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Abstract. We study a prize-collecting version of the uncapacitated facility location problem
and of the p-median problem. We say that the uncapacitated facility location polytope has the
intersection property if adding the extra equation that fixes the number of opened facilities does
not create any fractional extreme point. We characterize the graphs for which this polytope has the
intersection property and give a complete description of the polytope for this class of graphs. This
characterization yields a polynomial time cutting plane algorithm for these graphs. We also give a
combinatorial polynomial time algorithm to solve the different variants of the p-median and facility
location problems studied in this paper.
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1. Introduction. The uncapacitated facility location problem (UFLP) and the
p-median problem (pMP) are among the most studied problems in combinatorial op-
timization. Here we deal with a prize-collecting version of them that we denote by
UFLP′ and pMP′, respectively. We assume that G = (U ∪V,A) is a bipartite directed
graph, not necessarily connected and with no isolated nodes. The arcs are directed
from U to V . The nodes in U are called customers, and the nodes in V are called
locations. Each location v has a weight f(v) that corresponds to the revenue obtained
by opening a facility at that location, minus the cost of building this facility. Each
arc (u, v) has a weight c(u, v) that represents the revenue obtained by assigning the
customer u to the opened facility at location v, minus the cost originated by this
assignment. The difference between the UFLP and the UFLP′ is that in the first
problem each customer must be assigned to an opened facility, whereas in the second
problem a customer could be not assigned to any facility. If the number of opened
facilities is required to be exactly p, we have the pMP and pMP′, respectively.

An integer programming formulation of the UFLP′ is

max
∑

(u,v)∈A

c(u, v)x(u, v) +
∑

v∈V

f(v)y(v)(1)

∑

v:(u,v)∈A

x(u, v) ≤ 1 ∀u ∈ U,(2)

x(u, v) ≤ y(v) ∀(u, v) ∈ A,(3)

y(v) ≤ 1 ∀v ∈ V,(4)

x(u, v) ≥ 0 ∀(u, v) ∈ A,(5)
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y(v) ∈ {0, 1} ∀v ∈ V,(6)

x(u, v) ∈ {0, 1} ∀(u, v) ∈ A.(7)

If inequalities (2) are set to equations, then we have a formulation of the UFLP.
If we add the equation

(8)
∑

v∈V

y(v) = p

to (1)–(7), we have a formulation of the pMP′, and if inequalities (2) are set to
equations, we have the pMP.

For a given bipartite graph G = (U ∪ V,A), let UFLP ′(G) be the convex hull
of the solutions of (2)–(7) and pMP ′(G) be the convex hull of the solutions of (2)–
(8). Analogously we can define the polytopes UFLP (G) and pMP (G). Notice that
UFLP (G) is a face of UFLP ′(G), and pMP (G) is a face of pMP ′(G). Thus a char-
acterization of pMP ′(G) and UFLP ′(G) yields to a characterization of pMP (G) and
UFLP (G). We denote by P (G) the linear relaxation of UFLP ′(G) defined by (2)–(5)
and by Pp(G) the linear relaxation of pMP ′(G) defined by (2)–(5) and (8).

Let F be the graph with node set {u1, u2, u3, v1, v2, v3, v4} and edge set
{(u1, v1), (u1, v3), (u2, v2), (u2, v3), (u3, v3), (u3, v4)}; see Figure 1(a). By convenience
the graph F is called a fork; this name is due to its representation in Figure 1(b).

(b)(a)

Fig. 1. The graph F : A fork.

By setting each variable associated with F to 1
2 , we obtain a fractional extreme

point of P2(F ). In general assume that a bipartite graph G contains a fork F . We can
set to 1

2 all variables associated with F and set to zero the remaining variables. This
is an extreme point of P2(G). Such fractional extreme points may be cut off by using
a set of valid inequalities for pMP ′(G) introduced in [15]. We are going to see that
if the graph does not contain a fork, then the UFLP ′(G) and pMP ′(G) are easy to
describe.

In this paper we will consider a set of valid inequalities for UFLP ′(G) introduced
in [10]. We call them Cho–Johnson–Padburg–Rao (CJPR)-inequalities, using the ini-
tials of the authors’ last names. These inequalities are also valid for pMP ′(G) since
pMP ′(G) ⊆ UFLP ′(G). We will show that the addition of these inequalities to P (G)
yields an integral polytope when G does not contain a fork.

We say that UFLP ′(G) has the intersection property with respect to (8) if the in-
tersection of UFLP ′(G) with the hyperplane defined by (8) is an integral polytope for
every nonnegative integer p. We show that UFLP ′(G) has this property if and only if
G contains no fork. Based on this we show that the addition of the CJPR-inequalities
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ON THE p-MEDIAN POLYTOPE 3

to the system defining Pp(G) gives an integral polytope for every nonnegative integer
p if and only if G does not contain a fork. This is the main result of this paper. We also
give combinatorial polynomial time algorithms to solve the problems pMP′, UFLP′,
pMP, and UFLP when the underlying graph does not contain a fork.

A subclass of graphs with no fork consists of the graphs for which each location
has degree at most two. Here we also prove that the UFLP′ is NP-hard if the degree
of each location is at most three.

The facets of the uncapacitated facility location polytope have been studied in
[18], [14], [10], [11], [8]. In [4] we characterized the graphs for which the natural linear
relaxation defines UFLP (G). The UFLP has also been studied from the point of view
of approximation algorithms in [25], [12], [26], [6], [27], and others. Other references
on this problem are [13] and [20]. The relationship between location polytopes and
the stable set polytope has been studied in [14], [10], [11], [16], and others. The facets
of pMP (G) have been studied in [1] and [15]. In [2] and [3] the graphs for which the
natural linear relaxation is enough to define pMP (G) have been characterized.

This paper is organized as follows. In section 2, we give some notations and
definitions and some preliminary results that will be useful all along the paper. Section
3 gives a complete characterization of UFLP ′(G) if G has no fork. In section 4, we
discuss the intersection of the polytope UFLP ′(G) with the hyperplane defined by
(8); we also establish pMP ′(G) for this class of graphs. Section 5 is devoted to the
combinatorial algorithms for these problems.

2. Preliminaries.

2.1. Some definitions and notations. Let G = (U ∪ V,A) be a bipartite
graph. Denote by β(G) the covering number of G; that is, the minimum number of
locations v ∈ V needed to cover all customers u ∈ U . Let F ⊆ A be a subset of arcs in
A. Denote by N−(F ) (resp., N+(F )) the set of nodes in U (resp., V ) incident to an
arc in F . Let G(F ) = (N−(F ) ∪N+(F ), F ) be the bipartite subgraph of G spanned
by F . Hence β(G(F )) is the minimum number of nodes in N+(F ) necessary to cover
all the nodes in N−(F ) using only arcs in F .

For S ⊆ U and W ⊆ V , let A(S,W ) denote the set of arcs of A having one
endpoint in S and the other in W . Let Γ+(S) (resp., Γ−(W )) denote the set of nodes
v ∈ V (resp., u ∈ U) such that there is an arc (u, v) ∈ A with u ∈ S (resp., v ∈ W ).
We denote by δ+(S) the set of arcs (u, v) ∈ A with u ∈ S and by δ−(W ) the set of
arcs (u, v) ∈ A with v ∈ W . For a node u ∈ U (resp., v ∈ V ), we write δ+(u) (resp.,
δ−(v)) instead of δ+({u}) (resp., δ−({v})). Usually d(v) denotes the degree of a node
v in a simple graph, that is, the number of edges incident to v. We keep this notation
in our case; that is, d(u) = |δ+(u)| for u ∈ U and d(v) = |δ−(v)| for v ∈ V . If there
is a risk of confusion, we specify by dG(v) the degree of the node v with respect to a
given graph G. If A′ ⊆ A and V ′ is the set of nodes incident to the arcs of A′, we say
that G′ = (V ′, A′) is the subgraph spanned by A′.

If G = (V,E) is an undirected graph, a node set S ⊆ V is called a stable set if
there is no edge between any pair of nodes in S. A set K ⊆ V is called a clique if there
is an edge between every pair of nodes in K. We denote by Kn,m a graph with node
set {u1, . . . , un}∪ {v1, . . . , vm} and edge set {uivj : 1 ≤ i ≤ n, 1 ≤ j ≤ m}; Kn,m is a
complete bipartite graph. A graph is called twoconnected if at least two nodes should
be removed to disconnect it. If a and b are two nodes whose removal disconnects the
graph, we say that a and b form a twonode cutset. If S1 ⊆ V , S2 ⊆ V , and S1∩S2 = ∅,
we denote by δ(S1, S2) the set of edges with one endnode in S1 and the other in
S2. We use δ(S) to denote δ(S, V \ S). For v ∈ V we write δ(v) instead of δ({v}).
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If S ⊆ V , we denote by E(S) the set of edges with both endnodes in S. The graph
H = (S,E(S)) is the subgraph induced by S. If C is a cycle, a chord is an edge not in
C whose endnodes are in C. An odd hole of G is an odd cycle H with no chord.

The set of solutions of a finite system of linear inequalities is called a polyhedron.
A polytope is a bounded polyhedron. An inequality ax ≤ α is valid for the polytope P
if P ⊆ {x : ax ≤ α}. If ax ≤ α is a valid inequality for P , then the set F = {x ∈ P :
ax = α} is called a face of P . The dimension of a polytope P , denoted by dim(P ), is
the maximum number of affinely independent points in P minus 1. A polytope in Rn

is full dimensional if it is of dimension n. A face of dimension dim(P )− 1 is called a
facet. A facet of a full-dimensional polytope is defined by a unique linear inequality
(up to multiplication by a positive scalar). If P is a full-dimensional polyhedron, then
there is a unique (up to multiplication by a positive scalar) nonredundant inequality
system Ax ≤ b such that P = {x : Ax ≤ b}; moreover there is a natural bijection
among the facets of P and the inequalities of that system. An extreme point of P is
a face of dimension 0. A polytope is integral when each of its extreme points has only
integer components. An empty polytope is also integral.

2.2. CPJR-inequalities.
Theorem 1 (see [10]). Let G be a bipartite directed graph for any subgraph G(F )

of G the inequality

∑

(u,v)∈F

x(u, v)−
∑

v∈N+(F )

y(v) ≤ |N−(F )|− k(9)

is valid for UFLP ′(G) if and only if k ≤ β(G(F )).
Let G(F ) be a subgraph of G spanned by F ⊆ A, where each node in N+(F ) has

degree two. In this case β(G(F )) ≥
⌈
|N−(F )|

2

⌉
. It follows that the inequalities

∑

(u,v)∈F

x(u, v) −
∑

v∈N+(F )

y(v) ≤
⌊
|N−(F )|

2

⌋
(10)

for all F ⊆ A, where dG(F )(v) = 2 for all v ∈ N+(F ), |N−(F )| ≥ 3, and odd, are
of type (9). Thus inequalities (10) are valid for UFLP ′(G). We call them CJPR-
inequalities. These inequalities are {0, 12}–Chvátal–Gomory cuts; cf. [9]. They can be
obtained by adding some of the inequalities (2)–(5) multiplied by 1/2 and by rounding
down the right-hand side. An odd cycle in a bipartite graph is a cycle having 2(2k+1)
nodes for some integer k ≥ 1. When the subgraph G(F ) of G is an odd cycle, then
inequalities (10) are known as the odd cycle inequalities, and their separation can be
done in polynomial time; see [4] and [9].

2.3. A reduction to the stable set problem. Let H = (V,E) be a simple
undirected graph where each node v has a weight w(v). The stable set problem (SSP)
consists of finding a stable set S that maximizes

∑
v∈S w(v). The stable set polytope,

denoted by SSP (H), is the convex hull of incidence vectors of stable sets of H .
When considering a polyhedral study for the UFLP, a transformation to the stable
set problem is often used. This permits us to derive results for the UFLP by applying
known results for the SSP; for instance see [10] and [14]. This transformation is as
follows. The variables ȳ(v) are exchanged with 1−y(v). Then the integer programming
formulation (1)–(7) with respect to a bipartite graph G = (U ∪ V,A) becomes the
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following set packing problem:

max
∑

(u,v)∈A

c(u, v)x(u, v)−
∑

v∈V

f(v)ȳ(v) +
∑

v∈V

f(v),(11)

∑

v:(u,v)∈A

x(u, v) ≤ 1 ∀u ∈ U,(12)

x(u, v) + ȳ(v) ≤ 1 ∀(u, v) ∈ A,(13)

ȳ(v), x(u, v) ∈ {0, 1} ∀v ∈ V and ∀(u, v) ∈ A.(14)

Let B be the matrix whose elements are the coefficients of the constraints (12)–(13).
The matrix B is an |U |+ |A|× |U |+ |A| matrix with 0–1 elements. We call the columns
of B x(u, v) for all (u, v) ∈ A and ȳ(v) for all v ∈ V . The intersection graph of G
denoted by I(G) is constructed by assigning a node to each column x(u, v) and ȳ(v).
Two nodes are adjacent if their both corresponding columns appear with coefficient
1 in some row of B. Thus the nodes corresponding to the variables that appear in a
constraint (12) form a clique, and each node corresponding to ȳ(v) is adjacent to a
node corresponding to x(u, v) with (u, v) ∈ A; see Figure 2. Problem (11)–(14) with
respect to G is equivalent to the SSP with respect to I(G). It follows that the stable
set polytope with respect to I(G) may be defined as the convex hull of the solutions
of (11)–(14).

Fig. 2. The graph G (on the left) with its intersection graph I(G) (on the right).

2.4. Some properties of the stable set polytope. Let G = (V,E) be an
undirected graph. The polytope SSP (G) is full dimensional. The simplest facet defin-
ing inequalities of SSP (G) are x(u) ≥ 0 for all u ∈ V .

Theorem 2 (see [21]). If K ⊆ V is a maximal clique, then

∑

u∈K

x(u) ≤ 1

defines a facet.
Theorem 3 (see [12]). Let G = (V,E) be a graph such that V = V1 ∪ V2,

W = V1 ∩ V2 ̸= ∅, where (W,E(W )) is a clique and E = E(V1) ∪ E(V2). Let G1 =
(V1, E(V1)), G2 = (V2, E(V2)). Then a system of inequalities that defines SSP (G) is
obtained by taking the union of the systems that define SSP (G1) and SSP (G2) and
identifying the variables associated with the nodes in W .
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Let ax ≤ α be a facet defining inequality of SSP (G). If a contains at least two
nonzero coefficients, we say that ax ≤ α defines a nontrivial facet. In this case a ≥ 0
and α > 0. If ax ≤ α defines a nontrivial facet of SSP (G), we denote by Va the set

Va = {u | au > 0}.

The subgraph induced by Va is denoted by Ga, and it is called the support of the
facet. In the next two remarks and in the next two lemmas we assume that ax ≤ α
defines a nontrivial facet.

Remark 4. The inequality ax ≤ α also defines a facet of SSP (Ga).
Remark 5. If ax ≤ α defines a facet of SSP (G), it follows from Theorem 3 and

the above remark that Ga is twoconnected.
Lemma 6 (see [19]). If ax ≤ α defines a facet of SSP (G) and Ga contains a path

with nodes p, u, v, q, where u and v have degree two in Ga, then au = av.
Lemma 7 (see [19]). If ax ≤ α defines a facet of SSP (G) and Ga is different

from an odd hole, then Ga does not contain two paths between any two given nodes p
and q such that each node of them different from p, q has degree two in Ga.

The lemma above will be used to classify the facet defining inequalities of SSP (G),
as in the lemma below. Let G′ = (V ′, E′) be a graph containing two nodes p and q
such that there are two paths p, u, v, q and p, s, t, q between them; the nodes u, v,
s, and t have degree two. Let V̄ = V ′ \ {u, v, s, t}.

Lemma 8. For the nontrivial facets of SSP (G′), their inequalities can be classified
in the following types:

∑

j∈V̄

aijx(j) ≤ αi, i ∈ I1(15)

∑

j∈V̄

aijx(j) + x(u) + x(v) ≤ αi, i ∈ I2,(16)

∑

j∈V̄

aijx(j) + x(s) + x(t) ≤ αi, i ∈ I3,(17)

x(p) + x(u) ≤ 1,(18)

x(u) + x(v) ≤ 1,(19)

x(v) + x(q) ≤ 1,(20)

x(p) + x(s) ≤ 1,(21)

x(s) + x(t) ≤ 1,(22)

x(t) + x(q) ≤ 1.(23)

Proof. Inequalities (15) correspond to the nontrivial facets whose support contains
only nodes in V̄ ; we call I1 the index set of these.

Inequalities (16) and (17) appear as a consequence of Remark 5 and Lemmas 6
and 7; we call I2 and I3 the index sets of these inequalities.

Inequalities (18)–(23) appear as a consequence of Theorem 2.
Remark 9. If

∑

j∈V̄

bjx(j) + x(u) + x(v) ≤ α

defines a facet of SSP (G′), then by symmetry
∑

j∈V̄

bjx(j) + x(s) + x(t) ≤ α
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also defines a facet.
Remark 10. Let Ḡ = G′ \ {s, t}. It follows from the above discussion that if we

have all facet defining inequalities for SSP (Ḡ), then we can obtain the remaining
facets defining inequalities of SSP (G′) by applying Remark 9 to inequalities (16) and
by adding (21)–(23), x(s) ≥ 0, and x(t) ≥ 0.

2.5. Decomposition of graphs with no fork. Let G = (U ∪ V,A) be a
bipartite graph. If there are two nodes u and v in U with δ+(u) = {(u,w1), (u,w2)}
and δ+(v) = {(v, w1), (v, w2)}, we say that u and v are twins. This is an equivalence
relation. We are going to use the following decomposition steps.

Step 1. For every equivalence class of U by the relation twin, leave only one node
(and remove the others).

Step 2. Remove every node u ∈ U with degree equal to one.
The graph may consist of several connected components. A component with at

most three locations cannot contain a fork. Now we consider a component with at
least four locations.

Lemma 11. After applying Steps 1 and 2, a connected component with at least
four locations contains a fork if and only if it has a location with degree at least three.

Proof. If a component has a fork, then it has a location with degree at least three.
Now assume that the component has no fork and has at least four locations. Let u ∈ V
be a node with |δ−(u)| ≥ 3. We should have the arcs (s1, u), (s2, u), (s3, u), and the
nodes s1, s2, and s3 have degree at least two. Since the remaining graph contains no
fork, we have the following two cases.

Case 1. The arcs (s1, v), (s2, v), (s3, v) exist, with v ̸= u. Since there are no twins
and no fork, there must exist two arcs (si, w) and (sj , w) with i, j ∈ {1, 2, 3}, i ̸= j,
and w is different from u and v. Now if one of the nodes s1, s2, or s3 is adjacent to a
node not in {u, v, w}, then we must have a fork. Let M be the subgraph induced by
{u, v, w, s1, s2, s3}. Consider the following cases:

• If w is adjacent to a node s4 not in M and s4 is adjacent to a node t not in
M , we would have a fork.

• The same is true for u and v.
So if any of {u, v, w} is adjacent to a node not in M this node is only adjacent to
nodes in M . Thus the connected component containing {u, v, w} is a bipartite graph
with bipartition {s1, . . . , sk} and {u, v, w}. This contradicts the hypothesis.

Case 2. The arcs (si, v), (sj , v), (sk, w) exist, where i, j, k are in {1, 2, 3} and dif-
ferent and v ̸= u, w ̸= u, v ̸= w. Since si and sj are not twins, one of them must
be adjacent to a node different from u and v. This node must be w, otherwise a fork
is present. Now none of the nodes s1, s2, s3 can be adjacent to a node other than
u, v, w because we would have again a fork. An analysis similar to the one in the
preceding case implies that if we take the connected component containing {u, v, w},
we obtain a bipartite graph with bipartition {s1, . . . , sk} and {u, v, w}. Again we have
a contradiction.

Lemma 11 gives a simple algorithm to recognize graphs with no fork. First we
apply the two steps above, then for each component with at least four locations we
check if the degree of every location is at most two.

3. The characterization of UFLP ′(G). The main result of this section is
the following.

Theorem 12. Let G = (U ∪ V,A) be a bipartite graph. If G has no fork, then
UFLP ′(G) is described by inequalities (2)–(5) and inequalities (10).
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The proof of this theorem will be given in subsection 3.2. In the following subsec-
tion we will first show that Theorem 12 holds for graphs for which each location has
degree at most two. Then combining this with the results of subsections 2.4 and 2.5
it will be shown that it also holds for all graphs with no fork.

For the case of three locations, Theorem 6.1 in [10] shows that any facet defining an
inequality of UFLP ′(G) is among the inequalities (2)–(5) or is an odd cycle inequality,
that is, an inequality (10) where G(F ) is an odd cycle. Thus we have the following.

Theorem 13 (see [10]). If |V | ≤ 3, then UFLP ′(G) is defined by inequalities
(2)–(5) and inequalities (10) that correspond to odd cycle inequalities.

3.1. The case where each location has degree at most two. First we show
the following related NP-hardness result.

Theorem 14. The problem UFLP ′ is NP-hard even when the degree of each
customer is at most two and the degree of each location is at most three.

Proof. We use a reduction from the minimum vertex cover problem when the
degree of each node is at most three. Let H = (W,E) be a graph where each node
has degree at most three. From H , define the bipartite graph G = (U ∪ V,A), where
U = E and V = W . We have (u, v) ∈ A if and only if the edge u is incident to the
node v in the graph H . Thus by definition, in G, the degree of each node u ∈ U is
two, and the degree of each node v ∈ V is at most three. Consider an instance of the
UFLP′ that corresponds to the graph G, where c(u, v) = M for each arc (u, v) ∈ A,
where M is a large positive scalar and each node v ∈ V is associated with a fixed
cost f(v) = −1. Then clearly the minimum vertex cover problem in H reduces to this
instance of the UFLP′.

Below we will show that the case where each location has degree at most two
reduces to a matching problem. Let G = (U ∪ V,A) be a bipartite graph where
d(v) ≤ 2 for all v ∈ V . The graph G contains no isolated node and may or may not be
connected. Define from G an undirected graph G′ as follows. Split each node v ∈ V
into two nodes v1 and v2, call this new set of nodes V ′. If v is of degree two, let (u1, v)
and (u2, v) be the two arcs incident to v; build the edges u1v1, u2v2, and v1v2, and
denote this set by Ev. If v is of degree one, let (u, v) be the unique arc incident to
v, build the edges uv1 and v1v2, and denote this set by Ev. Let G′ = (W,E), where
W = U ∪ V ′ and E =

⋃
v∈V Ev. Define a weight function w associated with each

edge e ∈ E as follows. For each Ev, let w(v1v2) = −f(v), w(u1v1) = c(u1, v), and
w(u2v2) = c(u2, v). Notice that when v is of degree one, then there is no edge u2v2.

The problem UFLP′ with respect to G is equivalent to the following matching
problem associated to G′ = (W,E) and w:

max
∑

e∈E

w(e)x(e) +
∑

v∈V

f(v)(24)

∑

e∈δ(v)

x(e) ≤ 1 ∀ v ∈ W,(25)

x(e) ∈ {0, 1} for e ∈ E.(26)

For each feasible solution of (24)–(26) there is a feasible solution of (1)–(7) having the
same weight and vice versa. In fact, let x∗ be a feasible solution of (24)–(26). For each
v ∈ V let ȳ(v) = 1−x∗(v1v2). If v is of degree two and (u1, v) and (u2, v) are the arcs
incident to v, let x̄(u1, v) = x∗(u1v1) and x̄(u2, v) = x∗(u2v2). If v is of degree one and
(u, v) is the unique arc incident to v, let x̄(u, v) = x∗(uv1). It is easy to see that (x̄, ȳ)
is a feasible solution of (1)–(7) having the same weight as x∗. The matching problem
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(24)–(26) can be solved in polynomial time [17]. We can also obtain equivalence with
the UFLP associated with G. We just have to set inequalities (25) to equations for
each node in W that corresponds to a node in U . This problem is also a matching
problem and is polynomially solvable. Thus we have the following.

Theorem 15. Both problems UFLP and UFLP′ reduce to matching problems
when each location has degree at most two.

Let MP (G′) denote the convex hull of the solutions of the matching problem
(25)–(26).

Theorem 16 (see [17]). For the graph G′ = (W,E), MP (G′) is defined by the
following linear system:

∑

e∈δ(v)

x(e) ≤ 1 for v ∈ W,(27)

∑

e∈E(S)

x(e) ≤
⌊
1

2
|S|
⌋

∀ S ⊆ Wwith |S| ≥ 3 and odd,(28)

x(e) ≥ 0 for e ∈ E.(29)

Remark 17. In inequalities (28) we can assume that
(i) neither v1 nor v2 belongs to S when their corresponding node v ∈ V is of

degree one, and
(ii) if for a node v ∈ V of degree two we have either v1 or v2 in S, then both of

them with their neighbors in U are in S.
This remark comes from the fact that the graph induced by S must be twocon-

nected; this is one of the necessary conditions for inequalities (28) to define facets of
MP (G′) [23], [24]. Theorem 16 is used to prove the following.

Theorem 18. Let G = (U ∪ V,A) be a bipartite graph where each node in V has
degree at most two. Then UFLP ′(G) is described by (2)–(5) plus inequalities (10).

Proof. In fact, we will see that the polytope defined by (27)–(29) and the polytope
defined by (2)–(5) and (10) are exactly the same polytopes. Rewrite inequalities (27)
and (29) as follows:

∑

e∈δ(v)

x(e) ≤ 1 for v ∈ U,(30)

x(uv1) + x(v1v2) ≤ 1 for v ∈ V and uv1 ∈ E, with u ∈ U,(31)

x(uv2) + x(v1v2) ≤ 1 for v ∈ V and uv2 ∈ E, with u ∈ U,(32)

x(e) ≥ 0 for e ∈ E.(33)

Let S ⊆ W the subset used in an inequality of type (28). Let S1 = S ∩ U and
S2 = S \ S1. Let S′

2 the set of nodes in v ∈ V such that v1 and v2 are in S2. By
Remark 17,

⋃
v∈S′

2
{v1, v2} = S2. Thus |S2| is even and |S1| ≥ 3 and odd. From this

we can rewrite an inequality (28) with respect to S as follows:

∑

e∈δ(S1,S2)

x(e) +
∑

v∈S′
2

x(v1v2) ≤
⌊
1

2
(|S1|+ 2|S′

2|)
⌋
.(34)

For each v ∈ V replace the variables x(v1v2), in (27)–(29), by 1− y(v) and each edge
variable x(uvi) by x(u, v). Then inequality (34) is equivalent to

∑

(u,v)∈A(S1,S′
2)

x(u, v)−
∑

v∈S′
2

y(v) ≤
⌊
1

2
|S1|

⌋
.(35)
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Inequalities (30) are equivalent to inequalities (2), inequalities (31)–(32) correspond
to inequalities (3), and inequalities (33) are equivalent to inequalities (4)–(5). Fi-
nally, since any node v in V is at most of degree two, any inequality (35) is of
type (10).

3.2. The proof of Theorem 12. Let G = (U ∪V,A) be a bipartite graph with
no fork. Perform Steps 1 and 2 of subsection 2.5, and let Ḡ be the resulting graph.
By Lemma 11, each connected component of Ḡ consists of either (i) a bipartite graph
with three locations, or (ii) a bipartite graph where each location has degree at most
two. From Theorems 13 and 18, Theorem 12 holds for Ḡ. Now rebuild G from Ḡ. If
we add all the customers with degree one in G and every customer that was a twin
of an existing node in Ḡ, then each connected component with three locations in Ḡ
remains a connected component with three locations in G. For this type of graph the
result follows from Theorem 13.

Now suppose that we have a connected component in Ḡ, where each location has
degree at most two. By reformulating our problem as a set packing problem (11)–
(14), proving Theorem 12 is equivalent to showing that the following polytope is
integral:

∑

v:(u,v)∈A

x(u, v) ≤ 1 ∀u ∈ U,(36)

x(u, v) + ȳ(v) ≤ 1 ∀(u, v) ∈ A,(37)

ȳ(v) ≥ 0 ∀v ∈ V,(38)

x(u, v) ≥ 0 ∀(u, v) ∈ A,(39)
∑

(u,v)∈F

x(u, v) +
∑

v∈N+(F )

ȳ(v) ≤
⌊
|N−(F )|

2

⌋
+ |N+(F )| ∀F ⊆ A,(40)

where |N−(F )| ≥ 3 and odd, with dG(F )(v) = 2, ∀ v ∈ N+(F ). Inequalities (40) are
inequalities (10) after replacing y(v) by 1 − ȳ(v) for each v ∈ V . We already know
that the polytope above is integral when the degree of each location is at most two.
Thus the polytope above is the SSP SSP(I(Ḡ)).

Now suppose that we add a customer u of degree one that had been removed in
Step 2 of subsection 2.5. Let G′ be the new graph. The new intersection graph I(G′)
is obtained by adding a new node x(u, v) to I(G), assuming that u is adjacent to the
location v in G. It follows from Theorem 3 that SSP (I(G′)) is obtained by adding
the variable x(u, v) and the inequalities

x(u, v) + ȳ(v) ≤ 1,

x(u, v) ≥ 0.

We keep using the same reasoning until all customers of degree one have been
added.

Now assume that we add a node u′ that was a twin of a node u in Ḡ. We add two
new arcs (u′, v1) and (u′, v2) to Ḡ, where (u, v1) and (u, v2) already exist in Ḡ. Here
we use Remark 10. So for each inequality (40) that contains x(u, v1) and x(u, v2) we
write a similar inequality but using x(u′, v1) and x(u′, v2) instead. Also the following
inequalities are added:
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x(u′, v1) + ȳ(v1) ≤ 1,

x(u′, v2) + ȳ(v2) ≤ 1,

x(u′, v1) + x(u, v2) ≤ 1,

x(u′, v1) ≥ 0,

x(u′, v2) ≥ 0.

We keep using the same reasoning until all twins are added.
We obtain exactly the inequalities (36)–(40) with respect to G. Thus SSP(I(G))

is described by inequalities (36)–(40). This completes the proof of Theorem 12.
Corollary 19. Let G = (U ∪ V,A) be a bipartite graph. If G has no fork,

then UFLP (G) is described by inequalities (3)–(5), inequalities (10), and by setting
inequalities (2) to equations.

3.3. The separation of inequalities (10). Let G = (U ∪ V,A) be a bipartite
graph. Given a vector (x∗, y∗) ∈ R|A|+|V |, the separation problem of inequalities (10)
is to decide whether (x∗, y∗) satisfies all these inequalities or to find one of them that
is violated.

We show that the separation of these inequalities can be done in polynomial time
when the graph has no fork. We may assume that (x∗, y∗) satisfies inequalities (2)–
(5). For each connected component of G with three locations the problem is easy to
solve, since these inequalities are the odd cycle inequalities and may be separated in
polynomial time [9], [4]. Also one can enumerate them since they correspond to odd
cycles with three locations and three customers.

Now consider the other components. We can remove all the customers with de-
gree one. In fact, each inequality (10) such that N−(F ) contains a node u of de-
gree one is redundant. Let (u, v) be the unique arc incident to u, and let (u′, v) be
the other arc incident to v in F . Then we can obtain this inequality by combin-
ing inequalities x(u, v) ≤ 1, x(u′, v) ≤ y(v), and the inequality (10) with respect
to F ′ = F \ {(u, v), (u′, v)} that is by itself redundant since |N−(F ′)| is even. In
other words all such inequalities are satisfied by (x∗, y∗), and all the possible violated
inequalities contain only customers with degree at least two.

Now we treat this case. For each set of twins choose the twin node u with
x∗(u, v1) + x∗(u, v2) maximum and remove the others. At this point we have done
exactly Steps 1 and 2 of subsection 2.5; thus from Lemma 11 we know that in the
resulting graph, call it Ḡ, the degree of each location is at most 2. We have seen in
the proof of Theorem 12 that inequalities (10) with respect to Ḡ are equivalent to
inequalities (28), which are the blossom inequalities introduced in [17]. They can be
separated in polynomial time with the algorithm of [22]. Since each inequality (10)
that may define a facet contains at most one node from each set of twins, it follows
that if one finds a violated inequality (10) with respect to Ḡ, the same inequality is
also violated with respect to G. Otherwise there is no violated inequality.

4. The intersection property for UFLP ′(G) and the characterization
of pMP ′(G). Let P be an integral polytope in Rn. Let q be an integer valued row
vector in Rn such that the greatest common divisor of its components is one. For an
integer p let Hp = {x ∈ Rn : qx = p}.

We say that P has the intersection property with respect to q if for every
integer p the polytope P ∩ Hp is integral. The following result has been shown
in [7].
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Theorem 20. The stable set polytope of a graph G = (V,E) has the intersection
property with respect to

∑
v∈V x(v) = p if and only if G is a clawfree graph.

A clawfree graph is a graph that does not contain the bipartite graph K1,3 as
an induced subgraph. Given a bipartite graph G = (U ∪ V,A), we will show in this
section that the polytope UFLP ′(G) has the intersection property with respect to∑

v∈V y(v) = p if and only if G has no fork. To obtain this result one cannot apply
Theorem 20, since the intersection graph of a graph with no fork is not clawfree.
Instead we will modify the proof given in [7] to obtain our result.

Theorem 21. Let G = (U ∪V,A) be a bipartite graph. UFLP ′(G) has the inter-
section property with respect to

∑
v∈V y(v) = p if and only if G has no fork.

Proof. Necessity. Assume that G contains a fork, and let us show that Qp(G) =
{(x, y) ∈ R|A|+|V | : (x, y) ∈ UFLP ′(G),

∑
v∈V y(v) = p} is not integral for some

integer p.
Let F be a subgraph of G that is a fork. The nodes of F are u1, . . . , u3 and

v1, . . . , v4, and its arcs are

(u1, v1), (u1, v3), (u2, v2), (u2, v3), (u3, v3), (u3, v4).

Let (x̄, ȳ) ∈ R|A|+|V | be the vector defined as follows: x̄(u, v) = 1
2 if (u, v) is an

arc in F and 0 otherwise; ȳ(v) = 1
2 if v ∈ {v1, . . . , v4} and 0 if v ∈ V \{v1, . . . , v4}. We

will show that, in fact, (x̄, ȳ) is an extreme point of Q2(G). Let (x1, y1) ∈ UFLP ′(G),
where x1(u1, v3) = x1(u2, v3) = x1(u3, v3) = y(v3) = 1 and every other variable takes
the value 0. Let (x2, y2) ∈ UFLP ′(G), where x2(u1, v1) = x2(u2, v2) = x2(u3, v4) =
y2(v1) = y2(v2) = y2(v4) = 1 and every other variable takes the value 0. We have
(x̄, ȳ) = 1

2 (x
1, y1) + 1

2 (x
2, y2). To show that (x̄, ȳ) is an extreme point of Q2(G) we

are going to show that (x1, y1) and (x2, y2) belong to a common one-dimensional face
of UFLP ′(G). This face is defined as follows:

x(u, v) = 0 if (u, v) is not in F,
y(v) = 0 if v is not in F,
x(u1, v1) + x(u1, v3) = 1,
x(u2, v2) + x(u2, v3) = 1,
x(u3, v4) + x(u3, v3) = 1,
x(u, v)− y(v) = 0 for each arc (u, v) in F.

Sufficiency. Assume now that G does not contain a fork as a subgraph,
and let us show that the polytope Qp(G) = {(x, y) ∈ R|A|+|J| : (x, y) ∈
UFLP ′(G),

∑
v∈V y(v) = p} is integral. A pair (A′, J ′), A′ ⊆ A, J ′ ⊆ V , is called a

solution if each node in U is incident to at most one arc in A′ and each arc in A′ is inci-
dent to a node in J ′. Let (xA′

, yJ
′
) denote the incidence vector of the solution (A′, J ′).

When taking the intersection of {y :
∑

v∈V y(v) = p} with UFLP ′(G), a fractional
extreme point lies in a one-dimensional face of UFLP ′(G); i.e., it has the form

(x̄, ȳ) = λ(xA1 , yJ1) + (1− λ)(xA2 , yJ2),

where λ = (p−|J2|)
|J1|−|J2| and |J2|+ 1 ≤ p ≤ |J1|− 1. We will prove that such a vector is a

convex combination of 0-1 vectors in Qp(G), so it is not an extreme point.
Let Ḡ be the graph spanned by A1 ∪ A2. We label the nodes and arcs as

follows:
• To every arc in A1 ∩ A2 we give the label “f” that means fixed. We do the
same for every node in J1 ∩ J2.
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• Now consider an arc a = (u, v) that has no label. If v has the label f , we add
a new node v′ with the label “0” and replace (u, v) by a′ = (u, v′). If a ∈ A1,
we give the label 1 to a (or to a′), otherwise a ∈ A2, and we give it the label
2. We repeat this for every arc that has not been labeled.

• Now for every node v that has not been labeled, if v ∈ J1, we give it the label
1, otherwise v ∈ J2, and we give it the label 2.

After every arc and every node has been labeled, let G′ be this new graph. Now build
an undirected graph M whose node set are the nodes in G′ that have the label 1
or 2. Let v1 and v2 be two nodes in M , with the labels 1 and 2, respectively. If the
arcs a1 = (u, v1) and a2 = (u, v2) are in G′, we put an edge between v1 and v2 in
M . All edges in M are obtained in this way. Since G has no fork, the degree of each
node in M is at most two. Now we can partition the nodes in M into B1, . . . , Bk, so
that

• every edge in M has both endnodes in the same set Bi,
• for every set Bi, let Ci be the set of nodes in Bi with the label 1 and Di the
set of nodes in Bi with the label 2. Then |Ci| = |Di| + 1. This is possible
because the degree of every node in M is at most two.

Let F be the set of nodes in G′ with the label f . Also let C = ∪Ci and D = ∪Di.
We have |C| = |D| + k, and |J1| = |F | + |C| = |F | + |D| + k = |J2| + k.
To build a solution with p nodes from J1 ∪ J2, we can take the nodes in F ,
the nodes in Ci, i = 1, . . . , r, and the nodes in Dj, j = r + 1, · · · , k, where
r = p − |J2|. Now we have to define the set of arcs in the solution. First we
have to define what to do with the nodes in G′ that have the label 0. Let (u, v)
be an arc in G′ incident to a node u of degree one, and v has the label 0. If
(u, v) has the label 1, then pick arbitrarily a set Ci and assign v to Ci, other-
wise pick arbitrarily a set Di and assign v to it. Let (u, v) and (u,w) be the
two arcs incident to a node u that has degree equal to two in G′. We have three
cases:

• If v has the label 1 and w has the label 0, then v ∈ Ci for some index i;
we add w to Di. Notice that w has not been counted (and should not been
counted) when computing the cardinality of Di above.

• If v has the label 2 and w has the label 0, then v ∈ Di for some index i; we
add w to Ci.

• Finally suppose that (u, v) has the label 1, (u,w) has the label 2, and both
v, w have the label 0. In this case we arbitrarily pick a set Ci, and we assign
v to Ci and w to Di.

Remark 22. Note that the assignment of the nodes with label 0 to Ci orDi must be
done before the selection of the sets Ci, i = 1, . . . , r, and the sets Dj, j = r+1, · · · , k.
We choose this presentation because the cardinalities of Ci and Di, before assigning
them the nodes with label 0, helps to see that we are taking exactly p facilities in the
solution. Now we can describe how to pick the arcs in the solution. Every arc in G′

that has the label f should be in the solution. Let C′ = ∪i=r
i=1Ci and D′ = ∪j=k

j=r+1Dj .
For every customer u that is incident to two arcs a = (u, v) and b = (u,w) in G′ we
proceed as follows. If v ∈ C′, then a is in the solution, otherwise w ∈ D′ and b is in
the solution. For a customer u that is incident to one arc a = (u, v), if v ∈ C′ ∪ D′,
then a is in the solution, otherwise it is not.

Call F the set of all solutions (At, J t) that may be constructed from (A1, J1) and
(A2, J2) as indicated above. From the construction of the solutions in F above, we
have the following:
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∑

(At,Jt)∈F

(xAt

, yJ
t

) =

(
k − 1

p− |J2|− 1

)
(xA1 , yJ1)

+

(
k − 1

k − (p− |J2|)− 1

)
(xA2 , yJ2)

=

(
k

p− |J2|

)
(p− |J2|)

k
(xA1 , yJ1)

+

(
k

p− |J2|

)
(k − p+ |J2|)

k
(xA2 , yJ2).

But recall from above that k = |J1|− |J2|, so

∑

(At,Jt)∈F

(xAt

, yJ
t

) =

(
|J1|− |J2|
p− |J2|

)
(p− |J2|)

|J1|− |J2|
(xA1 , yJ1)

+

(
|J1|− |J2|
p− |J2|

)
(|J1|− p)

|J1|− |J2|
(xA2 , yJ2).

Since (x̄, ȳ) = p−|J2|
|J1|−|J2| (x

A1 , yJ1) + |J1|−p
|J1|−|J2| (x

A2 , yJ2), we obtain

(x̄, ȳ) =
1(

|J1|− |J2|
p− |J2|

)
∑

(At,Jt)∈F

(xAt

, yJ
t

).

Notice that
(|J1|−|J2|

p−|J2|
)
is the cardinality of the family F . Thus (x̄, ȳ) is a convex

combination of integer vectors in Qp(G). This implies that the intersection of {y :∑
j∈V y(j) = p} with UFLP ′(G) does not have fractional extreme points.
From Theorems 12 and 21, we obtain the main result of this paper.
Theorem 23. Let G = (U ∪ V,A) be a bipartite graph. The polytope pMP ′(G)

is described by (2)–(5), (8), and (10) if and only if G does not contain a fork as a
subgraph.

Corollary 24. Let G = (U ∪ V,A) be a bipartite graph. If G has no fork, then
pMP (G) is described by (3)–(5), inequalities (2), transformed into equations, (8), and
(10).

Now since the separation of inequalities (10) can be done in polynomial time for
graphs with no fork, we have the following.

Theorem 25. The problems UFLP′, pMP′, UFLP, and pMP can be solved in
polynomial time when the underlying graph does not contain a fork as a subgraph.

In the next section we give combinatorial algorithms for these problems.

5. A combinatorial algorithm. In this section we give a combinatorial al-
gorithm to solve both problems pMP′ and UFLP′ when the underlying graph has
no fork. The problems pMP and UFLP reduce to the problems pMP′ and UFLP′,
respectively.

5.1. Solving the problem UFLP′. Let G = (U ∪ V,A) be a bipartite graph
with no fork. We are going to solve (1)–(7). In order to decide if a graph has no fork
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we apply the procedure of subsection 2.5; this should give us a graph where each
connected component is of two possible types:

• a component with at most three locations, or
• a component where each location has degree at most two.

The case with three locations can be solved by enumeration, so in what follows we
deal with a component having four or more locations.

Lemma 26. We may assume that each customer has degree at least two.
Proof. Let u be a customer of degree one. The node u must be adjacent to a

location v. If c(u, v) < 0, we just ignore u. If c(u, v) + f(v) ≥ 0, then we remove
u and give the weight 0 to v. If γ is the optimal value with the new weights, then
γ + c(u, v) + f(v) is the optimal value with the original weights. If c(u, v) + f(v) < 0,
we remove u and give the weight c(u, v) + f(v) to v.

Every customer of degree one is treated in the same way.
Now we assume that we have a connected component M where each customer

has degree at least two. First we are going to use the reduction to the SSP discussed
subsection 2.3; later this will be reduced to a matching problem. Thus our problem
reduces to finding a stable set in I(M) of maximum weight, where a weight of a node
x(u, v) is equal to c(u, v) and the weight of a node ȳ(v) is equal to −f(v).

Note that for each set of twins in M , where v1 and v2 are the two locations
that are adjacent to this set of twins, the corresponding nodes of v1 and v2 in I(M)
form a twonode cutset. This permit us to use the following decomposition procedure
introduced in [5]. Let G1 = (V1, E1) and G2 = (V2, E2) be two graphs such that
V1 ∩ V2 = {a, b}, E1 ∩ E2 = ∅, and the edge ab does not belong neither to E1 nor to
E2. Let G = (V,E), where V = V1 ∪ V2 and E = E1 ∪ E2. Assume that each node u
has a weight w(u). Let Sab, Sāb̄, Sab̄, and Sāb be stable sets in G1 of maximum weight
among those which contain, respectively, a and b, nor a nor b, a but not b, b but not
a. Let sab, sāb̄, sab̄, and sāb be their respective weights. Now we define a graph G∗

with node-weights w∗, obtained from G2 as follows. Start with G∗ = G2. Let

w∗(v) = w(v) if v ∈ V2 \ {a, b},
λ(G1) = sab + sāb̄ − (sab̄ + sāb).

We have two cases:
• λ(G1) ≥ 0. In this case we add a node c to G∗ and the edges ac and cb. Let

σ = sāb̄ − λ(G1),

w∗(a) = sab − sāb,

w∗(b) = sab − sab̄,

w∗(c) = λ(G1).

• λ(G1) < 0. In this case we add two nodes c and d to G∗ and the edges ac, cd,
and db. Let

σ = sāb̄ + λ(G1),

w∗(a) = sab̄ − sāb̄,

w∗(b) = sāb − sāb̄,

w∗(c) = w∗(d) = −λ(G1).

Theorem 27 (see [5]). Let S2 be the restriction to G2 of a maximum weighted
stable set S∗ of G∗ with respect to w∗, and let S be defined as follows:
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• If a ∈ S2 and b ∈ S2, then S = S2 ∪ Sab.
• If a ∈ S2 and b /∈ S2, then S = S2 ∪ Sab̄.
• If a /∈ S2 and b ∈ S2, then S = S2 ∪ Sāb.
• If a /∈ S2 and b /∈ S2, then S = S2 ∪ Sāb̄.

S is a maximum weighted stable set of G, with respect to w, and

w∗(S∗) + σ = w(S).

Let us apply the above procedure to I(M). Let T be a set of twins, and let a
and b be the two locations adjacent to the nodes in T . The set of twins gives a set of
disjoint paths with three edges between a and b. This corresponds to the graph G1

described above. We have to solve four SSPs to define the sets Sab, Sāb̄, Sab̄, Sāb, and
the value λ(G1) as in the above procedure. Due to the simplicity of G1, these four
problems can be solved by inspection. Then we build the graph G∗, where between a
and b we put a path with two or three edges. We repeat this procedure for each set
of twins.

Remark that at the end the degree of a node in G∗ that corresponds to a location
is at most two. Now we have to solve the SSP in G∗ with respect to the weights w∗

defined by the procedure above. This reduces to a matching problem as follows:
• Split each node v in G∗ that correspond to a location into two nodes v1 and
v2; add an edge between v1 and v2 with a weight w∗(v).

– If v has degree one and uv is the edge incident to v, then add an edge
between v1 and u with a weight w∗(u).

– If v is of degree two and u1v and u2v are the two edges incident to v, add
the edges u1v1 and u2v2 with weights w∗(u1) and w∗(u2), respectively.

• Now consider the nodes of G∗ that do not correspond to locations in G. These
nodes form disjoint cliques.

– A clique of size one corresponds to the node c added in the construction
of G∗ in the case where λ(G1) ≥ 0. Let v and w be the two locations in
G∗ adjacent to c. After the split operation we have v1, v2, w1, and w2.
Assume that c is adjacent to v1 and w1. We remove the node c and add
an edge between v1 and w1 of weight w∗(c).

– Consider a clique of size at least two with nodes c1, . . . , ck. To each edge
civ we give the weight w∗(ci), then we shrink the clique (and replace it
by one node).

Solving the SSP in G∗ with weights w∗ reduces to the maximum matching problem in
the graph described above. Using Theorem 27 one can produce the optimal solution
of the SSP in I(M). This corresponds to the optimal solution of the problem UFLP′

in the component M of G having four or more locations. A summary of this algorithm
is below.

Algorithm for components with more than three locations.
Step 1. Treat customers of degree one as in Lemma 26.
Step 2. Transform into an SSP.
Step 3. Treat sets of twins.
Step 4. Transform into a matching problem and solve it.
Step 5. Recover the solution of the original problem using Theorem 27.

5.2. Solving the problem pMP ′. Let G = (U ∪ V,A) be a bipartite graph
with no fork. In this subsection we give a polynomial combinatorial algorithm to solve
the problem pMP ′ defined by (1)–(8). The main ingredient for this algorithm is the
intersection property of the polytope UFLP ′(G).
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Suppose that the polytope UFLP ′(G) is defined by the linear system

(41) Ax+By ≤ b.

In our case, the system above is known and is equivalent to inequalities (2)–(5) and
(10); this follows from Theorem 12. We have seen in Theorem 21 that to obtain the
polytope pMP ′(G), the convex hull of the solutions of the problem (1)–(8), of a graph
with no fork it is enough to add the equation

(42)
∑

v∈V

y(v) = p.

Thus the problem (1)–(8) is equivalent to

max cx+ fy,(43)

Ax+By ≤ b,(44)
∑

v

y(v) = p.(45)

We plan to use Lagrangian relaxation to solve this linear program, i.e., we dualize
(45). For λ ∈ R, let

(46) g(λ) = max

{
cx+ fy + λ

(
p−

∑

v∈V

y(v)

)
| Ax+By ≤ b

}
.

The function g is convex and piecewise linear. The following lemma is a well-known
property of Lagrangian relaxation.

Lemma 28. Let γ be the optimal value of (43)–(45). Then
• γ ≤ g(λ) for all λ,
• and

min
λ

g(λ) = γ.

Proof. The dual of (43)–(45) is

minλp+ µb,(47)

µA = c,(48)

µB + λ1 = f.(49)

If we fix λ = λ̄, then (47)–(49) becomes

minµb+ λ̄p,

µA = c,

µB = f − λ̄1,

which is the dual of

max cx+ (f − λ̄1)y + λ̄p,

Ax+By ≤ b.

This is g(λ̄). So g(λ̄) ≥ γ. If (λ̂, µ̂) is an optimal solution of (47)–(49), then g(λ̂) =
γ.
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In what follows we discuss how to find the minimum of g. Let M =
∑

|c(u, v)|+∑
|d(v)|. We set λ1 = M and λ2 = −M , and we compute g(λ1) and g(λ2). Let (x1, y1)

and (x2, y2) be the corresponding solutions. If the problem is feasible, we should have∑
y1(v) ≤ p and

∑
y2(v) ≥ p. We compute λ̄ as the solution of

cx1 + fy1 + λ

(
p−

∑

v

y1(v)

)
= cx2 + fy2 + λ

(
p−

∑

v

y2(v)

)
,

and we compute g(λ̄). Let (x̄, ȳ) be the solution obtained. We have the following two
cases:

• g(λ̄) > cx1 + fy1 + λ̄(p−
∑

v y1(v)) = cx2 + fy2 + λ̄(p−
∑

v y2(v)). Here we
have three subcases:

– If
∑

ȳ(v) = p, we stop; then (x̄, ȳ) is the desired solution.
– If

∑
ȳ(v) > p, we replace λ1 by λ̄.

– If
∑

ȳ(v) < p, we replace λ2 by λ̄.
In the last two subcases we repeat the above procedure.

• g(λ̄) = cx1 + fy1 + λ̄(p−
∑

v y1(v)) = cx2 + fy2 + λ̄(p−
∑

v y2(v)). Then we
stop; we have found the minimum of f . However, we could have

∑
ȳ(v) ̸= p.

We discuss this situation below.
Lemma 29. Let p1 =

∑
y1(v), p2 =

∑
y2(v) and assume p1 < p < p2. Let

α = (p2 − p)/(p2 − p1). Then

(x̂, ŷ) = α(x1, y1) + (1− α)(x2, y2)

is an optimal solution of (43)-(45).
Proof. Let γ1 = cx1 + fy1, γ2 = cx2 + fy2. Then γ1 + λ̄(p− p1) = γ2 + λ̄(p− p2),

and λ̄ = (γ2 − γ1)/(p2 − p1). Thus

g(λ̄) = γ1
p2 − p

p2 − p1
+ γ2

p− p1
p2 − p1

.

Since

cx̂+ f ŷ = γ1
p2 − p

p2 − p1
+ γ2

p− p1
p2 − p1

,

we have that (x̂, ŷ) is optimal.
Remark that (x̂, ŷ) is exactly the solution (x̄, ȳ) defined in the sufficiency part

of the proof of Theorem 21. Thus (x̂, ŷ) can be written as a convex combination of
the vectors in the family F that are feasible for (43)–(45). Then any of these integer
vectors is an optimal solution of (43)–(45).

5.3. Solving the problems UFLP and pMP. Recall that the problems UFLP
and pMP are, respectively, obtained from UFLP′ and pMP′ by replacing inequalities
(2) by equalities. To ensure this we add a value “big M” to the weights c(u, v). This
number can be

M = max{|f(v)| : v ∈ V }+max{|c(u, v)| : (u, v) ∈ A}+ 1.

This will ensure that every customer is assigned to a location with an opened facility
if the problem is feasible. Then we apply the algorithms described in this section. If
γ is the optimal value with the new weights, then γ− |U |M is the optimal value with
the original weights.
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6. Final remarks. We have shown that UFLP ′(G) has the intersection prop-
erty if and only if G has no fork. When the graph has no odd cycle, then inequalities
(2)–(5) define UFLP ′(G); cf. [4]. This remains true if in addition G has no fork. If
G has odd cycles but no fork, we have to add inequalities (10). Indeed the odd cycle
inequalities are not enough as shown in Figure 3.

Fig. 3. A bipartite graph G = (U ∪ V,A). The squares (resp., circles) are the nodes in U
(resp., V ).

Let x(u, v) = 1
3 for each arc (u, v) ∈ A and y(v) = 1

3 for each node v ∈ V . Then
(x, y) satisfies (2)–(5) and satisfies inequalities (10) that correspond to odd cycles.
However, it violates an inequality (10) when F = A.

Our results show the importance of inequalities (10) for facility location
polytopes.
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[8] L. Cánovas, M. Landete, and A. Maŕın, On the facets of the simple plant location packing
polytope, Discrete Appl. Math., 124 (2002), pp. 27–53.

[9] A. Caprara and M. Fischetti, {0, 1
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