-loss ratio is bounded from above by 2 − (pl/ph)N < 2.

5. Conclusions

This paper quantifies the welfare loss that arises from the principal’s inability to observe the agent’s effort level when 
there is limited liability. We have provided a simple parametric bound on the welfare-loss ratio involving the probabilities 
of the highest possible outcome. This bound leverages the structure of the optimal contract that pays a bonus only when 
the highest outcome is observed. The general structure of the bounds found in this paper suggests that the welfare loss in 
a principal–agent relationship depends on the set of effort levels available to an agent as well as the likelihood ratio of the 
probability that the highest outcome occurs when the highest versus the lowest effort level is considered. Furthermore, the 
paper provides an interpretation of the principal–agent model with limited liability as a monopsony model, which reduces 
the problem of determining the optimal contract to a standard intermediate microeconomics analysis. In this setting our 
results bound the efficiency loss of the competitive industry relative to the monopsonized industry, independently of the 
equilibrium input traded in the competitive and monopsonist markets.

The principal–agent model in its different forms has been used to explain many contractual arrangements such as sharing 
contracts, insurance contracts, managerial contracts, political relationships, etc. In addition, it has been used to provide an 
economic theory of the firm and a theory of organizational forms. Our results show that in these cases and in many others, 
the existence of an agency relationship with moral hazard may have nontrivial consequences in terms of welfare loss and 
thus the proper design of contracts and organizations to deal with moral hazard is of great practical importance.
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Nonetheless, in spite of the relevance of our results, they open more questions than they answer. The most ambitious 
question is to quantify the welfare loss for each plausible instance of the problem with more general cost functions, moni-
toring technologies and utility functions. A feasible step in this direction is to consider a risk-averse agent. In this case the 
optimal contract is highly nonlinear, and thus its characterization in terms of the main parameters is a complex task. There 
is an exception to this, which is given by the linear agency model by Holmström and Milgrom (1987), which could be used 
as the starting point to investigate the question at hand. Another potential extension involves considering monotonicity 
constraints as done in the literature on optimal financial contracts with moral hazard. Monotonicity of the contract and of 
the principal’s payoff with respect to the outcome leads to more reasonable threshold contracts, at the expense of a more 
complex analysis.

Appendix A. Proofs

A.1. Proof of Proposition 1

First, we prove the following lemma, which is rather straightforward but a necessary building block to prove Proposi-
tion 1.

Lemma 2. Assume that IMCP holds, and let me, f = (ce − c f )/(π
S
e − π S

f ) with the convention that c0 = π S
0 = 0 (so that me,0 =

ce/π
S
e ). Then, for all e ∈ E :

(i) me ≥ me, f , for all f = 0, . . . , e − 1;
(ii) me ≤ m f ,e , for all f = e + 1, . . . , E.

Proof. For item (i) note from IMCP we have that mg,g−1 ≤ me,e−1 for all g ≤ e, which implies that (cg − cg−1)(π
S
e −π S

e−1) ≤
(ce − ce−1)(π

S
g − π S

g−1) because costs and the probabilities of the highest outcome are non-decreasing with respect to the 
effort level. Adding over g = f + 1, . . . , e and collecting terms we obtain that (ce − c f )(π

S
e − π S

e−1) ≤ (ce − ce−1)(π
S
e − π S

f ), 
and the result follows.

For item (ii) we proceed similarly and get from IMCP that (cg − cg−1)(π
S
e − π S

e−1) ≥ (ce − ce−1)(π
S
g − π S

g−1) for g > e. 
Adding over g = e + 1, . . . , f and collecting terms we obtain that (c f − ce)(π

S
e − π S

e−1) ≥ (ce − ce−1)(π
S
f − π S

e ), and the 
result follows. �

With the lemma in hand, we are now ready to prove the proposition.

Proof. The proof proceeds by relaxing the principal’s problem for effort level e to include only the IC constraint for effort 
levels lower than e, and then showing that the optimal solution of the relaxed problem is feasible for the original problem. 
The relaxed problem is21:

min
w∈RS

π ew

s.t. π ew − ce ≥ 0,

π ew − ce ≥ π f w − c f , ∀ f < e,

w ≥ 0.

We claim that MLRP implies that there exists an optimal solution for the relaxed problem in which all contractual 
payments can be focused on the highest outcome, with payments of zero for all other outcomes. Suppose that there exists 
an optimal contract w0 with positive payments for some outcome t < S , and consider the new contract w1 that pays 
w S

1 = w S
0 + δ

π S
e

, wt
1 = wt

0 − δ

π t
e

, and ws
1 = ws

0 for all s 
= {t, S}. The principal’s cost of implementing this new contract is 
π ew1 = π ew0, and thus he is indifferent between these two. The IR constraint for w1 follows directly from the IR constraint 
of w0. The difference between contract w1 and w0, in terms of the incentives provided to the agent to choose effort level e
over effort level f < e is

(π ew1 − π f w1) − (π ew0 − π f w0) = π f (w0 − w1) =
(

π t
f

π t
e

− π S
f

π S
e

)
δ,

21 Similar relaxations have been considered in the literature. In the continuous case, for example, Rogerson (1985) relaxes the IC constraints to require 
that the agent chooses an action at which his utility is at a stationary point.
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since π ew1 = π ew0. The expression in parenthesis is positive because of MLRP. Hence, the new contract also satisfies the 
relaxed incentive constraint for δ ≥ 0. By picking δ = wt

0π
t
e we can make the payment in state t equal to zero. Repeating 

the process for all states t < S with positive payments we prove the claim.
Using the fact that ws = 0 for s < S , the IC constraints become w S ≥ me, f for f < e. From item (i) in Lemma 2 we 

can simplify the IC constraints to w S ≥ me since all other constraints are redundant. This also gives the IR constraint. The 
optimal payment for the relaxed problem is the smallest possible value of w S , which is given by w S = me . Feasibility of the 
relaxed solution for the original problem follows from checking that the IC constraints for effort levels f > e hold, which 
follows from item (ii) in Lemma 2 and FOSD. �
A.2. Proof of Corollary 1

Proof. In order to implement e + 1, the principal must offer the contract w S
e+1 = me+1 to the agent. Incentive compatibility 

implies that the agent prefers effort level e + 1 to e under w S
e+1. As a result we obtain:

uA
e+1 = π S

e+1me+1 − ce+1 ≥ π S
e me+1 − ce ≥ π S

e me − ce = uA
e ,

where the last inequality follows from IMCP and the last equality because w S
e = me is the optimal contract for effort 

level e. �
A.3. Proof of Theorem 1

Proof. In order to prove the result we first show that the principal has no incentive to implement an effort level higher than 
eSO = maxESO, defined as the largest of the socially-optimal effort levels. Then we obtain the bound by lower bounding the 
social welfare under the optimal effort level for the principal, which we denote by e∗ . We conclude by proving the logarithm 
bound for RMRE.

Step 1. Because the utility of the agent increases with his effort level, the principal has no incentive to implement any effort 
level higher than eSO. Indeed, for f > eSO, Corollary 1 together with the fact that eSO is the largest socially-optimal effort 
level imply that

uP
eSO − uP

f = uSO − uSW
f + uA

f − uA
eSO > 0.

Hence, effort levels larger than eSO provide a suboptimal utility to the principal, and can be disregarded.

Step 2. Note that if e∗ = eSO then the welfare-loss ratio is one and the bound trivially holds. In the remainder of the proof 
we shall consider the case where e∗ < eSO. Consider an effort level e such that e∗ < e ≤ eSO. The fact that the social welfare 
is at least the principal’s utility, and Proposition 1 (because e > 1) imply that

uSW
e∗ ≥ uP

e∗ ≥ uP
e = π ey − ze = π ey − π S

e
ce − ce−1

π S
e − π S

e−1

. (A.1)

We now use the fact that ce − ce−1 = π ey − π e−1y − uSW
e + uSW

e−1 and obtain that the last expression is equivalent to

π e−1π
S
e − π eπ

S
e−1

π S
e − π S

e−1

y + uSW
e − uSW

e−1

π S
e − π S

e−1

π S
e ≥ π S

e

π S
e − π S

e−1

(
uSW

e − uSW
e−1

)
, (A.2)

where the inequality follows from MLRP because π e−1π
S
e ≥ π eπ

S
e−1. Combining the inequalities in (A.1) and (A.2) implies 

that (π S
e − π S

e−1)/π
S
e ≥ (uSW

e − uSW
e−1)/uSW

e∗ . Summing over the effort levels e = e∗ + 1, . . . , eSO and rearranging terms we get 
that

uSW
eSO

uSW
e∗

≤ 1 +
eSO∑

e=e∗+1

π S
e − π S

e−1

π S
e

≤ 1 +
E∑

e=2

π S
e − π S

e−1

π S
e

,

where the second inequality follows from including all effort levels greater than one in the sum, and using the fact that the 
probabilities π S

e are increasing with the effort level.

Step 3. Finally, using the fact that ln(x) ≤ x − 1 for all x ≥ 0, we can bound each term of the RMRE bound by − ln
(
π S

e−1/π
S
e

)
, 

which yields

1 +
E∑

e=2

π S
e − π S

e−1

π S
e

≤ 1 −
E∑

e=2

ln

(
π S

e−1

π S
e

)
= 1 + ln

(
π S

E

π S
1

)
. �
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A.4. Proof of Theorem 2

Proof. We prove the result in four steps. First, we take a principal–agent problem I = (π , y, c) ∈ I
E,S restricted to linear 

contracts with E effort levels and S outcomes, and construct an unrestricted reduced problem Ĩ = (π̃ , ̃y, c) ∈ I
E,2 with E

effort levels and 2 outcomes. Second, we show that for each effort level e ∈ E the linear program MPLPL
e for instance of the 

problem I restricted to linear contracts is equivalent to the linear program MPLPe for the reduced instance of the problem Ĩ . 
Third, we show that the reduced instance of the problem Ĩ satisfies assumptions FOSD and IMP, and ỹ is non-negative. 
Assumption IMP is formally defined in Supplementary §B.2 and requires that all effort levels are implementable by the 
principal when he is not restricted to linear contracts. Finally, we conclude by showing that the bound holds because 
assumptions FOSD and IMP are sufficient when there are 2 outcomes (see Supplementary §B.2).

Step 1. In showing the reduction, we write the contracts in terms of wage at the lowest outcome d = a + by1, and consider 
the wages ws = d + b(ys − y1). This is valid because there are no constraints on the slope and intercept of the linear 
contract. Then the reduced instance of the problem is given by

ỹ � (y1,1),

π̃ e � (1,π ey − y1), ∀e ∈ E,

and additionally we refer to the reduced wage schedule as w̃ � (d, b). The first entry in the reduced wage vector w̃ repre-
sents the wage at the lowest outcome while the second represents the slope of the linear contract. The expected payment 
under effort level e ∈ E is π ew = d + b(π ey − y1) = π̃ ew̃, and the expected output satisfies π ey = π̃ e ỹ, as expected.

Notice that the reduced vectors π̃ e for e ∈ E no longer sum up to one, and thus are not probability distributions. 
Surprisingly, this will not be important for our results. Notice that the reduced output may not be increasing, but again our 
results will hold in this case too. By interpreting the entries of the reduced vectors above as two outcomes, we show that 
the original problem and the reduced problem are equivalent.

Step 2. Fix an effort level e ∈ E . For the second point, under linear contracts, the original minimum payment linear program 
corresponding to effort level e, MPLPL

e can be written as

ze = min
a,b

a + bπ ey

s.t. a + bπ ey − ce ≥ 0 (A.3a)

bπ ey − ce ≥ bπ f y − c f ∀ f ∈ E \ e (A.3b)

a + bys ≥ 0 ∀s ∈ S. (A.3c)

We first show that given a feasible solution (a, b) of MPLPL
e , then the reduced solution w̃ = (d, b) with d = a + by1

is feasible for MPLPe of the reduced instance of the problem Ĩ and achieves the same objective. We have seen in step 1 
that the objective is preserved by the reduction. The original individual rationality constraint (A.3a) can now be written as 
π̃ ew̃ ≥ ce , while the original incentive compatibility constraints (A.3b) can be written as π̃ ew̃− ce ≥ π̃ f w̃− c f for any effort 
level f 
= e. For outcome s = 1 the original limited-liability constraint (A.3c) implies that d ≥ 0. For an effort level e > 1 we 
have by the incentive compatibility constraint (A.3b) with effort level f < e that b ≥ (ce − c f )/(π ey − π f y) ≥ 0, where the 
last inequality follows from FOSD. For the lowest effort level e = 1, one always has that d = c1 and b = 0 is an optimal 
solution. Hence, the constraint b ≥ 0 does not eliminate any optimal solution. This completes this direction of the reduction.

For the opposite direction, we need to show that given a feasible solution w̃ = (d, b) for MPLPe of the reduced instance 
of the problem Ĩ , the solution (a, b) with a = d − by1 is feasible for MPLPL

e and achieves the same objective. Notice that 
(A.3a) and (A.3b) follow directly from the reduced problem’s IR and IC constraints respectively. From the reduced problem’s 
LL we know that b ≥ 0 and d ≥ 0. Hence for all s ∈ S we have that a + bys ≥ a + by1 = d ≥ 0, because the outputs are 
non-decreasing. Thus, (A.3c) holds and the reduction is complete.

Step 3. First, we prove that π̃ satisfies FOSD. We require that π̃2
e ≤ π̃2

f for e ≤ f . This is equivalent to π ey ≤ π f y, which 
holds because the original distribution π e satisfies FOSD and the output is non-decreasing. A similar argument shows that 
π̃ e ≥ 0. Finally, the equivalence given in step 2 shows that an effort level e ∈ E is implementable in MPLPL

e for instance of 
the problem I if and only if it is implementable in MPLPe for the reduced instance of the problem Ĩ . This shows that the 
reduced instance of the problem Ĩ satisfies IMP.

Step 4. Finally, notice that in the proof of Theorem 4 in Section B.2 of the Supplementary Material we do not use the fact 
that ỹ is increasing, and the result still holds if π̃ e does not sum up to one. Thus all our results apply to the reduced 
problem. Putting everything together we obtain that
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ρL(I) = ρ( Ĩ) ≤ 1 +
E∑

e=2

π ey − π e−1y

π ey − y1
= 1 +

E∑
e=2

(π e − π e−1)(y − y11)

π e(y − y11)
,

where the first equality follows from the reduction in step 2, and the inequality follows from Theorem 4 in Section B.2 of 
the Supplementary Material. �
A.5. Proof of Lemma 1

Proof. Let {Xe}e∈E be a family of random variables, such that Xe is the random number of successes given that the agent 
works hard in e tasks. Then, Xe is the sum of e independent Bernoulli random variables with success probability ph , and 
N − e independent Bernoulli random variables with success probability pl . Denote by Y (p) a Bernoulli random variable with 
success probability p; i.e., P(Y (p) = 1) = p = 1 − P(Y (p) = 0). Hence, we may write Xe as

Xe =
e∑

f =1

Y f (ph) +
N∑

f =e+1

Y f (pl) =
N∑

f =1

Y f (p f (e)),

where the functions 
{

p f (e)
}

f ∈E equal ph if f ≤ e, pl otherwise. Notice that for all f ∈ E the functions p f (e) are non-
decreasing in e. Ghurye and Wallace (1959) or more recently Huynh (1994) show that given any number of independent 
Bernoulli random variables Y f with success probability p f (e) strictly between 0 and 1, and non-decreasing in e, then the 
sum 

∑
Y f satisfies the monotone likelihood-ratio property with respect to e. �

A.6. Proof of Theorem 3

Proof. First, Laux (2001) shows that in the case of multiple tasks the principal either implements the highest or the lowest 
aggregate effort levels. The minimum payments are given by z0 = Ncl for the lowest effort level, and

zN = max

(
Nch, NpN

h
ch − cl

pN
h − pN

l

)

for the highest effort level. Note that Corollary 1 applies and the agent’s rent is non-decreasing with the effort level. Indeed, 
using cN = Nch and c0 = Ncl we obtain that zN − cN ≥ 0 = z0 − c0 as expected.

Second, we show that the social welfare is linear in the number of aggregated effort levels and thus satisfies the QCSW
assumption. Referring to the number of successes given that the agent works hard in e tasks by the random variable Xe , its 
expected number is E[Xe] = eph + (N − e)pl . One may write the social welfare as

uSW
e = πe y − ce = E[Xe y + (N − Xe)y] − che − cl(N − e)

= N
[

pl y + (1 − pl)y − cl

]
+ e

[
(ph − pl)(y − y) − (ch − cl)

]
,

which is linear in effort level e. The first term can be interpreted as the baseline social welfare when the agent exerts a 
low effort level in all tasks, while the second term can be interpreted as the marginal contribution to social welfare of each 
additional task for which the agent exerts high effort level.

Third, because social welfare is linear, the largest socially-optimal effort level is either eSO = 0 or eSO = N . The principal 
has no incentive to implement any effort level higher than eSO, because the utility of the agent is non-decreasing with his 
effort level. In the case when eSO = 0 we conclude that the optimal effort level for the principal is e∗ = 0, the welfare-loss 
ratio is one, and the bound trivially holds. In the remainder of the proof we shall consider the case when eSO = N . If 
aggregate effort level N leaves no rent to the agent, or equivalently zN = cN , then it is optimal for the principal to induce 
the high effort level e∗ = N . Inefficiency is thus introduced when the principal induces the low effort level e∗ = 0, and 
zN = NpN

h (ch − cl)/(pN
h − pN

l ). In this case we apply the last steps of the proof of Theorem 1 to obtain inequalities (A.1) and 
(A.2), and conclude that the welfare-loss ratio is bounded above by

1 + pN
h − pN

l

pN
h

= 2 −
(

pl

ph

)N

< 2.

This bound is tight. �
A.7. Tightness of the bound in terms of the number of effort levels

In this section we present problem instances satisfying the given assumptions and whose welfare-loss ratios are arbi-
trarily close to the upper bound in terms of the number of effort levels. More formally, we will define a family of problem 
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instances Iδ ∈ I
E,2
MIQ with E > 1 effort levels and S = 2 outcomes parameterized by δ ∈ (0, 1) satisfying assumptions MLRP,

IMCP and QCSW that verify limδ→0 ρ(Iδ) = E .
The RMRE bound on Theorem 1 provides some insight on the structure of the worst-case instance of the problem. For 

the bound to be close to the number of effort levels it should be the case that RMRE should be as large as possible. Using 
the fact that the arithmetic mean dominates the geometric mean (AM–GM inequality) and canceling terms we obtain that 
the RMRE bound is bounded from above by

1 +
E∑

e=2

π S
e − π S

e−1

π S
e

= E − (E − 1)
( 1

E − 1

E∑
e=2

π S
e−1

π S
e

)
≤ E − (E − 1)

(
π S

E

π S
1

)− 1
E−1

.

Because the equality between geometric and arithmetic means holds when all terms are constant, we obtain that the worst 
case likelihood of the highest outcome should increase at a geometric rate. Additionally, for the bound in terms of the 
number of effort levels to be tight it needs to be the case that the likelihood ratio π S

E /π S
1 goes to infinity. In the remainder 

on this section we provide an instance of the problem exhibiting these properties.22

Fixing 0 < δ < 1, we let the probabilities of the outcomes associated to each effort level be π e = (
1 − δE−e, δE−e

)
for 

e ∈ E . Notice that the likelihood of the highest outcome increases at a geometric rate of δ−1. The probability distributions 
are such that effort level E guarantees a successful outcome with probability one, while the lower effort levels generate 
a failed outcome with high probability. Clearly, these distributions satisfy that π2

1 ≤ . . . ≤ π2
E , and thus they satisfy MLRP. 

(Recall that in the case of two outcomes MLRP and FOSD are equivalent.)
Let the output be y = (0, 1) so that the value of success is 1. To maximize the welfare loss, the worst-case instance 

should be such that the social optimal effort level is E , while the principal’s optimal effort level is 1. One then can treat the 
principal as monopsonist as explained in Section 2.4. This suggests looking at the analogue of the marginal factor cost; i.e.,

MFCe �
π S

e me − π S
e−1me−1

π S
e − π S

e−1

. (A.4)

In this notation the difference in utilities for the principal between two consecutive efforts levels is

uP
e − uP

e−1 = (π S
e − π S

e−1)(1 − MFCe).

Let the marginal factor costs for e = 2, . . . , E equal to MFCe = 1 + ε with ε > 0 to be determined later. This leads the 
principal to induce e∗ = 1 because uP

e < uP
e−1 from FOSD.

Using π S
e = δE−e and MFCe = 1 + ε in (A.4) yields the following recursive equation for the ratios of marginal cost to 

marginal probability of the highest outcome:

me = (1 − δ)(1 + ε) + δme−1. (A.5)

Assume that the cost of the lowest effort level is c1 = 0, so that m1 = c1/π
S
1 = 0. The recursive equation (A.5) gives

me = (1 − δe−1)(1 + ε). (A.6)

Note that we do not explicitly solve for the costs ce because we do not need them to compute the utility and social welfare. 
If desired, they could be easily derived from the recurrence equation (A.6) and the initial value c1 = 0.

Hence, IMCP holds because the ratio of marginal cost to marginal probability of the highest outcome is increasing with 
the effort level since δ < 1. Furthermore costs are increasing with the effort level because me = (ce − ce−1)/(π

S
e −π S

e−1) > 0. 
Finally, the increase in social welfare from effort level e − 1 to e is

uSW
e − uSW

e−1 = (π S
e − π S

e−1)(1 − me), (A.7)

where 1 − me is the social benefit over cost per unit increase in probability as the probability of the highest outcome S
is increased from π S

e−1 to π S
e . Because probabilities satisfy FOSD and me is increasing, it suffices to impose that mE < 1

to obtain that QCSW holds and the social optimal level is eSO = E . This condition can be equivalently written as ε <

δE−1/(1 − δE−1), which holds if we let ε = δE .
We next determine the social welfare at the first-best and second-best effort levels. The social welfare at e = 1 is equal 

to uSW
1 = π S

1 = δE−1. Using equation (A.6) in equation (A.7) we obtain that the difference in social welfare is uSW
e − uSW

e−1 =
(1 − δ)δE−1

(
1 + ε − εδ1−e

)
and the social welfare at e = E is

uSW
E = uSW

1 +
E∑

e=2

(
uSW

e − uSW
e−1

)
= (

1 + (E − 1)(1 − δ)(1 + ε)
)
δE−1 − ε(1 − δ)δE−1

E∑
e=2

δ1−e

= (
1 + (E − 1)(1 − δ)(1 + ε)

)
δE−1 − ε

(
1 − δE−1

)
.

22 We thank an anonymous referee for suggesting this argument.
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Thus, the welfare-loss ratio is given by

ρ(Iδ) = uSW
E

uSW
1

= 1 + (E − 1)(1 − δ)(1 + ε) − ε

δE−1

(
1 − δE−1

)
(A.8)

= 1 + (E − 1)(1 − δ)(1 + δE) − δ
(

1 − δE−1
)

,

where the second equation follows from ε = δE . As a result limδ→0+ ρ(Iδ) = E since the second term converges to E − 1
and the third term converges to zero. Therefore, the upper bound in terms of the number of effort levels is tight because 
we found a series of problem instances converging to a matching upper bound.

A.8. Tightness of the log bound

In this section we consider a family of problem instances I E with likelihood ratio π S
E /π S

1 equal to r > 1 whose welfare-
loss ratio converges to 1 + ln(r) as the number of effort levels grows to infinity. More formally, we will define a family of 
problem instances I E ∈ I

r,2
MIQ with E > 1 effort levels and S = 2 outcomes satisfying assumptions MLRP, IMCP and QCSW

that verify limE→∞ ρ(I E ) = 1 + ln(r).
Consider the same family of instances from Section A.7 with δ = r−1/(E−1) so that the likelihood ratio of the highest 

outcome between the highest and lowest effort levels is given by

π S
E

π S
1

= 1

δE−1
= r.

Clearly we have δ ∈ (0, 1) because r > 1. Letting ε = δE−1/E = 1/(rE) we obtain from Section A.7 that the assumptions
MLRP, IMCP and QCSW hold (because 0 < ε < δE−1/(1 − δE−1)); the optimal effort level for the principal is e∗ = 1; and 
the socially optimal effort level is eSO = E . Thus, using our expressions for δ and ε in equation (A.8) we obtain that the 
welfare-loss ratio is

ρ(I E) = 1 + (E − 1)
(

1 − r−1/(E−1)
)(

1 + 1

rE

)
− 1

E

r − 1

r
,

which converges to 1 + ln(r) as E → ∞ because limn→∞ n 
(
1 − n

√
1/r

) = ln(r). The limit follows from L’Hôspital’s Rule, taking 
the derivative of the function r−x .

Appendix B. Supplementary material

Supplementary material related to this article can be found online at http://dx.doi.org/10.1016/j.geb.2015.10.008.
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