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Abstract. We take a unifying approach to single selection optimal stopping problems with 
random arrival order and independent sampling of items. In the problem we consider, a 
decision maker (DM) initially gets to sample each of N items independently with probabil-
ity p, and can observe the relative rankings of these sampled items. Then, the DM faces the 
remaining items in an online fashion, observing the relative rankings of all revealed items. 
While scanning the sequence the DM makes irrevocable stop/continue decisions and her 
reward for stopping the sequence facing the item with rank i is Yi. The goal of the DM is to 
maximize her reward. We start by studying the case in which the values Yi are known to 
the DM, and then move to the case in which these values are adversarial. For the former 
case we are able to recover several classic results in the area, thus giving a unifying frame-
work for single selection optimal stopping. For the latter, we pin down the optimal algo-
rithm, obtaining the optimal competitive ratios for all values of p.
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1. Introduction
Two fundamental models in online decision making are that of competitive analysis and that of optimal stopping. In 
the former, the input is produced by an adversary whose goal is to make the algorithm perform poorly with respect to 
a certain benchmark. In the latter, the algorithm has full distributional knowledge of the input, making it much easier 
for the algorithm to achieve good approximation ratios. The area of optimal stopping has been very active in the last 
decade since many real-world situations, including several e-commerce platforms, often do not behave adversarially, 
and the distributional model of optimal stopping seems appropriate. Furthermore, the activity in the area has been 
boosted by the close connection between posted price mechanisms, attractive for their usability and simplicity, and 
prophet inequalities, a classic topic in optimal stopping theory (Hajiaghayi et al. [26], Chawla et al. [11]).

One of the most important problems in online decision making is the secretary problem (Lindley [36], Dynkin [19], Gil-
bert and Mosteller [23], Ferguson [22]). In this problem, an adversary designs a collection of numbers x1, : : : , xn, all differ-
ent from each other, which are revealed one by one to a decision maker (DM) according to a random permutation. The 
DM does not know which numbers were selected by the adversary until the moment they are revealed. At that time, she 
has to make an irrevocable continue/stop decision. Should she stop, she keeps the last revealed number and never 
observes the following ones. The goal of the DM is to maximize the probability of stopping when the largest of the n 
numbers is revealed. For large n, the optimal algorithm for this problem is to not stop at any of the first n/e numbers, and 
afterward stop at the first number, which is larger than all of the numbers observed so far. This algorithm stops at the 
largest number in the sequence with a probability of at least 1=e, which is the best achievable probability in general.

A staple problem in optimal stopping is the classic prophet inequality. In this problem, a sequence of nonnegative, 
independent random variables X1, : : : , Xn are presented one by one to a DM in a fixed order. The DM has full distri-
butional knowledge about the random variables, but does not know their realizations in advance. The DM observes 
the realizations of the random variables one by one, and must make irrevocable continue/stop decisions before mov-
ing on to the next one. The goal of the DM is to maximize the expected value of the realized random variable in which 
she stops. For this problem there exist stopping rules that achieve a competitive ratio of 1/2 against a prophet that 
knows the realization of all the random variables and always stops at the maximum, and 1/2 is actually optimal 
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(Krengel and Sucheston [33], Krengel and Sucheston [34]). Plentiful variants of this problem have been studied and 
are being studied. Among them, an important special case is the i.i.d. prophet inequality, where the random variables 
X1, : : : , Xn are sampled independently from a common distribution. In this setting, the optimal competitive ratio 
improves to α⇤ ⇡ 0:745 (Hill and Kertz [27], Kertz [29], Correa et al. [17], Liu et al. [37]).

Recently, data-driven versions of optimal stopping problems have been successfully studied. These constitute a 
bridge between the worst case model and the distributional model. A standard model, first described in pioneering 
work by Azar et al. [1], consists in replacing the full distributional knowledge with having access to one or more sam-
ples from each distribution. The model is very attractive both from a practical and theoretical perspective. On the one 
hand, full distributional knowledge is a strong assumption, while access to historical data are usually straightfor-
ward. And this historical data can be thought of as being samples from certain underlying distributions. On the other 
hand, the model gains back the combinatorial flavor of competitive analysis and thus becomes much more prone to 
be analyzed using standard algorithmic tools. A notable example of this is the recent result of Rubinstein et al. [40] 
for the classic prophet inequality. They study the setting in which the DM does not know the underlying distribu-
tions of the random variables, but instead has access to a single sample for each of them, and show that this amount 
of information is enough to guarantee the best possible factor in the full information case (with adversarial order), 
namely 1/2. Inspired by the model from Azar et al. [1], Correa et al. [15] considered the variant of the i.i.d prophet 
inequality problem where the underlying distribution from which the random variables are sampled from is 
unknown to the DM. They establish that when the DM has no additional information the best she can do is to basi-
cally apply the classic algorithm for the secretary problem and thus obtain, in expectation, a fraction 1=e of the 
expected maximum value. On the other hand, if she has access to O(n2=ε) samples of the underlying distribution, 
then she can essentially learn the distribution and guarantee a factor of α⇤ �O(ε); where α⇤ ⇡ 0:745 is the optimal fac-
tor for the i.i.d. prophet inequality with full distributional knowledge. This latter result was improved by Rubinstein 
et al. [40], who showed that O(n=ε6) samples are enough to guarantee a factor of α⇤�O(ε). The sampling model 
from i.i.d. random variables (Correa et al. [15]) shares some aspects with the classic secretary problem, in which arbi-
trary nonnegative numbers are presented to the DM in uniform random order. The former can be thought of as gen-
erating several i.i.d. samples from a common distribution, and shuffling them in a random order (as in the secretary 
problem). Given the random order, we can say that the first numbers are the “samples” that can be observed but can-
not be selected, and the remaining numbers are the actual instance of the optimal stopping problem. Along these 
lines, a particularly clean model (Campbell and Samuels [9], Kaplan et al. [28]) is the dependent sampling model in 
which the instance, consisting of N items, is designed by an adversary. Then, the DM gets to sample a random subset 
of size h à pN of these and scans the remaining items in random order. This model is very robust since it generalizes 
the sampling model from i.i.d. random variables while making no distributional assumptions. The name dependent 
sampling comes from the fact that the sampled set has a fixed size h. Thus, there is correlation between the events of 
each item being sampled. A closely related sampling model, and essentially equivalent for large values of N, is that 
with independent sampling (Correa et al. [14]). Here, rather than sampling exactly h à pN items, the DM samples each 
item independently with probability p.

In this paper, we study a generic version of the classic single selection optimal stopping problem with sampling, 
which we call p-sample-driven optimal stopping problem (p-DOS). In this problem a collection of N items is shuffled 
in uniform random order. The decision maker gets to observe each item independently with probability p 2 [0, 1)
and these items conform the information set or history set. The remaining items, conforming the online set are revealed 
sequentially to the DM. At any point, the DM observes the relative rankings of the items that have been revealed, and 
upon seeing an item, she must decide whether to take it and stop the sequence, or to drop it and continue with the 
next item. If the DM stops with the i-th ranked item she gets a reward of Yi and her goal is to maximize the expected 
value with which she stops. While we do assume that the values are monotone, that is, Y1 �⋯� YN, we do not 
assume that they are nonnegative. The natural benchmark to measure the performance of an algorithm here is the 
expected (over the permutations) maximum value in the online set.

We study both, the cases when the values Y are fixed (p-DOS with known values), and that when they are adver-
sarial (p-DOS with adversarial values). The former, and already when p à 0, models the most well-known single 
selection optimal stopping problems. Indeed the classic secretary problem (Lindley [36], Dynkin [19]) appears when 
Y1 à 1 and the remaining values are 0, the 1-choice K-best secretary problem (Gusein-Zade [25], Chan et al. [10]) is 
recovered by Y1 à⋯à YK à 1 and filling zeros in the remaining values, while the problem of selecting an item of mini-
mum ranking (Chow et al. [12]) is obtained by setting Yi à�i. Still in the case p à 0, the problem with nonnegative 
values was studied by Mucci [38]. By analyzing the underlying recursion, he obtains a limiting ODE and established 
that the optimal algorithm takes the form of a sequence of thresholds such that starting at time ti the DM should stop 
with an item currently ranked i or better. Bearden et al. [6] also consider this problem from an experimental view-
point, while Mucci [39] studies the case in which all Y’s are negative. The latter problem, p-DOS with adversarial 
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values, generalizes the i.i.d. prophet inequality problem with samples. Indeed, a valid strategy for the adversary is to 
set the values of all items by generating i.i.d samples from a single distribution. This way, the problem for the adver-
sary is not harder than selecting a worst-case distribution to sample from. Specifically, for given p and N, p-DOS with 
adversarial values models the case when we play with n à (1� p)N i.i.d. values and we have access to np=(1� p)
independent samples.1

1.2. Our Results and Overview of the Paper
In this paper we derive the optimal algorithms for problem p-DOS with known values and for p-DOS with adversar-
ial values, for all p 2 [0, 1).

After some preliminary definitions in Section 2, we start with the case in which Y is known to the DM. Here we 
take the, by now classic, linear programming approach of Buchbinder et al. [8] though slightly extending it to make it 
able to deal with arbitrary Y values and sampling probability p, and adding a term that forces the algorithm to stop.2
We note that this LP exactly encodes the best possible algorithm for the problem and that its objective function value 
decreases with the number of items N (Section 3.1). This allows us to deduce that the hardest instances appear as 
N !1. Thus, in Section 3.2, we derive the limit LP, which shares some aspects with that of Chan et al. [10]. In unco-
vering the structure of this limit LP, we provide our first main technical contribution in Section 3.3. By understanding 
monotonicity properties of the LP coefficients and by using mass moving arguments from the theory of optimal 
transport, we can deduce exactly which inequalities, and in what ranges, are tight in an optimal solution. This per-
mits to bring down the problem of finding the optimal algorithm to that of solving certain, very simple, ODEs.3 We 
find the explicit solution of these ODEs and thus bring the problem to a real optimization problem in which the vari-
ables are some ti’s determining the ranges where the solutions of the different ODEs should be used. These ti’s also 
have a natural algorithmic interpretation. They represent the times at which the DM should start accepting an item of 
rank i or higher (among the items seen so far). With this we can conclude that Mucci’s structural result holds even if 
some (or all) Y values are negative and for arbitrary p.

Pushing things a bit further we prove, in Section 3.4, that this optimization problem over ti’s is concave in each var-
iable and relatively easy to solve, at least approximately. In particular we exemplify that its first order conditions 
quickly allow us to recover the known results for the secretary problem (Lindley [36]), the 1-choice 2-best secretary 
problem (Chan et al. [10]), and the minimum rank problem (Chow et al. [12]).

Then we move to our main contribution—the study of p-DOS with adversarial values, which we require to be non-
negative. This essentially consists in adding a minimization over Y to the linear program for p-DOS with known 
values. However, to make the problem well posed, we first need to normalize the objective function. This is done 
dividing the objective by the expected value of the optimal choice in the online set, namely 

P1
ià1 Yi(1� p)pi�1:4 Equiv-

alently, we may add a constraint to the LP imposing that this value is 1. In either way the resulting objective function 
represents the performance guarantee of an optimal online algorithm. With this formulation, von Neumann’s Min-
max Theorem allows us to rewrite the minmax problem as a new linear program in which the constraints take a sto-
chastic dominance flavor (Section 4.1). We deal with this problem in an analogous way as in the case of known 
values and thus take the limit on N and apply our main structural theorem in Section 4.2. As the objective function of 
our problem encodes the ratio between the expected value the optimal algorithm gets and the expected maximum on 
the hindsight, we end up obtaining the best possible approximation guarantee for p-DOS with adversarial values, 
α(p), as a function of p, and for all values of N (Section 4.3). To this end we note that the optimal algorithm, which 
takes the form of a sequence of thresholds, can easily be implemented for finite values of N without losing in the 
approximation guarantee (Section 4.4).

The value α(p) we obtain in Section 4.3 improves upon the recent work of Kaplan et al. [28] and that of Correa et al. 
[16], for large values of N.5 More importantly, it allows to draw interesting consequences as p varies. Before describing 
some of these let us note that by the Minmax Theorem, p-DOS with adversarial values is equally hard (from an 
approximation guarantee perspective) if (1) the adversary chooses the Y values and then the DM picks the algorithm 
or if (2) the adversary chooses the Y values knowing the algorithm of the DM. In other words, for every value of p there 
is a sequence Y such that no algorithm for p-DOS with independent sampling on this sequence can achieve an approxi-
mation better than α(p). Interestingly, for p  1=e we prove that α(p) à 1=(e(1� p)). This result closes a small gap left 
by Kaplan et al. [28] in the dependent sampling model and matches the tight bound in the more restricted setting in 
which the values are i.i.d. samples from an unknown distribution (Correa et al. [15]). Moreover, the minmax perspec-
tive above implies that for p  1=e the secretary problem is the hardest single selection optimal stopping problem.

On the other end of the spectrum, as p! 1, the optimal performance guarantee α(1) à limp!1α(p) equals 
α⇤ ⇡ 0:745.6 This is interesting since the model admits values that are not possible to capture by any instance of the 
i.i.d. prophet inequality7 (Kaplan et al. [28], Theorem 3.4) (so α(p)  α⇤), where only recently it was proved that with 
an amount of samples linear in n one can approach α⇤.8 Indeed we can show that the approximation ratio of our 
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algorithm, α(p), not only converges to 0.745 but also satisfies α(p) � p · 0:745, for all p 2 [0, 1). This in particular can be 
applied to improve upon the state of the art of the sampling complexity of the sample-based i.i.d prophet inequality. 
Specifically, if we sample a fraction (1� ε) of the values our algorithm guarantees a value that is at least (1� ε)0:745 
times the expected maximum value of the last εN values. In other words, to guarantee an approximation factor of 
α⇤�O(ε) we need O(n=ε) samples, making a significant improvement in the dependence on ε�when compared with 
the best known bound of O(n=ε6) by Rubinstein et al. [40].

Besides the extreme values of p à 0 and p! 1, we obtain the best possible guarantee for all intermediate values of 
p. An interesting special case is that of p à 1/2, that is, when the information set and the online set are of roughly the 
same size. For this special case (though with dependent sampling), Kaplan et al. [28] prove that a relatively simple 
algorithm, achieves a performance guarantee of 1� 1=e, while the current best bound evaluates to 0.649 (Correa et al. 
[16]). Here, we prove that the optimal algorithm for 1/2-DOS with adversarial values has an approximation guaran-
tee of α(1=2) ⇡ 0:671, thus improving upon the state of the art.

To make the comparison between the dependent and independent sampling models more precise we prove, in 
Section 4.4, that the underlying optimal approximation factors in both models differ in an additive factor of at most 
O(1=

ÇÇÇÇ
N

p
), for fixed p < 1. In particular this says that the limit approximation factor α(p) applies to both settings. This 

connection is important since in much of our analysis we use the linear program for the dependent sampling model 
but then apply our results in the independent sampling model. It is worth mentioning here that although both mod-
els are very similar and essentially equivalent for large N, the independent sampling model is somewhat smoother 
than the dependent one. In particular, one can immediately define it for all values of p 2 [0, 1) and not just those for 
which pN is integral. Furthermore, as we prove in the paper, the optimal approximation factor for the independent 
sampling model (and any Y) decreases with N so that the limit bounds apply for a finite number of items. On the con-
trary, monotonicity on the dependent sampling model seems very challenging.

We wrap up the paper in Section 5 by considering versions of p-DOS under combinatorial constraints. In particular 
we consider the extension of the so called matroid secretary problem (Babaioff et al. [5]) to the case in which the DM 
has sampling capabilities. Using our machinery from the single selection case as a black box, we are able to get a num-
ber of constant competitive algorithms for several special cases of matroids. Additionally, for general matroids, we 
observe that the existence of a constant competitive algorithm for p-DOS (for any p) implies the existence of a constant 
competitive algorithm for the matroid secretary problem, which is a notoriously hard open problem. In particular we 
note that if the optimal competitive ratio of p-DOS in this setting would converge to that in some variant of the i.i.d. 
case (as it does in the single selection case) then we could solve this open problem.

2. Preliminaries
2.1. p-DOS with Known Values
We consider the following problem, which we call p-sample driven optimal stopping (p-DOS, for short). A decision 
maker (DM) is given list of N items with associated values Y1 �⋯� YN. Initially each item is independently sampled 
with probability p and conform the DM’s information set (which we denote by H). The remaining items, which we call 
online set, are presented to the DM in an online fashion in random order. We call this way of conforming the information 
set independent or binomial sampling. Although the values Y1 �⋯� YN are known to the DM from the beginning, upon 
seeing an item the DM only knows its relative ranking within the items revealed so far.9 Thus, only after observing the 
last item the DM can certainly know which item is associated to each value. The DM has to select a single item with the 
goal of maximizing its expected value. To allow comparison between different values of N, we think about an infinite 
sequence Y. For instances of size N, the values are given by the first N components of Y, which we denote by Y[N].10 In 
the unlikely event that the online set is empty (i.e., all N items are sampled), we give the DM a default reward of YN+1, 
the next value in the infinite sequence Y.11 This is also the reward obtained if the decision maker selects no item, and 
since YN � YN+1 the decision maker is always better off selecting an item before the end of the process. When it is clear 
that we are working with an instance of N items, we drop the subscript [N] for ease of notation.

Note that we do not assume that the values are nonnegative, and the sequence may even diverge to �1. This 
model, as simple as it is, turns out to be quite general. Indeed, even when p à 0, it manages to capture several pro-
blems that have been exhaustively studied in the literature, including: 

• Secretary problem (Lindley [36]). In this classic problem, a decision maker is presented N values in an online fash-
ion. The goal of the DM is to maximize the probability of selecting the item with the highest value. This is obtained 
by setting Y1 à 1 and Yi à 0 for i � 2.

• (1, K)-secretary problem (Gusein-Zade [25]). In this variant of the standard secretary problem, the goal of the deci-
sion maker is to maximize the probability of selecting one of the top K valued items. This is captured by the model 
by setting Yi à 1 for i à 1, : : : , K and Yi à 0 for i � k + 1.
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• Rank minimization problem (Chow et al. [12]). In this problem, the goal of the decision maker is to minimize the 
expected rank of the selected item among the N items. This is captured by setting Yi à�i for i � 1.

For any given p, we use ALG to refer to a specific (possibly randomized) algorithm or stopping rule. We use 
ALG(Y[N]) to denote the random variable that equals value of the item selected by ALG on instance Y[N]. For a given 
sequence Y and number of items N, our objective is to find an algorithm that maximizes E(ALG(Y[N])), where the 
expectation is taken over the randomness of the process and the inner randomness of the algorithm. A consequence 
of our results is that (for fixed Y) the decision to stop should only rely on the relative ranking of an item among those 
that have been revealed. Thus, whenever we see an item which is ranked #�among the i items seen so far, we say that 
that item is an #-local maximum.

2.2. p-DOS with Adversarial Values
We also study the variant of p-DOS where the values Yj are chosen by an adversary and are unknown to the decision 
maker. In this variant, our goal is to maximize the ratio of the reward obtained by the algorithm and the expected 
maximum in the online set. On an instance Y[N] we denote the expected maximum in the online set by E(OPT(Y[N])). 
As we are maximizing over a competitive ratio, we will restrict the adversary to select only nonnegative values for 
the items. For instances of N items, we want to maximize βN,p, defined as

βN,p à sup
ALG2AN

inf
Y decreasing

E(ALG(Y[N]))
E(OPT(Y[N]))

, 

where AN is the set of algorithms for p-DOS. A simple coupling argument verifies that for any 0  p < 1, βN,p is 
decreasing in N, so for any p the worst case will be when N is large. With this in mind, we wish to find the value of

β(p) à lim
N!1

βN,p: (1) 

The guarantee of βN,p for p-DOS translates directly to the same guarantee for the i.i.d. prophet inequality with sam-
ples.12 Indeed, for this purpose we can simply use an algorithm for p-DOS that relies only on relative rankings. Note 
that if we condition on the realizations of the values we obtain an instance of p-DOS and, since the algorithm does not 
change its behavior depending on the actual values, the guarantee holds realization by realization.

2.3. Dependent Sampling
In order to obtain our results for our independent sampling problem, we study the dependent sampling variant of p- 
DOS. This model was first introduced by Kaplan et al. [28]. In this problem, the information set consists of h à bp · Nc
items with probability 1, with each item being equally likely to be sampled. An equivalent way to think of this prob-
lem is that the N items are shuffled according to a random permutation, and the first h items belong to the informa-
tion set. In addition, the order of the remaining N – h items is determined by the permutation. For fixed p, we will 
focus on the limit of the problem as N !1. Formally, we study

αN,p à sup
ALG2ĀN

inf
Y decreasing

E(ALG(Y[N]))
E(OPT(Y[N]))

, 

where ĀN is the set of algorithms for the dependent sampling variant of p-DOS. Analogously as before, we define
α(p) à lim

N!1
αN,p 

As we establish in Section 4.4, for all 0  p < 1 we have that α(p) à β(p).

3. Known Values
In this section we find the optimal algorithm for the p-DOS problem with known Y. In order to do this we present, for 
any amount of items in the information set, a linear program formulation whose optimal solution maps to an optimal 
algorithm. We then proceed to take the limit of this linear program as N goes to infinity, and reveal the structure of 
the limit problem. This structure allows us to rewrite the problem as that of optimizing a relatively simple real func-
tion. We conclude by showing that our approach is able to easily handle a number of classic optimal stopping 
problems.

3.1. Linear Programming Formulation
We present here a linear program formulation for our problem, inspired by Buchbinder et al. [8]. This linear program 
depends on the input instance Y and we denote it by LPh,N(Y). Its objective function equals the expected value of an 
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optimal algorithm for our problem, given that the information set H contains exactly h items. In the linear program, 
variable xi,#�should be interpreted as the probability that the corresponding algorithm stops at step i and the item 
revealed at step i is ranked #�highest among the i items observed so far.

(LPh,N(Y)) max
x

YN+1 ·
 

1�
XN

iàh+1

Xi

#à1
xi,#

!

+
XN

jà1
Yj
XN

iàh+1

Xj

#à1

ixi,#
N

j� 1
#� 1

◆ 
N� j
i� #

◆ 

N� 1
i� 1

◆ 

s:t: ixi,# +
Xi�1

jàh+1

Xj

sà1
xj,s  1 ∀i 2 [N] \ [h], ∀# 2 [i],

xi,# � 0 ∀i 2 [N] \ [h], ∀# 2 [i]:

(2) 

The idea behind this linear program is that constraint (2) forms a polyhedron rich enough to contain all relevant algo-
rithms for the problem, and we can express the reward of the algorithm in terms of the LP variables. We call con-
straint (2) the feasibility constraint. This linear program presents three main differences with respect to that of 
Buchbinder et al. [8]. The first is that the objective function includes arbitrary values Yi. In particular we include the 
additional term YN+1 · (1�PN

iàh+1
Pi
#à1 xi,#), which forces the algorithm to stop, since in the event of not stopping an 

algorithm gets YN+1, which is not better than having stopped in the last item. This additional term is important 
because values may be negative. The second is that linear program variables xi,#�start at index i à h + 1. This differ-
ence reflects the fact that the first h items will conform the information set, and thus cannot be selected. The third dif-
ference is that in the linear program by Buchbinder et al. [8], variables have the form xi | #, which represent instead the 
probability that the algorithm selects the i-th item given than the i-th item is ranked #�among the i items seen so far. 
This difference does not change the linear program as there exists a bijection between the solutions13 given by 
xi | # à ixi,#.

The equivalence between solving the LP and finding an optimal algorithm is roughly as follows. Let us start by the 
inclusion of optimizing over algorithms in solving the LP. For any algorithm ALG, given that the information set con-
tains h items, we can compute xi,#: the probability that the algorithm stops at step i and the i-th item is ranked #�among 
the items seen so far. As the algorithm will only see ranks, this does not depend on the values Yj. These probabilities 
xi,#�will be feasible in the polyhedron. Moreover, we can write

P(ALG(Y) à Yj) à
XN

iàh+1

Xi

#à1

ixi,#
N

j� 1
#� 1

◆ 
N� j
i� #

◆ 

N� 1
i� 1

◆  :

This way, we can express the expected reward of the algorithm as a linear function of probabilities xi,#.
For the other inclusion, we see that any feasible solution x can be converted into an algorithm that can be applied 

when the information set consists of h items. We call this algorithm ALGx, and it works as follows. Let the first step 
be h + 1 (representing that at the first step we have already seen h items from the history set). At each step i, stop with 
probability ixi,#=(1�

Pi�1
jà1
Pj
#à1 xj,s) if the current item is ranked #�among the items seen so far. The probability that 

ALGx stops at the i-th item and the i-th item is ranked #�among the i items seen so far is precisely xi,#, which concludes 
the inclusion of solving the LP in finding an optimal algorithm.

Lemma 1 formalizes the previous discussion. The proof is essentially the same as the proofs in Buchbinder et al. 
[8], but for the sake of completeness we provide it in Section A.1. This result says that the optimal algorithm for 
sequence Y with N items is to observe h and respond using ALGx with x being the optimal solution of LPh,N.

Lemma 1. Conditional on the information set containing exactly h items 
1. For any algorithm ALG, denote by xi,#�the probability that ALG stops at step i and the i-th item is ranked #�among the i 

items seen so far. Then x is feasible in LPh,N and the objective function evaluated at x equals the expected reward of ALG.
2. The probability that ALGx stops at the i-th item and the i-th item is ranked #�among the i items observed so far is given 

by xi,#. The expected reward of ALGx is equal to the objective value of x.

We have seen that in the objective function, coefficients accompanying Yj are equal to the probability that the 
ALGx selects the item with value Yj. The following equivalent expression of the objective function is useful for 
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establishing our results:

E(ALGx(Y) | |H | à h) à
XN+1

kà1
YkP(ALGx(Y) à Yk | |H | à h)

à
XN

kà1
(Yk � Yk+1)P(ALGx(Y) � Yk | |H | à h)

+ YN+1P(ALGx(Y) � YN+1 | |H | à h)

à
XN

kà1
(Yk � Yk+1)

Xk

jà1

XN

iàh+1

Xj

#à1

ixi,#
N

j� 1
# � 1

◆  N � j
i� #

◆ 

N � 1
i� 1

◆  + YN+1

à Y1 �
XN

kà1
(Yk � Yk+1) 1�

Xk

jà1

XN

iàh+1

Xj

#à1

ixi,#
N

j� 1
# � 1

◆  N � j
i� #

◆ 

N � 1
i� 1

◆ 

0

BBB@

1

CCCA

à Y1 �
XN

kà1
(Yk � Yk+1) 1�

Xk

#à1

XN

iàh+1
xi,#
Xk

jà#

i
N

j� 1
# � 1

◆  N � j
i� #

◆ 

N � 1
i� 1

◆ 

0

BBB@

1

CCCA, (3) 

where we use the fact that P(ALGx � YN+1 | |H | à h) à 1, and that YN+1 à Y1�
PN

kà1(Yk�Yk+1).

3.2. Limit Problem
Consider an infinite sequence Y, a number of items N + 1, and an algorithm ALG. This same algorithm can be imple-
mented on the same infinite sequence Y with the only first N items by inserting a dummy item, ranked worst among 
all items, and running ALG on this artificial instance. If ALG would choose the dummy item, it simply does not stop 
in the real instance. The reward collected by applying this tweaked algorithm to Y[N] is not less than what ALG col-
lects from Y[N+1]. This simple coupling argument, formalized in Section A.2, implies that

max
ALG2AN

E(ALG(Y[N])) � max
ALG2AN+1

E(ALG(Y[N+1])):

This means that as N !1 the sequence of these maxima either converges or diverges to �1. We obtain the limit of 
the sequence analyzing the limit of the linear programs LPbpNc,N. This can be done by performing a Riemann sum 
analysis, which captures the cases where the limit value exists. Denote by L1([p, 1] ⇥ N) the space of measurable func-
tions q : [p, 1] ⇥ N! R such that 

P1
#à1
R 1

p |q(t, #) |dt <1. If for q 2 L1([p, 1] ⇥ N), we define the function

Fk(q) à
Xk

#à1

Z 1

p
q(t, #)

Xk

jà#

j� 1
#� 1

◆ 
(1� t)j�#t#dt, (4) 

we can write the following limit problem, CLPp, where we have dropped the dependency on Y for ease of notation.

(CLPp) sup
q2L1([p, 1]⇥N)

Y1�
X

k�1
(Yk�Yk+1)(1� Fk(q))

s:t: tq(t, #) +
Z t

p

X

s�1
q(τ, s)dτ  1 ∀t 2 [p, 1], ∀# � 1

q(t, #) � 0 ∀t 2 [p, 1], ∀# � 1 
By standard arguments (see Section A.3), for every p 2 [0, 1) we can show that the limit of maxALG2ANE(ALG(Y[N])), 
when N !1, exists if and only if the optimal value of CLPp is finite, and they are equal.

This limit problem has a natural interpretation as a continuous-time version of p-DOS. In this problem there are 
countably many items, each item has a uniform arrival time in the interval [0, 1], and each item is in the history set H 
if it arrives before time p and in the online set otherwise. We observe the items in H, then we scan the interval [p, 1]
and when we reach the arrival time of an item, we irrevocably decide whether we should stop. The decision variables 
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in CLPp can be interpreted as encoding this decision. For a time τ�and an integer s, q(τ, s)dτ�is the probability that we 
stop with an s-local maximum in the interval [τ,τ+ dτ]. In the objective function, Fk(q) is the probability that we 
select an item with global rank k or better.

3.3. Structure of Optimal Solution
We show that CLPp can be restricted to solutions with a very special structure. If we interpret CLPp as the problem of 
selecting an item from an infinite set with uniform arrival times in [0, 1], we essentially prove that an optimal solution 
can be attained in the following class of algorithms. Given a nondecreasing sequence {ti}i2N ✓ [p, 1], if at time τ�we 
receive an item that is an #-local maximum, we accept it if t#  τ. Thus, we reject everything arriving in [p, t1), then in 
[t1, t2) we only accept a value that is the best so far, in [t2, t3) we only accept a value that is best or second best, and so 
on. Formally we prove the following theorem.

Theorem 1. For a fixed p 2 [0, 1) and a given feasible solution q for CLPp, there exists another feasible solution q⇤ such that 
Fk(q⇤) � Fk(q) for all k � 1, and there is a nondecreasing sequence of numbers {ti}i2N ✓ [p, 1], with t0 à p, that satisfies that 
for all # 2 N, t 2 [p, 1],

tq⇤(t, #) +
Z t

p

X

s�1
q⇤(τ, s)dτ à 1, if t � t# (5) 

q⇤(t, #) à 0, if t < t#: (6) 

Moreover, for all t 2 [p, 1], we have that

q⇤(t, #) à
Ti

ti+1 if t 2 [ti, ti+1), #  i

0 else;

8
<

: (7) 

where Ti à
Qi

jà1 tj.
Proof is done in two steps. The first is to show that we can modify q without decreasing Fk(q) to obtain a solution 

that satisfies Equations (5) and (6). The second is to prove that if a solution satisfies Equations (5) and (6), then it is 
actually as in Equation (7).

A key ingredient is to study the term accompanying q(t, #) in Fk(q). Note that the term is either 0, if # > k, or it is
Xk

jà#

j� 1
#� 1

◆ 
(1� t)j�#t#, 

if #  k. The property that we will extensively use is that this term is increasing in t and decreasing in #. This is implied 
by the fact that it corresponds to the probability that a NegativeBinomial(#, t)14 random variable is at most k. For com-
pleteness, an arithmetic proof of this fact can be found in Section A.4. Then, we use these facts to argue that if we take 
a solution that is not as in the Theorem, we can modify it without reducing the objective value.

We recursively define a sequence of solutions (qn)n�0 as follows. We start with an arbitrary feasible solution q0 à q 
for CLPp. If qn�1 is a feasible solution, we have that

qn�1 t, #( )  1
t 1�

Z t

p

X

s�1
qn�1 τ, s( )dτ

 !

, ∀t 2 [p, 1], # � 1:

Note also that 1t (1�
R t

p
P

s�1qn�1 τ, s)dτ)( is nonnegative for all t, #�so there must exist a value t#(n) 2 [p, 1] such that
Z 1

p
qn�1(t, #)dt à

Z 1

t#(n)

1
t 1�

Z t

p

X

s�1
qn�1(τ, s)dτ

 !

dt:

Thus, we define qn as

qn(t, #) à
1
t 1�

Z t

p

X

s�1
qn�1 τ, s( ) dτ

 !

if t � t#(n)

0 if t < t#(n):

8
><

>:

Now we prove a few facts about qn. First, note that for all # � 1,
R 1

p qn(t, #)dt à
R 1

p qn�1(t, #)dt. Also note that we are only 
moving mass to the right, and therefore,

1
t 1�

Z t

p

X

s�1
qn�1 τ, s( )dτ

 !

 1
t 1�

Z t

p

X

s�1
qn τ, s( )dτ

 !

, ∀t 2 [p, 1]: (8) 
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This implies that if qn�1 is feasible, qn is also feasible. Also since we are only moving mass to the right, and since the 
term accompanying q(t, #) in Fk(q) is increasing in t, necessarily Fk(qn�1)  Fk(qn) for all k � 1. Moreover, notice Equa-
tion (8) also implies that t#(n)  t#(n + 1) for all # � 1, n � 1. Since these numbers are upper bounded by 1, they must 
converge to some values t#(1) 2 [p, 1].

We now prove that for each # � 1 the sequence (qn(·, #))n�1 has a pointwise limit q1(·, #), to which it also converges 
under the L1 norm. Note first that if q0 à q1, the sequence is constant and therefore it trivially converges. If q0 ≠ q1, 
then Equation (8) for n à 1 holds with strict inequality in some interval [τ1,τ2] ✓ [p, 1], and then, if t#(1) < τ2 for some 
# � 1, necessarily t#(1) < t#(2). By evaluating the feasibility constraint in t à 1, we have that 

P
s�1
R 1

p q0(τ, s)dτ  1, so 
there is some s⇤ such that 

R 1
p q0(τ, s⇤)dτ à maxs�1

R 1
p q0(τ, s)dτ. By the definition of t#(n), we have that ts⇤ (n) à

mins�1 ts(n) for all n � 1. Then, if q0 ≠ q1, 0  ts⇤(1) < ts⇤(2)  t#(n) for all # � 1, n � 2. Now, the sequence of functions

Gn(t) à
1
t 1�

Z t

p

X

s�1
qn(τ, s)dτ

 !

is monotone in n, so it has a pointwise limit. Now, from the definition of qn(t, #), this also implies that qn(t, #) has a 
pointwise limit q1(t, #) when n !1. Indeed, for t < t#(1), eventually t < t#(n) because t#(n)% t#(1), and then 
qn(t, #) becomes 0; and for t � t#(1), qn(t, #) à Gn(t), which has a pointwise limit. Since t#(1) � ts⇤ (2) > 0, there is some 
n0 such that t#(n) � ts⇤ (2)=2 for all n � n0 and then qn(t, #) is dominated by the constant function equal to 2=ts⇤(2), 
which is integrable, so by the dominated convergence theorem, it converges to q1(t, #) in L1([p, 1]). This is sufficient 
to conclude that Fk(q1) � Fk(q0) for all k � 1, because Fk is a continuous function of q and involves only the first k com-
ponents of q.

We have now that

q1(t, #) à
1
t 1�

Z t

p

X

s�1
q1(τ, s) dτ

 !

if t � t#(1)

0 if t < t#(1):

8
><

>:

The only missing piece is the monotonicity of t#(1). In fact, they are not necessarily monotone. However, note that 
swapping components of q1 does not affect its feasibility. Since the term accompanying q(t, #) in Fk(q) is decreasing 
in #, for all k � 1, we can swap components of q1 to obtain a function q⇤ and a sequence (t#)#�1 such that t#  t#+1, that 
satisfies Equations (5) and (6).

For the second part of the proof of the theorem we first prove that, given the sequence (t#)#�1, Equations (5) and (6) 
admit a unique solution. Then we prove that they are satisfied by the one given in Equation (7). In fact, notice that for 
any #, in the interval [t#, t#+1] all functions q(t, #0) with #0  #�are equal, and the rest are 0. Thus, denoting this function 
by y#(t), we can rewrite Equation (5) as follows.

y0#(t) à�
(i + 1)

t · y#(t), ∀t 2 [t#, t#+1]: (9) 

Again by Equation (5), we have that the function has to satisfy a continuity constraint y#(t#) à 1
t# (1�

R t#
p
P

s�1q⇤(τ, s)dτ), 
which depends only on previous intervals, and for # à 1 it evaluates as 0. This determines the initial value in the interval. 
Therefore, by the Cauchy-Lipschitz theorem, Equations (5) and (6) admit a unique solution.

We are ready now to check that the function defined by Equation (7) satisfies our equations. In fact, it is easy to 
check the continuity, by noticing that Ti=ti+1

i+1 à Ti+1=ti+2
i+1. Replacing in Equation (9) we obtain

�(#+ 1) T#
t#+2 à�

#+ 1
t · T#

t#+1 ∀t 2 [t#, t#+1], 

which clearly holds. w

Let us now apply Theorem 1 to simplify problem CLPp. Noting that the differences Yk�Yk+1 are nonnegative we 
can reduce the feasible set in CLPp to just solutions satisfying Equation (7). These solutions automatically satisfy the 
constraints in CLPp and therefore the problem reduces to one in which the optimization is done only over the ti’s for 
i � 1. To explicitly write this reduced problem, and slightly abusing notation, consider the functions Fk : [0,1]N! R 
given by

Fk(t) à
Xk

jà1

X1

ià1

Zti+1

ti

Xj∧i

#à1

Ti
τi+1

j� 1
#� 1

◆ 
(1� τ)j�#τ#dτ:
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Note that Fk(t) à Fk(q⇤) where q⇤ satisfies (7). We obtain that the value of CLPp equals that of the reduced problem:

(RPp) sup
tà(ti)i2N

Y1�
X

k�1
(Yk�Yk+1)(1� Fk(t))

s:t: p  ti  ti+1  1 ∀i � 1:

Straightforward (but tedious) calculations show that Fk(t) is increasing in ti for all i > k, and also concave in each ti 
(see Section A.5). Unfortunately though, these Fk(·) are not jointly concave. Therefore, the reduced problem RPp is a 
real optimization problem, which is concave on each ti.

3.4. Finding the Optimal Thresholds
As mentioned earlier, RPp can be interpreted as the problem of finding the optimal algorithm for a continuous ver-
sion of p-DOS with an infinite sequence known values that arrive continuously in the interval [0, 1]. A solution {ti}i2N 
corresponds to the algorithm that, upon receiving at time τ�an item that is an #-local maximum, stops if t#  τ. The 
implementation of this algorithm for p-DOS with known values and N items is standard. After solving the corre-
sponding RPp and finding the implied optimal thresholds {ti}i2N, we sample one arrival time, that is, a uniform ran-
dom variable in [0, 1], for each of the N items. The items corresponding to arrival times that landed in [0, p] are 
included in the information set while the remaining form the online set.15 These are inspected in increasing order of 
their arrival times and the sequence {ti}i2N dictates the stopping time as before. In Section 4.4 we prove that the 
expected reward is at least as large and converges to the objective value of RPp as N tends to infinity. One last thing to 
notice is that the algorithm we just described might not stop, although this can be easily fixed by selecting the last 
item if no item was to be selected.

Note that this formulation RPp already establishes a number of facts. The first interesting consequence is that, quite 
naturally, the optimal algorithm for p-DOS with known values is given by a sequence of thresholds t1  t2  : : : so 
that after time ti we accept any item whose current ranking is i or better. This fact was previously shown in some spe-
cial cases by Mucci [38] and Chan et al. [10]. Moreover, by exploiting properties of the objective function we can 
show how it leads to relatively simple real optimization problems that solve various classic single selection optimal 
stopping problems.

Note first that if only finitely many Y’s are different —as often happens in classic optimal stopping problems— 
then RPp is a finite dimensional real optimization problem. Indeed, let us assume Y1 �⋯� Ym > Ym+1 à : : : . Thus, the 
objective function in RPp becomes 

Pm
kà1(Yk�Yk+1)Fk(t)�Ym+1. Additionally, since the Fk(t) are increasing in ti for i > k, 

all terms in the objective function are increasing in ti for i > m, so that we may set these variables to be 1. With this RPp 
becomes the finite dimensional optimization problem of maximizing, over t 2 [p, 1]m the function

Xm

kà1
(Yk�Yk+1)

Xk

jà1

Xm

ià1

Xj∧i

#à1
Ti

j� 1
#� 1

◆ Z ti+1

ti

(1� τ)j�#τ#�i�1dτ:

This problem is concave in each variable ti, since it is a nonnegative linear combination of concave functions. For the 
problem of maximizing the probability of selecting the best item, Correa et al. [14] establish a similar characterization 
as a continuous optimization problem, which they prove is concave. We suspect our problem also has a unique local 
maximizer, so we expect that it can be solved using gradient descent methods.16 In particular, this holds in the follow-
ing examples that recover some classical results in optimal stopping. 

• Secretary problem. Recall that the secretary problem is recovered by setting Y1 à 1 and Yi à 0 for i > 1. With this, 
the problem simplifies to

max
0ti<1

X1

ià1

Z ti+1

ti

Ti
τidτ à max

0t1<1

Z 1

t1

t1
τ

dτ à max
0t11

�t1 ln(t1), 

where the first equality follows since, by the monotonicity property of Fk(t), t2, t3, : : : approach 1 in the supremum. 
The problem to the right is easily solved by taking first order conditions, so we recover the classic result that t1 à 1=e 
and that the optimal value is 1=e.

• (1,2)-Secretary. Here, we have that Y1 à Y2 à 1 and Yi à 0 for i > 2. So the problem is
max

0t1t21
t2
1 + 2t1(ln(t2=t1) + 1)� 3t1t2:

First order conditions give that t1 ⇡ 0:347 and t2 à 2=3.17 The optimal value is approximately 0.5737, which 
matches the bound of Gusein-Zade [25] and Chan et al. [10].
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• Minimum rank. In this problem we seek to minimize the expected rank of the selected value, which is modeled 
by taking Yk à�k, so that Yk�Yk+1 à 1. Thus, RPp becomes18

sup
0ti1, i�1

�1 +
X1

kà1
(Fk(t)� 1) à sup

0ti1, i�1
�
X1

ià1
Ti

i
2

1
ti+1
i
� 1

ti+1
i+1

◆ 
, 

where the equality follows by using the identity 
P1

jà#
j
#

◆ 
(1� t)j à (1� t)#t�(#+1). Again the first order optimality 

conditions are enough to solve the problem. Indeed, they solve for ti à
Q1

mài
m

m+2
� ⇥1=(m+1), which evaluates for an 

expected rank of 
Q1

mà1
m+2

m
� ⇥1=(m+1) ⇡ 3:8695, recovering the result of Chow et al. [12].

The case of p > 0 Although the examples we have recovered are all for the case p à 0 we note that our results hold 
for general p. The “right” way of taking this limit is by first normalizing the objective function value. To see this note 
that in RPp (and also in p-DOS with known values) the values of Y can be scaled without affecting the optimization 
problem. Thus, for instance, if p à 0 we could scale these values to have Y1 à 1 (so long as Y1 > 0). This makes sense 
since in this situation an optimal clairvoyant algorithm will always pick Y1 so that the objective of RPp after this nor-
malization represents the relative performance of the best online algorithm when compared with the optimal offline 
algorithm. For p > 0 the expected value of the optimal offline algorithm is given by 

P1
ià1 Yipi�1(1� p). Therefore, 

when all Y’s are nonnegative, the right normalization of the objective in RPp is to divide it by this quantity. This leads 
to measuring the performance of the algorithm as the ratio between the expectation of the selected value and the 
expectation of the highest eligible value (the maximum value among the items in the online set). For instance, in the 
case of the secretary problem, for p > 1=e, the ratio equals pln(1=p)=(1� p).

An important remark is that this normalization does not change the optimization problem, as the denominator in 
the ratio depends solely on the values of Yi and p. However, in the next section, we consider p-DOS with adversarial 
values and therefore the Yi’s become variables selected by an adversary. In this setting, the normalization is needed 
to appropriately measure the competitive ratio of an algorithm.

4. Adversarial Values
Up to this point we have considered that the vector of values Y is known to the decision maker from the beginning. 
In what follows we will relax this assumption, and instead we will let the values to be chosen by an adversary. Our 
objective function will thus become a competitive ratio, as suggested at the end of the previous section. Conse-
quently, we will restrict the adversary to select a decreasing sequence of nonnegative values for the items. The analy-
sis in this section will initially rely on the dependent sampling variant, where the information set is conformed of h 
items with probability 1, and each item has equal probability of belonging to it. This model leads to a cleaner linear 
program and its limit naturally coincides with that for the independent sampling variant.

We start by presenting the adversary’s optimization problem and use von Neumann’s Minmax Theorem to derive 
a factor revealing LP. We take the limit of this problem as N !1 and find that our structural results of Section 3.3
also hold for this limit problem. Using this structural result we reduce the limit problem to finding an optimal 
sequence of optimal time thresholds (ti)i2N. We solve this reduced problem, putting special emphasis on values of p 
within 0 and 1=e, on p à 1/2, and on the limit as p! 1. We close the section by connecting the dependent and inde-
pendent sampling models. In particular, we show that our obtained guarantees also hold for finite N in the indepen-
dent sampling model, while in the dependent sampling model they hold approximately with an error Õ(1=

ÇÇÇÇ
N

p
) (for 

fixed p < 1).

4.1. Factor Revealing LP
In this subsection we present a factor-revealing linear program, whose optimal value equals the optimal competitive 
ratio for instances with N items and history set of size h. We start by stating our objective function, which consists of 
the competitive ratio just mentioned. The benchmark we will be comparing the performance of our algorithms will 
be the highest value among the items of the online set. Formally, our benchmark is the expectation of random vari-
able OPT(Y[N]), defined as the highest value among the items in the online set. This way, for given integers 0  h <N, 
we want to find the largest ratio between E(ALG(Y[N])) and E(OPT(Y[N])), for all instances Y[N] of N items.

The following lemma establishes the distribution of OPT(Y[N]), which will be useful for formulating SDLPh,N.
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Lemma 2. Consider an instance Y[N]. Then:

P(OPT(Y[N]) à Yj) à
N� h

N� j + 1
Yj�2

sà0

h� s
N� s 1  j  h + 1

0 otherwise:

8
><

>:

We proceed to present a factor revealing linear program for p-DOS with adversarial values and dependent sampling. 
For a given N, let YN à {Y[N] 2 RN : Y1 � Y2 �⋯� YN � 0} be the set of relevant feasible values that the adversary 
may choose.19 The problem for the adversary can be stated as follows:

min
Y[N]2YN

max
x

E(ALGx(Y[N]))
E(OPT(Y[N]))

s:t: ixi,# +
Xi�1

jà1

Xj

sà1
xj,s  1 ∀i 2 [N] \ [h + 1], ∀# 2 [i]

xi,# � 0 ∀i 2 [N] \ [h + 1], ∀# 2 [i]:
Since we may assume YN+1 à 0, the expression in Section 3 for E(ALGx(Y[N])) becomes

E(ALGx(Y[N])) à
XN

jà1
Yj
XN

iàh+1

Xj

#à1

ixi,#
N

j� 1
#� 1

◆ 
N� j
i� #

◆ 

N� 1
i� 1

◆  , 

and for the dependent sampling variant we have E(OPT(Y[N])) à
PN

jà1 YjP(OPT(Y[N]) à Yj). This problem is not linear, 
as the denominator of the objective function, E(OPT(Y[N])), depends on variables Yj. However, note that we can arbi-
trarily scale Y since the scaling will cancel out in the ratio E(ALGx(Y[N]))=E(OPT(Y[N])). Thus, without loss of generality, 
we can restrict the adversary to select values such that E(OPT(Y[N])) à 1. Now the objective function is linear in x and 
linear in Y[N], and also the corresponding feasible sets are convex and compact. The compactness follows from the 
fact that every coordinate of x must be in [0, 1]; and that 0  Yj  Y1 for all j 2 [N], and by Lemma 2 N�h

N · Y1 
E(OPT(Y[N])) à 1. Therefore, we can use von Neumann’s Minmax Theorem to change the order of the minimization 
and the maximization. We obtain the following problem:

max
ixi,#+

Pi�1
jà1
Pj

sà1 xj,s1, ∀i2[N] \ [h], #2[i],
x�0

min
Y2YN

E(OPT(Y[N]))à1

E(ALGx(Y[N])), 

Through a stochastic dominance argument (presented in Section B.2) we finally derive our factor revealing linear 
program which we denote by SDLPh,N, short for “Stochastic Dominance Linear Program”:

(SDLPh,N) max
x,α α

s:t: ixi,# +
Xi�1

jàh+1

Xj

sà1
xj,s  1 ∀i 2 [N] \ [h], ∀# 2 [i]

α�

Pk
jà1
PN

iàh+1
Pj
#à1

ixi,#
N

j� 1
#� 1

◆ 
N� j
i� #

◆ 

N� 1
i� 1

◆ 

Pk
jà1

N�h
N�j+1

Qj�2
sà0

h�s
N�s

 0 ∀k 2 [h + 1]

xi,# � 0 ∀i 2 [N] \ [h], ∀# 2 [I]:
The stochastic dominance argument says that for a given x, in the inner minimization problem we can focus our 
attention on instances of the form Y1 à⋯à Yk à 1, Yj à 0 for j � k + 1, for all k 2 [N] (each one of them normalized so 
that E(OPT(Y)) à 1).20

The first step is to see the second set of constraints as stochastic dominance constraints of the form

α� P(ALGx(Y[N]) � Yj)
P(OPT(Y[N]) � Yj)

 0 ∀j 2 [h + 1]:

Consequently, if α�is feasible we can write the inequality as P(ALGx(Y[N]) � Yj) � αP(OPT(Y[N]) � Yj), integrate both sides 
and obtain the same bound but for the expectations instead of the probabilities. The bound in the expectations will be tight 
if α�is feasible and the stochastic dominance constraint is binding for some index k. To see this, consider an instance Yk with 
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Yk
i à 1 for i  k and Yk

i à 0 for i > k. This way E(ALGx(Yk
[N])) à P(ALGx(Yk

[N]) � Yk) and E(OPT(Yk
[N])) à P(OPT(Yk

[N]) � Yk). 
With this analysis, we conclude that the optimal value of SDLPh,N equals the optimal worst case competitive ratio for the 
dependent sampling variant of p-DOS with fixed h and N. Moreover, we can recover an optimal algorithm from its optimal 
solution.

4.2. The Limit Problem and its Solution
Similarly as in Section 3.2, we obtain the limit problem of SDLPbpNc,N:

(SDCLPp) sup
q2L1([p, 1]⇥N), α2[0,1]

α

s:t: tq(t,#) +
Z t

p

X

s�1
q(τ, s)dτ  1 ∀t 2 [p, 1], ∀# � 1

(10) 

α  Fk(q)
1� pk ∀k � 1

q(t,#) � 0 ∀t 2 [p, 1], ∀# � 1:
(11) 

Now we can directly apply Theorem 1 to SDCLPp. For a solution q, consider a solution q⇤ as in the theorem. By defini-
tion, q⇤ satisfies Equation (10); and from the fact that Fk(q)  Fk(q⇤) for all k � 1, q⇤ also satisfies Equation (11) for the 
same α�as q. We obtain the following reduced problem analogous to RPp, by noticing that for the thresholds (ti)i2N 
that correspond to q⇤ we have that Fk(t) à Fk(q⇤).

(SDRPp) sup
tà(ti)i2N

min
k�1

Fk(t)
1� pk

s:t: p  ti  ti+1  1 ∀i � 1:

Recall that we defined α(p) as the limit of ratios αN,p, whose values correspond to the optimal value of SDLPbpNc,N. 
Consequently, α(p) equals the optimal value of SDRPp.

4.3. Solving for Different Values of p
We proceed to obtain values of α(p) for p 2 [0, 1). We start by briefly discussing the case where 0  p < 1=e and then 
study the limit as p! 1. For intermediate values of p, we present (almost) matching numerical bounds. Note that 
α(p) is an increasing function, as we establish, in a more general setting, with Lemma 9 in Section 5. As a consequence, 
the limit of α(p) as p tends to 1 is well-defined.

The case 0 £ p < 1=e For this range of p, we establish that α(p) à (e(1� p))�1. This closes the gap in Kaplan et al. 
[28], where they obtain the same upper bound but a slightly weaker lower bound.21 Our upper bound, which works 
for any p 2 [0, 1) is shown in Lemma 10 on a more general setting and with a simpler analysis than the one presented 
in Kaplan et al. [28]. We obtain the lower bound by evaluating t1 à 1=e and ti à 1 for i � 2 in SDRPp (i.e., the classic sec-
retary problem algorithm). This means that the optimal algorithm will wait until seeing in total (counting both the 
online set and the history set) a fraction 1=e of N, and from that point on it will stop whenever we find an item whose 
value is larger than what has been observed so far. Our results also reveal that the hardest single selection optimal 
stopping problem for this range of p is the secretary problem (Y1 à 1 and the remaining values are 0). Indeed, the fact 
that the optimal value of SDRPp is (e(1� p))�1, together with von Neumann’s Minmax Theorem tells us that for any 
sequence Y, we can obtain a competitive ratio of at least (e(1� p))�1. Details about this case are presented in Section B.3.

Limit as p goes to 1 We now turn our attention to the case where p is close to 1. In order to show that 
limp!1α(p) à α⇤, we will explicitly construct for each p 2 (0, 1), a feasible solution (q̃, α̃(p)) for SDCLPp, and then we 
will show that limp!1α̃(p) à α⇤. Since for every p, α̃(p)  α(p)  α⇤, this would prove the result.

Fix p 2 (0, 1) for now and recall from Equation (7) that we can restrict to solutions q for SDCLPp with the form

q(t, #) à
Ti

ti+1 if t 2 [ti, ti+1],#  i

0 otherwise;

8
<

: (12) 

where p  t1  t2 ⋯, and Ti à
Qi

jà1 tj. Note that for fixed i and t 2 [ti, ti+1], the function f (#) à q(t, #) is positive and 
constant for #  i, and 0 for # > i. In particular, the function q(t, #) is nondecreasing in #. The last property is important 
because of the following lemma.
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Lemma 3. Let (q,α) be a feasible solution for SDCLPp with q(t,#) nonincreasing in #, for all t 2 [p, 1] and α�maximal (i.e., 
such that (q, c) is infeasible for any c > α). Then we must have:

α � inf
k�1

1
1� pk

Xk

jà1

Z 1

p
tq(t, j)dt: (13) 

The idea behind the construction of our explicit feasible solution for SDCLPp is to enforce that the infimum in the 
lower bound of Lemma 3 is attained for every k simultaneously. The following lemma gives us a characterization for 
all such solutions.
Lemma 4. Let q be a function of the form (12) for some parameters p à t1  t2 ⋯ 1. The system of equations

α à 1
1� pk

Xk

jà1

Z 1

p
tq(t, j)dt, ∀k � 1 (14) 

is equivalent to

α(1� p) à p ln t2
p + p�µ3 (15) 

α(1� p)pk�1 à 1
k� 1 · Tk

tk�1
k
�µk+1, ∀k � 2,

where µk à
X1

iàk

Ti

ti�1
i

· 1
(i� 2)(i� 1) : (16) 

Thanks to the previous lemma, we can restrict our search to pairs (q,α) satisfying (12), (15), and (16). The following 
lemma gives us one such solution.

Lemma 5. Let p,α 2 (0, 1) be arbitrary numbers. Define for each k � 1, the quantity

γk à 1� α+α[kpk�1� (k� 1)pk]:

Define also the sequence of times t1 à p, t2 à p exp(α(1� p)2=p), and inductively for k � 2 define tk+1 as the real number 
satisfying

tk
tk+1

◆ k�1
à γk
γk�1

: (17) 

This sequence has the following properties. 
(i) (tk)k�1 is increasing.
(ii) limk!1tk  1 if and only if

ln p + α(1� p)2

p 
X1

ià1

ln(γi+1)
i(i + 1) : (18) 

and limk!1tk à 1 when equality holds in (18).
(iii) Let q be the function defined from the sequence (tk)k�1 as in (12). Then (q,α) is feasible in SDCLPp.
Thanks to the previous lemma, as long as (18) holds for values p,α 2 (0, 1), we obtain a solution for CLPp of value 

α. The following lemma shows that such pair of values always exists.

Lemma 6. For p 2 (0, 1), there is a unique α̃ 2 (0, 1) that satisfies

ln p + α̃(1� p)2

p à
X1

ià1

ln(1� α̃ + α̃[(i + 1)pi� ipi+1])
i(i + 1) : (19) 

Furthermore, the map p !̀ α̃(p) is continuous.

We are now ready to prove the main theorem of this section. In the next statement, α̃(p) is the map defined in the 
previous lemma, α(p) is the optimal value of SDCLPp and α⇤(⇡ 0:745) is the unique solution of 

R 1
0

1
y(1�ln y)+1=α⇤�1dy à 1:
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Theorem 2. For every p 2 (0, 1), 0  α̃(p)  α(p)  α⇤. Furthermore, if we define by continuity α̃(1) :à limp!1α̃(p), then 
α̃(1) à α(1) à α⇤.

4.3.1. Linear Lower Bound for p Close to 1. For p 2 (0, 1), we have just designed a stopping rule q̃ that has a compet-
itive ratio of at least α̃(p). We proceed to prove that α̃(p) lies above the line that connects 0 and α⇤, which has implica-
tions for problems related to p�DOS. Numerically, it appears that α̃(p) is actually concave, which would suffice for 
this purpose. Unfortunately, we have not been able to prove this so we rely on the following result.
Theorem 3. For p 2 (0, 1), α̃(p) � α⇤p.

It is worth contrasting the latter result with recent results of Correa et al. [15] and Rubinstein et al. [40]. They consider 
a more restricted model than p-DOS with dependent sampling, in which the decision maker sequentially observes i.i.d. 
values taken from a distribution F. Furthermore, the decision maker has, beforehand, access to a number of samples 
from F. Correa et al. [15] show that if she has access to O(n2=ε) samples then she can essentially learn F and guarantee a 
factor of α⇤ �O(ε). Rubinstein et al. [40] improve this result by showing that O(n=ε6) samples are enough to guarantee 
a factor of α⇤�O(ε). Since p-DOS is more general than the latter setting, Theorem 3 can be interpreted as a further 
improvement in this direction.22 Indeed if we take p à 1� ε�in Theorem 3 the online set is of size n à εN so that our 
information set is of size (1� ε)N à n(1� ε)=ε. Thus, with O(n=ε) samples we guarantee a factor of α⇤ �O(ε).

Numerical bounds for 0 £ p < 1 To close this subsection we present numerical bounds for SDCLPp for different 
values of p. For the upper bound we solve an optimization problem based on SDCLPp, which we call UBPp,N,kmax . For 
the lower bound we solve a truncation of SDRPp, which we call LBPp. Details about these optimization problems can 
be found in Section B.10.

In Figure 1 we plot the obtained upper and lower bounds together with the lower bound α̃(p) and the linear lower 
bound α⇤p. It is worth noting that α̃(p) is apparently concave but unfortunately we have not been able to prove this.

We pay special attention to the case when p à 1/2, which corresponds to one sample for each item in the online set. 
In this case we obtain a lower bound of 0.671, improving upon 0.649, the best known bound (Correa et al. [16]). The 
time thresholds for the algorithm are shown in Table 1.

4.4. Connection Between the Sampling Models
Recall that we have defined α(p) and β(p) as the limit optimal competitive ratios in the dependent and independent 
sampling models, respectively. So far, we have established that for any p 2 [0, 1), α(p) equals SDRPp, which describes 
an algorithm parameterized by time thresholds t. We now proceed to show that β(p) also equals to the value of 
SDRPp, and that this value is actually a lower bound of βN,p when N is finite.

We start by relating solutions of SDRPp with algorithms. As in Section 3.4, given an increasing sequence (ti)i2N, we 
interpret the arrival order as uniform in [0, 1] arrival times, and accept any #-local maximum from t#�onwards. Let us 
denote this algorithm by ALGt and its competitive ratio by

βN,p(t) à inf
Y decreasing

E(ALGt(Y[N]))
E(OPT(Y[N]))

:

Figure 1. (Color online) Plot of the numerical values of UBPp,N,kmax (black triangles) and LBPp,kmax (red circles). 

Note. The blue solid line is α̃(p), the lower bound on α(p) given by Theorem 2, while the dashed orange line is α⇤p, the lower bound given by 
Theorem 3.
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Certainly, βN,p � βN,p(t), for any sequence t à (ti)i2N. In the following two lemmas, we establish that in fact, for any 
feasible solution t for SDRPp, βN,p(t) is decreasing and converges to the corresponding value of the objective function 
in SDRPp.
Lemma 7. For all N � 1, βN,p(t) � βN+1,p(t).
Lemma 8. Fix vector t of nondecreasing time thresholds. For any instance Y, it holds that

lim
N!1

P(ALGt(Y[N]) à Yj) à
X1

ià1

Z ti+1

ti

Xj∧i

#à1

Ti
τi

j� 1
# � 1

◆ 
(1� τ)j�#τ#�1 dτ:

Lemma 8 implies that limN!1P(ALGt(Y[N]) � Yj) à Fk(t). This, together with the fact that the guarantee of ALGt in 
instances of size N, as for any algorithm, is given by

βN,p(t) à min
1jN

P(ALGt(Y[N]) � Yj)
P(OPT(Y[N]) � Yj)

à min
1jN

P(ALGt(Y[N]) � Yj)
1� pj , 

implies that the limit guarantee is the one given by SDRPp. This means that taking t⇤ as the optimal solution of 
SDRPp, βN,p � βN,p(t⇤) � α(p), and therefore β(p) � α(p).

To prove that β(p)  α(p), assume there is p 2 [0, 1) such that β(p) � α(p) + ε, for some ε > 0. Fix N, and consider the 
viewpoint where each item has an independent U[0, 1] arrival time and is in H if it arrives before p. Since βN,p � β(p), 
it is clear that there is a sufficiently small δ > 0 such that there is an algorithm A that does not stop in [p, p + δ], that 
obtains at least an (α(p) + ε=2) fraction of the optimal offline algorithm in the independent sampling model for any 
instance with N elements.23 We derive from A an algorithm for the dependent sampling model in the following way: 
let H be the history set for the dependent sampling model, which always has size |H | à pN. We draw N independent 
U[0, 1] arrival times, randomly assign the smallest pN times to the items of H, and the rest to the items of the online 
set, so that the order of arrival and order of the uniform times agree (notice that we can always do this on the fly). We 
obtain a new history set H0 defined as the items with arrival time in [0, p]. The set H0 has a random size, and when 
|H0 | < pN, H0(H, and otherwise H ✓ H0. We run A as if we were in the independent sampling model with history 
set H0, that is, we pass it the elements not in H0 one by one. If A stops with an item in H, we declare failure and do not 
stop. Otherwise, we stop whenever A stops. Note that by the definition of A, failure can only occur when we assign 
to an element of H an arrival time larger than p + δ; or equivalently, when out of the N arrival times, less than pN 
arrive in the interval [0, p + δ]. By increasing N we can make this event occur with arbitrarily small probability, say 
smaller than (1� p)ε=4. Thus, if we upper bound by Y1 the value of the item A selects when we fail, since 
(1� p)Y1  E(OPT), our new algorithm gets in expectation at least E(A)� ε4E(OPT). Therefore, for large enough N, we 
have an algorithm for the dependent sampling model with a guarantee of at least α(p) + ε=4, which is a contradiction. 
We conclude the following theorem.
Theorem 4. Let t⇤ be an optimal solution for SDRPp. We have that as N tends to infinity, βN,p(t⇤)& β(p) à α(p).

The situation for dependent sampling is a bit trickier, and it is unclear whether αN,p is a decreasing sequence. How-
ever, we can establish that αN,p is still close to α(p).
Theorem 5. For any p 2 [0, 1) we have that

αN,p à α(p) + O (logN)2

(1� p)2 ÇÇÇÇ
N

p
 !

:

Summarizing the previous discussion, we obtain that for any fixed value of N the guarantee obtained by our algo-
rithm ALGt⇤ , α(p) applies to both sampling models. In particular, for independent sampling we have that βN,p � α(p), 
while for dependent sampling we have that αN,p � α(p)� Õ(1=((1� p)2 ÇÇÇÇ

N
p

)).

Table 1. Best found solution for p à 1/2, rounded to the third decimal.

i 1 2 3 4 5 6 7 8 9 10

ti 0.500 0.836 0.903 0.941 0.957 0.985 0.994 0.994 0.994 0.994
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5. On Multiple-Choice p-DOS Problems
Until now we have focused on single selection problems. It is natural to ask whether our techniques can be used for 
selecting multiple items from a list subject to some combinatorial constraints, such as cardinality constraints, knap-
sack constraints or selecting edges that form a matching in a graph. It is possible to extend some of the linear pro-
gramming machinery to tackle simple constraints such as cardinality bounds using quotas (see Buchbinder et al. [8] 
and Chan et al. [10], for particular examples), but adding more complex constraints seems difficult. Nevertheless, our 
resulting algorithms can be used as black boxes to obtain new results for certain multiple selection problems.

To cast the problem more precisely, we consider the following version of p-DOS with adversarial values. A DM is 
given a value p 2 [0, 1) and an independence system (S,I).24 An adversary assigns a nonnegative weight Y(e) to every 
element e of S. Every element is then independently placed on the information set with probability p and in the online 
set otherwise. As in the single selection case, the DM observes all the elements in the information set and the relative 
rankings of their Y-weights (assuming a universal tie-breaking rule). Then, the online set is revealed one by one in 
uniform random order. Every time an element is revealed the DM needs to irrevocably decide whether to add it or 
not to the solution set, while making sure that the solution set is at all times independent in (S,I). An algorithm for 
this problem is ρ-competitive if the expected weight of the elements in the solution set is at least ρ�times the expected 
weight of a maximum weight independent subset of the online set. An alternative way to state this is the following: 
for any q, let S[q] be a random subset of S obtained by adding each element of S to it with probability q independently. 
The online set of our problem behaves like S[1� p]. Let also OPT(I , q, Y) be the expectation of the maximum Y-weight 
independent subset of S[q] in I . An algorithm for p-DOS on (S,I ) is ρ-competitive if for any instance the expected Y- 
weight of its output is at least ρOPT(I , 1� p, Y).

Denote by βS,I (p) to the maximum competitive ratio ρ�achievable by an algorithm for p-DOS on (S,I). In general, 
we need to analyze entire classes of independence system at once. We tackle this in the following way. If C is a collec-
tion of independence systems, we define βC(p) as the infimum over all (S,I ) in C of βS,I (p). For instance, by setting C 
to be the class of all matroids of rank 1 (where S can have any number of elements), we recover the single-selection p- 
DOS problem and we get βC(p) à β(p) à α(p).

When p à 0 the p-DOS problem just described coincides with the generalized secretary problem by Babaioff et al. 
[5]. There is a long line of work for that problem for different independence systems, most notably for knapsack 
(Babaioff et al. [3], Kesselheim et al. [31]), matchings (Korula and Pál [32], Kesselheim et al. [30]), and many classes of 
matroids (see Soto et al. [42] for a recent comprehensive list). Optimal competitive ratios, again for p à 0, are only 
known for the classes of uniform and transversal matroids (Kesselheim et al. [30]), and constant competitive ratios 
are known for several other cases. An important open question, known as the matroid secretary conjecture (Babaioff 
et al. [5], Babaioff et al. [4]) is to decide whether the class M of all matroids admits an constant competitive algorithm 
(in our notation, whether βM(0) > 0). The best ratio so far is parameterized on the rank r of the matroid. In our nota-
tion, if Mr is the class of matroids of rank r, then βMr

(0) à⌦(1=log log r) (Lachish [35], Feldman et al. [21]).
The problem on general independence systems has not been studied yet for the case p > 0, however we show in the 

next sections that the lower bounds on the guarantees for p à 0 transfer directly to any p < 1. In fact, we show that for 
a certain natural class of independence systems, we can further improve the guarantees for large p via a reduction to 
the single selection case p-DOS problem.

5.1. Relation Among Guarantees for Different p on a Given Independence System (S,I)
The following lemma shows that for any class C of independence systems, βC(p) is increasing in p.
Lemma 9. Let p1, p2 2 [0, 1) with p1 < p2. For any ρ-competitive algorithm for p1-DOS on (S,I ) we can construct a 
ρ-competitive algorithm for p2-DOS. Therefore, for any class C of independence systems, βC(p1)  βC(p2).

Proof fix (S,I), p1 and p2 and let A1 be any ρ-competitive algorithm for p1-DOS on (S,I ). Let Y be any instance (that 
is, a map Y : S! R+). To simplify the exposition, we assume that every e in S selects an arrival time t(e) uniformly on 
[0, 1] at random, that the elements arrive in that order and furthermore, that the arrival times are also revealed to the 
algorithm A1 upon arrival. Consider the algorithm A2 that does the following on the instance I. Let X be the set of ele-
ments e with arrival time t(e) < f :à (p2� p1)=(1� p1). Note that f  p2, so X is a subset of A2’s history set. The algo-
rithm will create a new instance Y0, on the same system, with weight assignment Y0(e) à 0 for all e 2 X and 
Y0(e) à Y(e) for the elements outside X. Now, it simulates A1 on Y0 in the following way. The simulation receives all 
elements of S \ X in their arrival order as before, but all elements in X will be inserted at random times uniformly. 
More precisely, for every e 2 X, the algorithm selects t0(e) uniformly at random on the interval [f , 1], and for every 
e 2 S \ X, it sets t0(e) à t(e). The simulation will consider every element that has t0(e)  p2 as its history set and the rest 
as the online set (note that some elements from X may fall in the history set and some may fall in the online set, but 
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every element in A2’s online set will also be in the simulation’s online set), using Y0 as their values. Whenever the sim-
ulation accepts an element e 2 S \ X, it puts e on the solution set ALG. The elements from X that the simulation accepts 
are discarded. The solution set ALG is independent in (S,I ) because it is a subset of the simulation’s answer.

To analyze the algorithm, from this point onward let us condition on the set X. Observe that the simulated A1 
receives the elements of the instance given by Y0 in a uniform random order. Furthermore, every element e is in the 
simulation’s history set as long as t0(e) < p2, which happens with probability (p2� f )=(1� f ) à p1, so for all purposes, 
the instance behaves in the same way as in the p1-DOS problem. For any realization of the times t0, let OPTt0 be an opti-
mum Y0-weight set of {e 2 S : t0(e) � p2}, and let OPTt be an optimum Y-weight set of {e 2 S : t(e) � p2}. Since the ele-
ments of X have Y0-weight 0, both OPTt0 and OPTt have the same Y-weight.

Now, since A1 is ρ-competitive for p1-DOS, the total Y0-weight of the simulation solution (which is equal to the Y- 
weight of ALG) is at least ρ�times the expected Y0-weight of OPTt0 , which in turn equals the expected Y-weight of OPTt. 
Removing the condition on X, we obtain that A2 is ρ-competitive for p2-DOS.

From here we deduce that βS,I (p1)  βS,I (p2). Taking the infimum over all systems (S,I ) in C we conclude that 
βC(p1)  βC(p2). w

The previous lemma has some nice consequences. If we apply it to the class M1 of unit rank matroids we recover 
that for the single-selection p-DOS problem α(p) is increasing in p. Furthermore, it shows that any ρ-competitive algo-
rithm for the generalized secretary problem (the 0-DOS) on a particular class C can be adapted to the p-DOS problem 
without decreasing its competitive ratio. To name a few examples: for any p, we get a 1�Θ(1=

ÇÇÇ
k

p
)-algorithm for p- 

DOS on k-uniform matroids (adapting Kleinberg’s multiple choice secretary algorithm), we get a 1=e-competitive 
algorithm for p-DOS on transversal matroids (adapting the algorithm by Kesselheim et al. [30]) and a 1/4-competi-
tive for p-DOS on graphical matroids (adapting the algorithm by Soto et al. [42]), and these are the current best algo-
rithms for all three classes.

5.2. Better Guarantees for p-DOS on Special Types of Independence Systems
Babaioff et al. [2] introduced a powerful technique to obtain algorithms for generalized secretary problems by ran-
domly reducing them to a collection of independent parallel single-choice secretary problems. This works on any 
independence system satisfying a property known as the γ-partition property.25 If an independence system has the 
γ-partition property it is easy to create an algorithm for the associated secretary problem (the 0-DOS case) that has 
competitive ratio γ=e.

Below, we extend this construction to the p-DOS case using a stronger property that we call the γ-sample partition 
property. We will show that if a system has this particular property then one can easily obtain a γα(p)-competitive 
algorithm for the associated p-DOS problem for every p (the reduction by Babaioff et al. [2] is the special case for p à 0). 
Here α(p) is the optimal guarantee for single-selection p-DOS.

5.2.1. Sample Partition Property. A unitary partition matroid (S,P) is an independence system whose ground set is 
partitioned into color classes (S0, S1, : : : , Sm), where only S0 may be empty, so that a set X ✓ S is independent if and 
only if X does not contain elements from S0, and X contains at most 1 element restricted from each other color class. 
We say that an independence system (S,I) has the γ�sample partition property if we can (randomly) define a unitary 
partition matroid (S,P) on the same ground set so that 

1. Every set X independent in P is also independent in I
2. For any q 2 [0, 1], and any assignment of nonnegative weights to S.

EP[OPT(P, q)] � γOPT(I , q):
The notion of γ-partition property of Babaioff et al. [2] is recovered if we only require property (2) to hold for q à 1.

Algorithm for p-DOS on a system (S,I) with the γ�sample partition property.
On a given instance Y our algorithm does the following: 
• Construct the random unit partition matroid P given by the γ�sample partition property, and let S1, : : : , Sm be 

the parts that have allowed size 1.
• Let H à S[p] be the information set of S.
• Run in parallel m instances of the optimal asymptotic algorithm ALGt⇤ for single-selection p-DOS, one for each 

part Si. Use Si \H and Si \ H as the history set and online set respectively on the i-th instance. Use the arrival times 
defined above on each online element. Whenever a copy of ALGt⇤ selects an element, our algorithm also selects it.

Let ALG be the output set of our algorithm and Y(ALG) be its weight. By construction ALG is independent in the 
unit partition matroid P and therefore also in the original independence system. So, our algorithm is correct. The fol-
lowing theorem gives us a bound on its competitive ratio.
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Theorem 6. The expected weight of ALG is at least α(p) · γ�times OPT(I , 1� p, Y). Therefore, our algorithm for p-DOS on 
an independence system with γ�sample partition property is α(p) · γ-competitive, where α(p) is the optimal guarantee for 
single-selection p-DOS.

Proof. Let us fix P (recall that it is allowed to be random). Since ALGt⇤ is α(p)-competitive for single-selection, 
the expected weight of ALG \ Si is at least α(p) times the expected maximum weight of Si \ H. Summing over all i 
we get that the expected weight of ALG (given P) is at least α(p) times OPT(P, 1� p, Y). Taking the expectation 
over P and using the γ-unit partition property, we obtain

EP[Y(ALG)] � α(p) ·EP[OPT(P, 1� p, Y)] � α(p) · γ · OPT(I , 1� p, Y): w 

We can use Theorem 6 above to obtain better guarantees for some classes of independence systems. First of all, we 
observe that our notion of γ�sample partition property, although stronger than the γ�partition property, is not really 
that restrictive. In fact, most (if not all) proofs that a particular system satisfy the weaker notion of γ�partition can be 
adapted to the stronger version directly.

We mentioned that this theorem can be used to get lower bounds for βC(p) that are strictly larger than the ones 
available for βC(0) for certain classes C. A particularly interesting example is the class G of all graphic matroids. Babai-
off et al. [2] showed that graphic matroids have the partition property for γ à 1=3, and thus they got a 1=(3e)-competi-
tive algorithm for graphic matroids. Korula and Pál [32] improved this by showing that this class admits the partition 
property for γ à 1=2, obtaining a 1=(2e)-competitive algorithm. The current best algorithm by Soto et al. [42] is 1/4- 
competitive and uses a different technique that does not reduce to the single-choice secretary problem. Using the 
monotonicity of βG, we know that βG(p) is at least 1/4 for every p. However, it is quite simple to modify the proof by 
Korula and Pál [32] to show that graphic matroids have the stronger 1/2 sample partition property. Using the algo-
rithm given by Theorem 6, we obtain that βG(p) � α(p)=2. We note that α(p)=2 grows from 1=(2e) when p à 0 to 
α⇤=2 ⇡ 0:3725, when p à 1. So, for sufficiently large p, α(p)=2 beats 1/4.

By adapting the proofs in Babaioff et al. [2] and Soto [41], we get a few other classes of matroids with constant γ�
sample partition property such as uniform matroids with γ à 1� 1=e, cographic matroids (γ à 1=3), k-column sparse 
matroids (γ à 1=k), and matroids of density d (γ à 1=d).

5.3. Limiting Problem as p fi 1 and Consequences for the Matroid Secretary Problem (MSP)
In Lemma 9, we showed that for any class C, the function αC(p) is increasing, our next lemma shows that this function 
cannot grow extremely fast.
Lemma 10. Let p1, p2 2 [0, 1) with p1 < p2. For any ρ-competitive algorithm for p2-DOS on (S,I ) we can construct a 
ρ(1� p2)=(1� p1)-competitive algorithm for p1-DOS. As a corollary, for any class C of independence systems, βC(p1) �
βC(p2) · (1� p2)=(1� p1). Applying this to the single-selection problem we conclude that α(0) � α(p)(1� p).

Proof fix (S,I), p1 and p2 and let A2 be any ρ-competitive algorithm for p2-DOS on (S,I ). We will use the same ran-
dom arrival time interpretation of the elements of the system. Consider a new algorithm A1 that on any instance Y for 
p1-DOS it simply mimics what A2 would do on the same instance and arrival times (note that all the elements that A2 
accepts arrive after time p2 so they also belong to the online set of A1). The set ALG that A1 returns is independent in 
(S,I). To analyze its performance, we need a simple observation. Let S[t1, t2] denote the elements arriving between 
times t1 and t2. If X is the maximum weight independent set of S[p1, 1] then because of the random arrival, X \
S[p2, 1] has expected weight Y(X) · (1� p2)=(1� p1), therefore, the maximum weight independent set of S[p2, 1] has 
at least that expected weight. Using that A2 is ρ-competitive for p2-DOS

ρ(1� p2)=(1� p1)OPT(I , 1� p1, Y)  ρOPT(I , 1� p2, Y)  Y(ALG):
From here we conclude that A1 is ρ(1� p2)=(1� p1) competitive for p1-DOS, and we deduce that βS,I (p1) � (1� p2)=
(1� p1)βS,I (p2). We finish the proof taking infimum on the previous inequality over all systems (S,I ) in C. w

Recall now that for the single-selection p-DOS problem the limit limp!1α(p) coincides with the factor α⇤ associated 
to the single-selection i.i.d. prophet inequality with known distribution. An interesting question is whether some-
thing similar occurs for other classes of independence systems different than matroids of rank 1. For example, denote 
again M and Mr to denote the classes of all matroids and that of all matroids of rank r, respectively. Let L à
limp!1βM(p) and Lr à limp!1βMr

(p) so that L1 à α⇤. It would be natural to ask whether there is an analog of the i.i.d. 
prophet inequality on matroids whose optimal competitive ratio equals L.

There are many candidates one could study, for example in the i.i.d. MSP, every element of a known matroid is 
assigned independently a value from a known distribution, and the values are later revealed to the DM. Soto [41] 
studied a generalization of the i.i.d. case known as the random-assignment MSP in which an adversary selects a list 
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of nonnegative values, which are then randomly assigned to the elements to the matroid, which in turn is presented 
in random order to the DM. Another alternative is the prophet secretary model on matroids, studied by Ehsani et al. 
[20] in which every element from the matroid receives independently a value from a known distribution, which may 
be different for every element.

Proving that any of this problems behaves like the limit of p-DOS as p! 1 on all matroids may be, in fact, a very 
difficult task. For if we are able to show that then we would have, indirectly, solved the matroid secretary conjecture. 
Indeed, for all the i.i.d., the random-assignment and the prophet secretary problem on matroids, constant competi-
tive algorithms are known (Soto [41], Ehsani et al. [20]), so if any of those cases holds then L > 0. However, since 
L à limp!1βM(p), then there exists a sufficiently small ε > 0, so that βM(1� ε) � L=2. But then, by Lemma 9, 
βM(0) � εL=2 > 0, meaning that every matroid admits a constant competitive algorithm for the matroid secretary 
problem.

In any case, it is likely that neither the random-assignment nor the prophet secretary problem are the correct candi-
dates, because if one restricts the former problem to the class M1 we recover the classic secretary problem whose 
optimal competitive ratio is 1=e ≠ α⇤, and the latter becomes the single-selection prophet secretary problem with 
known distribution for which an upper bound of 0:732 < α⇤ is known (Correa et al. [18]).

6. Concluding Remarks
In this paper, we study the p-sample-driven optimal stopping problem that takes a unifying approach to single- 
selection optimal stopping and allows the incorporation of previous experience in the decision making. We derive 
optimal algorithms for both cases where the input is known beforehand by the decision maker and when the input is 
adversarially designed, and illustrate how these results can be used to design optimal stopping algorithms with 
more complicated feasibility constraints.

In the model we study, the reward obtained by the decision maker (and the “prophet”) is a function of the global 
ranking of the item selected. This means, for example, that if the highest-ranked item is sampled in the history set, the 
DM will never be able to obtain the best reward Y1. An alternative and natural way to model this problem is that the 
reward obtained is determined by the ranking of the selected item within the online set. This way, if the DM selects 
the highest-ranked item in the online set, she gets a reward of Y1. Both formulations are natural and they both allow 
the incorporation of historical data in online decision making.

The setting we study is better suited to model a situation where there are rewards to be collected from an i.i.d. dis-
tribution. The samples can be thought of as potential rewards observed in the past that are useful for decision making 
but are independent of the values that can be collected from the actual instance. The alternative model, however, pos-
sesses great modeling power. Indeed, one can model the secretary problem with samples, where we do have prior 
information. In the model we study, we capture the secretary problem only when p à 0. Otherwise, if Y1 à 1 gets sam-
pled in the history set, then stopping at any item yields a reward of 0, whereas the secretary problem should give a 
reward of 1 if the selected item is the largest in the online set. Correa et al. [14] analyze the problem of selecting the 
best element of the online set, but the analysis requires significantly different techniques, and is not immediately gen-
eralizable to other vectors Y. Similarly, for the min-rank problem (where Yi à�i) with p > 0, if Y1 à�1 gets sampled 
in the history set, even if the DM stops at the best-ranked item in the online set, the reward obtained will not map to 
the min-rank problem with samples correctly. The alternative model can capture the min-rank problem appropri-
ately. We believe that the limit when p! 1 of the min-rank problem with samples could provide a solution for Rob-
bins’ problem: stop at the minimum ranking item among n i.i.d. samples of a common, known distribution (Chow 
et al. [12], Bruss [7]). This has been an open problem for more than 50years, so developing machinery that works in 
this setting is a very promising open direction.
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Appendix A. Proofs of Section 3

A.1. Proof of Lemma 1

Proof. If we condition on the information set containing exactly h items, then we can interpret the process as follows. At 
the beginning, values Yj are shuffled according to a random permutation σ. That is, σ(i) à j means that the i-th item in 
the permutation has value Yj. The items in the information set will be the first h items according to the permutation (i.e., 
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Yσ(1), : : : , Yσ(h)). The online set will consist of the remaining items, which will be revealed according to the order of the 
permutation. That is, the order is Yσ(h+1), Yσ(h+2),: : : ,Yσ(N) .

For proving the first statement of the lemma, note that
xi# à P(ALG stops at step i ∧ Yσ(i) is # � local maximum)

à P(ALG stops at step i |Yσ(i) is # � local maximum)P(Yσ(i) is # � local maximum)
 P(ALG does not stop before step i |Yσ(i) is # � local maximum)P(Yσ(i) is # � local maximum)
à P(ALG does not stop before step i)P(Yσ(i) is # � local maximum)

à 1�
Xi�1

jàh+1

Xj

sà1
xj,s

0

@

1

A 1
i :

Now, for any 1  j  N, we can write

P(ALG à Yj) à
XN

iàh+1
P(ALG à Yj∧ ALG stops at step i)

à
XN

iàh+1
P(Yσ(i) à Yj∧ ALG stops at step i)

à
XN

iàh+1
P(ALGx stops at step i |Yσ(i) à Yj)P(Yσ(i) à Yj):

Since σ�is a uniform random permutation, we have that P(Yσ(i) à Yj) à 1=N. For computing P(ALG stops at step i |Yσ(i) à Yj)
we rename the following events: 

• Ai à {ALG stops at step i},
• Bi# à {Yσ(i) is #�local maximum}, and
• Cij à {Yσ(i) à Yj},

and write

P(Ai |Cij) à
Xi

#à1
P(Ai |Cij ∧ Bi#)P(Bi# |Cij) à

Xi

#à1
P(Ai |Bi#)P(Bi# |Cij) à

Xi

#à1
ixi,#P(Bi# |Cij), 

where the second equality holds because ALGx decides whether to stop at step i based only on the relative order within the 
first i items. The third equality comes from the fact that P(Ai |Bi#) à P(Ai∧Bi#)

P(Bi#) à ixALG
i,# , where P(Bi#) à 1=i because σ�is a uniform 

random permutation.
To compute P(Bi# |Cij), notice this is the probability that Yj is #-local maximum conditional on σ(j) à i. Now, this hap-

pens if out of the j – 1 values that are larger than Yj, exactly #�arrive within the first i – 1 positions. Since, conditional on 
σ(j) à i, σ�is a random permutation of the other N – 1 items, we have that

P(Bi# |Cij) à

j� 1
#� 1

◆ 
N� j
i� #

◆ 

N� 1
i� 1

◆  :

Putting together the computed probabilities we conclude that

P(ALG à Yj) à
XN

iàh+1

Xi

#à1

ixi,#
N

j� 1
# � 1

◆ 
N � j
i� #

◆ 

N � 1
i� 1

◆  , (20) 

so the first statement follows.
To prove the second statement, first notice that as x satisfies the feasibility constraint, then ALGx is well defined in the 

sense that ixi,#
1�
Pi�1

jà1

Pj
sà1 xj,s 

will always be between 0 and 1. We need to prove that the probability that ALGx stops at step i 

and Yσ(i) is #-local maximum is precisely xi,#. This will be done by induction on i, defining the following events: 
• Ai à {ALGx stops at stage i},
• Bi,# à {Yσ(i) is #�local maximum}, and
• Ri à {ALGx reaches stage i} à {ALGx does not stop in steps h + 1, : : : , i� 1}.
The base case is i à h + 1 and any 1  #  h + 1. Here, we have that P(Rh+1) à 1, so

(h + 1)xh+1,# à P(Ah+1 |Rh+1 ∧ Bh+1,#)
à P(Ah+1 |Bh+1,#) à P(Ah+1 ∧ Bh+1,#)=P(Bh+1,#)
à (h + 1)P(Ah+1 ∧ Bh+1,#)
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and we obtain the result by cancelling the (h + 1). For i > h + 1 and 1  #  i we have that

P(Ai ∧ Bi,#) à P(Ai ∧ Bi,# ∧ Ri)
à P(Ai |Bi,# ∧ Ri)P(Bi,# ∧ Ri)
à P(Ai |Bi,# ∧ Ri)P(Bi,#)P(Ri), 

where the first equality comes from the fact that Ai is contained in Ri and the last equality comes from the fact that ALGx 
cannot use the ranking of Yσ(i) to stop in a stage before i. By the construction of ALGx, we have that P(Ai |Bi,# ∧ Ri) à

ixi#

1�
Pi�1

jàh+1

Ph
sà1 xj,s

. As σ�is a random and uniform permutation, we have that P(Bi,#) à 1=i for any 1  #  i. The only thing left to 

conclude is computing P(Ri). For this we compute

P(Ri) à 1�
Xi�1

jàh+1
P(Stop at step j)

à 1�
Xi�1

jàh+1

Xj

sà1
P(Stop at step j ∧ Yσ(j) is #� local maximum) à 1�

Xi�1

jàh+1

Xj

sà1
xj,s 

where the last equality holds because of our inductive hypothesis. It follows that the probability that ALGx stops at step i 
and Yσ(i) is #-local maximum is xi,#. The second statement follows, as Equation (20) holds for any algorithm, in particular for 
ALGx. w

A.2. Coupling Argument for Monotonicity
We take an algorithm ALG for Y[N+1] and obtain an algorithm for Y[N] with at least as much reward as for Y[N+1]. Indeed, 
we define ALG0 for Y[N] in the following way. We insert a dummy item with the smallest rank in a random position and 
run ALG on the sequence of N + 1 resulting items. If ALG attempts to select the dummy item, ALG0 simply does not stop 
and obtains a reward of YN+1. We couple both algorithms by taking the position of the dummy item to be the same as 
YN+1. Then, every time ALG selects an item in Y[N+1] greater than YN+1, ALG0 selects the same item in Y[N]. When ALG 
selects YN+1, ALG0 does not stop, in which case the reward is defined as YN+1. If ALG does not stop, its reward is 
YN+2  YN+1. In all cases, ALG0 obtains more than ALG.

A.3. Convergence of E(ALG⇤N(Y)) to CLPp
Denote by E(ALG⇤N(Y)) the expected reward of the optimal algorithm for a given sequence Y, and N � 1. We start by relaxing 
the problem. Given a value Z 2 (�1, Y1), we consider the problem where we get a reward of Z if the algorithm does not stop. 
This means we replace with Z in the sequence Y all values Yj < Z. We denote this modified sequence by YZ. We then proceed 
in three main steps. First, we prove that for fixed Z, when p à h=N the difference between the optimal values of LPh,N(YZ) and 
CLPp(YZ)26 tends to 0 when N !1. Second, we prove that the optimal value of CLPp(YZ) is a continuous function of p and 
use a concentration bound to show that the expectation of the optimal algorithm E(ALG⇤N(YZ)) tends to the optimal value of 
CLPp(YZ) when N tends to 1. And third, we conclude by making Z tend to limi!1Yi.

For the first step, notice that for any Z > limi!1Yi, we only care about finitely many Yj, so we can argue about the con-
vergence of each element in the summations of the objective functions. Note also that for any k � #, if i=N à t,

Xk

jà#

i
N

j� 1
#� 1

◆ 
N� j
i� #

◆ 

N� 1
i� 1

◆  !
N!1

Xk

jà#

j� 1
#� 1

◆ 
(1� t)j�#t#, (21) 

simply because they represent the probabilities of drawing samples with or without replacement. Indeed, they correspond to 
the probability that we need to draw at most k random elements from a total of N to get at least #�from a given subset of i 
elements. Now, for an optimal solution q of CLPp(YZ), we define a solution for LPh,N(YZ) given by

xi,# à
Z i

N

i�1
N

q(t, #)dt:

From the feasibility of q one can easily show that x is feasible for LPh,N(YZ). This, together with Equation (21), implies 
that the limit of the optimal value of LPh,N(YZ) is at least the optimal value of CLPp(YZ). For the opposite inequality, 
from an optimal solution x⇤ of LPh,N(YZ) and a given ε > 0, define

q(t, #) à Nx⇤i,#(1� ε) if #  i and i à dt · Ne
0 otherwise:

�

For a certain ε�that tends to 0 with N, q is feasible for CLPp(YZ). This, together with Equation (21) implies that the opti-
mal value of CLPp is at least the limit optimal value of LPh,N(YZ).
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Now, we show the optimal value of CLPp(YZ) is continuous. In fact, note on the one hand it is decreasing, since we 
can take a solution q for a given p 2 (0, 1) and extend it to [p0, 1] for p0 < p setting it equal to 0 for t 2 [p0, p]. On the other 
hand, from a solution for p0 we can obtain a solution for p by simply truncating it. Since Fk(q) is continuous in p, if p0 is 
close to p, then the truncated solution is close to the solution for p0. Although the number of items in H is random, when 
N !1, |H |=N converges to p, so the continuity of the value of CLPp(YZ) implies that if we use the optimal solution of 
LP |H | ,N, the expected reward converges to CLPp(YZ).

Finally, when we make Z tend to limi!1Yi, the optimal value of CLPp(YZ) tends to the optimal solution of CLP(Y), 
and the limit (when N tends to infinity) of E(ALG⇤(YZ)) tends to E(ALG⇤(Y)), so we conclude that if they exist they must be 
equal.

A.4. Monotonicity of +k
j!‘

j"1
‘"1

◆ 
(1"t)j"‘t‘.

Lemma A.1. For any fixed k � 1, #  k, the term 
Pk

jà#
j� 1
#� 1

◆ 
(1� t)j�#t#�as a function of t 2 [0, 1] is increasing.

Proof. The derivative of the function with respect to t is
Xk

jà#

j� 1
# � 1

◆ 
(#(1� t)j�#t#�1 � (j� #)(1 � t)j�#�1t#)

à
Xk

jà#

j� 1
#� 1

◆ 
(#(1 � t)� (j� #)t) · (1� t)j�#�1t#�1

à
Xk

jà#

j� 1
#� 1

◆ 
(j(1� t)� (j� #)) · (1� t)j�#�1t#�1

à t#�1
Xk

jà#

j
# � 1

◆ 
(j� # + 1)(1� t)j�# � j� 1

# � 1

◆ 
(j� #)(1 � t)j�#�1

◆ 

à t#�1 k
# � 1

◆ 
(k� # + 1)(1� t)k�# � 0, 

where in the second last equality we used the identity j� 1
#� 1

◆ 
j à j

#� 1

◆ 
(j� #+ 1), and in the last equality we reduced 

the telescopic sum. w

Lemma A.2. For any fixed k � 1 and t 2 [0, 1], the term 
Pk

jà#
j� 1
#� 1

◆ 
(1� t)j�#t#�as a function of #�is decreasing.

Proof. We want to prove that for #  k� 1,
Xk

jà#

j� 1
#� 1

◆ 
(1� t)j�#t# �

Xk

jà#+1

j� 1
#

◆ 
(1� t)j�#�1t#+1: (22) 

If we compare term by term in the sum (with the same value for j), we have that
j� 1
#� 1

◆ 
(1� t)j�#t#

j� 1
#

◆ 
(1� t)j�#�1t#+1

à #(1� t)
(j� #)t

à # � t#
tj� t# , 

which is larger than 1 whenever j  #=t. Thus, we can safely conclude that Equation (22) is true when k  #=t.

On the other hand, we make use of the fact that for any y 2 (�1, 1) and # 2 N, the identity 
P1

jà#
j
#

◆ 
yj à y#

(1�y)#+1 holds 
true. From this it is easy to see that when k tends to 1, the term tends to 1, so we can rewrite it as

Xk

jà#

j� 1
#� 1

◆ 
(1� t)j�#t# à 1�

X1

jàk+1

j� 1
#� 1

◆ 
(1� t)j�#t#: (23) 

Therefore, we can rewrite Equation (22) as
X1

jàk+1

j� 1
# � 1

◆ 
(1� t)j�#t# 

X1

jàk+1

j� 1
#

◆ 
(1� t)j�#�1t#+1, 

and then, whenever k > #=t we can conclude that the inequality is true by comparing term by term here. w
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A.5. Concavity of Fk(t) in Each Variable.

Proof. We start by rearranging the sums in the definition of Fk(t):

Fk(t) à
Xk

jà1

X1

ià1

Z ti+1

ti

Xj∧i

#à1

Ti
τi+1

j� 1
#� 1

◆ 
(1� τ)j�#τ#dτ:

à
Xk

#à1

X1

ià#

Z ti+1

ti

Ti
τi+1

Xk

jà#

j� 1
#� 1

◆ 
(1� τ)j�#τ# dτ:

We now calculate the second derivative with respect to ts, for some s � 1. Recall that we defined Ti à
Qi

jà1 tj. Observe that 
in the sum indexed by i the terms with i < s� 1 do not depend of ts, and the terms with i > s are linear in ts, so neither 

of them affect the second derivative. Thus, if we denote H(τ, #, k) àPk
jà#

j� 1
#� 1

◆ 
(1� τ)j�#τ#, we have that

@2

@t2
s

Fk(t) à
Xk

#à1

@2

@t2
s

1s�1�#

Z ts

ts�1

Ts�1
τs H(τ, #, k)dτ+ 1s�#

Z ts+1

ts

Ts
τs+1H(τ, #, k)dτ

◆ 

à
Xk

#à1

@
@ts

1s�1�#
Ts�1

ts
s

H(ts, #, k)� 1s�#
Ts

ts+1
s

H(ts, #, k) + 1s�#

Z ts+1

ts

Ts�1
τs+1 H(τ, #, k)dτ

◆ 
:

Now, notice that Ts�1
ts
s
à Ts

ts+1
s

, so,

@2

@t2
s

Fk(t) à�1sk
@
@ts

Ts�1
ts
s

H(ts, s, k) +
Xmin{k, s}

#à1

@
@ts

Z ts+1

ts

Ts�1
τs+1 H(τ, #, k)dτ

à�1sk
@
@ts

Ts�1
ts
s

H(ts, s, k)�
Xmin{k, s}

#à1

Ts�1
ts+1
s

H(ts,#, k):

At this point it is already clear that for s > k the second derivative is negative. So from now on we assume s  k. Let us 
expand H(ts, s, k) to calculate the last derivative.

@2

@t2
s

Fk(t) à�
@
@ts

Ts�1
ts
s

Xk

jàs

j� 1
s� 1

 !
(1� ts)j�sts

s�
Xs

#à1

Ts�1
ts+1
s

H(ts,#, k)

à Ts�1
Xk

jàs+1

j� 1
s� 1

 !
(j� s)(1� ts)j�s�1 �

Xs

#à1

1
ts+1
s

H(ts, #, k)

0

@

1

A

à Ts�1
Xk

jàs+1

j� 1
s

 !

s(1� ts)j�s�1 �
Xs

#à1

1
ts+1
s

H(ts, #, k)

0

@

1

A

à Ts�1
s

ts+1
s

H(ts, s + 1, k)�
Xs

#à1

1
ts+1
s

H(ts, #, k)
 !

à s Ts�1
ts+1
s

H(ts, s + 1, k)�
Xs

#à1

1
sH(ts, #, k)

 !
:

To conclude, note that H(τ, #, k) is the probability that a NEGATIVEBINOMIAL(τ, #) is at most k, that is, the probability that at most k 
independent coin tosses are necessary to obtain #�heads, if the coin comes up head with probability τ. Therefore, H(ts, #, k) �
H(ts, s + 1, k) for all #  s, so we get that @2

@t2
s
Fk(t)  0. This implies that Fk(t) is concave as a function of ts, for all s � 1. w

Appendix B. Proofs of Section 4

B.1. Proof of Lemma 2

Proof. For OPT(Y) à Yj we need that all Yi with i < j belong to the history set. The first observation is that numbers smal-
ler than Yh+1 cannot be the optimum, because we would need the largest h + 1 numbers to be in the history set, which 
has only h items.

For j  h, as the construction of the history and the online sets are based on a random permutation, we can simulate it 
by sequentially inserting the numbers in N slots of which h will correspond to the history set and the remaining N – h 
correspond to the online set. The probability that OPT à Y1 is simply the probability that Y1 lands on the online slots, 
that is, N�h

N à 1� p. For Yj with 1 < j  h, we need that the largest j – 1 values appear in H. Conditional on the largest s 
values are in H, the probability that Ys+1 is also in H is that it lands on the h – s slots of H remaining among the N – s 
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remaining slots: h�s
N�s. Once all the j – 1 largest values landed on H, then we need Yj to land on the N – h slots of O, which 

happens with probability N�h
N�j+1. w

B.2. Derivation of SDLPh,N
To establish the equivalence between both problems we show that for any x feasible in the maximization problem, the 
optimal values of inner problems

(A) min
Y2YN

E(OPT(Y))à1

E(ALGx(Y))

and
(B) max

α
α

s:t: α�

Pk
jà1
PN

iàh+1
Pj
#à1

ixi,#
N

j� 1
# � 1

◆ 
N � j
i� #

◆ 

N � 1
i� 1

◆ 

Pk
jà1

N�h
N�j+1

Qj�2
sà0

h�s
N�s

 0 ∀k 2 [h + 1]:
(24) 

are equal. From Lemma 1 we know that

P(ALGx(Y) à Yj) à
XN

iàh+1

Xi

#à1

ixi,#
N

j� 1
# � 1

◆ 
N � j
i� #

◆ 

N � 1
i� 1

◆  :

From Lemma 2 we know that

P(OPT(Y) à Yj) à
N � h

N � j + 1
Yj�2

sà0

h� s
N � s 1  j  h + 1

0 otherwise:

8
><

>:

That way, constraint (24) can be read as
P(ALGx(Y) � Yk) � αP(OPT(Y) � Yk) ∀k 2 [h + 1]: (25) 

If α�is feasible, it will hold that E(ALGx(Y)) � αE(OPT(Y)) for any instance Y of N items. Indeed, we can integrate P(ALGx(Y)
� z) and P(OPT(Y) � z) at both sides of (25) to obtain the bound, as both random variables can only equal values of items. 
Restricting the first h + 1 items is enough, as P(OPT(Y) � Yh+1) à 1, and P(ALGx(Y) � Yk) is nondecreasing in k. In particular, 
if we restrict to Y such that E(OPT(Y)) à 1, we get that E(ALGx(Y)) � α. This holds for feasible α, so it holds for the optimal 
solution α⇤ and we get the optimal value of problem A is at least α⇤.

Now consider an optimal solution for problem B, α⇤. It must be the case that constraint (24) is binding for some k⇤. 
Consider the following instance Yk⇤ , where we set Y1 à⋯à Yk⇤ à λk⇤ , and Yj à 0 if j > k⇤. Here, λk⇤ > 0 is such that 
E(OPT(Yk⇤ )) à 1. We have that k⇤ is binding, so

E(ALGx(Yk⇤ )) à
E(ALGx(Yk⇤ ))
E(OPT(Yk⇤ )) à

λk⇤P(ALGx(Yk⇤ ) � Yk⇤ )
λk⇤P(OPT(Yk⇤ ) � Yk⇤ ) à α

⇤:

Now, Yk⇤ is feasible in problem (A), concluding that the optimal value of problem A is at most E(ALGx(Yk⇤ )) à α⇤. The 
equivalence between the two problems follows by replacing the inner problems.

B.3. Solution of SDRPp for p < 1=e.

Proof. The upper bound follows immediately from Lemma 10 (see also, Kaplan et al. [28], Theorem 3.8; Correa et al. 
[15]). To prove that the bound is tight we find a feasible solution of SDRPp attaining this value. Take then t1 à 1=e, ti à 1 
for i � 2, we prove that the objective value of this solution is at least 1=(e(1� p))

To this end first observe that the following inequalities hold for all 0  p  1=e.
Z 1

1=e

(1� τ)j�1

τ
dτ � 1

ej�1 � pj�1:

Indeed the second inequality is direct. Note that the first is actually an equality for j à 1 and j à 2. Also for j � 5 the inequality 
follows since 

R 1
1=e(1� τ)

j�1=τdτ �
R 1

1=e(1� τ)
j�1dτ à (1� 1=e)j=j � 1=ej�1. Finally, for j à 3, 4 it follows from a straightforward 

calculation.
Replacing our solution in Fk(t) and using the previous inequalities we get

Fk(t) à
1
e
Xk

jà1

Z 1

1=e

(1� τ)j�1

τ
dτ � 1

e
Xk

jà1
pj�1 à 1� pk

e(1� p) :

If we replace these values of Fk(t) in the inner minimization of SDRPp, we get that all ratios equal 1=(e(1� p)), as 1� pk 

cancel out. We conclude that the considered solution is feasible and therefore the optimal value of SDRPp (which is α(p)) 
is at least 1=(e(1� p)). w
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B.4. Proof of Lemma 3

Proof. Proof. By the maximality of α,

α à inf
k�1

1
1� pk

Xk

jà1

Z 1

p

Xj

#à1
q(t, #) j� 1

# � 1

◆ 
(1� t)j�#t#dt:

Since q(t, #) is nonincreasing in #�we can replace q(t, #) by q(t, j) in the inner sum to obtain

α � inf
k�1

1
1� pk

Xk

jà1

Z 1

p

Xj

#à1
q(t, j) j� 1

#� 1

◆ 
(1� t)j�#t#dt � inf

k�1

1
1� pk

Xk

jà1

Z 1

p
tq(t, j)dt, 

where we have used that for all j � 1 and t 2 [0, 1], Pj
#à1

j� 1
#� 1

◆ 
(1� t)j�#t# à t. w

B.5. Proof of Lemma 4

Proof. Observe that (14) is equivalent to (i) 
R 1

p tq(t, 1)dt à α(1� p) and (ii) for k � 2,
R 1

p tq(t, k)dt à α(1� pk)�α(1� pk�1) à
α(1� p)pk�1. So, we only need to check that the right hand side of (15) and (16) are 

R 1
p tq(t, 1)dt and 

R 1
p tq(t, k)dt, respec-

tively. Indeed, for k � 2:
Z 1

p
tq(t, k)dt à

X1

iàk

Z ti+1

ti

Ti
ti dt à

X1

iàk

1
i� 1

Ti

ti�1
i
� Ti

ti�1
i+1

◆ 
à
X1

iàk

1
i� 1

Ti

ti�1
i
�Ti+1

ti
i+1

◆ 

à 1
k� 1 · Tk

tk�1
k

+
X1

iàk+1

Ti

ti�1
i

1
i� 1�

1
i� 2

◆ 
à 1

k� 1 · Tk

tk�1
k
�µk+1:

Similarly, for k à 1 we have
Z 1

p
tq(t, 1)dt à

X1

ià1

Z ti+1

ti

tq(t, 1)dt à
Z t2

t1

t1
t dt +

X1

ià2

Z ti+1

ti

Ti
ti dt

à t1ln t2
t1

+ T2
t2
� µ3 à p ln t2

p + p� µ3: w 

B.6. Proof of Lemma 5

Proof. We clearly have t1  t2. Furthermore, the denominator minus the numerator of the right hand side of (17) is 
(k� 1)αpk�2(p� 1)2 � 0, implying that tk+1 � tk for all k � 2. This proves (i).

Since the sequence (tk) is increasing, it has a (possibly unbounded) limit. To compute it, we first take logarithm on 
both sides of (17) and rearrange terms to obtain that for k � 2,

ln(tk+1) à ln(tk)� ln(γ1=(k�1)
k ) + ln(γ1=(k�1)

k�1 )
iterating this formula we obtain

ln(tk+1) à ln(t2)�
Xk�1

ià1
ln(γ1=i

i+1) +
Xk�1

ià1
ln(γ1=i

i ) à ln(t2)�
Xk�1

ià1
ln(γ1=i

i+1) +
Xk�2

ià0
ln(γ1=(i+1)

i+1 )

and since ln(γ1) à ln(1) à 0, and ln(t2) à ln p + α(1� p)2=p, we get

ln(tk+1) à ln p + α(1� p)2

p � 1
k + 1 ln(γk)�

Xk�1

ià1

ln(γi+1)
i(i + 1) :

Observe that limk!1γk à 1� α. Thus, taking the limit on the previous expression we have

lim
k!1

ln(tk) à ln p + α(1� p)2

p �
X1

ià1

ln(γi+1)
i(i + 1)

Note that (ii) follows directly from here.
To finish the proof we use Lemma 4, and so we only need to show (15) and (16). For all i � 2, we have

Ti

ti�1
i

à t1
Yi

jà2

tj

ti
à t1

Yi

jà2

Yi�1

#àj

t#
t#+1

à p
Yi�1

#à2

γ#
γ#�1

à pγi�1:

Therefore, using formulas for geometric series we get that for k � 3

µk :à
X1

iàk

Ti

ti�1
i

· 1
(i� 2)(i� 1) à p

X1

iàk

1�α+ α[(i� 1)pi�2 � (i� 2)pi�1]
(i� 1)(i� 2)

à p(1�α)
X1

iàk

1
i� 2�

1
i� 1

◆ 
+ α
X1

iàk

pi�2

(i� 2)�α
X1

iàk

pi�1

(i� 1)

à p(1�α+αpk�2)
k� 2 :
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To see (15), we write

p ln t2
p + p� µ3 à α(1� p)2 + p� p(1� α + αp) à α(1� p):

And to get (16) we let k � 2 and write

1
k� 1

Tk

tk�1
k
�µk+1 à

pγk�1 � p(1�α+αpk�1)
k� 1

à p(1�α+α[(k� 1)pk�2 � (k� 2)pk�1]� p(1�α+ αpk�1)
k� 1

à pα(pk�2 � pk�1): w 

B.7. Proof of Lemma 6

Proof. Define the following functions as the left and right-hand sides of the previous expression

f (p,α) à ln p + α(1� p)2

p

g(p,α) à
X1

ià1

ln(1 + α(pi(1 + i(1� p))� 1))
i(i + 1) :

Both f and g are continuous functions of their domains. Furthermore, f (p,α) is increasing in α. On the other hand, by Ber-
noulli inequality, p�i à (1� (1� p))�i � 1 + i(1� p). Therefore, pi(1 + i(1� p))� 1  0. From here it is easy to see that g(p,α)
is decreasing in α. We now evaluate these two functions in α�à 0

f (p, 0) à ln p < 0 and g(p, 0) à 0:
For the case α�à 1, observe that f (p, 1) à ln p + (1�p)2

p is a convex function in p 2 (0, 1) and it is minimized on p à (
ÇÇÇ
5

p
� 1)=2. 

Therefore, there exists a universal constant c such that f (p, 1) � c for all p 2 (0, 1).
On the other hand, we have that as α�increases, there is a vertical asymptote on some α0  1 in which the function 

g(p,α) decreases to �1. Indeed if this was not the case, the formula for g(p, 1) would be well-defined, but simply repla-
cing 1 on its expression yields

g(p, 1) à
X1

ià1

ln(pi(1 + i(1� p)))
i(i + 1) à

X1

ià1

i ln p + ln(1 + i(1� p)
i(i + 1))


X1

ià1

i ln p + i(1� p)
i(i + 1)) à (ln p + 1� p)

X1

ià1

1
i + 1 à�1:

Summarizing, for every fixed value p 2 (0, 1), the functions f (p,α) and g(p,α) are continuous, the former is increasing in α, 
and the latter is decreasing in α, and we also have that f (p, 0) < g(p, 0) and there exists some value α0 2 (0, 1) such that 
f (p,α0) > c > g(p,α0). By the intermediate value theorem there must be some value α̃(p) for which f (p, α̃) à g(p, α̃), and by 
monotonicity and continuity of both functions, this value is unique and the map p !̀ α̃(p) is continuous. w

B.8. Proof of Theorem 2

Proof. By Lemmas 5 and 6, we conclude that there is a feasible solution of SDCLPp with value α̃(p). Therefore, 0  α̃(p)  α(p). 
From Theorem 3.4 in Kaplan et al. [28], we know that α(p)  α⇤.27 Thus, we only need to show that α̃(1) à α⇤, for that, define the 
function

h(p,η) à
P1

ià1
ln(1�η+η[(i+1)pi�ipi+1])

i(i+1)

ln p + η(1�p)2

p

: (26) 

and note that by definition of α̃(p), h(p, α̃(p)) à 1
Let us study h(p,η) as p ! 1. As both the numerator and the denominator go to 0 as p! 1, we use l’Hôpital’s rule to 

find the limit

lim
p!1

h(p,η) à lim
p!1

P1
ià1

η(pi�1�pi)
η((i+1)pi�ipi+1)+1�η̃

1
p + η

�2p(1�p)�(1�p)2

p2

à lim
p!1

P1
ià1

pi�1�pi

(i+1)pi�ipi+1+1
η�1

1
p + η 1� 1

p2

⌘ ✓ :

As p! 1, the denominator in the last expression goes to 1. For the numerator, we will analyze the limit through a Rie-
mann’s integral analysis. For this we define xi à pi (therefore i à ln xi=ln p), so that intervals (xi+1, xi] for i � 1 form a 
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partition of the interval (0, 1], resulting in

lim
p!1

X1

ià1

pi�1 � pi

(i + 1)pi � ipi+1 + 1
η� 1

à lim
p!1

X1

ià1

xi�1 � xi

(i + 1)xi� ixip + 1
η� 1

à lim
p!1

X1

ià1

xi�1 � xi

xi 1� ln xi
p�1
ln p

⌘ ✓
+ 1
η� 1

à
Z 1

0

1
y(1� ln y) + 1

η� 1
dy:

In the last equality we first replaced limp!1
p�1
ln p à 1 and then the limit of the Riemann sum. This can be justified by the 

fact that the sum is monotone in the term p�1
ln p. So, for p close enough to 1 we can bound by replacing with 

1� ε  p�1
ln p  1 + ε. Since the integral is continuous in the factor that accompanies ln y, both bounds converge when ε! 0. 

Replacing η�by α⇤ finishes the proof. w

B.9. Proof of Theorem 3

Proof. To prove this result we define f (p) à α̃(p)=p. What we would like to prove is that f (p) � α⇤. For this, we replace 
α̃(p) à f (p)p in Equation (19):

ln p + f (p)(1� p)2 à
X1

ià1

ln(1� f (p)p + f (p)p[(i + 1)pi� ipi+1])
i(i + 1) :

Note that the left-hand side of the equation is increasing in f(p) and the right-hand side of the equation is decreasing in 
f(p). Thus, to prove that f (p) � α⇤, we need to prove that

ln p + α⇤(1� p)2 
X1

ià1

ln(1�α⇤p +α⇤p[(i + 1)pi � ipi+1])
i(i + 1) :

By subtracting ln p the latter is equivalent to proving

α⇤ 
X1

ià1

ln 1
p�α⇤(1� pi(1 + i(1� p)))
⌘ ✓

i(i + 1) +α⇤(2p� p2):

To prove the inequality let us call its right hand side a(p) and note that by definition of α̃(1), a(1) à α⇤, that is, the inequal-
ity is tight for p à 1. Therefore, to conclude we show that a(p) is decreasing in p, so that the inequality holds for all 
p 2 (0, 1). Indeed,

d
dp a(p) à

X1

ià1

� 1
p2 + i(i + 1)α⇤(pi�1 � pi)

i(i + 1) 1
p�α⇤(1� pi(1 + i(1� p))
⌘ ✓+ 2α⇤(1� p):

Letting

b(p) à 1
p2

X1

ià1

1
i(i + 1) 1

p� α⇤(1� pi(1 + i(1� p))
⌘ ✓ and c(p) à

X1

ià1

pi�1 � pi

1
pα⇤ � 1 + pi(1 + i(1� p)), 

we have d
dp a(p) à 2α⇤(1� p)� b(p) + c(p): Now, as α⇤(1� pi(1 + i(1� p))) lies between 0 and α⇤ < 1, we have that

b(p) � 1
p2

X1

ià1

1
i(i + 1)1

p
à 1

p :

We now show that c(p)  1=p� α⇤(1� p)�α⇤ 1�p
p . For this define xi à pi and note that

c(p) à 1
p
X1

ià1

xi � xi+1
1

pα⇤ � 1 + xi(1 + i(1� p))

à 1
p
X1

ià1

xi � xi+1
1

pα⇤ � 1 + xi 1 + ln xi
(1�p)
ln p

⌘ ✓

 1
p
X1

ià1

xi� xi+1
1

pα⇤ � 1 + xi(1� p ln xi)

 1
p

Z p

0

1
1

pα⇤ � 1 + y(1� p ln y)dy

à 1
p

Z 1

0

1
1

pα⇤ � 1 + y(1� p ln y)dy� 1
p

Z 1

p

1
1

pα⇤ � 1 + y(1� p ln y)dy

 1
p

Z 1

0

1
1

pα⇤ � 1 + y(1� p ln y)dy�α⇤(1� p):
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The first inequality comes from (1� p)=ln p �p. The second inequality follows because xi > xi+1 and the function ((1=
(pα⇤)� 1 + y(1� p ln y)))�1 is decreasing in y. The last inequality comes from the fact that 1� y(1� p ln (y)) 2 [0, 1] when 
y, p 2 [0, 1]. Now, the integral in the last step can be rewritten as

1
p

Z 1

0

1
1
α⇤ � 1 + y(1� ln y)dy� 1� p

p

Z 1

0

1
pα⇤ + y ln y

1
α⇤ � 1 + y(1� ln y)
� ⇥ 1

pα⇤ � 1 + y(1� p ln y)
⌘ ✓dy

 1
p�

1� p
p

Z 1

0

1
1
α⇤ � 1 + y(1� ln y) ·

1
pα⇤ � 1

e
1

pα⇤ � 1 + y + p
e
dy

 1
p�

1� p
p

Z 1

0

1
pα⇤ � 1

e
1

pα⇤ � 1 + y + p
e

dy à 1
p�

1� p
p

1
pα⇤ �

1
e

◆ 
ln

1
pα⇤ +

p
e

1
pα⇤ +

p
e� 1

 !

:

Here, the first inequality follows from the definition of α⇤ and fact that �y ln y 2 [0, 1=e] when y 2 (0, 1). The second 
inequality comes from observing that 1= 1

α⇤ � 1 + y(1� ln y
� ⇥

is decreasing, non-negative and integrates 1, and 1
pα⇤ � 1

e

⌘ ✓
=

1
pα⇤ � 1 + y + p

e

⌘ ✓
is nonnegative and decreasing. Finally, it can be checked numerically that if α⇤ 2 [0:74, 0:75], the term 

1
pα⇤ � 1

e

⌘ ✓
ln

1
pα⇤+

p
e

1
pα⇤+

p
e�1

◆ 
is at least 0.8 for all p 2 (0, 1). Then, since we know that α⇤ ⇡ 0:745, we can conclude that 

c(p) � 1
p�α⇤(1� p) 1 + 1

p

⌘ ✓
. Therefore,

d
dp a(p) à 2α⇤(1� p)� b(p) + c(p)  2α⇤(1� p)� 1

p + 1
p�α

⇤(1� p) 1 + 1
p

◆ 
 0:

The result follows. w

B.10. Details on Numerical Bounds.
We now develop the optimization problems used for obtaining upper and lower bounds of α(p) when p 2 (0, 1). For the 
upper bound, we construct a linear program based on SDCLPp. In this linear program we partition interval (p, 1) into 
N(1� p) intervals of equal length. Inside of interval i�1

N , i
N

� ⌅
we restrict variables q(t, #) to be constant for every # � 1 and 

rename them xi,#. We modify the feasibility constraints for making them slightly less restrictive (and equivalent as 
N !1). In the minmax constraint we replace the term (1� t)j�#t#�by its upper bound 1� i�1

N
� ⇥j�# i

N
� ⇥#. To deal with the 

infinite number of variables and constraints, we introduce the parameter kmax, which indicates that only the first kmax 
terms of the stochastic dominance constraint will be considered in the maximization. As only the first kmax amount of 
variables are considered in the objective function, we can consider only variables xi,#�with #  kmax. We call this problem 
UBPp,N,kmax (for Upper Bound Problem).

(UBPp,N,kmax ) max
x,α α

s:t: ixi,# +
Xi�1

jàh+1

Xkmax

sà1
xj,s  1 ∀i 2 [N] \ [h], ∀# 2 [kmax]

α�

Pk
jà1
PN

iàh+1
Pj
#à1 xi,#

j� 1
#� 1

◆ 
i

N( )#

1�i�1
N( )#�j

1� pk  0 ∀k 2 [kmax]

xi,# � 0 ∀i 2 [N] \ [h], ∀# 2 [kmax]
For the lower bound, we numerically solve a truncated version of SDRPp, in which we use the parameter kmax to limit 
the amount of terms to be considered in the stochastic dominance constraint. As the solution must be a lower bound, we 
replace the denominator of the last term of the min-max problem by 1. This makes the objective function to be lower 
than SDRPp by at most pkmax . As in the upper bound, reducing the number of stochastic dominance constraints also 
reduces the amount of variables to be considered, only needing to consider ti with i  kmax. For simplicity, we fix tkmax+1 à
1 as a parameter. We call this problem LBPp,kmax (for Lower Bound Problem).

(LBPp) max
t, α2[0,1]

α

s:t: α  1
1� pk

Xk

jà1

Xkmax

ià1

Z ti+1

ti

Xj∧i

#à1

Ti
τi+1

j� 1
#� 1

◆ 
(1� τ)j�#τ#dτ ∀k 2 [kmax � 1]

α 
Xkmax

jà1

Xkmax

ià1

Z ti+1

ti

Xj∧i

#à1

Ti
τi+1

j� 1
#� 1

◆ 
(1� τ)j�#τ#dτ

p  ti  ti+1  1 ∀i 2 [kmax]
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The bounds obtained for some values of p are shown in Table A.1. Note that as p gets closer to 1 we need more variables 
and therefore our upper and lower bounds are slightly off. This can definitely be improved by just considering more 
variables when solving UBPp,N,kmax and LBPp,kmax since they converge to each other.

B.11. Proof of Lemma 7
Proof. For an instance Y[N] of size N, denote by Y+0

[N] the instance of size N + 1 that results from appending a 0 to Y[N]. 
We prove that for all instances Y[N] it holds that

E(ALGt(Y[N]))
E(OPT(Y[N]))

�
E(ALGt(Y+0

[N]))
E(OPT(Y+0

[N]))
, 

which immediately implies the result. Clearly, E(OPT(Y[N])) à E(OPT(Y+0
[N])), as the arrival time of the added 0 is independent 

of the other arrival times. We conclude by proving that E(ALGt(Y[N])) � E(ALGt(Y+0
[N])). In fact, we can couple the arrival times 

of the values of Y[N] with the corresponding ones in Y+0
[N], and for the latter, add an independent arrival time for 0. Since the 

0 is the smallest element, the relative rank of all other values is the same in both instances. Therefore, every time ALGt 
selects a positive element in Y+0

[N], it selects the same element in Y[N]. When ALGt selects the 0 in Y+0
[N], it may select a positive 

element in Y[N] or not stop at all. Thus, with this coupling we get that ALGt(Y[N]) � ALGt(Y+0
[N]). w

B.12. Proof of Lemma 8
Proof. For ease of notation, in what follows we write ALGt instead of ALGt(Y[N]). We have that

P(ALGt à Yj) à
Z 1

p
P(ALGt à Yj |Yj arrives at time τ) dτ

à
X1

ià1

Z ti+1

ti

P(ALGt à Yj |Yj arrives at time τ) dτ

à
X1

ià1

Z ti+1

ti

Xj∧i

#à1
P(ALGt does not stop before τ |Yj is #-local and arrives at τ)

·P(Yj is #-local |Yj arrives at τ) dτ

à
X1

ià1

Z ti+1

ti

Xj∧i

#à1
P(ALGt does not stop before τ |Yj is #-local and arrives at τ)

·
j� 1
#� 1

 !

(1� τ)j�#τ#�1 dτ:

The last equality comes from the fact that Yj is #-local if exactly #� 1 items from Y1, : : : , Yj�1 arrive before Yj. Now, note 
that the event that ALGt stops before τ�does not depend on what elements arrive after τ�and what are their relative rank-
ings, but only on the relative rankings of the items that arrive before τ. Also, note that when N is large, the probability 
that at least i items arrive before a given time τ > 0 tends to 1. Therefore,

P(ALGt does not stop before τ |Yj is #-local and arrives at τ)
à P(ALGt does not stop before τ |at least i items arrive before τ) + o(N)

à
Yi

rà1
P(r-th largest item before τ arrives before tr) + o(N)

à
Yi

rà1

tr
τ
+ o(N) à Ti

τi + o(N):

Taking limit when N tends to infinity we conclude the proof of the lemma. w

B.13. Proof of Theorem 5
We first introduce two lemmas that bound the ratio between the coefficients of the linear programs. Then, to bound the 
difference between the values, we produce a solution for one problem from one solution to the other, and vice versa.

Table A.1. Upper and lower bounds obtained for multiples of 0.1.

p 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

Lower bound 0.408 0.459 0.525 0.609 0.671 0.702 0.718 0.728 0.730
Upper bound 0.409 0.460 0.526 0.610 0.672 0.704 0.721 0.733 0.744

Notes. Parameters used for UBPp,N,kmax were N à 1,000 and kmax à ln(N=(1� p)). For LBPp,kmax , kmax à ln0:001=lnp was used. For values of p up to 
1=e the bounds are exact and thus the difference simply comes from rounding.
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Lemma B.1. For integers N, h, k, such that p à h
N 2 (0, 1), N � 1

(1�p) + 1, and 1  k  h + 1, we have that

1 
Pk

jà1
N�h

N�j+1
Qj�2

sà0
h�s
N�s

1� pk  1 + e
(1� p)(N� 1) : (27) 

Proof. Denote Aj à N�h
N�j+1

Qj�2
sà0

h�s
N�s and Bj à (1� p)pj�1. In order to bound the ratio 

Pk
jà1 AjPk
jà1 Bj 

for 1  k  h + 1, we find a uniform 
bound on Aj

Bj 
for 1  j  h + 1.

Recall that by definition h à p · N. It is easy to see that A1
B1
à 1, and that Aj+1

Bj+1
à Aj

Bj
· h�j+1
(N�j)·p. Therefore, Aj+1

Bj+1
� Aj

Bj 
if and only if 

h� j + 1 � h� pj, which is equivalent to j  1
1�p. Then we can conclude that for all j  h + 1,

Aj

Bj
à A1

B1
·
Yj�1

ià1

h� i + 1
h� pi

◆ 


Yb1=(1�p)c

ià1

h� i + 1
h� pi

◆ 

 h
h� p

◆ b1=(1�p)c

à 1 + 1
N� 1

◆ b1=(1�p)c

 1 + 1
N� 1 · 1

1� p 1 + 1
1=(1� p)

◆ 1=(1�p)

 1 + e
(1� p)(N� 1) , 

where the second last inequality comes from doing a first-order approximation of a convex function.
For the lower bound of 1, it is enough to note that 

Ph+1
jà1 Aj à 1 and that 

Ph+1
jà1 Bj 

P1
jà1 Bj à 1, together with the already 

mentioned fact that Aj � Bj if and only if j  1
1�p. w

Lemma B.2. For positive integers N, i, j,#�such that N � 32,
ÇÇÇ
N

p
log N

1�p  i  N�
ÇÇÇ
N

p
log N

1�p , j  log N
1�p , and #  j, and for a real 

t 2 i�1
N , i

N
⇤ ⌅

, we have that

1� 3 log N
(1� p)

ÇÇÇÇ
N

p 

i
N

j� 1
#� 1

◆ 
N� j
i� #

◆ 

N� 1
i� 1

◆ 

j� 1
#� 1

◆ 
(1� t)j�#t#

 1 + 5 log N
(1� p)

ÇÇÇÇ
N

p (28) 

Proof. We start by rewriting the expression in the middle of Equation (28).

i
N

j� 1
#� 1

◆ 
N � j
i� #

◆ 

N � 1
i� 1

◆ 

j� 1
#� 1

◆ 
(1� t)j�#t#

à
i

N · (N�i)!
(N�i�j+#)! ·

(i�1)!
(i�#)! ·

(N�j)!
(N�1)!

(1� t)j�#t#
(29) 

à
Qj�#�1

kà0
N�i�k

N�k ·Q#�1
kà0

i�k
N�j+#�k

(1� t)j�#t#
: (30) 

Now, the expression in Equation (30) is clearly at most
Qj�#�1

kà0
N�i�k

N�k ·Q#�1
kà0

i�k
N�j+#�k

N�i
N

� ⇥j�# i�1
N
� ⇥# à

Yj�#�1

kà0

N � i� k
N � i · N

N � k

◆ 
·
Y#�1

kà0

i� k
i� 1 · N

N � j + # � k

◆ 

 i
i� 1 · N

N � j

◆ j

à 1 + 1
i� 1

◆ 
· 1 + j

N�j

⌘ ✓j

 1 + 1ÇÇÇÇ
N

p
log2 N � 1

 !

· 1 + j2e
N � j

◆ 

 1 + 5 log N
(1� p)

ÇÇÇÇ
N

p
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And is also at least

(N � i� j + #)j�#(i� #)# 1
Nj

N�i+1
N

� ⇥j�# i
N
� ⇥# à (N � i� j + #)j�#(i� #)#

(N � i + 1)j�#i#

à 1� j� # + 1
N � i + 1

◆ j�#
1� #i

◆ #

� 1� (j� #)(j� # + 1)
N � i + 1 � #

2

i

� 1� 3 log2 N
(1� p)

ÇÇÇÇ
N

p : w 

Proof of Theorem 5. To prove the theorem we take a solution to one problem and transform it into a solution of the 
other. Let N, h be integers and 0 < p < 1 a scalar such that h à p · N. We start with an optimal solution (q⇤,α(p)) for 
SDCLPp, and define for a given N � 1 a solution (x,α0) as follows.

xi,# à
Z i

N

i�1
N

q⇤(t, #)dt, for i 2 [N] \ [h], # 2 [i]

α0 à min
k2[h+1]

Pk
jà1
PN

iàh+1
Pj
#à1

ixi,#
N

j� 1
#� 1

◆  N� j
i� #

◆ 

N� 1
i� 1

◆ 

Pk
jà1

N�h
N�j+1

Qj�2
sà0

h�s
N�s 

We prove first that (x,α0) is a feasible solution for SDLPpN,N). Note that for given i 2 [N] \ [h], # 2 [i], and t 2 i�1
N , i

N
⇤ ⌅

we 
have from the feasibility of q⇤ that

tq⇤(t, #) +
Z t

i�1
N

q⇤(τ, #)dτ  1�
Z i�1

N

p

X

s�1
q⇤(τ, s)dτ

 1�
Xi�1

jàh+1

Xj

sà1
xj,s:

Integrating on both sides we obtain that
Z i

N

i�1
N

tq⇤(t, #) +
Z t

i�1
N

q⇤(τ, #)dτ
 !

dt 
Z i

N

i�1
N

1�
Xi�1

jàh+1

Xj

sà1
xj,s

0

@

1

A dt

� t
Z t

i�1
N

q⇤(τ, #)dτ
����
tà i

N

tài�1
N

 1
N 1�

Xi�1

jàh+1

Xj

sà1
xj,s

0

@

1

A

� i · xi,#  1�
Xi�1

jàh+1

Xj

sà1
xj,s, 

where in the second inequality we applied integration by parts on the left-hand side. Therefore, x is a feasible solution. We 
now give an upper bound for α(p)�α0. From the definition of α0 and Lemma B.1, together with the fact that 1=(1 + y) �
1� y for all y � 0, we obtain that

α0 � min
k2[h+1]

Pk
jà1
PN

iàh+1
Pj
#à1

ixi,#
N

j� 1
#� 1

◆ 
N� j
i� #

◆ 

N� 1
i� 1

◆ 

1� pk · 1� e
(1� p)(N� 1)

◆ 
:

Now, if k > log N
1�p � logp(1=N), then pk  1=N, so we can take in the minimization k  log N

1�p and lose a factor (1� 1=N). Denote 
i⇤ à

ÇÇÇ
N

p
log N

1�p . Since j  k, after replacing xi,#�with the integral that defines it, we can apply Lemma B.2 to obtain that

α0 � min
1klog N

1�p

Pk
jà1
PN�i⇤

ià(h+1)∨i⇤
Pj
#à1

Z i
N

i�1
N

q⇤(t, #) j� 1
#� 1

◆ 
(1� t)j�#t#dt

1� pk · 1� 7 logN
(1� p)

ÇÇÇÇ
N

p
 !

à min
1klog N

1�p

Pk
jà1

Z 1�i⇤
N

p∨i⇤
N

Xj
#à1 q⇤(t, #) j� 1

#� 1

◆ 
(1� t)j�#t#dt

1� pk · 1� 7 logN
(1� p)

ÇÇÇÇ
N

p
 !

:
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Now, since t · q⇤(t, #)  1 for all #, t and 
Pj
#à1

j� 1
#� 1

◆ 
(1� t)j�#t#�1 à 1 for all j � 1, we get that

α0 � min
1klog N

1�p

Pk
jà1

Z 1

p

Xj
#à1 q⇤(t,#) j� 1

#� 1

◆ 
(1� t)j�#t#dt

1� pk · 1� 7 logN
(1� p)

ÇÇÇÇ
N

p � 2i⇤k
N

 !

� α(p) · 1� 9(logN)2

(1� p)2 ÇÇÇÇ
N

p
 !

� α(p)� 9(logN)2

(1� p)2 ÇÇÇÇ
N

p :

We prove now the other side of the inequality. Let (x⇤,αN,p) be an optimal solution for SDLPpN,N. We construct a solution 
(q,α00) as follows.

q(t, #) à
Nx⇤i,# · 1� logN

(1� p)
ÇÇÇÇ
N

p
 !

, for t 2 [p, 1], if i à dt · Ne �
ÇÇÇÇ
N

p
and #  i ∧ logN

1� p

0 for t 2 [p, 1], if i à dt · Ne <
ÇÇÇÇ
N

p
or # > i ∧ logN

1� p

8
>>><

>>>:

α00 àmin
k�1

Pk
jà1

Z 1

p

Xj
#à1 q(t, #) j� 1

#� 1

◆ 
(1� t)j�#t#dt

1� pk :

Now, we can check this solution is feasible in the continuous problem. In fact, for t < 1ÇÇÇ
N

p , it is trivially satisfied because 
q(t, #) à 0 for all #. For t � p ∨ 1ÇÇÇ

N
p , i à dt · Ne, and any # � 1,

tq(t, #) +
Z t

p

X

s�1
q(τ, s)dτ ix⇤i,# +

Xi�1

jàh+1

Xj

sà1
x⇤j,s +

Z t

i�1
N

X
log N
1�p

sà1
Nx⇤i,sdτ

0

B@

1

CA · 1� logN
(1� p)

ÇÇÇÇ
N

p
 !

 1 + logN
i(1� p)

◆ 
· 1� logN

(1� p)
ÇÇÇÇ
N

p
 !

 1 + logN
(1� p)

ÇÇÇÇ
N

p
 !

· 1� logN
(1� p)

ÇÇÇÇ
N

p
 !

 1, 

where the first inequality comes from replacing with the definition of q, and the third one comes from the fact that i �
ÇÇÇÇ
N

p
.

We argue similarly to the lower bound for α0, using Lemmas B.1 and B.2, together with the extra factor 1� log N
(1�p)

ÇÇÇ
N

p
⌘ ✓

that was necessary for the feasibility constraint. This yields the inequality

α00 � αN,p �
5(logN)2

(1� p)2 ÇÇÇÇ
N

p � logN
(1� p)

ÇÇÇÇ
N

p

� αN,p �
6(logN)2

(1� p)2 ÇÇÇÇ
N

p : w 

Endnotes
1 In p-DOS, the number of samples and the number of online values are random, while in the usual formulation of the prophet inequality 
these quantities are fixed. Thus, this reduction holds for large values of N to achieve concentration. We also examine the version of p-DOS 
with dependent sampling, where this quantities are fixed, and we show it is essentially equivalent to the independent model when N is large.
2 This is needed since some Yi’s may be negative.
3 Which are very different to that of Mucci [38].
4 Note that for p à 0 this is just Y1.
5 Since the sampling models are only equivalent in the limit.
6 Note that of course our problem is ill defined if p à 1 so the right way of thinking about p close to 1 is to first fix a value p and then make N 
grow large.
7 Consider for instance the following particular case of our model where the values are correlated. With probability 1/2 the values are i.i.d. 
samples of Uniform[0, 1] and with probability 1/2 they are i.i.d. samples of Uniform[1, 2].
8 Depending on the objective function, it is not always true that with a linear number of samples one can approximate the full information 
case, even in the i.i.d. model. A prominent case that has been extensively studied is revenue maximization (Cole and Roughgarden [13], Guo 
et al. [24]). Consider the objective of maximizing the revenue using a single price, that is, setting a threshold (or price) T in order to maximize 
T times the probability that at least one value is above T. If the variables are i.i.d. and equal to n2=(1� p) w.p. 1=n2, and U[0, 1] w.p. 1� 1=n2, 
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a revenue of ⌦(n) can be achieved in a set of (1� p)n variables, taking T à n2=(1� p)� ε. But if we have only access to pn samples, only with 
probability O(1=n2) we will see a high value in both sets. And most of the time we see only realizations of U[0, 1], in which case we cannot 
differentiate the instance from only U[0, 1] variables, where T > 1 gives 0 revenue, so the most we can get is O(1).
9 We are not assuming that all values Yi are different, but we assume that there is an arbitrary tie-breaking rule that is consistent with the rela-
tive ranks revealed and selected before the process starts.
10 This problem, with nonnegative values, and without the sampling phase, was introduced by Mucci [38].
11 This is not very relevant, as it does not change our optimization problem: there is no decision to be made when the online set is empty. 
Also, we will focus primarily on the case where N is large, making this event highly unlikely.
12 In the i.i.d. prophet inequality with samples, we initially observe m independent samples from an unknown distribution. Then, we are 
given, one by one, a sequence of n values drawn independently from the same unknown distribution. After seeing each value, we must irrev-
ocably decide whether to stop or continue. We say a stopping rule is a c-approximation if the expectation of the value it stops with is at least 
c times the expectation of the maximum value in the sequence.
13 This relation is obtained by simply conditioning on the event that the i-th item is ranked #�among the i items seen so far, which has proba-
bility 1=i.
14 The number of coin tosses necessary to obtain #�heads, if the coin lands heads with probability t.
15 If the information set is already sampled and contains h items, then the procedure would be to sample N – h arrival times uniform in (p, 1)
for the items in the online set.
16 A consequence of this discussion is that given an instance of p-DOS with its corresponding Y one can, in time O(1), find an sequence of 
thresholds leading to an arbitrarily close to optimal online algorithm. To see this first note that restricting to the first K àO(1) terms in the 
sequence of Y’s is enough. Then we can restrict to the finite version of RPp in which only the variables t1, : : : , tk are present. Now, for these 
variables we evaluate the objective function in all values belonging to a fine grid of [0,1]K and keep the best value found.
17 t1 is the only solution of equation x� ln(x) à 1 + ln(3=2) in (0,1).
18 To interpret the expression on the left, recall that Fk(t) is the probability that the algorithm stops with an item whose rank is k or better. 
Thus, the objective simply represents the negative of the expected rank.
19 We say relevant because for N items, only the first N + 1 of sequence Y will affect the outcome for instances of N items (recall YN+1 is the 
reward obtained if the DM makes no selection). Now the online set cannot be empty, so OPT(Y[N]) is independent of YN+1. This way, setting 
YN+1 à 0 will always be optimal for an adversary minimizing the competitive ratio.
20 Perhaps the easiest way to see this is that every feasible instance for the adversary is a convex combination of these instances.
21 This value of α(p) was essentially known in a more restricted model with i.i.d. samples from an unknown distribution (Correa et al. [16]).
22 Certainly, our improvement only holds when n is large compared with 1=ε, as we are analyzing the value of the limit problem.
23 A simple way of obtaining such an algorithm is by simply ignoring elements that arrive in [p, p + δ], and act as if we skipped a uniformly 
random interval [x, x + δ] ✓ [p, 1]. Since the arrival times are uniformly distributed, the set of items that arrive in [p + δ, 1] and their ordering 
have the same distribution as those that arrive in [p, 1] \ [x, x + δ].
24 An independence system is a pair (S,I), where S is a finite ground set, and I is a family of subsets of S, called the independent sets of the 
system. The system must satisfy that the empty set is independent and that every subset of an independent set is independent.
25 Rigorously, Babaioff et al. [4] use 1=γ�instead off γ�to define this notion, but we prefer to use values smaller than one to be consistent with 
the presentation of the rest of this paper.
26 Here we make explicit the dependence of CLPp on the sequence Y.
27 The idea behind this result is that any algorithm for adversarial p-DOS with dependent sampling can be applied to the i.i.d. prophet 
inequality without loss in performance. If the result was not true it would contradict the fact that α⇤ is the optimal competitive ratio for the 
latter problem.
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