
Optimal Item Pricing in Online Combinatorial Auctions∗
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Abstract

We consider a fundamental pricing problem in combinatorial auctions. We are given a set
of indivisible items and a set of buyers with randomly drawn monotone valuations over subsets
of items. A decision-maker sets item prices and then the buyers make sequential purchasing
decisions, taking their favorite set among the remaining items. We parametrize an instance by
d, the size of the largest set a buyer may want. Our main result asserts that there exist prices
such that the expected (over the random valuations) welfare of the allocation they induce is at
least a factor 1/(d+1) times the expected optimal welfare in hindsight. Moreover, we prove that
this bound is tight. Thus, our result not only improves upon the 1/(4d− 2) bound of Dütting et
al., but also settles the approximation that can be achieved by using item prices. The existence
of these prices follows from the existence of a fixed point of a related mapping, and therefore, it
is non-constructive. However, we show how to compute such a fixed point in polynomial time,
even if we only have sample access to the valuation distributions.

We provide additional results for the special case when buyers’ valuations are known (but
a posted-price mechanism is still desired), and an improved impossibility result for the special
case of prophet inequalities for bipartite matching.
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1 Introduction

In combinatorial auctions, a set of valuable items is to be allocated among a set of interested agents.
Who should get which items in order to maximize the social welfare? This is a fundamental economic
question, and a ubiquitous allocation mechanism is to simply set a price for each item and let the
agents buy their preferred subset of items under those prices. The study of these mechanisms dates
back to the investigations of Leon Walras over a century ago, and is closely related to the notion of
Walrasrian equilibrium. Understanding the existence and approximation of Walrasrian equilibrium
and related notions under pricing mechanisms has been an active area of research in recent years
[BLNPL14, FGL14, FGL16, BK19, LW20].

In this paper, we follow the approach of online combinatorial auctions and study the welfare
achieved by posted-price mechanisms in a very general setup. Specifically, our mechanisms post a
price pi on each item i. Then, buyers with randomly-drawn arbitrary monotone valuations over the
subsets of items arrive in arbitrary order, and upon arrival pick their preferred subset among those
items that are left (at the posted prices). Of course, in this generality little can be said about the
social welfare induced by posted-price mechanisms, so it is common to parametrize the instances
by d, the largest size of a set a buyer might be interested in. This parametrization is interesting
from a combinatorial perspective: finding a socially optimal allocation is NP-hard already when
d ≥ 3, and even hard to approximate [Tre01]. Moreover, if we restrict the buyers’ valuations to be
deterministic and single-minded,1 we recover the classic hypergraph matching problem.

A natural goal in this context is thus to obtain prices for each item, such that the expected
welfare of the resulting allocation when adversarial-order buyers iteratively purchase their preferred
set is high with respect to the expected welfare of an optimal allocation. In other words, our goal in
this paper is to find posted-price mechanisms with good approximation guarantees of the expected
welfare of an optimal allocation, as a function of d.

1.1 Our Results

Our main result in this paper is to determine the tight approximation guarantee of item pricing as
a function of d. Specifically, we prove that there always exists a posted-price mechanism such that
the expected welfare of the resulting allocation when adversarial-order buyers iteratively purchase
their preferred set (at the posted prices) is at least a 1/(d+1) fraction of the expected welfare of an
optimal allocation (Theorem 3.1). In particular, our results improve the bound of 1/(4d− 2) given
in [DFKL20] to 1/(d+ 1), which is tight (Proposition 3.5).

In Section 6, we further consider the special case that arises when valuations are deterministic
and buyers are single-minded. In this situation the welfare optimization problem corresponds to
matching in a hypergraph with edges of size at most d. So the problem of finding item prices boils
down to finding a set of thresholds, one for each vertex, such that the value of the solution in
which hyperedges arrive sequentially (in any order) and are greedily included in the solution when
their weight is higher that the sum of the corresponding vertex thresholds, is as close as possible
to the optimal solution. For the case of standard matching (d = 2) we prove that there exist prices
guaranteeing a factor of 1/2 of the optimal solution and that there do not exist prices guaranteeing
a factor better than 2/3. The tight factor is left as an open problem. More generally, we prove
that there are prices obtaining a fraction 1/d of the optimal solution (thus slightly improving our
general 1/(d+ 1)), and that it is not possible to do better than ≈ 1/

√
d.

Finally, in Section 7, we prove that no bipartite matching prophet inequality can beat a 3/7
approximation.2 Note that prophet inequality for matching corresponds to a special case of our main

1Note that this is a particular case of monotone valuations. Indeed, a single-minded buyer can be modeled through
a fixed set T , such that the buyer values a set S at a certain positive amount if T ⊆ S, and at 0 otherwise.

2Recall that a prophet inequality instance specifies a set system S of elements and I ⊆ 2S of feasible sets, together
with a distribution De for each e ∈ S. The elements of S are revealed one at a time, together with a draw Xe ∼ De

independently, at which time the gambler must immediately and irrevocably decide whether to accept e (gaining
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result with d = 2. Therefore our Proposition 3.5 establishes that no non-adaptive vertex-pricing
prophet inequality can guarantee better than a 1/3-approximation to the expected offline optimum.
However, adaptive non-pricing prophet inequalities are known to achieve .337 > 1/3 [EFGT20]. So
the content of Theorem 7.1 is that no prophet inequality can beat 3/7, even those that are adaptive
and not based on vertex-pricing. It remains an open question to nail the precise approximation
guarantee of prophet inequalities for bipartite matchings within [.337, 3/7].

1.2 Context and Related Work

Posted-price Mechanisms. Posted-price mechanisms are ubiquitous within economics and com-
putation owing to their simplicity. They are commonly used as subroutines in truthful mecha-
nisms that approximately maximize welfare [DNS05, KV12, Dob16, AS19, AKS21]. They are also
used as subroutines in simple mechanisms to approximately maximize revenue in Bayesian set-
tings [CHMS10, KW12, CM16, CZ17]. Our work considers the same model initiated by [FGL14]
(welfare maximization in Bayesian settings). Other works consider restrictions on the valuations,
such as subadditive [DKL20], while others consider the unrestricted case [DFKL20]. In this last
work [DFKL20] consider unrestricted valuations over sets of size at most d, and derive a collection
of prices leading to an approximation guarantee of 1/(4d− 2). Our paper contributes to this line of
work by providing the tight approximation guarantee of 1/(d + 1) for posted-price mechanisms in
this model.

Prophet Inequalities. When there is a single item (and thus d = 1) our problem is equivalent
to the single-item prophet inequality and thus our result takes the same form as the classic result
of [SC84], who proved that the optimal prophet inequality (whose factor is 1/2) can be achieved
with a single threshold. A special case of our problem when buyers are single-minded corresponds
to various multiple-choice prophet inequality settings, and our results improve upon the state-of-
the-art. In particular, all prophet inequalities deduced from our main result are non-adaptive: for
each element e, a threshold Te is set at the beginning of the algorithm. Element e is accepted if and
only if the buyers’ valuation we exceeds the threshold, i.e., we ≥ Te (and it is feasible to accept e).

When d = 2 and buyers are single-minded, our problem translates into the matching prophet
inequality problem. In this setting [GW19] obtained 1/3-approximation for the case of bipartite
graphs. So our paper also contributes by extending this result to general graphs. Note that recent
work of [EFGT20] provides a .337-approximation in this case, although it sets thresholds adap-
tively. We further contribute to the d = 2 case by proving that no prophet inequality (adaptive or
not) can guarantee better than a 3/7-approximation for the bipartite matching prophet inequality
(Theorem 7.1).

For arbitrary d when buyers are single-minded, our problem translates into the d-dimensional hy-
pergraph prophet inequality, which generalizes the prophet inequality problem over the intersection
of d partition matroids. Here, a 1/(4d− 2)-approximation was first given in [KW12], and improved
to 1/(e(d+1)) in [FSZ16]. Our work improves this to 1/(d+1), and with non-adaptive thresholds.
A lower bound of [KW12, SVW23] proves that it is not possible to achieve an ω(1/d1/2+1/ log log d)
approximation even for this special case, but it remains an open problem to determine the tight
ratio for prophet inequalities for the intersection of d partition matroids (and for the d-dimensional
hypergraph prophet inequality).

Very recent work establishes a constant-factor prophet inequality for combinatorial auctions
with subadditive valuations [CC23]. An important open question at the intersection of this paper
and ours is whether their guarantee can also be achieved by a posted-price mechanism.

reward Xe), or reject forever. The gambler must maintain at all times that the collection of accepted elements is in
I, and aims to maximize its expected reward. Bipartite matching refers to the case where each element of S is an
edge in a bipartite graph, and I contains all matchings.
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1.3 Brief Technical Highlight

The proof of our main result breaks down the expected welfare into the “revenue” and “utility”
achieved by setting prices and searches for properly “balanced thresholds.” This idea has been
widely used in the context of combinatorial prophet inequalities [KW12, FGL14, GW19, DFKL20].
In particular, we target prices that are “low enough” so that a buyer with high value for some
set will choose to purchase it, yet also “high enough” so that the revenue gained when a bidder
purchases items they should not receive in the optimal allocation compensates for the lost welfare.
In comparison to prior work using this framework, the conditions that guarantee such prices are
more involved, and we prove their existence using Brouwer’s fixed point theorem.

As our proof makes use of Brouwer’s fixed point theorem, it is inherently non-constructive. We
however show in Sections 4 and 5 how to compute our prices in polynomial time. In particular, our
approach makes use of a configuration LP relaxation to cope with the APX-hardness of optimizing
welfare, and a convex optimization formulation to find our fixed point.

1.4 Summary and Roadmap

We precisely define our model in Section 2. Section 3 presents our main result: a posted-price
mechanism that achieves a 1/(d+ 1)-approximation to the optimal expected welfare, when buyers
have arbitrary monotone valuations and are interested in sets of size at most d. Recall that this
approximation guarantee is tight (we provide a simple example witnessing this in Proposition 3.5).
Section 4 extends some of the bounds derived in Section 3 by using as benchmark the configuration
LP. In Section 5, we show how to compute our desired prices in polynomial time. In Section 6,
we consider the special case where the distributions are point-masses, and in Section 7, we give an
improved impossibility result for bipartite matching prophet inequalities.

2 Model

In our basic model, we have a (multi)set of items M in which there are kj ≥ 1 copies of each item
j ∈ M .3 The set of buyers, denoted by N , arrive sequentially (in arbitrary order) and buy some
of those items. Each buyer i ∈ N has a valuation function vi : 2

M → R≥0, which is randomly and
independently chosen according to a given distribution Fi (defined over a set of possible valuation
functions). As it is standard, we assume that each possible realization of each vi is monotone (i.e.,
A ⊆ B ⇒ vi(A) ≤ vi(B)). We parametrize an instance of the problem by d, the size of the largest
set a buyer might be interested in. Thus, if A ⊆M is such that |A| > d, then

v(A) = max
B⊆A,|B|=d

v(B) (1)

Note that while there are kj ≥ 1 copies of each item j ∈M , no bidder achieves value from additional
copies (and therefore, without loss of generality, bidders cannot buy more than one copy).

In this paper, we are interested in exploring the limits of using item prices as a mechanism to
assign items to buyers. In a pricing mechanism, we set item prices p ∈ RM

≥0 and then consider an
arbitrary arrival order of the buyers (note different copies of the same item must have the same
price). Thus, buyer i buys the set of remaining items according to

max
A⊆Ri

vi(A)−∑
j∈A

pj

 , (2)

where Ri denotes the items for which there remains an unsold copy when i arrives. Note that Eq.
(2) might be solved by A = ∅, i.e., buyer i might opt not to buy anything. When there is a tie

3Throughout the paper M is actually a set and refers to the set of different items.
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between different sets, the buyer can choose arbitrarily, implying that our results need to be valid
even for the worst-case tiebreaking.4

More precisely, if σ is the arrival order of the buyers, so that buyer i comes at time σ(i), then

buyer i gets the set Bi(σ) = argmaxA⊆Ri(σ)

(
vi(A)−

∑
j∈A pj

)
, where Ri(σ) = {j ∈ M : kj >

|{ℓ ∈ N : σ(ℓ) < σ(i) and j ∈ Bℓ(σ)}|}. With this, given an instance of the problem (determined
by M , kj for all j ∈ M , N , and Fi for all i ∈ N), the quality measure of a price vector p ∈ RM

≥0 is
the worst case (over the arrival orders) expected (over the valuations) welfare of the allocation it
induces. Denoting this quantity by ALG(p) we have that:

ALG(p) := min
σ

E

(∑
i∈N

vi(Bi(σ))

)
.

On the other hand, the benchmark we compare to throughout the paper is the expected value of
the optimal welfare-maximizing allocation, OPT , formally defined as

OPT := E

(
max

{Ai}i∈N

{∑
i∈N

vi(Ai) : s.t. |{i ∈ N : j ∈ Ai}| ≤ kj , for all j ∈M

})
.

We denote by OPTi the random set that buyer i gets in an optimal allocation.
In Section 6 we consider the special case of our problem in which

(i) valuations are deterministic,

(ii) there is a single copy of each item (i.e., kj = 1 for all j ∈M), and

(iii) buyers are single-minded, i.e., each buyer i has a set Ai, with |Ai| ≤ d, such that Ai ̸⊆ B ⇒
vi(B) = 0, Ai ⊆ B ⇒ vi(B) = vi(Ai).

Interestingly, already in this particular setup, the problem of maximizing the welfare of an allocation
corresponds to the classic NP-hard combinatorial optimization problem of hypergraph matching
with hyperedges of size at most d. Indeed, in an optimal allocation buyer i either gets Ai or ∅,
implying that maximizing the (now deterministic) welfare of the allocation is equivalent to finding
a subset of pairwise disjoint Ai’s of maximum total valuation.

In Section 7 we continue to focus on single-minded buyers with one copy of every item, but
allow random valuations; this captures the prophet inequality model with a large class of feasibility
constraints (we focus on bipartite matching).

3 Main Result: A 1/(d+1)-approximation for Random Valuations

In this section we prove there exists a vector of item prices such that the resulting allocation yields
in expectation at least a 1/(d+1) fraction of the optimal social welfare. Additionally, we show that
this bound is tight.

Theorem 3.1. There exists a vector of prices p ∈ RM
≥0 such that

(d+ 1) ·ALG(p) ≥ OPT.

To prove the theorem we will make use of the following function. For each A ⊆ M and i ∈ N ,
we define zi,A : RM

≥0 → R as

zi,A(p) := E

1OPTi=A ·

vi(A)−∑
j∈A

pj


+

 ,

4In some of the constructions in Section 6 we break ties conveniently but all the results hold by slightly tweaking
the instances.
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where [x]+ denotes max{x, 0}. The function zi,A(p) can be interpreted as follows: imagine we
calculate the optimal allocation and offer buyer i the set OPTi at the prices given by p. Then, zi,A
would be the contribution of the set A to the non-negative part of the expected utility of buyer i.

We assume without loss of generality that |OPTi| ≤ d for all i ∈ N , so zi,A(p) = 0 if |A| > d.
We start by showing a lower bound for ALG(p) in terms of the values zi,A(p). This type of analysis
is, by now, standard in combinatorial prophet inequalities [FGL14, KW12, GW19].

Lemma 3.2. For any vector of prices p ∈ RM
≥0,

ALG(p) ≥ min
C⊆M

∑
j /∈C

kj · pj +
∑
i∈N

∑
A⊆C

zi,A(p)

 .

Proof. In this proof we assume the arrival order σ is arbitrary, and for simplicity we denote Bi(σ)
and Ri(σ) simply by Bi and Ri. We separate the welfare of the resulting allocation into revenue
and utility, i.e., we separate

∑
i∈N vi(Bi) into

Revenue =
∑
i∈N

∑
j∈Bi

pj and Utility =
∑
i∈N

vi(Bi)−
∑
j∈Bi

pj

 .

Recall that Ri is the set of items with remaining copies when i arrives. Similarly, denote by R the
set of items that have remaining copies by the end of the process. Note first that

E(Revenue) ≥ E

∑
j /∈R

kj · pj

 .

This is simply because each item j /∈ R has had all kj copies purchased. As for the utility, for
any i ∈ N , by the definition of Bi it holds that

vi(Bi)−
∑
j∈Bi

pj = max
A⊆Ri

vi(A)−
∑
j∈A

pj

Note now that vi and Ri are independent. Let (ṽi)i∈N be independent realizations of the valuations,

and ÕPT i the corresponding optimal solution. With this, and noting that R ⊆ Ri, we can rewrite
the expected utility of agent i as

E

max
A⊆Ri

vi(A)−
∑
j∈A

pj

 = E

max
A⊆Ri

ṽi(A)−
∑
j∈A

pj

 ≥ E

max
A⊆R

ṽi(A)−
∑
j∈A

pj

 . (3)

We replace the maximization over subsets of R with a particular choice, ÕPT i, whenever it is
contained in R and gives positive utility (otherwise we take ∅). This obtains the following lower
bound on the expected utility of agent i:

E

1{ÕPT i⊆R} ·

ṽi(ÕPT i)−
∑

j∈ÕPT i

pj


+

 = E

∑
A⊆R

1{ÕPT i=A} ·

ṽi(A)−∑
j∈A

pj


+


= E

∑
A⊆R

E

1{ÕPT i=A} ·

ṽi(A)−∑
j∈A

pj


+


= E

∑
A⊆R

zi,A(p)

 . (4)
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Summing over all agents, we get that

E(Utility) ≥ E

∑
i∈N

∑
A⊆R

zi,A(p)

 .

Therefore, adding the revenue and the utility we get that

ALG(p) ≥ E

∑
j /∈R

kj · pj +
∑
i∈N

∑
A⊆R

zi,A(p)

 .

Replacing the expectation over R with a minimization over subsets of M yields the bound of the
lemma.

Lemma 3.3. For any vector of prices p ∈ RM
≥0,

OPT ≤
∑
j∈M

kj · pj +
∑
i∈N

∑
A⊆M

zi,A(p).

Proof. We have that OPT equals

∑
i∈N

E(vi(OPTi)) = E

∑
i∈N

∑
j∈OPTi

pj

+
∑
i∈N

E

vi(OPTi)− ∑
j∈OPTi

pj

 .

Now we upper bound these two terms separately. Note that in the first term each item j ∈ M
appears at most kj times, so

E

∑
i∈N

∑
j∈OPTi

pj

 ≤
∑
j∈M

kj · pj .

For the second part, we upper bound with the positive part of the difference, and sum over all
possible realizations of OPTi:

∑
i∈N

E

vi(OPTi)− ∑
j∈OPTi

pj

 =
∑
i∈N

∑
A⊆M

E

1{OPTi=A}

vi(A)−∑
j∈A

pj


≤
∑
i∈N

∑
A⊆M

zi,A(p).

Putting together the two upper bounds we obtain the bound on OPT .

Lemmas 3.2 and 3.3 provide a similar form to lower bound ALG(p) and upper bound OPT as
a function of p. Now, we will prove the existence of a good choice of p where these bounds differ by
at most a factor of d+ 1.

Lemma 3.4. There exists a vector of prices p ∈ RM
≥0 such that for every j ∈M we have

pj =
1

kj

∑
i∈N

∑
A⊆M :j∈A

zi,A(p).

Proof. The proof will be an application of Brouwer’s fixed point theorem. LetK denote the compact
set K := [0, OPT ]M ⊆ RM

≥0. We define a function ψ : K → K as follows: for a vector p ∈ K and

item j ∈M , the jth coordinate of ψ is

ψj(p) =
1

kj

∑
i∈N

∑
A⊆M :j∈A

zi,A(p). (5)
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We prove now that ψ is a well-defined continuous function, from the compact set K into itself, and
therefore it has a fixed point by Brouwer’s fixed point theorem. Note that a fixed point of ψ is
exactly the vector of prices we are looking for.

In fact, recall that we defined zi,A(p) = E(1OPTi=A ·[vi(A)−
∑

j∈A pj ]+), which is a nonincreasing
function of pj , for all j ∈ M . Moreover, note that since [·]+ is a convex function, zi,A is also a
convex function of pj for all j ∈M . The monotonicity of zi,A implies that for all p ∈ K and j ∈M ,
ψj(p) ≤ ψj(0) ≤ 1

kj
OPT , and therefore ψ(p) ∈ K for all p ∈ K. The convexity of zi,A implies it is

also continuous, so ψ is a continuous function.
We’ve now argued that ψ is a continuous function from K to itself, and therefore a fixed point

exists, which proves the lemma.

Proof of Theorem 3.1. Using the vector of prices from Lemma 3.4, we apply the bound of Lemma 3.2
and conclude

ALG(p) ≥ min
C⊆M

∑
j /∈C

kj · pj +
∑
i∈N

∑
A⊆C

zi,A(p)

 .

≥ min
C⊆M

∑
j /∈C

kj ·
1

kj

∑
i∈N

∑
A⊆M :j∈A

zi,A(p) +
∑
i∈N

∑
A⊆C

zi,A(p)


= min

C⊆M

∑
i∈N

∑
A⊆M

zi,A(p) · (|A \ C|+ 1A⊆C)


≥ min

C⊆M

∑
i∈N

∑
A⊆M

zi,A(p) · (1|A\C|≥1 + 1A⊆C)


=
∑
i∈N

∑
A⊆M

zi,A(p).

For OPT , substituting our fixed point in the upper bound of Lemma 3.3 gives

OPT ≤
∑
j∈M

∑
i∈N

∑
A⊆M :j∈A

zi,A(p) +
∑
i∈N

∑
A⊆M

zi,A(p)

=
∑
i∈N

∑
A⊆M

(|A|+ 1) · zi,A(p)

≤ (d+ 1)
∑
i∈N

∑
A⊆M

zi,A(p).

Comparing the two bounds we see that (d+ 1) ·ALG(p) ≥ OPT .

To wrap up the section, we establish that the bound of Theorem 3.1 is best possible by modi-
fying a simple example of [FGL14]. This example establishes a lower bound of d if we restrict to
deterministic valuations. Here we add stochasticity to match the bound of Theorem 3.1.

Before doing so, we note that even without stochasticity, the bound of d+1 is tight for our fixed
point approach. For this, consider a deterministic instance with d items and two single-minded
buyers: buyer A has value v = 1/(d+1) < 1 for a single item and buyer B has value 1 for the set of
all items. Then the fixed point sets price 1/(d+ 1) on all items, since the fixed point equations are
pj = 1 −

∑
j∈M pj , for all j ∈ M (Buyer B has utility 1/(d + 1) at these prices). Then the online

algorithm will assign an item to buyer A so that the bound of d+ 1 is tight.

Proposition 3.5. For all d, and all δ > 0, there exists an instance on |N | = 2 buyers and |M | = d
items such that for all p, ALG(p) ≤ 1, yet OPT = d+ 1− δ.
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Proof. Consider a setM of exactly d items with a single copy of each, and a very small ε > 0. There
are two buyers. Buyer A values any nonempty subset of the items at 1. Buyer B only assigns value
to getting all d items, and this value is d− ε with probability 1− ε and it is 1/ε with probability ε.

In any instance where buyer A purchases a non-empty subset, the resulting social welfare is 1.
Note that this is certain to happen if we set the prices so that

∑
j∈M pj < d and buyer A arrives

before buyer B. If, on the contrary, 1/ε ≥
∑

j∈M pj ≥ d and buyer A does not purchase anything,
buyer B will only purchase items with probability ε. In this case, the expected total welfare is also
1. This establishes that ALG(p) = 1 for all p such that

∑
j∈M pj ≤ 1/ε, and ALG(p) = 0 otherwise.

Finally, it is clear that in this instance the optimal welfare is achieved by always assigning all items
to buyer B, which results in an expected welfare of (d − ε) · (1 − ε) + ε · (1/ε) ≥ d + 1 − (d + 1)ε.
Setting ε = δ/(d+ 1) completes the proof.

4 Bounds using an optimal LP solution

Our next step is to make Theorem 3.1 constructive and show that the underlying prices can be
efficiently computed. To this end, we need to establish that Lemmas 3.2 and 3.3 also hold when in
the definition of zi,A(p) we replace 1OPTi=A with xi,A, an optimal solution of the linear relaxation
of the optimal allocation problem. This means we replace zi,A(p) with

z̃i,A(p) = E

xi,A ·

vi(A)−∑
j∈A

pj


+

 ,

where x = (xi,A)i∈N,A⊆M , solves

(LP) max
x≥0

∑
i∈N

∑
A⊆M

xi,A · vi(A)

s.t.
∑
A⊆M

xi,A ≤ 1, for all i ∈ N,

∑
i∈N

∑
A:j∈A

xi,A ≤ kj , for all j ∈M.

These results will be used in the next section and their proofs are almost identical to the original
ones in Section 3.

Lemma 4.1. For any vector of prices p ∈ RM
≥0,

ALG(p) ≥ min
C⊆M

∑
j /∈C

kj · pj +
∑
i∈N

∑
A⊆C

z̃i,A(p)

 .

Proof. In this proof we assume the arrival order σ is arbitrary, and for simplicity we denote Bi(σ)
and Ri(σ) simply by Bi and Ri. We separate the welfare of the resulting allocation into revenue
and utility, i.e., we separate

∑
i∈N vi(Bi) into

Revenue =
∑
i∈N

∑
j∈Bi

pj and Utility =
∑
i∈N

vi(Bi)−
∑
j∈Bi

pj

 .

Recall that Ri is the set of items with remaining copies when i arrives. Similarly, denote by R the
set of items that have remaining copies by the end of the process. Note first that

E(Revenue) ≥ E

∑
j /∈R

kj · pj

 .
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This is simply because all items j /∈ R have sold all kj copies. For the utility, for any i ∈ N , by
the definition of Bi it holds that

vi(Bi)−
∑
j∈Bi

pj = max
A⊆Ri

vi(A)−
∑
j∈A

pj

Note now that vi and Ri are independent. Let (ṽi)i∈N be independent realizations of the valuations.
With this and noting that R ⊆ Ri, we can rewrite the expected utility of agent i as

E

max
A⊆Ri

vi(A)−
∑
j∈A

pj

 = E

max
A⊆Ri

ṽi(A)−
∑
j∈A

pj

 ≥ E

max
A⊆R

ṽi(A)−
∑
j∈A

pj

 . (6)

Let x̃ denote an optimal solution of LP when the values are (ṽi)i∈N . Since (ṽi)i∈N is independent
of R, x̃ is also independent of R. Since x̃ is feasible for LP, for any given i ∈ N ,

∑
A⊆R x̃i,A ≤∑

A⊆M x̃i,A ≤ 1. We can replace the maximization over subsets of R in Eq. (6) with the convex
combination of particular choices given by (x̃i,A)A⊆R. Thus, we obtain the following lower bound.

E

max
A⊆R

ṽi(A)−
∑
j∈A

pj

 ≥ E

∑
A⊆R

x̃i,A ·

ṽi(A)−∑
j∈A

pj


+


= E

∑
A⊆R

E

x̃i,A ·

ṽi(A)−∑
j∈A

pj


+


= E

∑
A⊆R

z̃i,A(p)

 . (7)

The positive part [·]+ comes from the fact that we can always choose ∅ ⊆ R in the maximization in
Eq. (6). Summing over all agents, we get that

E(Utility) ≥ E

∑
i∈N

∑
A⊆R

z̃i,A(p)

 .

Therefore, adding the revenue and the utility we get that

ALG(p) ≥ E

∑
j /∈R

kj · pj +
∑
i∈N

∑
A⊆R

z̃i,A(p)

 .

Replacing the expectation over R with a minimization over subsets of M we obtain the bound of
the lemma.

Lemma 4.2. For any vector of prices p ∈ RM
≥0,

OPT ≤
∑
j∈M

kj · pj +
∑
i∈N

∑
A⊆M

z̃i,A(p).

Proof. Let x be an optimal solution of LP. We have that

OPT ≤ E

∑
i∈N

∑
A⊆M

xi,A · vi(A)


= E

∑
i∈N

∑
A⊆M

xi,A ·
∑
j∈A

pj

+ E

∑
i∈N

∑
A⊆M

xi,A ·

vi(A)−∑
j∈A

pj

 .
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Now we upper bound these two terms separately. Since x is feasible for LP, for all j ∈ M we have
that

∑
i∈N

∑
A:j∈A xi,A ≤ kj , so the first term satisfies

E

∑
i∈N

∑
A⊆M

xi,A ·
∑
j∈A

pj

 ≤
∑
j∈M

kj · pj .

For the second term we simply upper bound the difference with its positive part.

E

∑
i∈N

∑
A⊆M

xi,A ·

vi(A)−∑
j∈A

pj


≤
∑
i∈N

∑
A⊆M

E

xi,A ·

vi(A)−∑
j∈A

pj


+


≤
∑
i∈N

∑
A⊆M

z̃i,A(p).

Putting together the two upper bounds we obtain the bound on OPT .

5 Efficient Computation

So far, our main result is nonconstructive for several reasons. First, it requires a fixed-point com-
putation (which is PPAD-hard in general). Second, evaluating the function for which we hope to
find a fixed point requires computing the expected value of a random variable with exponential sup-
port (which is #P-hard in general). Finally, sampling the random variable whose expected value
defines our function requires computing the optimal allocation, which is NP-hard in general, even
to approximate. As a first step, in the previous section, we showed that we can replace the optimal
solution with the solution to a (exponentially large) linear program.

In this section, we show how to overcome all three barriers, and efficiently (in time polynomial
in |M | and |N |) compute the prices, even when d is not a constant. Notice that when d is not
a constant, a complete description of the distributions, or even of a single deterministic valuation
function, might be exponentially large. Thus, we assume instead that we can draw samples from
the distributions of valuation functions, which we access in a black-box manner via demand queries.

Definition 5.1. A demand query of a valuation function v : 2M → R≥0 accepts a price vector

p ∈ RM
≥0 and returns a subset of items A such that v(A) = maxB⊆M

(
v(B)−

∑
j∈B pj

)
.

We note that while a demand query only returns the subset A and not the associated valua-
tion v(A), we can compute the valuation of any subset using polynomially-many demand queries
[NRTV07, Lemma 11.22].

Theorem 5.1. If there is a number vmax such that vi(A) ≤ vmax for all i ∈ N,A ⊆ M with
probability 1, and such that vmax/OPT ≤ poly(|M |, |N |), then for every ε > 0 we can calculate
prices p̂ such that

(d+ 1 + ε) ·ALG(p̂) ≥ OPT,

with probability 1−ε, in time poly(|M |, |N |, 1/ε), using poly(|M |, |N |, 1/ε) samples of the valuations
and poly(|M |, |N |, 1/ε) demand queries in total.

To prove this theorem we first show that under the condition vmax/OPT ≤ poly(|M |, |N |)
we can approximate the function ψ (as defined in Section 3) using polynomially-many samples.
This approximation requires computing the optimal fractional allocation, which can be done in
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polynomial time using demand queries. Finally, we show that the structure of ψ allows us to
efficiently compute a fixed point through a convex quadratic program.

Even though vmax/OPT ≤ poly(|M |, |N |) is a seemingly strong condition, the following example
illustrates its necessity in our approach. Consider an instance with one item and two buyers. For a
small δ > 0, the first buyer has a valuation of δ for the item, while the second has a valuation of
1/δ with probability δ, and 0 otherwise. In this instance OPT = 1 + δ − δ2. Most of the time the
optimal allocation gives the item to the first buyer; however, most of the value in OPT comes from
the second buyer. Thus, in order to obtain a good approximation of OPT using samples, we need
to sample the valuation functions enough times to see at least once the 1/δ valuation of the second
buyer, i.e., we require Ω(1/δ) samples. Otherwise, we could not distinguish the instance from one
where the second buyer has valuation identically 0 (in which case we should allocate the item to
the first buyer, obtaining a welfare of only δ).

5.1 Proof of Theorem 5.1

Our strategy to find the prices has several steps. First, we use an estimate ψ̂ of ψ (recall the
definition of ψ from Section 3). The function ψ̂ differs from ψ in two ways: first, it replaces
the optimal integral allocation with the optimal fractional allocation in the definition of zi,A(p),
according to the configuration LP specified in the previous section. Second, it takes polynomially-
many samples and computes the empirical average, rather than an exact expected value. This allows
us to compute ψ̂ in poly-time. Finally, we write a convex quadratic minimization program whose
solution is a fixed-point of ψ̂. Because we can minimize convex quadratic functions in poly-time,
we can then find a fixed point of ψ̂.

More precisely we proceed as follows:

1. For s ∈ {1, . . . , S}, with S = poly(|M |, |N |, 1/ε), draw independent sets of samples of the

valuations (v
(s)
i )i∈N .

2. For each set of samples (v
(s)
i )i∈N find an optimal fractional allocation x(s) = (x

(s)
i,A)i∈N,A⊆M ,

i.e., one that solves

(LP) max
x≥0

∑
i∈N

∑
A⊆M

xi,A · v(s)i (A)

s.t.
∑
A⊆M

xi,A ≤ 1, for all i ∈ N,

∑
i∈N

∑
A:j∈A

xi,A ≤ kj , for all j ∈M.

3. For each s = 1, . . . , S define the functions ψ̂(s) : RM
≥0 → RM

≥0 as

ψ̂
(s)
j (p) =

1

kj

∑
i∈N

∑
A:j∈A

x
(s)
i,A ·

v(s)i (A)−
∑
j′∈A

pj′


+

, for each j ∈M, (8)

and denote their average as ψ̂ := 1
S

∑S
s=1 ψ̂

(s).

4. Find a fixed point of ψ̂, i.e., a vector p̂ such that ψ̂(p̂) = p̂.

As said before, ψ̂ does not exactly approximate ψ, but another function ψ̃ := E(ψ̂). Notice that if
we define

z̃i,A(p) = E

xi,A ·

vi(A)−∑
j∈A

pj


+

 ,
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then ψ̃ is analogous to ψ as defined in Eq. (5), but using z̃ instead of z, i.e.,

ψ̃j(p) =
1

kj

∑
i∈N

∑
A⊂M :j∈A

z̃i,A(p).

To prove Theorem 5.1, we show that (i) given a set of valuation functions, we can efficiently
compute an optimal solution of the linear program (LP) using demand queries; (ii) with polynomially
many samples, the function ψ̂ approximates ψ̃ sufficiently well; (iii) we can efficiently compute a
fixed point of ψ̂; and (iv) a fixed point of ψ̂ (and thus an approximate fixed point of ψ̃) gives a
(d+ 1 + ε)-approximation of OPT .

Even though the linear program (LP) has exponentially many variables, its dual has only |M |+
|N | variables. It turns out the demand queries provide a separation oracle for it, and therefore, it can
be solved using the Ellipsoid method in polynomial time. For more details we refer to [NRTV07,
Chapter 11.5.2]. This completes step (i). For each of the other three steps we prove a separate
lemma.

Lemma 5.2. Using S = poly(|M |, |N |, 1/ε) samples we can guarantee that with probability 1 − ε
we have that

∑
j∈M |ψ̂j(p)− ψ̃j(p)| ≤ ε ·OPT/(|M | · |N |), for all p ∈ [0, vmax]

M .

Proof. Consider the following discretization of [0, vmax]
M . In each coordinate we take multiples of

δ = ε · OPT/(4 · |M |3 · |N |), i.e., we consider vectors in P = {i · δ : i ∈ N}M ∩ [0, vmax]
M . Recall

that ψ̃ = E(ψ̂). For any given p ∈ P, λ > 0, j ∈M , and number of samples S, an additive Chernoff
bound indicates that

P(|ψ̂j(p)− E(ψ̂j(p))| > λ) ≤ 2 exp

(
−2 · S · λ2

v2max

)
.

Taking a union bound over all j ∈M and all p ∈ P, we have that
∑

j∈M |ψ̂j(p)−E(ψ̂j(p))| ≤ |M | ·λ
for all p ∈ P with probability at least

1− |M | · |P| · 2 exp
(
−2 · S · λ2

v2max

)
= 1− |M | ·

(vmax

δ

)|M |
· 2 exp

(
−2 · S · λ2

v2max

)
= 1− ε · exp

(
log

|M |
ε

+ |M | · log vmax

δ
− S · 2 · λ2

v2max

)
(9)

Now take any vector p ∈ [0, vmax]
M . By the definition of P, there is a vector p̂ ∈ P such that

||p − p̂||1 ≤ |M | · δ. It is easy to check from the definition of ψ̂ in Eq. (8) and the constraints
that x(s) satisfies in LP that for all j ∈ M , |ψ̂j(p)− ψ̂j(p̂)| ≤ ||p− p̂||1. Therefore, ψ̂ and E(ψ̂) are
|M |-lipschitz functions. By the triangle inequality, we have that

||ψ̂(p)− E(ψ̂(p))||1 ≤ ||ψ̂(p)− ψ̂(p̂)||1 + ||ψ̂(p̂)− E(ψ̂(p̂))||1 + ||E(ψ̂(p̂))− E(ψ̂(p))||1
≤ 2 · |M |2 · δ + |M | · λ. (10)

Now, taking λ = ε ·OPT/(2 · |M |2 · |N |) and replacing in Eq. (10), we obtain that ||ψ̂(p)−E(ψ̂(p))||1
is at most ε ·OPT/(|M | · |N |) for all p ∈ [0, vmax]

M ; with probability at least the expression in Eq.
(9). Assuming vmax/OPT ≤ poly(|M |, |N |), we can make make the probability in Eq. (9) larger
than 1− ε by taking S = poly(|M |, |N |, |1/ε).

Lemma 5.3. If S = poly(|M |, |N |, 1/ε) we can compute a fixed point of ψ̂ in time poly(|M |, |N |, 1/ε).
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Proof. Recall that p is a fixed point of ψ̂ if for all j ∈M ,

pj = ψ̂j(p) =
1

S

S∑
s=1

∑
i∈N

∑
A:j∈A

1

kj
· x(s)i,A ·

v(s)i (A)−
∑
j′∈A

pj′


+

.

Note that in this sum, the only non-zero terms are those such that x
(s)
i,A > 0. A basic solution for the

LP has at most |M |+|N | non-zero variables, so there are at most S ·(|M |+|N |) = poly(|M |, |N |, 1/ε)
combinations of indices such that x

(s)
i,A > 0. Denote by E the set of such indices, i.e., E = {(i, A, s) :

i ∈ N,A ⊆M, 1 ≤ s ≤ S, and x
(s)
i,A > 0}.

Now, for a vector p, define

ye :=

√
x
(s)
i,A ·

v(s)i (A)−
∑
j∈A

pj


+

, for all e = (i, A, s) ∈ E. (11)

If p is a fixed point, then it satisfies

pj =
∑

(i′,A′,s′)=e′:
e′∈E,j∈A′

√
x
(s′)
i′,A′

S · kj
· ye′ . (12)

By replacing pj back in Eq. (11), we have that p is a fixed point if and only if y = (ye)e∈E satisfies

ye =

√
x
(s)
i,A ·

v(s)i (A)−
∑
j∈A

∑
(i′,A′,s′)=e′:
e′∈E,j∈A′

√
x
(s′)
i′,A′

S · kj
· ye′


+

, for all e = (i, A, s) ∈ E. (13)

We write a quadratic program with variables (ye)e∈E whose optimal solutions correspond to
solutions of Eq. (13).

(QP) min
y

∑
e=(i,A,s)∈E

ye ·

ye −√x(s)i,A ·

v(s)i (A)−
∑
j∈A

∑
(i′,A′,s′)=e′:
e′∈E,j∈A′

√
x
(s′)
i′,A′

S · kj
· ye′




s.t.

ye ≥
√
x
(s)
i,A ·

v(s)i (A)−
∑
j∈A

∑
(i′,A′,s′)=e′:
e′∈E,j∈A′

√
x
(s′)
i′,A′

S · kj
· ye′

 , e = (i, A, s) ∈ E (14)

ye ≥ 0, e ∈ E. (15)

To see that it suffices to optimize this quadratic program, take first a vector y that satisfies
Eq. (13) (note that such a vector must exist, by Brouwer’s fixed-point theorem). It is immediately
implied by Eq. (13) that y satisfies both Eqs. (14) and (15). Moreover, it is also evident that for
all e ∈ E one of the two constraints must be tight, implying that the objective function must take
a value of 0. Notice that the objective function is necessarily non-negative for feasible solutions, so
y is an optimal solution. Observe also that for any optimal solution y′ to the quadratic program,
because the objective function takes a value of zero it must be the case that for every e ∈ E, at
least one of Eqs. (14) and (15) is tight. This directly shows that y′ satisfies Eq. (13).
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We finally argue that the quadratic program is convex and hence can be solved in polynomial
time [KTK79]. To do so, it suffices to argue that the objective function can be written in the form
bT y + yT (BTB + I)y for some vector b and matrix B. We define B ∈ RM×E by

Bj,e=(i,A,s) :=

√√√√ x
(s)
i,A

S · kj
· 1j∈A.

Now, for e = (i, A, s) and e′ = (i′, A′, s′) observe that

(BTB)e,e′ =
∑
j∈M

√
x
(s)
i,A · x(s

′)
i′,A′

S · kj
· 1j∈A,j∈A′ =

√
x
(s)
i,A ·

 ∑
j∈A∩A′

√
x
(s′)
i′,A′

S · kj

 .

From this is is straightforward to see that all the nonlinear terms in the objective of QP can be
written as yT (BTB + I)y as we wanted to show.

Lemma 5.4. If p̂ ∈ [0, vmax]
M is such that

∑
j∈M |p̂j − ψ̃j(p)| ≤ ε ·OPT/(|M | · |N |), then

(d+ 1 +O(ε)) ·ALG(p̂) ≥ OPT.

Proof. We simply re-do the proof of Theorem 3.1, but replacing with the approximate fixed point.
Thus, we take p̂ ∈ [0, vmax]

M such that
∑

j∈M |p̂j − ψ̃j(p)| ≤ ε ·OPT/(|M | · |N |), and replace in the
bound of Lemma 4.1 We obtain that

ALG(p̂) ≥ min
C⊆M

∑
j∈C

kj · p̂j +
∑
i∈N

∑
A⊆C̄

z̃i,A(p̂)


≥
∑
i∈N

∑
A⊆M

z̃i,A(p̂)−
ε ·OPT
|M | · |N |

·max
j∈M

kj

≥
∑
i∈N

∑
A⊆M

z̃i,A(p̂)−
ε ·OPT
|M |

.

The last inequality comes from the fact that we can assume without loss of generality that maxj∈M kj ≤
|N |, since a buyer buys at most one copy of each item. Then, we use the upper bound of Lemma 4.2.

OPT ≤
∑
j∈M

kj · p̂j +
∑
i∈N

∑
A⊆M

z̃i,A(p̂)

≤ (d+ 1)
∑
i∈N

∑
A⊆M

z̃i,A(p̂) +
ε ·OPT
|M | · |N |

·max
j∈M

kj .

This implies that

(1− ε) ·OPT ≤ (d+ 1) ·
∑
i∈N

∑
A⊆M

z̃i,A(p̂).

Putting together the lower bound on ALG(p̂) and the upper bound on OPT we conclude that

(d+ 1 +O(ε))ALG(p̂) ≥ OPT.

The proof of the theorem is straightforward from the lemmas: we take S = poly(|M |, |N |, ε)
samples of the valuations, as required by Lemma 5.2 so that ψ̂ is a good approximation of ψ̃. For
each sample, we solve (LP) in polynomial time, so we can calculate ψ̂ in polynomial time. Then, by
Lemma 5.3, we can compute a fixed point of ψ̂. Finally, taking the computed fixed point as prices,
we get a (d+ 1 +O(ε))-approximation of OPT , by Lemma 5.4.
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Figure 1: Example of a bipartite graph in which, when all edges have the same weight, no pricing
scheme can guarantee obtaining more than 2/3 of the optimal solution.

6 Deterministic Single-minded Valuations

In this section, we consider the special case where there is a single copy of each item (i.e., ki = 1 for
all i ∈ M), buyers’ valuations are deterministic, and buyers are single-minded. The latter means
each buyer i has a set Ai, with |Ai| ≤ d, such that Ai ̸⊆ B ⇒ vi(B) = 0, Ai ⊆ B ⇒ vi(B) = vi(Ai).
The problem of maximizing the welfare of an allocation in this context can be seen as the classic
combinatorial problem of hypergraph matching with hyperedges of size at most d, where the buyers
correspond to the hyperedges and the items are the vertices. Indeed, in an optimal allocation for
this setting buyer i either gets Ai or ∅, implying that maximizing the welfare of the allocation
is equivalent to finding a subset of pairwise disjoint Ai’s of maximum total valuation. As this
is a traditional problem, in the rest of this section we will refer to hypergraphs, hyperedges and
vertices, rather than buyers and items, using the usual notation G = (V,E) and denoting by w(e)
the valuation (or weight) of the hyperedge e.

6.1 Matching in graphs: d = 2

We first focus on the traditional matching problems, showing that using prices has limits even for
this scenario. A similar discussion appears in [CAEFF16], though not for single-minded valuations.
While our results are simple, and moreover Lemma 6.1 is implied by [CAEFF16]), we describe them
here in full since we believe it helps complete the picture of the single-minded case. In particular,
we show in Lemmas 6.1 and 6.3, there are instances in which no pricing scheme can guarantee
recovering more than 2/3 of the optimal solution. This is true even if the graph is bipartite or if
there is a unique optimal matching; on the other hand, if both conditions are fulfilled — the graph
is bipartite and there is a unique optimal matching — using the dual prices leads precisely to such
optimal solution.

Lemma 6.1. Prices cannot guarantee obtaining more than 2/3 of the optimal matching, even if the
graph is bipartite.

Proof. Consider the graph depicted in Fig. 1, in which all edges have unit weight. There are two
optimal solutions, given by the black and the red perfect matchings; no perfect matching can be
constructed using arcs of different colors. Assume we have prices that are able to build an optimal
solution (i.e., include three edges) regardless of the order in which the edges arrive. This implies
that for at least one of the optimal solutions, all the edges will be included if their vertices are
available when they arrive. Without loss assume this is the case for the black matching, i.e. for
i = 1, 2, 3, pLi + pRi ≤ 1.

On the other hand, we need to prevent the red edges to be included if they appear; to see why
this is necessary, consider for instance the case in which the edge (L1, R2) is not discarded when
appearing first. Then, if the edge (L3, R3) appears second, no more edges could be added. To
preclude this, we need to impose that for i = 1, 2, 3, pLi + pR(i+1)mod 3

> 1. A contradiction follows
by adding these and the previous three inequalities.
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Finally, if, for instance, all vertex prices are 1/2, exactly two edges will be added regardless of
the order in which they appear.

In the case of bipartite graphs, it is natural to consider the usual linear programming formu-
lation, since it has integer optimal solutions. The following lemma shows that when we require
the additional hypothesis that there is a unique optimal matching. the prices given by the optimal
solution of the dual problem lead to that optimal assignment.

Lemma 6.2. If the graph G = (V,E) is bipartite and has a unique optimal matching, then such a
matching is obtained using the dual prices.

Proof. Because the graph is bipartite, the problem reduces to solving the following linear program:
max{

∑
e∈E xew(e) :

∑
e∈δ(v) xe ≤ 1 for all v ∈ V, x ≥ 0}; which has an integral optimal solution.

Because there is only one optimal matching, the LP has a unique optimal solution (x∗e)e∈E . Con-
sider the prices (p∗u)u∈V corresponding to an optimal dual solution, satisfying strict complementary
slackness.

Consider an edge e = (u, v) that is not part of the optimal matching. Hence, the corresponding
primal variable takes the value x∗e = 0. By complementary slackness, the corresponding dual
constraint is not tight, i.e. p∗u + p∗v > w(e). This last condition implies that buyer e will not buy
the edge upon arrival. On the other hand, if e is part of the optimal solution, the corresponding
dual constraint must be tight (again due to strict complementary slackness), so that those buyers
will choose to buy.

The assumption of a unique solution is crucial for the dual prices to be useful. Indeed, when
there is more than one solution, using the dual prices can be arbitrarily inefficient. Indeed, consider
the same example depicted in Figure 1, but modify the weight of the edges f = (L1, R1) and
g = (L2, R3) to be ε, so that that the optimal solution has value 2+ ε. On the other hand, consider
an edge e = (u, v) and the resulting dual prices pu, pv: complementary slackness now states that
we have pu + pv = w(e) iff e is part of any optimal solution. Edge f is part of the black optimal
solution, and edge g is part of the red, hence those edges will be bought if the corresponding vertices
are available when they appear. In particular, if they are the first two edges to appear, then they
will both be in the final solution, and no other edge can be added, leading to a final weight of 2ε.

However, in general graphs, even the uniqueness assumption is not enough. Indeed we have the
following result.

Lemma 6.3. Prices cannot guarantee obtaining more than 2/3 of the optimal matching in a general
graph, even if there is only one optimal matching.

A

B

C D

E

F

Figure 2: Example of a graph in which, when all edges have the same weight, there is a unique
optimal matching but no pricing scheme can guarantee obtaining more than 2/3 of its weight.

Proof. Consider the graph depicted in Fig. 2, where every edge has unit weight. The optimal
matching is given by the three black edges with total value of 3. On the other hand, if any red edge
enters the solution, the resulting total weight will be at most 2. We now show that any pricing
scheme in which every black edge is willing to buy will also include at least one red edge if it comes
first. Let (pi)i=A,...,F prices such that for every black edge, the sum of the involved vertices is lower
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than 1. In particular, we have that pC + pD ≤ 1, so without loss of generality we assume that
pC ≤ 1/2. If pB ≤ 1/2 as well, then the red edge (B,C) will want to buy and the proof is complete.
Otherwise, if pB > 1/2, it implies that pA ≤ 1/2 because the black edge (A,B) wants to buy. But
this implies that the red edge (A,C) will buy if appearing first.

Finally, if all vertex prices are 1/2, then it is straightforward to see that at least two edges will
be added regardless of the order in which they appear.

In general, there are item prices that guarantee obtaining at least half of the optimal welfare.
This is achieved by splitting the weight of the edges of an optimal matching uniformly between the
two corresponding vertices. We present this result in Lemma 6.6 for general d.

6.2 Hypergraph matching: d > 2

We begin this section proving two negative results. First we show an upper bound of (1+o(1)) ·
√

1
d

on the fraction of the optimal solution that can be guaranteed with prices. We then show a specific
bound for the case d = 3, in which we cannot guarantee obtaining more than 1/2 of the optimal
welfare. Finally, we provide a pricing scheme that always obtains at least 1/d of the optimal welfare.

Lemma 6.4. Prices cannot guarantee welfare more than an (1 + o(1)) ·
√

1
d fraction of the optimal

welfare, even if the arrival order is known. More preicsely, for any q such that q2−q+1 ≤ d, prices
cannot guarantee more than a q

q2−q+1
approximation.

Proof. Our example is based on constructions for finite projective planes; namely, we will use the
fact that if q − 1 is a prime power there exists a hypergraph on q2 − q + 1 vertices with q2 − q + 1
hyperedges that are q-regular, q-uniform and intersecting, i.e. every pair of hyperedges has at least
one shared vertex (see, e.g., [Hal98, Chapter 12] for a reference).

To build our example, we will assume that for each hyperedge there exists a corresponding buyer
interested in exclusively that subset of items with a total valuation of q. We will also add one buyer
whose only subset of interest is the entire set of items, with a valuation of d = q2− q+1. Note that
clearly the optimal welfare attainable is q2 − q + 1.

It hence suffices to show that prices cannot achieve welfare greater than q. Assume the buyer
interested in the entire set of items arrives last. Note that if there is any edge e such that the sum of
the prices of the vertices in e is at most than q, we are guaranteed welfare at most q. However, if the
sum of the prices of the vertices in every hyperedge is more than q, because our graph is q-uniform
that means the sum of the prices of all vertices is more than q2 − q + 1, meaning the final buyer
would not select anything and the welfare attained is zero. Hence, the total welfare attainable by
prices is at most a

q

q2 − q + 1
= (1 + o(1)) · 1√

q2 − q + 1

fraction of the optimum.
Finally, if d cannot be written as q2 − q + 1, we replicate the same construction for the largest

d′ < d that can, and the result holds.

When d = 3, taking q = 2 in the above proof demonstrates no prices achieve better than a
2/3-approximation. Below, we provide a tighter bound for this special case.

Lemma 6.5. When d = 3, no prices exist obtaining a better than 1/2-approximation.

Proof. Consider a hypergraph G = (V,E) with V = {1, 2, 3, 4, 5, 6} and the following hyperedges
with unit weight:

{1, 2, 3}, {4, 5, 6}, {1, 2, 4}, {1, 3, 5}, {2, 5, 6}, {3, 4, 6}.

First, note that there is a perfect matching (of weight 2), given by the two first hyperedges. Also
note that each of the remaining hyperedges intersect all other hyperedges, thus only one of them
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could be included in a feasible solution. Therefore, it suffices to prove that there is no pricing
scheme in which the first two edges ({1, 2, 3}, {4, 5, 6}) want to buy but all the others do not.

Let us assume that there are prices p1, . . . , p6 that achieve the aforementioned property. For the
first two edges to be taken when they appear, we need p1 + p2 + p3 ≤ 1 and p4 + p5 + p6 ≤ 1. To
prevent the other edges to buy when they appear, we need the sum of the corresponding vertices
to be strictly greater than 1, hence we obtain four additional inequalities. Adding up all the six
inequalities, we obtain

∑6
i=1 pi > 2. And the exact opposite result is obtained adding the first two

inequalities.

We now provide our positive result. Consider a hypergraph G = (V,E), with weights (w(e))e∈E .
To define the prices, take an optimal matching given by the hyperedges OPT1, . . . , OPTℓ. For each
a ∈ OPTj , define pa = w(OPTj)/d. The prices of the items not covered by the optimal solution are
set to ∞. The following simple result shows that these prices obtain at least a fraction 1/d of the
optimal welfare.

Lemma 6.6. Consider prices defined as above, and hyperedges arriving in an arbitrary order.
Denote Q the set of edges that are bought. Then

∑
e∈Q

w(e) ≥ 1

d

ℓ∑
j=1

w(OPTj)

Proof. First note that for each e ∈ Q, it must hold that

w(e) ≥
∑
i∈e

pi (16)

As otherwise the buyer associated to e would have decided not to buy. Therefore:∑
e∈Q

w(e) ≥
∑
e∈Q

∑
i∈e

pi (17)

On the other hand, for each OPTj in the optimal solution, there must be at least one vertex,
with its corresponding price w(OPTj)/d that is covered by the edges in Q. To see this, note that
there are two possible cases: either OPTj ∈ Q and all its vertices are covered, or OPTj /∈ Q,
meaning that when OPTj arrived, at least one of its vertices was not available, i.e., it was covered
by an edge previously bought. The result follows directly, noting that in the right side of Eq. (17),
we are summing at least once w(OPTj)/d for each j = 1 . . . , ℓ.

7 Prophet Inequalities for Single-minded Random Valuations

In this section, we continue to study the setting with single-minded buyers, but allow them to have
random valuations. This captures the well-studied prophet inequality setting. Indeed, when d = 2,
our result recovers the 1/3-approximate thresholding prophet inequality of [GW19] for bipartite
matching under edge-arrivals and extends this to matching in general graphs. (Vertices correspond
to items, and each edge with a random weight corresponds to a buyer interested in two items with
a random valuation). In this section, we show that in this setting there does not exist a prophet
inequality guaranteeing better than a 3/7-approximation for bipartite matching, improving on the
previous upper bound of 4/9 given by [GW19]. We stress that this upper bound holds against any
online algorithm, not just thresholding algorithms. We also note that this bound extends the 3/7
upper bound given by [EFGT20] for matching in general graphs to bipartite graphs.5

5The constructions are independent and require different techniques. It is interesting that the current upper bounds
for general vs. bipartite graphs stand at the same number.
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Theorem 7.1. No prophet inequality for bipartite matching in the edge-arrival setting is better than
3/7-competitive.

The remainder of this section proves Theorem 7.1. We construct a family of hard instances
{Gn,k}, indexed by integers k ≥ 2 and n ≥ 2. Below, we specify the construction of Gn,k including
an ordering on the edges and distribution W (e) for the weight of each edge e. Gn,k consists of:

• Nodes: {ℓ0, . . . , ℓn−1, r0, . . . , rn−1}, for 2n total nodes.

• Edge: a := (ℓ0, r0). W (a) = k3 with probability 1/k3, and 0 otherwise.

• Edges: bi := (ℓ0, ri), i ≥ 1. W (bi) =
(k−1)2i−1+k2i−1

(2k−1)k2i−2 with probability 1/k, and 0 otherwise.

• Edges: ci := (ℓi, r0), i ≥ 1. W (ci) =
k−1
k · (k−1)2i−1+k2i−1

(2k−1)k2i−2 with probability 1/k, and 0 otherwise.

• Edges arrive in the order (cn−1, bn−1, cn−2, bn−2, . . . , c1, b1, a).

This is depicted in Figure 3. To gain some intuition for this construction, observe that the realized
weight of the final edge a has expectation 1. For all other edges, if this edge realizes with non-zero
weight and an optimal online algorithm accepts, the remaining expected gain can be computed
by solving a single-item Bayesian selection problem for the remaining disjoint edges. The weights
{W (bi),W (ci)} are carefully set so that at each point, if the realized weight is non-zero, the gain of
an optimal online algorithm from accepting is exactly 1.

l0

l1

l2

ln−1

r0

r1

r2

rn−1

a

c1

c2

cn−1

b1

b2

bn−1

Figure 3: The structure of the hard instance

We first characterize the offline optimum. We let OPT (W,Gn,k) denote the expected perfor-
mance of the optimum offline algorithm on the instance (W,Gn,k) and ALG(W,Gn,k) denote the
expected performance of an online algorithm ALG.

Lemma 7.2. limk→∞ limn→∞OPT (W,Gn,k) =
7
3 .

Proof. Observe first that maximal feasible sets can either take the single edge a, or two edges of
the form {bi, cj}. Observe first that for all i ≥ 1:

(k − 1)2i−1 + k2i−1

(2k − 1)k2i−2
≤ k2i−1 + k2i−1

(2k − 1)k2i−2
=

2k

2k − 1
≤ 2.

On the other hand, k3 ≥ 8. This means that whenever W (a) > 0, the offline optimum is a.
Whenever W (a) = 0, the offline optimum is to accept the heaviest b edge together with the heaviest
c edge. Observe next that for any i ≥ 1, we have

(k − 1)2i−1 + k2i−1

(2k − 1)k2i−2
>

(k − 1)2i+1 + k2i+1

(2k − 1)k2i
.
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In particular, this means that bi is the heaviest b edge if and only if W (bi) > 0 and W (bj) = 0

for all j < i. Hence, bi is the largest b edge with probability
(
1− 1

k

)i−1 · 1k . From this we can directly
conclude that the expected weight of the heaviest b edge is

n−1∑
i=1

(
k − 1

k

)i−1

· 1
k
· (k − 1)2i−1 + k2i−1

(2k − 1)k2i−2
=

1

2k − 1
·
n−1∑
i=1

(k − 1)3i−2 + k2i−1 · (k − 1)i−1

k3i−2
.

Identical calculations (after multiplying all weights by k−1
k ) yield that the expected weight of the

heaviest c edge is

k − 1

k
· 1

2k − 1
·
n−1∑
i=1

(k − 1)3i−2 + k2i−1 · (k − 1)i−1

k3i−2
.

Putting everything together, we conclude that

OPT (W,Gn,k) =

(
1

k3

)
· k3 +

(
1− 1

k3

)
·

(
1

k

n−1∑
i=1

(k − 1)3i−2 + k2i−1 · (k − 1)i−1

k3i−2

)
.

We now can perform some straightforward manipulations; in particular, first observe that

∞∑
i=1

(k − 1)3i−2 + k2i−1 · (k − 1)i−1

k3i−2
=

∞∑
i=1

(
k − 1

k

)3i−2

+
∞∑
i=1

(
k − 1

k

)i−1

=
k − 1

k · (1− (1− 1/k)3)
+ k

=
k3 − k2

k3 − (k − 1)3
+
k4 − k(k − 1)3

k3 − (k − 1)3

=
4k3 − 4k2 + k

3k2 − 3k + 1
.

Hence, for fixed k:

lim
n→∞

OPT (W,Gn,k) =

(
1

k3

)
· k3 +

(
1− 1

k3

)
·
(
1

k
· 4k

3 − 4k2 + k

3k2 − 3k + 1

)
=

7k5 +O(k4)

3k5 +O(k4)
.

From this we directly conclude

lim
k→∞

lim
n→∞

OPT (W,Gn,k) = 7/3

as claimed.

Note that the original sum can be split into two because it is convergent. This can be seen
through the two resulting sums in the first line, which for any fixed k are a geometrical series of a
number lower than 1, namely (k − 1)/k. Our next lemma considers the power of online algorithms
for Gn,k instances. In fact, we will see that for any Gn,k instance an online algorithm cannot get
a score better than 1 in expectation, which will lead to our lower bound of 7/3 on the competitive
ratio.

Lemma 7.3. For all online algorithms ALG and all n, k ≥ 2, ALG(W,Gn,k) ≤ 1.

Proof. Fix some n, k ≥ 2. We will prove the lemma with a sequence of intermediate claims. We
first bound the expected reward from a set of edges {bi, bi−1, . . . , b1} revealed in that order. This is
useful because once an algorithm has accepted some c edge, they cannot accept another c edge, or
a, so they are left exactly with this optimization.
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Claim 7.4. The maximum expected reward that any online algorithm can achieve from the edges
{bi, . . . , b1} (revealed in that order) is

1− k − 1

k
· (k − 1)2i−1 + k2i−1

(2k − 1)k2i−2
=
k2i − (k − 1)2i

(2k − 1)k2i−1
.

Proof. We proceed by induction on i. Our base case is i = 1; in this case ALG clearly gets
expectation at most E[W (b1)] =

1
k which indeed is precisely equal to the expression claimed.

Hence assume the result for some fixed i ≥ 1; we will prove it for i + 1. When ALG considers

whether to accept or reject bi+1, note that if it rejects it is guaranteed expectation at most k2i−(k−1)2i

(2k−1)k2i−1

by the inductive hypothesis. Note that W (bi+1) could take either a value of 0 or (k−1)2i+1+k2i+1

(2k−1)k2i
>

k2i−(k−1)2i

(2k−1)k2i−1 . This implies that if W (bi+1) > 0, ALG maximizes its expected reward from edges in

{bi+1, . . . , b1} by accepting bi+1. Furthermore, it is clear that if W (bi+1) takes value 0, then it is
optimal for ALG to reject it. This lets us conclude that the expectation ALG can attain is at most

1

k
· (k − 1)2i+1 + k2i+1

(2k − 1)k2i
+

(
1− 1

k

)
·
(
k2i − (k − 1)2i

(2k − 1)k2i−1

)
=

(k − 1)2i+1 + k2i+1

(2k − 1)k2i+1
+
k(k − 1) · (k2i − (k − 1)2i)

(2k − 1)k2i+1

=
k2i+2 − (k − 1)2i+2

(2k − 1)k2i+1

hence proving the inductive hypothesis.

Note that identical calculations, after multiplying all weights by k−1
k , give the following as well:

Claim 7.5. The maximum expected reward that any online algorithm can achieve from the edges
{ci, . . . , c1} (revealed in that order) is

k − 1

k
·
(
1− k − 1

k
· (k − 1)2i−1 + k2i−1

(2k − 1)k2i−2

)
=
k − 1

k
· k

2i − (k − 1)2i

(2k − 1)k2i−1
.

With these claims in place, we directly get an upper bound on the algorithm’s performance
based on the first edge it accepts in {c1, c2, . . . , cn−1} or {b1, b2, . . . , bn−1}.

Claim 7.6. If ALG first accepts some edge in {c1, c2, . . . , cn−1}, then its expected reward, condi-
tioned on this event, is at most one.

Proof. Let ci be the first edge accepted by ALG. Note that the weight ALG gets from ci is at most

k − 1

k
· (k − 1)2i−1 + k2i−1

(2k − 1)k2i−2
.

Note also that ALG cannot accept a or any other cj (as this would not be a matching). Hence
ALG can only accept at most one edge from {bi, bi−1, . . . , b1}. By Claim 7.4, the expected reward
of the algorithm on the remaining edges is at most:

1− k − 1

k
· (k − 1)2i−1 + k2i−1

(2k − 1)k2i−2
.

These two terms sum to one, yielding the result.

We similarly have a symmetric claim for {b1, b2, . . . , bn−1}.

Claim 7.7. If ALG first accepts some edge in {b1, b2, . . . , bn−1}, then its expected reward, condi-
tioned on this event, is at most one.
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Proof. Let bi be the first edge accepted by ALG. Note that the weight ALG gets from bi is at most

(k − 1)2i−1 + k2i−1

(2k − 1)k2i−2
.

Note also that ALG cannot accept a or any other bj . Hence ALG can only accept at most one
edge from {ci−1, . . . , c1}. By Claim 7.5 the expected reward of the algorithm on the remaining edges
is at most:

k − 1

k
· k

2i−2 − (k − 1)2i−2

(2k − 1)k2i−3
.

Hence, in total ALG gets in expectation at most

(k − 1)2i−1 + k2i−1

(2k − 1)k2i−2
+
k − 1

k
· k

2i−2 − (k − 1)2i−2

(2k − 1)k2i−3
= 1.

The only other case to consider is when ALG does not accept any edge in {b1, b2, . . . , bn−1} ∪
{c1, c2, . . . , cn−1}. But conditioned on this, the algorithm can only accept a. As E[W (a)] = 1, we
also see that ALG gets expected value at most one, conditioned on this. To summarize, we have now
shown that no matter what edge ALG accepts first from {cn−1, bn−1, . . . , c1, b1}, it gets expected
value at most one. We have also shown that if ALG accepts nothing from this set that it also gets
expected value at most one. This completes the proof.

Summarizing, we know from Lemma 7.2 and Lemma 7.3 that for any fixed ε > 0, there exist some
large n, k, such that OPT (W,Gn,k) ≥ 7/3 − ε, while ALG(W,Gn,k) ≤ 1 for all online algorithms.
This implies an upper bound of 3/7 on the attainable competitive ratio of online algorithms for
bipartite matching, completing the proof of Theorem 7.1.

8 Conclusion and Future Directions

In this paper, we provided an efficiently computable 1/(d + 1)-approximate pricing algorithm for
maximizing social welfare when buyers have arbitrary and random monotone valuations on subsets
of at most d items. Although this approximation factor is tight in the worst case, numerous interest-
ing directions for future work remain. In the special case where buyers are single-minded and have
deterministic valuations, for d = 2 we have bounded the best attainable ratio of pricing algorithms
in [1/2, 2/3], so the exact value is yet to be found. It would furthermore be relevant to understand
the asympotics of the optimal ratio for general d, which our results place in [∼ 1/

√
d, 1/d]. When

buyers are single-minded but could have random valuations, our problem is closely related to the
design of thresholding prophet inequalities. Many open problems remain in this area; we gave an
upper bound for prophet inequalities for bipartite matching and note that there remain large gaps
in known bounds for the optimal competitive ratio for matching in bipartite (and general) graphs.
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