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Abstract. We study the competition complexity of dynamic pricing relative to the optimal 
auction in the fundamental single-item setting. In prophet inequality terminology, we com-
pare the expected reward Am(F) achievable by the optimal online policy on m independent 
and identically distributed (i.i.d.) random variables distributed according to F to the 
expected maximum Mn(F) of n i.i.d. draws from F. We ask how big m has to be to ensure 
that (1+ ε)Am(F) ≥Mn(F) for all F. We resolve this question and characterize the competi-
tion complexity as a function of ε. When ε � 0, the competition complexity is unbounded. 
That is, for any n and m there is a distribution F such that Am(F) <Mn(F). In contrast, for 
any ε > 0, it is sufficient and necessary to have m � φ(ε)n, where φ(ε) � Θ(log log 1=ε). 
Therefore, the competition complexity not only drops from unbounded to linear, it is actu-
ally linear with a very small constant. The technical core of our analysis is a lossless reduc-
tion to an infinite dimensional and nonlinear optimization problem that we solve 
optimally. A corollary of this reduction is a novel proof of the factor ≈ 0:745 i.i.d. prophet 
inequality, which simultaneously establishes matching upper and lower bounds.

Funding: This work was supported by ANID (Anillo ICMD) [Grant ACT210005] and the Center for 
Mathematical Modeling [Grant FB210005]. 

Keywords: posted price mechanisms • prophet inequality • competition complexity

1. Introduction
An important line of work at the intersection of economics and computation concerns the competition complexity 
of auctions (Beyhaghi and Weinberg [3], Bulow and Klemperer [4], Eden et al. [14], Feldman et al. [15]). The basic 
idea is to examine how many bidders need to be added to a simple, suboptimal auction mechanism so that its per-
formance is guaranteed to match that of the optimal but more complicated auction mechanism.

This competition complexity approach originates in a seminal paper by Bulow and Klemperer [4], who ask this 
question for the revenue achievable by the simple but suboptimal second price auction and Myerson’s optimal auc-
tion. They show that, for independent and identically distributed (i.i.d.) bidders whose valuations are drawn from 
a regular distribution F, the second price auction with n+ 1 bidders is guaranteed to achieve at least the expected 
revenue of the optimal auction with n bidders. They conclude that, rather than going for the more complicated auc-
tion mechanism, one could simply attract one more buyer to the simpler auction mechanism.

Subsequent work extends this basic result to a variety of more complex auction settings (Beyhaghi and Weinberg 
[3], Eden et al. [14], Liu and Psomas [29]) and also introduces the idea of approximate competition complexity in 
which, instead of shooting for optimality, one aims at 99% or 99.9% of optimal (Feldman et al. [15]).

1.1. Our Question
In this work, we initiate the study of the competition complexity of posted pricing. We focus on the fundamental 
single-item case and compare optimal dynamic pricing versus the optimal auction. Whereas we study the social 
welfare case, all our results translate to revenue maximization under the standard regularity assumption (see Sec-
tion 2 for a detailed discussion).

Because we are focusing on social welfare, the simplest way to state our question is in prophet inequality termi-
nology. Our goal is to compare the expected reward Am(F) achievable by the optimal policy found by backward 
induction on m ≥ n i.i.d. draws from a distribution F to the expected maximum Mn(F) of n i.i.d. draws from F. For 
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fixed ε ≥ 0 and fixed n, we want to find the smallest m ≥ n such that, for every F, we have

(1+ ε) ·Am(F) ≥Mn(F):

We refer to the functional dependence of m on n and ε�as the competition complexity of dynamic pricing. We some-
times refer to the case ε � 0 as exact competition complexity and to the case ε > 0 as the approximate version.

1.2. Warm-up: The Uniform Case
As a warm-up and to illustrate some of the key ideas in our general competition complexity analysis, consider the 
case in which F �U[0, 1] is a uniform distribution over [0, 1] and convince ourselves that, in this case, A2n ≥Mn for 
all n, so the exact competition complexity is linear. We have that Mn is just the maximum of n i.i.d. draws from a uni-
form distribution over [0, 1], and therefore, Mn � n=(n+ 1). On the other hand, we can compute An through the 
usual backward induction. The recursion is An+1 � E(max{X, An}) for n ≥ 1 and A1 � E(X), where X ~ U[0, 1]. That 
is, A1 � 1=2, and for n ≥ 1,

An+1 � E(max{X, An})

� AnPr(X < An) +E(X |X ≥ An)Pr(X ≥ An)

� A2
n +
(1+An)

2 (1�An) �
1
2 (1+A2

n):

Observe that, apart from getting an exact formula for the recurrence, we get a simple expression for An+1 �An, that 
is, the marginal gain of the optimal algorithm when we add one more buyer: An+1�An � (1�An)

2
=2 for n ≥ 1. In 

particular, this idea is further exploited to understand the competition complexity of general distributions.
To analyze the competition complexity for the uniform case, we proceed by induction. It is easy to verify that the 

claim holds for n� 1 because A2 � 5=8 > 1=2 �M1. So we assume A2n ≥Mn, and we want to show A2n+2 ≥Mn+1. 
Note that, if A2n+1 ≥Mn+1, then also A2n+2 ≥ A2n+1 ≥Mn+1, and there we are done, so we consider the case 
A2n+1 <Mn+1. We have

A2n+2 � A2n + (A2n+2 �A2n+1) + (A2n+1�A2n)

� A2n +
1
2 (1�A2n+1)

2
+

1
2 (1�A2n)

2
:

Because the function f (x) � x+ 1
2 (1� x)2 is increasing in R+ and given that A2n ≥Mn, we obtain a lower bound that, 

together with A2n+1 < (n+ 1)=(n+ 2), yields

A2n+2 ≥Mn +
1
2

1
n+ 1

� �2
+

1
n+ 2

� �2
 !

:

The argument is completed by observing that what we add to Mn on the right-hand side is at least Mn+1�Mn 
� 1=((n+ 1)(n+ 2)). We conclude that, for the uniform distribution, it suffices to choose m ≥ 2n. A closer examina-
tion of the asymptotic behavior of Am and Mn shows that this analysis is, in fact, tight. Indeed, for large m and n, 
Am ≈ 1� 2=(m+ log(m) + 1:76799) (Gilbert and Mosteller [17], Moser [30]), whereas Mn ≈ 1� 1=n, which roughly 
shows that we need m � 2n+ o(n).

1.3. Our Contribution
The preceding analysis of the uniform case already rules out a “plus constant” result as in Bulow and Klemperer 
[4]. It leaves some hope that the exact competition complexity of dynamic pricing may be linear or, if not, then at 
least polynomial with a small polynomial. Our first main result shows that this hope is unfounded. Indeed, the 
exact competition complexity is not only large, it is in fact unbounded.

Result 1 (Exact Competition Complexity). For any m ≥ n, there exists a distribution F such that Am(F) <Mn(F).

In light of this strong impossibility, a natural question is whether this impossibility persists if we relax our 
goals and aim for 99% or 99.99% of optimal. It turns out that things change and quite drastically so. This is for-
malized by our second main result, which nails down the approximate competition complexity in terms of func-
tion φ : R+ → R+ given by

φ(ε) �
Z 1

0

1
y(1� log(y)) + εdy:

Brustle et al.: Competition Complexity of Pricing 
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Result 2 (Approximate Competition Complexity). Consider ε > 0 and any n. Then, we have (1+ ε)Am(F) ≥Mn(F) for 
every F if m ≥ φ(ε)n, and for large n, this is tight.

Whereas our first main result shows that the exact competition complexity of dynamic pricing is unbounded, 
our second main result shows that, if we aim for approximate optimality, then the competition complexity not 
only drops from being unbounded to being linear, it is actually linear with a very small constant.

We illustrate this in Figure 1. In the technical part of the paper, we show that the function φ(ɛ) grows as 
Θ(log log 1=ε) as ε→ 0 with very small constants hidden in the big-O notation. For example, to obtain 99% of 
optimal, it is sufficient to have m ≥ 2:30 · n, and to obtain 99.99% of optimal, it is sufficient to have m ≥ 2:53 · n.

An interesting implication of our analysis is that it yields the factor 0.745 i.i.d. prophet inequality (Correa et al. 
[10], Kleinberg and Kleinberg [26], Liu et al. [28], Singla [33]) and its tightness (Hill and Kertz [21]) as a special 
case. Here is how: rather than fixing ε�and finding m(n,ε), we may fix m(n,ε) � n and find ε. The equality 
m(n,ε) � φ(ε)n corresponds to solving φ(ε) � 1. This yields ε � φ�1(1) and corresponds to an approximation 
guarantee of 1=(1+φ�1(1)) ≈ 0:745.

1.4. Our Techniques
Our argument for the uniform distribution F �U[0, 1] that we present relies on a formula for the differences 
between two consecutive terms An+1 and An and at its core compares A2(n+1) �A2n to Mn+1�Mn. Intuitively, we 
explore properties of the rate of growth and curvature of the two sequences A1, A2, : : : , Am and M1, M2, : : : , Mn.

Our general argument builds on this intuition. Our first key observation characterizes the sequences A1, A2, 
: : : , Am that can arise. Namely, we show that, for any distribution F, the corresponding infinite sequence (Ai(F))i∈N 
satisfies the following three properties. Moreover, for any infinite sequence (Ai)i∈N satisfying these properties, there 
is a distribution F that leads to this sequence. The three properties are: 

1. The sequence (Ai)i∈N is nondecreasing.
2. The sequence (Ai+1�Ai)i∈N is nonincreasing.
3. The sequence ((Ai+2�Ai+1)=(Ai+1�Ai))i∈N is nondecreasing.
Our second key observation is that, given a fixed infinite sequence (Ai)i∈N with these properties, we can identify 

the compatible distribution F that maximizes Mn. This worst case distribution is a simple piece-wise constant distri-
bution and allows us to express the largest possible Mn as a function of the (Ai)i∈N. We, thus, reduce the problem of 
checking whether, for a fixed n and m, (1+ ε)Am(F)�Mn(F) ≥ 0 for all F to an infinite-dimensional optimization 
problem that seeks to minimize (1+ ε)Am(F)�Mn(F) over all infinite sequences satisfying properties 1–3: the 
inequality is satisfied by all F if and only if the objective value of this infinite-dimensional optimization problem is 
nonnegative. To show our two main results, we then solve this infinite-dimensional optimization problem opti-
mally. This reduces the problem to the analysis of a recursion, which can be pointwise bounded by a differential 
equation, which, by a careful analysis, leads to the function φ(ε).

Figure 1. (Color online) Plot of φ(ε) as a function of ε�on the left and as a function of 1=ε�on the right. Plotting φ(ε) as a function 
of 1=ε�serves to illustrate the very slow growth of φ(ε) as Θ(log log 1=ε) when ε→ 0. The dashed blue line in the left plot is at 
ε � φ�1(1) ≈ 0:342, which implies the optimal factor 1=(1+φ�1(1)) ≈ 0:745 for the i.i.d. prophet inequality. In the other plot, the 
two blue dashed lines are at 1=ε � 100 and 1=ε � 1000, which correspond to approximation ratios of 99.9% and 99.99%. The value 
of φ(ε) at these points is the constant required to obtain these approximation ratios. 
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1.5. Other Gaps and Future Work
An additional set of questions that fits the wider theme of this paper concerns the competition complexity of 
static pricing. Here—unlike in the case of dynamic pricing—there are two questions we can ask. The first com-
parison is between static pricing A′m and the optimal auction Mn; the other is between static pricing A′m and 
dynamic pricing An.

For the first comparison between A′m and Mn, we observe the following. First, because A′m ≤ Am for all m, our 
impossibility (Result 1) implies that the exact competition complexity of static pricing is unbounded. Moreover, 
whereas the approximate competition complexity of static pricing may be linear (similar to our Result 2 for 
dynamic pricing), the dependence on ε�certainly has to be worse. This follows from considering the uniform case: 
for m sufficiently large, we have that 1� 2 log(m)=m ≤ A′m ≤ 1� log(m)=(3m) (see Appendix 5 for a derivation of 
these inequalities). Because Mn ≈ 1� 1=n, for large m and n, this means that, to ensure that (1+ ε)A′m ≥Mn, we 
approximately need that (1+ ε)(1� log(m)=(3m)) ≥ 1� 1=n. Then, for ε�small with respect to n, say ε � 1=n2, we can 
approximate by subtracting ε�from the left-hand side. We get 1� (1+ ε) log(m)=(3m) ≥ 1� 1=n, which happens if 
and only if 3m=log(m) ≥ n(1+ ε), which for ε�of this order, implies that we need at least m� cn with c �Ω(log(1=ε)).

For the other comparison between A′m and An, observe that, for the exact version, we need m �Ω(n log(n)) even 
for the uniform distribution. This, again, follows from the asymptotic formulas for A′m ≈ 1� 2 log(m)=m and An ≈

1� 2=(n+ log(n) + 1:76799), which show that roughly what we need is that m=log(m) ≥ n, and therefore, m �Ω(n 
log(n)). We leave the full resolution of these gaps, which shed additional light on the relative power of static and 
dynamic pricing, to future work.

1.6. Further Related Work
Our work examines the relative power of a simple mechanism (dynamic pricing) to that of an optimal mechanism 
(the optimal auction) and, thus, fits under the broader umbrella of simple versus optimal mechanisms (e.g., Hart-
line [19], Hartline and Roughgarden [20]).

At the technical core of our work, we rely on a connection between posted-price mechanisms and prophet 
inequalities that was pioneered and explored in the last 15 years (Chawla et al. [5, 6], Correa et al. [9], Hajiaghayi 
et al. [18]). This line of work motivated work on prophet inequalities more generally. Most relevant for us is the 
work on the i.i.d. single-item prophet inequality (Abolhassani et al. [1], Correa et al. [8, 10], Kleinberg and Kleinberg 
[26], Liu et al. [28], Singla [33]), but there is also exciting work on combinatorial extensions, such as Kleinberg and 
Weinberg [27], Feldman et al. [16], and Dütting et al. [12, 13]. A closely related line of work examines the gap 
between various simple mechanisms, including posted-price mechanisms and the optimal mechanism on the same 
number of bidders (Alaei et al. [2], Dütting et al. [11], Jin et al. [22–24]).

2. Formal Statement of Our Results
For our analysis, it is convenient to consider N � {0, 1, 2, : : : }, the natural numbers including zero. We consider distri-
butions F over the nonnegative reals with finite expectation. For a distribution F, we let M0(F) � 0, and for n ≥ 1, we 
let Mn(F) � E(max{X1, X2, : : : , Xn}), where X1, : : : , Xn is an i.i.d. sample distributed according to F. We denote by 
An(F) the value of the optimal policy, and the sequence (An(F))n∈N satisfies the following recurrence: A0(F) � 0, 
A1(F) � E(X), and An+1(F) � E(max{X, An(F)}), where X is a random variable distributed according to F. We now for-
mally state our main results.

Theorem 1. For every positive integer n> 1 and every positive integer m ≥ n, there exists a distribution F such that 
Am(F) <Mn(F).

Theorem 2. Let ε > 0 and let n be a positive integer. Then, for every m ≥ φ(ε)n �Θ(log log 1=ε)n, and every distribution 
F, we have (1+ ε)Am(F) ≥Mn(F). Conversely, for any δ > 0, there exists a distribution G such that, for n sufficiently large 
and m < (φ(ε)� δ)n, we have (1+ ε)Am(G) <Mn(G).

Whereas Theorem 1 shows that the exact competition complexity of dynamic pricing is unbounded, Theorem 2
shows that the approximate competition complexity not only drops from being unbounded to being linear, it is 
actually linear with a very small constant (see Figure 1).

As mentioned in the introduction, Theorems 1 and 2 translate to the case of revenue by using standard reductions 
between social welfare and revenue optimization for the i.i.d. case (Chawla et al. [6], Correa et al. [9], Hajiaghayi 
et al. [18]). Given a distribution F, the virtual valuation of F is the function φF(x) � x� (1� F(x))=f (x), where f is the 
probability density function of F. To construct an algorithm for the revenue setting in the i.i.d. case with distribution 
F and n buyers, we reduce to the social welfare case as follows: we run the optimal dynamic welfare policy for an 
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instance with n buyers identically and independently distributed according to Fφ, where Fφ�is the distribution of 
the random variable φ̃F(X) �max(0,φF(X))when X is distributed according to F. By doing so, the optimal dynamic 
welfare policy is defined by thresholds τ1, : : : ,τn, which can be converted into optimal dynamic revenue prices (a 
posted price mechanism) with pi � φ̃

�1
F (τi) for every i ∈ {1, : : : , n}}when F is regular, that is, φF is monotone nonde-

creasing (Hajiaghayi et al. [18]). We remark that this reduction is based in the classic result of Myerson [31] for 
revenue-maximizing single-item auctions.

3. An Equivalent Optimization Problem
In this section, we develop the main building block of our analysis. The key result of this section, Theorem 3, shows 
that the question of whether, for a given ε ≥ 0, n ≥ 1, and m ≥ 1, it holds that (1+ ε)Am(F) ≥Mn(F) for all F reduces 
to showing whether the following infinite-dimensional, nonlinear optimization problem has a nonnegative objec-
tive:

minimize (1+ ε)
Xm�1

i�0
δi�

X∞

i�0
1� δi+1

δi

� �n� �

δi (1) 

subject to δj+1 ≤ δj for every integer j ≥ 0, (2) 
δ2

j ≤ δj�1δj+1 for every integer j ≥ 1, (3) 

δ0 � 1 and δj > 0 for every integer j ≥ 1: (4) 

Theorem 3. Let ε ≥ 0, and let n and m be two positive integers. Then, we have (1+ ε)Am(F) ≥Mn(F) for every distribution 
F if and only if the optimal value of the optimization problem (1)–(4) is nonnegative.

We prove this theorem by characterizing the sequences (Aj(F))j∈N that can result from distributions F and by relat-
ing the value of Mn(F) to the values of the sequence (Aj(F))j∈N. The characterization uncovers the properties of the 
sequences that can arise. Given a sequence of nonnegative real values (Sn)n∈N, we denote by (∂Sn)n∈N the sequence 
such that ∂Sn � Sn+1� Sn for every nonnegative integer n. Consider the following properties: 

a. The sequence (Sn)n∈N is strictly increasing.
b. The sequence (∂Sn)n∈N is nonincreasing.
c. The sequence (∂Sn+1=∂Sn)n∈N is nondecreasing.
Observe that the properties (b) and (c) imply that the sequence (∂Sn+1=∂Sn)n∈N is not only nondecreasing, but also 

bounded with ∂Sn+1=∂Sn ≤ 1 for every n ∈ N, and therefore, it is convergent to a limit value of at most one. In what 
follows, given a distribution F, let ω0(F) � inf{y ∈ R : F(y) > 0} and ω1(F) � sup{y ∈ R : F(y) < 1} be the left and right 
endpoints of the support of F.

We need a few lemmas to prove Theorem 3. We also use the following proposition about the optimal policy.

Proposition 1. For every distribution F, the following hold: 
i. An+1(F) � An(F) +

R∞
An(F)(1� F(y))dy for every n ∈ N.

ii. An+2(F) � An+1(F) +
RAn+1(F)

An(F) F(y)dy for every n ∈ N.
iii. limn→∞An(F) � ω1(F).
iv. If ω0(F) < ω1(F) and F has finite expectation, then An(F) < An+1(F) for every n ∈ N.

Proof. Because An+1(F) � E(max{An(F), X}), where X is distributed according to F, we get

An+1(F) � An(F)F(An(F)) +
Z ∞

An(F)
sf (s)ds:

By integrating by parts, we have
Z ∞

An(F)
sf (s)ds � (1� F(An(F)))An(F) +

Z ∞

An(F)
(1� F(s))ds, 

and therefore, (i) holds because we have

An+1(F) � An(F)F(An(F)) + (1� F(An(F))An(F) +
Z ∞

An(F)
(1� F(s))ds

� An(F) +
Z ∞

An(F)
(1� F(s))ds:
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To prove (ii), observe that
Z ∞

An(F)
(1� F(s))ds �

Z An+1(F)

An(F)
(1� F(s))ds +

Z ∞

An+1

(1� F(s))ds

� An+1(F)� An(F)�
Z An+1(F)

An(F)
F(s)ds +

Z ∞

An+1(F)
(1� F(s))ds, 

and therefore, (i) implies that
Z An+1(F)

An(F)
F(s)ds �

Z ∞

An+1(F)
(1� F(s))ds � An+2(F)� An+1(F), 

where the last equality holds also by (i).
We now show (iii). Let L � limn→∞An(F) and assume, for the sake of contradiction, that L < ω1(F). Because 
(An(F))n∈N is nondecreasing, we have An(F) ≤ L for every n. Let U �min{L+ 1, (L+ω1(F))=2}. From (i), we have

An+1(F)�An(F) �
Z ∞

An(F)
(1� F(y))dy

�

Z ω1(F)

An(F)
(1� F(y))dy

≥

Z U

L
(1� F(y))dy ≥ (U� L)(1� F(U)) > 0, 

where the first inequality holds because An(F) ≤ L <U ≤ ω1(F), and the second inequality holds because F is nonde-
creasing. The last inequality follows by the definition of ω1(F) and using that L <U < ω1(F). Because this inequality 
holds for all n ∈ N, it implies that

An+1(F) �
Xn

j�0
(Aj+1(F)�Aj(F)) ≥

n+ 1
2 (U� L)(1� F(U)) →∞

as n→∞, which contradicts that L < ω1(F) ≤ ∞. Finally, we show (iv). Because F has a finite expectation, 
ω0(F) < ω1(F), and the support is contained in the nonnegative reals, we have that A1(F) � E(X) > 0 � A0(F). Then, 
the property holds by induction on n and property (ii). w

An important implication of Proposition 1(iv) is that the sequence (Aj(F))j∈N is strictly increasing unless F is a dis-
tribution that puts probability one on a single value. For these distributions F, however, Am(F) �Mn(F) for all 
m, n ≥ 1, so they trivially satisfy (1+ ε)Am(F) ≥Mn(F).

In the remainder, we consider distributions F with ω0(F) < ω1(F). We begin by showing that, for such distribu-
tions F, the sequence (Aj(F))j∈N satisfies properties (a)–(c).

Lemma 1. For every distribution F with ω0(F) < ω1(F), the sequence (An(F))n∈N satisfies properties (a)–(c).

Proof. Consider a distribution F with ω0(F) < ω1(F) and a nonnegative integer n. Observe that property (a) holds 
directly for the sequence (An(F))n∈N from Proposition 1(iv). By Proposition 1(ii), it holds that

An+2(F)�An+1(F) �
Z An+1(F)

An(F)
F(y)dy ≤ An+1(F)�An(F), 

where the inequality holds because F(y) ≤ 1 for every y ∈ R. Therefore, property (b) holds. Observe that, thanks to 
Proposition 1(ii) again, we have

An+2(F)�An+1(F)
An+1(F)�An(F)

�
1

An+1(F)�An(F)

Z An+1(F)

An(F)
F(y)dy, 

and because F is monotone nondecreasing, we, therefore, have

F(An(F)) ≤
An+2(F)�An+1(F)
An+1(F)�An(F)

≤ F(An+1(F)), 

from which we conclude that (An(F))n∈N satisfies property (c). w

Brustle et al.: Competition Complexity of Pricing 
6 Mathematics of Operations Research, Articles in Advance, pp. 1–23, © 2023 INFORMS 

D
ow

nl
oa

de
d 

fr
om

 in
fo

rm
s.

or
g 

by
 [

28
00

:3
00

:6
25

2:
76

31
:f

06
9:

a6
e8

:f
b7

4:
32

b9
] 

on
 2

0 
O

ct
ob

er
 2

02
3,

 a
t 0

2:
38

 . 
Fo

r 
pe

rs
on

al
 u

se
 o

nl
y,

 a
ll 

ri
gh

ts
 r

es
er

ve
d.

 



Next, we show that, for the type of distributions in which we are interested, it is possible to prove an upper 
bound on the value of Mn(F) in terms of the values of the sequence (Aj(F))j∈N:

Lemma 2. For every distribution F with ω0(F) < ω1(F), we have

Mn(F) ≤
X∞

j�0
1�

∂Aj+1(F)
∂Aj(F)

� �n� �

∂Aj(F):

Proof. Consider the concave function φ : R→ R given by φ(x) � 1� xn, and for every nonnegative integer j, let 
µj(y) � 1=∂Aj(F) for every y ∈ [Aj(F), Aj+1(F)) and zero elsewhere. In particular, µj is a probability density function 
over [Aj(F), Aj+1(F)). Then, by Jensen’s inequality, we have

1
∂Aj(F)

Z Aj+1(F)

Aj(F)
(1� F(y)n)dy �

Z

R
φ(F(y))µj(y)dy

≤ φ

Z

R
F(y)µj(y)dy

� �

� 1� 1
∂Aj(F)

Z Aj+1(F)

Aj(F)
F(y)dy

 !n

� 1�
∂Aj+1(F)
∂Aj(F)

� �n

, 

where the last equality holds by Proposition 1(ii). In particular, for every nonnegative integer j, we have
Z Aj+1(F)

Aj(F)
(1� F(y)n)dy ≤ 1�

∂Aj+1(F)
∂Aj(F)

� �n� �

∂Aj(F): (5) 

Therefore, we have

Mn(F) �
Z ∞

0
(1� F(y)n)dy �

X∞

j�0

Z Aj+1(F)

Aj(F)
(1� F(y)n)dy

≤
X∞

j�0
1�

∂Aj+1(F)
∂Aj(F)

� �n� �

∂Aj(F), 

where the second equality holds by Proposition 1(iii) and the inequality comes from (5). w

Our final ingredient is a reverse to the previous two lemmas. It shows that, for any sequence satisfying properties 
(a)–(c), we can construct a distribution G for which (Aj(G))j∈N matches the values of the sequence and Mn(G)
matches the upper bound on Mn(G) in terms of the values of the sequence.

Lemma 3. For every (Bn)n∈N with B0 � 0 and satisfying (a)–(c), there exists a distribution G such that An(G) � Bn for 
every nonnegative integer n. Furthermore, we have

Mn(G) �
X∞

j�0
1�

∂Bj+1

∂Bj

� �n� �

∂Bj:

Proof. We construct explicitly the distribution G satisfying the statement of the lemma. Recall that, because 
(Bn)n∈N satisfies properties (b) and (c), the sequence (∂Bn+1=∂Bn)n∈N converges to a value ρ ∈ (0, 1]. We prove the 
following claim.

Claim 1. Suppose that ρ < 1. Then, there exists a value B > 0 such that limn→∞Bn � B.

Because the sequence (Bn)n∈N satisfies property (c), we have that ∂Bn ≤ ρ∂Bn�1, and therefore, ∂Bn ≤ ρn∂B0 � ρnB1 
for every n ∈ N. On the other hand, we have

Bn �
Xn�1

j�0
(Bj+1�Bj) �

Xn�1

j�0
∂Bj ≤ B1

Xn�1

j�0
ρn ≤

B1

1� ρ , 
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which implies that the sequence (Bn)n∈N is upper bounded. Because, by property (a), the sequence (Bn)n∈N is strictly 
increasing, we conclude that (Bn)n∈N is a convergent sequence, and we call B the value of this limit. This establishes 
the claim.

We now construct the distribution G satisfying the conditions of the statement. Consider G : R→ R defined as 
follows: G(x)�0 for every x ∈ (�∞, 0); for every nonnegative integer j, and every x ∈ [Bj, Bj+1), we have G(x) �
∂Bj+1= ∂Bj; and let G(x)�1 for every x ≥ limn→∞Bn. Because the sequence (Bn)n∈N satisfies property (a), the function 
G is well-defined for every nonnegative integer n. Furthermore, because the sequence (Bn)n∈N satisfies (c), we have 
that G is nondecreasing, and property (b) implies that G(x) ≤ 1 for every x ∈ R+. If ρ�1, then limx→∞G(x) � 1. Other-
wise, if ρ < 1, by Claim 1, there exists a value B > 0 such that limn→∞Bn � B, and therefore, G(x)�1 for every x ≥ B. 
Therefore, we conclude that G is a distribution.

In what follows, we show that An(G) � Bn for every nonnegative integer n. We proceed by induction. By con-
struction, we have A0(G) � 0 � B0. Suppose that Bi � Ai(G) for every i ∈ {0, 1, : : : , n}. By Proposition 1, for every posi-
tive integer n, it holds that

Z An(G)

An�1(G)
G(y)dy �

Z ∞

An(G)
(1�G(y))dy � An+1(G)�An(G), 

and therefore, the inductive step implies that
Z Bn

Bn�1

G(y)dy � An+1(G)�Bn: (6) 

On the other hand, by construction of G, it holds that
Z Bn

Bn�1

G(y)dy � Bn+1 � Bn

Bn � Bn�1
· (Bn � Bn�1) � Bn+1 � Bn � ∂Bn, 

and therefore, together with (6), we conclude that An+1(G) � Bn+1. Finally, we have

Mn(G) �
Z ∞

0
(1�G(y)n)dy �

X∞

j�0

Z Aj+1(G)

Aj(G)
(1�G(y)n)dy �

X∞

j�0
1�

∂Bj+1

∂Bj

� �n� �

∂Bj, 

where the second equality holds because limj→∞Aj(G) � ω1(G) by Proposition 1(iii). w

We are now ready to prove Theorem 3.

Proof of Theorem 3. We start by showing that, if for some ε ≥ 0, n ≥ 1, and m ≥ 1, there exists a distribution F 
such that (1+ ε)Am(F) <Mn(F), then the objective value of the optimization problem (1)–(4) must be negative. 
Note that, for this distribution F, it must hold that ω0(F) < ω1(F) because, otherwise, Am(F) �Mn(F), and so we 
must have Aj+1(F) > Aj(F) for all j ∈ N by Proposition 1(iv).

We construct a solution (δj)j∈N for the optimization problem as follows. For every nonnegative integer j, let 
δj(F) � ∂Aj(F)=∂A0(F). We begin by showing that the sequence (δj)j∈N satisfies (2)–(4). By construction, we have 
δ0(F) � ∂A0(F)=∂A0(F) � 1, that is, (4) holds. By Lemma 1, the sequence (Aj(F))j∈N satisfies properties (a)–(c). In 
particular, the sequence (∂Aj(F))j∈N is nonincreasing, and therefore, δj+1(F) ≤ δj(F) for every integer j ≥ 0, that is, 
(2) is satisfied. The sequence (∂Aj+1(F)=∂Aj(F))j∈N is nondecreasing, and therefore, δj+1(F)=δj(F) ≥ δj(F)=δj�1(F) for 
every integer j ≥ 1, that is, δj(F)2 ≤ δj�1(F)δj+1(F), and therefore, (3) is satisfied. Finally, observe that

0 > 1
∂A0(F)

((1+ ε)Am(F)�Mn(F)) � (1+ ε)
Xm�1

i�0
δi(F)�

Mn(F)
∂A0(F)

≥ (1+ ε)
Xm�1

i�0
δi(F)�

X∞

j�0
1�

∂Aj+1(F)
∂Aj(F)

� �n� �
∂Aj(F)
∂A0(F)

� (1+ ε)
Xm�1

i�0
δi(F)�

X∞

j�0
1�

δj+1(F)
δj(F)

� �n� �

δj(F), 

where the first inequality holds by assumption and the second inequality comes from Lemma 2. So, in particular, 
the last expression of the chain, which coincides with the objective in (1) must be negative.
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Conversely, suppose that the value of the optimization problem (1)–(4) is negative. That is, there exists a 
sequence (δ?j )j∈N satisfying (2)–(4) such that

(1+ ε)
Xm�1

i�0
δ?i �

X∞

i�0
1� δ?i+1

δ?i

� �n� �

δ?i < 0: (7) 

Consider the sequence (Bj)j∈N defined as follows: B0 � 0 and Bj �
Pj�1

i�0 δ
?
i for every j ≥ 1. In particular, we have

Bj+1 �
Xj

i�0
δ?i >

Xj�1

i�0
δ?i � Bj 

for every integer j ≥ 1, and therefore, the sequence (Bj)j∈N satisfies (a). Because the sequence (δ?j )j∈N satisfies (2) and 
(3), by construction, it holds directly that (Bj)j∈N satisfies (b) and (c), and therefore, by Lemma 3, there exists a distri-
bution G such that Aj(G) � Bj for every nonnegative integer j, and we have

(1+ ε)Am(G) � (1+ ε)Bm

� (1+ ε)
Xm�1

i�0
δ?i

<
X∞

i�0
1� δ?i+1

δ?i

� �n� �

δ?i �
X∞

i�0
1� ∂Bi+1

∂Bi

� �n� �

∂Bi �Mn(G), 

where the last equality also holds by Lemma 1. This finishes the proof of the theorem. w

4. Exact Competition Complexity: Proof of Theorem 1
We show next how to use Theorem 3 to prove the impossibility result in Theorem 1 about the exact competition 
complexity.

Proof of Theorem 1. Letting ε � 0 in Theorem 3, it suffices to show that the value of the optimization problem 
(1)–(4) is strictly negative. Consider the sequence (bi)i∈N defined as follows: b0 � 1 and b1 ∈ (0, 1) to be specified 
later. For every i ∈ {1, : : : , m� 1}, let

bi+1 � bi
n

n� 1

� �1
n bi

bi�1

� �n�1
n

, (8) 

and for every i ≥m let bi+1 � b2
i =bi�1. We first show that (bi)i∈N is feasible for the optimization problem (1)–(4). By 

construction, the sequence satisfies (4). We start with the monotonicity property (2). Consider the function h(x) �
(n=(n� 1))1=nx(n�1)=n and let h(i) be the function obtained from the composition of h with itself i times. From (8), we 
get bi+1=bi � h(i)(b1=b0) � h(i)(b1) for every i ∈ {0, 1, : : : , m� 1}. Observe that h(x) is monotone increasing and continu-
ous on x ∈ [0, 1] with h(0) � 0, and therefore, h(i) is also monotone increasing, continuous, and h(i)(0) � 0 for every 
i ∈ {0, 1, : : : , m� 1}. Because we also know bj+1=bj � bm=bm�1 for every j ≥m, it suffices to prove bi=bi�1 ≤ 1 for every 
i ∈ {1, : : : , m} in order to show that the sequence (bi)i∈N satisfies (2). To this end, we make any choice of b1 in a way 
that maxi∈{0, 1, : : : , m�1}h(i)(b1) ≤ 1. This implies that Property (2) is satisfied.

Claim 2. For every x ∈ [0, 1], we have n
n�1
� �1

nxn�1
n ≥ x.

To see this, consider the function g : R→ R given by g(x) � n
n�1
� �1

nxn�1
n � x: This function is concave in the interval 

[0, 1], and therefore, the minimum is attained in either zero or one. Because g(0) � 0 and g(1) � (n=(n� 1))1=n 

�1 > 0, we conclude that g(x) ≥ 0 for every x ∈ [0, 1], proving the claim.
In particular, for every i ∈ {1, : : : , m� 1}, we have

bi+1

bi
�

n
n� 1

� �1
n bi

bi�1

� �n�1
n

� g bi

bi�1

� �

+
bi

bi�1
≥

bi

bi�1
, 

where we used the fact that 0 ≤ bi=bi�1 ≤ 1 by the monotonicity property (2). Because bi+1=bi � bm=bm�1 ≤ 1 for every 
i ≥m, we conclude that (3) is also satisfied, and therefore, the sequence (bi)i∈N is feasible for the optimization prob-
lem (1)–(4). We now show that the objective value of the sequence (bi)i∈N is strictly negative. We first observe that 
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the objective value is equal to

Xm�1

i�0
bi�

Xm�1

i�0
1� bi+1

bi

� �n� �

bi�
X∞

i�m
1� bi+1

bi

� �n� �

bi

�
Xm�1

i�0

bi+1

bi

� �n
bi �

X∞

i�m
1� bi+1

bi

� �n� �

bi:

By construction of the sequence, we have

Xm�1

i�0
bi

bi+1

bi

� �n
� bn

1 +
n

n� 1
Xm�1

i�1
bi

bi

bi�1

� �n�1

� bn
1 +

n
n� 1

Xm�1

i�1
bi�1

bi

bi�1

� �n
� bn

1 +
n

n� 1
Xm�2

i�0
bi

bi+1

bi

� �n
, 

and therefore,

bn
1 �

Xm�1

i�0
bi

bi+1

bi

� �n
�

n
n� 1

Xm�2

i�0
bi

bi+1

bi

� �n

� bm�1
bm

bm�1

� �n
+
Xm�2

i�0
bi

bi+1

bi

� �n
�

n
n� 1

Xm�2

i�0
bi

bi+1

bi

� �n

� bm�1
bm

bm�1

� �n
�

1
n� 1

Xm�2

i�0
bi

bi+1

bi

� �n
:

By rearranging terms, we conclude that

Xm�1

i�0
bi

bi+1

bi

� �n
� bm�1

bm

bm�1

� �n
+
Xm�2

i�0
bi

bi+1

bi

� �n

� bm�1
bm

bm�1

� �n
+ (n� 1) bm�1

bm

bm�1

� �n
� bn

1

� �

� nbm�1
bm

bm�1

� �n
� (n� 1)bn

1 :

Let γ � bm=bm�1. We have γ < 1, bm � γbm�1, and inductively bm+i � γi+1bm�1 for every nonnegative i. Therefore, 
overall, the objective value of the sequence is equal to

Xm�1

i�0

bi+1

bi

� �n
bi�

X∞

i�m
1� bi+1

bi

� �n� �

bi

� nbm�1γ
n� (n� 1)bn

1 � (1� γn)
X∞

i�0
γi+1bm�1

� nbm�1γ
n� (n� 1)bn

1 �
(1� γn)γ

1� γ bm�1

� nbm�1γ
n� (n� 1)bn

1 � bm�1
Xn

i�1
γi

��(n� 1)bn
1 � bm�1

Xn

i�1
γi� nγn

 !

< 0, 

which concludes the proof. w
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We note that the sequence (bn)n∈N defined in the proof of Theorem 1 gives one possible construction of a distribu-
tion such that (1+ ε)Am(F) ≥Mn(F). More precisely, (bn)n∈N is a sequence such that the value of the optimization 
problem (1)–(4) is negative. In other words, it satisfies the properties of (δ?j )j∈N (7) as defined in (the converse direc-
tion of) the proof of Theorem 3.

5. Approximate Competition Complexity: Proof of Theorem 2
In this section, we show how to use Theorem 3 to derive Theorem 2 about the approximate competition complexity. 
In particular, we show how to optimally solve the optimization problem (1)–(4). For every m, n, and ε > 0, we show 
how to reduce the task to finding the minimum of a real convex function in finite dimension. Then, using this reduc-
tion, we show that the optimal value of (1)–(4) is obtained by a recursive formula. As a final step, we analyze this 
recurrence by considering a continuous counterpart defined by a differential equation.

Consider the function Γεn, m : Rm�1
+ → R defined by

Γεn, m(x) � ε+ xn
1 +
Xm�2

i�1
xi ε+

xi+1

xi

� �n� �

� xm�1(n� 1� ε):

Given ε > 0 and a positive integer n ≥ 2, let (ρε, j)j∈N be the sequence defined by the following recurrence:

ρε, 1 � 1, and (n� 1)ρn
ε, j�1� ε � nρn�1

ε, j for every j ≥ 2 such that (n� 1)ρn
ε, j�1� ε > 0: (9) 

For fixed ε�and n, we say that ρε, j is well-defined if (n� 1)ρn
ε, j�1� ε > 0. Observe that, by letting x � ρε, j in Claim 2, 

we get that ρε, j is decreasing in j. It follows that, if ρε, m is well-defined, then so is ρε, j for j ≤m. As a first step, we 
show that the optimal value of (1)–(4) can be obtained in terms of the sequence (ρε, j)j∈N. To prove this result, we 
require a few propositions.

Proposition 2. Let ε > 0 and let n ≥ 2 and m ≥ 3 be two positive integers such that ρε, m is well-defined. Then, Γεn, m is con-
vex over Rm�1

+ , and it has a unique minimizer Y in this region given by

Y1 � ρε, m and Yj �
Yj�1

k�0
ρε, m�k for every j ∈ {2, : : : , m� 1}: (10) 

Furthermore, Γεn, m(Y) � ε� (n� 1)ρn
ε, m.

Proof. We begin by proving the (strict) convexity of Γεn, m. We proceed by induction on m. Observe first that, 
when m�3, we have that Γεn, 3(x1, x2) � ε+ xn

1 + p(x1, x2)� x2(n� 1� ε), where p(y, z) � y(ε+ (z=y)n): The Hessian 
of p is

∇2p(y, z) � n(n� 1)zn�2y1�n z2=y2 �z=y
�z=y 1

 !

, 

and this is a positive semidefinite matrix for every (y, z) ∈ R2
+ because one eigenvalue is equal to zero and the other 

is n(n� 1)zn�2y1�n((z=y)2 + 1) > 0. In particular, p is convex over R2
+. Because the function ε+ xn

1 � x2(n� 1� ε) is 
also convex over R2

+, we conclude that Γεn, 3 is convex over R2
+. Now, consider an integer value m>3, and observe 

that

Γεn, m+1(x1, : : : , xm) � p(xm�1, xm)� (xm� xm�1)(n� 1� ε) + Γεn, m(x1, : : : , xm�1), 

and therefore, the convexity follows by the inductive step, that is, Γεn, m convex over Rm�1
+ , together with p convex 

over R2
+. Every minimizer y of Γεn, m over Rm�1

+ is a solution to the system given by ∇Γεn, m � 0, that is,

(n� 1) y2

y1

� �n
� ε � nyn�1

1 , (11) 

(n� 1) yi+1

yi

� �n
� ε � n yi

yi�1

� �n�1
for every i ∈ {2, : : : , m� 2}, (12) 

n� 1� ε � n ym�1

ym�2

� �n�1
, and y ∈ Rm�1

+ : (13) 

This system has a unique solution, and therefore, this proves the first part.
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To finish the proof, we show that Y defined in (10) is strictly positive, satisfies the system (11)–(13), and 
Γεn, m(Y) � ε� (n� 1)ρn

ε, m. Because ρε, j is well-defined for all j ≤m, we have ρε, j � ((n� 1)ρn
ε, j�1� ε)

1=(n�1)
> 0. This 

implies that Y ∈ Rm�1
+ . Next, observe that Y2 � ρε, mρε, m�1, and therefore, Y2=Y1 � ρε, m�1. Then, we have

(n� 1)(Y2=Y1)
n
� ε � (n� 1)ρn

ε, m�1� ε � nρn�1
ε, m � nYn�1

1 , 

and therefore, (11) is satisfied. Similarly, for every j ∈ {2, : : : , m� 2}, we have Yj=Yj�1 � ρm�j+1 and Yj+1=Yj � ρm�j. 
Then, we have

(n� 1)(Yj+1=Yj)
n
� ε � (n� 1)ρn

ε, m�j� ε � nρn�1
ε, m�j+1 � n(Yj=Yj�1)

n�1, 

and therefore, (12) is satisfied. Finally, because Ym�1=Ym�2 � ρε, 2, we have

n� 1� ε � (n� 1)ρn
ε, 1� ε � nρn�1

ε, 2 � n(Ym�1=Ym�2)
n�1, 

and therefore, (13) is satisfied. We now evaluate Γεn, m(Y). The vector Y satisfies (11)–(13), and therefore,

(n� 1)
Xm�2

i�1
Yi

Yi+1

Yi

� �n
+ (n� 1)Ym�1� ε

Xm�1

i�1
Yi � nYn

1 + n
Xm�1

i�2
Yi

Yi

Yi�1

� �n�1

� nYn
1 + n

Xm�1

i�2
Yi�1

Yi

Yi�1

� �n

� nYn
1 + n

Xm�2

i�1
Yi

Yi+1

Yi

� �n
:

By subtracting the first term of the left-hand side, we get
Xm�2

i�1
Yi

Yi+1

Yi

� �n
� (n� 1)Ym�1 � ε

Xm�1

i�1
Yi � nYn

1 , 

and by rearranging terms, we obtain that

Xm�2

i�1
Yi ε +

Yi+1

Yi

� �n� �

� (n� 1� ε)Ym�1 � nYn
1 :

Therefore, the minimum of Γεn, m over Rm�1
+ is equal to

ε+Yn
1 + (n� 1� ε)Ym�1� nYn

1 � (n� 1� ε)Ym�1 � ε� (n� 1)Yn
1 :

The proof follows because we have Y1 � ρε, m. w

Proposition 3. Let ε > 0, let n ≥ 2 and m ≥ 3 be two positive integers such that ρε, m is well-defined, and let Y be as defined 
in (10). Then, the following hold: 

a. For every j ∈ {1, : : : , m� 1}, we have that Yj+1 ≤ Yj.
b. For every j ∈ {2, : : : , m� 1}, we have that Y2

j ≤ Yj�1Yj+1.

Proof. Observe that, for every k ∈ {1, : : : , m� 1}, we have Ym�k+1=Ym�k � ρε, k. For k�1, we have Ym=Ym�1 �
ρε � 1. From the definition of the recurrence, we have

(n� 1)ρn
ε, k�1 ≥ (n� 1)ρn

ε, k�1� ε � nρn�1
ε, k 

for every k ∈ {2, : : : , m� 1}. By induction, if ρε, k�1 ≤ 1, we have ρn�1
ε, k ≤ (n� 1)=n, and therefore, ρε, k ≤ 1. This con-

cludes part (a). Because, for every j ∈ {1, : : : , m� 1}, we have Yj+1=Yj � ρε, m�j, to prove part (b). it suffices to show 
ρε, k+1 ≤ ρε, k for every k ∈ {1, : : : , m� 2}. From the construction of the recurrence, for every k ∈ {1, : : : , m� 2}, it holds 
that

ρε, k ≥
n

n� 1

� �1
n
ρ(n�1)=n
ε, k+1 :

Brustle et al.: Competition Complexity of Pricing 
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By (a), we have ρε, k+1 ∈ [0, 1], which together with Claim 2 implies that

n
n� 1

� �1
n
ρ(n�1)=n
ε, k+1 ≥ ρε, k+1:

Therefore, we conclude that ρε, k+1 ≤ ρε, k. This proves part (b). w

Proposition 4. For every sequence (δj)j∈N satisfying (2)–(4) for which δm=δm�1 < 1, there exists a sequence (βj)j∈N satisfy-
ing (2)–(4) and such that the following hold: 

a. For every j ∈ {0, 1, : : : , m� 1}, we have δj � βj, and βm=βm�1 < 1.

b. 
P∞

i�m�1 1� δi+1
δi

� �n� �
δi ≤ βm�1

Pn�1
i�0

βm
βm�1

� �i
.

Proof. Suppose we are given (δj)j∈N satisfying (2)–(4) for which δm=δm�1 < 1. We claim that then there exists a 
sequence (βj)j∈N satisfying (2)–(4) such that (a) holds, and furthermore, (i) βj ≥ δj for all j ≥m, and (ii) βj=βj�1 �

βm=βm�1 for all j ≥m.
If (δj)j∈N does not already satisfy these properties, then it must be because of (ii). In particular, there must be a 

smallest index j ≥m such that δj+1=δj > δm=δm�1. We next describe a procedure that maintains all properties but 
extends (ii) so that it holds for one more index. Applying this procedure iteratively, we obtain (βj)j∈N.

Given (δj)j∈N satisfying (2)–(4), let k(δ) ≥m be the first value j such that δj+1=δj > δm=δm�1. In particular, we 
have δj=δj�1 � δm=δm�1 for every j ∈ {m, : : : , k(δ)}. Consider the sequence (Dj)j∈N defined as follows: Dj � δj for 
every j ∈ {0, 1, : : : , m� 1},

Dm � δm�1
δk(δ)+1

δm�1

� � 1
k(δ)�m+2

, 

Dj �Dm(Dm=δm�1)
j�m for every j ∈ {m+ 1, : : : , k(δ)}, and Dj � δj for every j ≥ k(δ) + 1. Observe that, from the con-

struction, it holds directly that Dj+1=Dj �Dm=δm�1 for every j ∈ {m, : : : , k(δ)� 1}. Furthermore, we have

δk(δ)+1

Dk(δ)
�Dm

Dm

δm�1

� �k(δ)�m+1
·

1
Dm

δm�1

Dm

� �k(δ)�m
�

Dm

δm�1
, 

and therefore, we have Dj+1=Dj �Dm=Dm�1 for every j ∈ {m� 1, : : : , k(δ)}. By construction, the sequence (Dj)j∈N 
satisfies (2)–(4) and Dm=Dm�1 < 1. We show next that Dj ≥ δj for every j ∈ {m, : : : , k(δ)}. Because δj+1=δj ≥ δm=δm�1 
for every j ∈ {m, : : : , k(δ)}, we have

δm

δm�1

� �k(δ)�m+1
≤
Yk(δ)

j�m

δj+1

δj
�
δk(δ)+1

δm
, 

which implies that δm ≤ δm�1(δk(δ)+1=δm�1)
1

k(δ)�m+2 �Dm. For j ∈ {m+ 1, : : : , k(δ)}we proceed by induction:

Dj �Dj�1
Dm

δm�1
≥ δj�1

Dm

δm�1
≥ δj�1

δm

δm�1
� δj ·

δj�1

δj
·
δm

δm�1
� δj, 

where the first equality holds by construction of the sequence, the first inequality holds by the inductive hypothesis, 
the second inequality holds because Dm ≥ δm, and the last equality follows because δj=δj�1 � δm=δm�1 for every 
j ∈ {m, : : : , k(δ)}. This finishes the proof of part (a).

In the remainder, we prove part (b) using the existence of a sequence (βj)j∈N for which (a) holds as well as (i) 
and (ii). To this end, we need the following definition and claim. For every sequence (δj)j∈N, let

R(δ) �
X∞

i�m�1
1� δi+1

δi

� �n� �

δi:

Claim 3. R is nondecreasing in δi for every i ≥m.

Brustle et al.: Competition Complexity of Pricing 
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Before proving Claim 3, we show how, together with the properties of the sequence (βj)j∈N, it implies property 
(b). Namely,

X∞

i�m�1
1� δi+1

δi

� �n� �

δi ≤
X∞

i�m�1
1�

βi+1
βi

� �n� �

βi

� 1�
βm
βm�1

� �n� �
X∞

i�m�1
βi

� βm�1 1�
βm
βm�1

� �n� �
X∞

i�0

βm
βm�1

� �i
� βm�1

Xn�1

i�0

βm
βm�1

� �i
, 

where the inequality holds by Claim 3 and (i), the first equality holds by (ii), and the second equality holds because 
(ii) implies βi � βm�1(βm=βm�1)

i�m+1 for i ≥m� 1.
It remains to prove Claim 3. Consider the function φ : R2

+ → R+ such that φ(x, y) � (1� (y=x)n)x. In particular, the 
derivative of R with respect to δi, with i ≥m, is equal to

∂φ

∂y
(δi�1,δi) +

∂φ

∂x
(δi,δi+1) ��n δi

δi�1

� �n�1
+ 1+ (n� 1) δi+1

δi

� �n

� n δi+1

δi

� �n�1 1
n
δi

δi+1

� �n�1
+ 1� 1

n

� �
δi+1

δi
�

δ2
i

δi+1δi�1

� �n�1 !

≥ n δi+1

δi

� �n�1
1� δ2

i
δi+1δi�1

� �n�1 !

≥ 0, 

where the first inequality holds because, for any p ∈ [0, 1], we have that (1� 1=n)p+ 1=(npn�1) ≥ 1, and δi�1 ≤ δi ≤

δi+1 for every i ≥m, and the second holds because (δj)j∈N satisfies Constraint (3). This concludes the proof of the 
claim. w

The following lemma relates the optimal value of the optimization problem (1)–(4) with the sequence (ρε, j)j∈N. 
Using Lemma 4 and Theorem 3, we can numerically find the competition complexity by computing Recurrence (9) 
(see Figure 2). More specifically, given n and ε, we just have to find the last value m for which the value of the opti-
mization problem is nonnegative, and this can be found by numerically computing the values of Recurrence (9).

Lemma 4. Let ε > 0 and let n ≥ 2 and m ≥ 3 be two positive integers such that ρε, m is well-defined. Then, the value of the 
optimization problem (1)–(4) is equal to ε� (n� 1)ρn

ε, m.

Figure 2. (Color online) On the left, we have a plot of the competition complexity as a function of n when ε � 0:1. On the right, 
we have a plot of the competition complexity as a function of ε�when n � 20. 
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Proof. Consider Y ∈ Rm�1
+ as defined in (10). For every α ∈ (0, 1), consider the sequence (Yj(α))j∈N defined as fol-

lows: Y0(α) � 1, Yj(α) � Yj for every j ∈ {1, : : : , m� 1} and Yj(α) � αm�j+1Ym�1 for every j ≥m. Thanks to Proposi-
tions 2 and 3, for every α ∈ (0, 1), the sequence (Yj(α))j∈N satisfies (2)–(4). The objective value (1) of the sequence is 
equal to

(1+ ε)
Xm�1

i�0
Yi(α)�

X∞

i�0
1� Yi+1(α)

Yi(α)

� �n� �

Yi(α)

� ε+Yn
1 + (1+ ε)Ym�1 +

Xm�2

i�1
ε+

Yi+1

Yi

� �n� �

Yi �
X∞

i�m�1
1� Yi+1(α)

Yi(α)

� �n� �

Yi(α)

� ε+Yn
1 + (1+ ε)Ym�1 +

Xm�2

i�1
ε+

Yi+1

Yi

� �n� �

Yi � (1� αn)
X∞

i�0
Ym+i�1(α)

� ε+Yn
1 +
Xm�2

i�1
ε+

Yi+1

Yi

� �n� �

Yi�Ym�1 (1� αn)
X∞

i�0
αi

 !

� 1� ε
 !

� Γεn, m(Y) +Ym�1 n� (1� αn)
X∞

i�0
αi

 !

� ε� (n� 1)ρn
ε, m +Ym�1 n� (1� αn)

X∞

i�0
αi

 !

, 

where the last equality holds by Proposition 2. In particular, the feasibility of (Yj(α))j∈N for every α ∈ (0, 1) implies 
that the value of the optimization problem (1)–(4) is upper bounded by

ε� (n� 1)ρn
ε, m +Ym�1 inf

α∈(0,1)
n� (1� αn)

X∞

i�0
αi

( )

� ε� (n� 1)ρn
ε, m: (14) 

Let (δj)j∈N be any sequence satisfying (2)–(4). We denote by V(δ) the objective value (1), which, by rearranging 
terms, is equal to

V(δ) � Γεn, m(δ1, : : : ,δm�1) + nδm�1�
X∞

i�m�1
1� δi+1

δi

� �n� �

δi:

Now, either δi+1=δi � 1 for all i ≥m� 1, in which case V(δ) � Γεn, m(δ1, : : : ,δm�1) + nδm�1 ≥minx∈Rn�1
+
Γεn, m(x) � ε�

(n� 1)ρn
ε, m, where the last inequality holds by Proposition 2. Otherwise, by Proposition 4, there exists a sequence 

(βj)j∈N satisfying (2)–(4) for which the following holds:

V(δ) � Γεn, m(δ1, : : : ,δm�1) + nδm�1�
X∞

i�m�1
1� δi+1

δi

� �n� �

δi

� Γεn, m(β1, : : : ,βm�1) + nβm�1�
X∞

i�m�1
1� δi+1

δi

� �n� �

δi

≥ Γεn, m(β1, : : : ,βm�1) + nβm�1� βm�1

Xn�1

i�0

βm
βm�1

� �i

≥ min
x∈Rm�1

+

Γεn, m(x) + βm�1 n�
Xn�1

i�0

βm
βm�1

� �i
 !

≥ ε� (n� 1)ρn
ε, m + βm�1 n�

Xn�1

i�0

βm
βm�1

� �i
 !

, 

where the second equality holds by property (a) in Proposition 4, the first inequality holds by property (b) in Propo-
sition 4, and the last inequality again holds by Proposition 2. Observe that, for every (βj)j∈N, the last term of the 

Brustle et al.: Competition Complexity of Pricing 
Mathematics of Operations Research, Articles in Advance, pp. 1–23, © 2023 INFORMS 15 

D
ow

nl
oa

de
d 

fr
om

 in
fo

rm
s.

or
g 

by
 [

28
00

:3
00

:6
25

2:
76

31
:f

06
9:

a6
e8

:f
b7

4:
32

b9
] 

on
 2

0 
O

ct
ob

er
 2

02
3,

 a
t 0

2:
38

 . 
Fo

r 
pe

rs
on

al
 u

se
 o

nl
y,

 a
ll 

ri
gh

ts
 r

es
er

ve
d.

 



preceding inequality can be lower bounded by zero, and therefore, we get that V(δ) ≥ ε� (n� 1)ρn
ε, m also in this 

case. This, together with the upper bound in (14), concludes the proof of the lemma. w

As a second step, we study the recurrence (ρε, j)j∈N to find the point at which it becomes nonpositive. More specifi-
cally, by Theorem 3 and Lemma 4, our aim is to find the greatest index m for which ρε, m is well-defined or, equiva-
lently, the unique m for which (n� 1)ρn

ε, m� ε ≤ 0. To understand this problem, we consider a differential equation 
that serves as an upper bound to our recurrence relation. Recall the definition of φ(ε) �

R 1
0 1=(y(1� log(y)) + ε)dy:

Given a value ε > 0, consider the following ordinary differential equation (ODE):

y′(t) � y(t)(log(y(t))� 1)� ε for every t ∈ (0,φ(ε)), (15) 

y(0) � 1: (16) 

We define y(φ(ε)) � limt↑φ(ε)y(t) as the continuous extension of y in φ(ε). The following lemma summarizes our 
results for the differential equation and φ(ε):

Lemma 5. For every ε > 0, the differential equation (15) and (16) has a unique solution yε. Furthermore, the following 
hold: 

a. For every t ∈ [0,φ(ε)), we have y′ε(t) < 0. In particular, yε�is decreasing and invertible on [0,φ(ε)) and yε(φ(ε)) � 0.
b. For every integer n ≥ 2 and every j ∈ N for which ρε, j is well-defined, we have

n� 1
n
ρn
ε, j�

ε

n
≤ yε

j
n

� �

:

c. For every δ ∈ (0,φ(ε)), there exists n0 such that, for every n ≥ n0, we have (n� 1)ρn
ε, k� ε > 0, where k � ⌊(φ(ε)� δ)n⌋.

d. We have φ(ε) �Θ(log log 1=ε).

We prove Lemma 5. For (a)–(c), we first need a few propositions.

Proposition 5. For every ε > 0, there exists a unique solution of the differential equation (15) and (16), that we denote yε. 
Furthermore, for every t ∈ [0,φ(ε)), we have y′ε(t) < 0. In particular, yε�is decreasing and invertible in [0,φ(ε)], and 
yε(φ(ε)) � 0.

Proof. Observe that, for any solution y of the differential equation (15) and (16), we have y′(0) ��ε < 0. Further-
more, for every y ∈ (0, 1], because log(y) ≤ 0 and ε > 0, we have y′ε(t) < 0 for every t ∈ [0,φ(ε)). We also know the 
second derivative

y′′(t) � y′(t)(log(y(t))� 1) + y(t)y
′(t)

y(t)
� y′(t) log(y(t)) > 0:

In particular, if y ∈ (0, 1), then |y′′ | is bounded, implying that y′ is Lipschitz continuous. Therefore, by the Picard- 
Lindelöf theorem (Picard [32]), there is a unique solution on (0,φ(ε)). As y(0) is given and we define y(φ(ε)) as 
the continuous extension of y, the solution of the ODE is unique on [0,φ(ε)], and we denote it by yε. In particular, 
the function yε�is invertible and with a differentiable inverse in [0, 1]. Let T � y�1

ε (0). Then, we have

y�1
ε (1) � T +

Z 1

0

1
y′ε(y�1

ε (s))
ds

� T�
Z 1

0

1
s(1� log(s)) + εds � T�φ(ε), 

and because y�1
ε (1) � 0, we conclude that y�1

ε (0) � T � φ(ε). w

Given ε > 0, consider the function Mε : R→ R given by

Mε(x) � log(x)� 1� ε
x

� �
(x log2

(x) + x log(x)� x� ε):

Proposition 6. Let ε > 0 and let αε � y�1
ε exp � 1

2 (1+
ffiffiffi
5
√
)

� �� �
. Then, the following hold: 

a. For every t ∈ [0,φ(ε)], we have y′′′ε (t) �Mε(yε(t)).
b. For every t ∈ [0,αε], we have y′′′ε (t) ≥ 0.
c. When ε ≤ 0:25, we have y′′′ε (t) ≥�1:173 for every t ∈ [αε,φ(ε)].
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d. When ε ≤ 0:25, there exists xε ∈ (0:01, 0:067) such that y′′′ε�is increasing in [y�1
ε (xε),φ(ε)].

e. When ε ≥ 0:25, we have y′′′ε (t) ≥ 0 for every t ∈ [0,φ(ε)].

Proof. By a direct computation, we have that

y′′ε (t) � y′ε(t)(log(yε(t))� 1) + yε(t) · y′ε(t)=yε(t) � y′ε(t) log(yε(t)), 

and therefore,

y′′′ε (t) � y′′ε (t) log(yε(t)) + y′ε(t) ·
y′ε(t)
yε(t)

� y′ε(t) log2
(yε(t)) + y′ε(t) ·

y′ε(t)
yε(t)

� y′ε(t) log2
(yε(t)) + log(yε(t))� 1� ε

yε(t)

� �

� (yε(t)(log(yε(t)) � 1)� ε) log2
(yε(t)) + log(yε(t))� 1� ε

yε(t)

� �

�Mε(yε(t)), 

which proves (a). Consider the function g(x) � x log2
(x) + x log(x)� x. We have that g(x) ≤ 0 for every 

exp
�
� 1

2 (1+
ffiffiffi
5
√
)
�
≤ x ≤ 1, and together with Proposition 5, implies that g(yε(t))� ε ≤ 0 for every t ∈ [0,αε]. Further-

more, by Proposition 5, we have that y′ε(t)=yε(t) ≤ 0 for every t ∈ [0,αε], and therefore,

y′′′ε (t) �Mε(yε(t)) �
y′ε(t)
yε(t)
(g(yε(t))� ε) ≥ 0, 

which proves (b). To prove (c), observe that, by Proposition 5, we have that yε(αε) ≥ yε(t) ≥ 0 for every t ∈ [αε,φ(ε)], 
and because 0:199 > yε(αε) � exp(�(1+

ffiffiffi
5
√
)=2) > 0:198, we have that

min
ε∈(0,0:25)

min
t∈[αε,φ(ε)]

y′′′ε (t) � min
ε∈(0,0:25)

min
t∈[αε,φ(ε)]

Mε(yε(t)) ≥ min
ε∈[0, 0:25],
x∈[0, 0:199]

Mε(x) ≈�1:1722, 

where the first equality comes from part (a). We now prove (d). By a direct computation, we have

M′ε(x) ��
ε2

x2�
2ε
x �

2ε log(x)
x + log3

(x) + 3 log2
(x)� 2 log(x)� 1,

M′′ε (x) �
2ε2

x3 +
2ε log(x)

x2 �
2
x
+

3 log2
(x)

x
+

6 log(x)
x

:

Furthermore, we have

min
ε∈[0, 0:25],
x∈[0, 067]

M′′ε (x) ≈ 0:716, 

and therefore, the function M′ε�is increasing in (0, 0:067] for every ε ∈ (0, 0:25]. On the other hand, we have

M′ε(0:067) >� ε2

(0:067)2
�

2ε
0:067�

2ε log(0:067)
x + 6:57, 

and this is a quadratic concave function over [0, 0:25] that attains the minimum at ε � 0:25 with a value of ≈ 5:36. 
Furthermore, we have

M′ε(0:01) <� ε2

(0:01)2
�

2ε
0:01�

2ε log(0:01)
x � 25:83, 
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and this is a quadratic concave function over [0, 0:25] that attains the maximum at ≈ 0:036 with a value of ≈�12:83. 
Therefore, for every ε ∈ (0, 0:25], the continuity of M′ε�implies the existence of a value xε ∈ (0:01, 0:0067) such that 
M′ε(xε) � 0. Because the function M′ε�is increasing in [0, 0:067], we have M′ε(x) ≤Mε(xε) � 0 for every x ∈ [0, xε], and 
therefore, the function Mε�is decreasing in the interval [0, xε]. By Proposition 5, we have that yε�is decreasing in 
[0,φ(ε)], and therefore, we conclude that y′′′ε �Mε ◦ yε�is increasing in the interval [y�1

ε (xε),φ(ε)].
Finally, we prove (e). Recall that g(x) � x log2

(x) + x log(x)� x. It is sufficient to verify that g(x) ≤ ε�for every 
x ∈ (0, 1]when ε ≥ 0:25 because we have y′′′ε (t) � y′ε(t)(g(yε(t))� ε)=yε(t), and y′ε ≤ 0 in [0,φ(ε)]. We have

g′(x) � log2
(x) + 2x log(x) · 1x+ log(x) + x · 1x� 1 � log(x)(log(x) + 3):

We have g′(x) ≥ 0 when x ∈ (0, e�3] and g′(x) ≤ 0 when x ∈ [e�3, 1]. Therefore, the maximum of g in (0, 1] is 
attained at e�3, and we conclude that g(x) ≤ 5e�3� ε ≤ 5e�3� 0:25 < 0 for every x ∈ (0, 1]. This concludes the proof 
of the proposition. w

Given ε > 0 and a positive integer n ≥ 2, consider the function Fn,ε : R→ R given by

Fn,ε(x) � x+ x(log(x)� 1)
n +

log(x)(x(log(x)� 1)� ε)
2n2 :

Proposition 7. Let n ≥ 2 be an integer value and let ε ∈ (0, 0:25]. Then, the following hold: 
a. For every x ∈ (0, 1], we have Fn,ε(x) ≥ n�1

n
� �

x n
n�1.

b. For every x ∈ [0:01, 0:199], we have Fn,ε(x) ≥ n�1
n

� �
x n

n�1 + 1:173
6n6 .

c. For every x ∈ [0, 0:07], we have Fn,ε(x) +Mε(x)
6n6 ≥

n�1
n

� �
x n

n�1.

Proof. The inequality in (a) holds by Correa et al. [10, proposition D.1.]. Consider the function Gn : R→ R given 
by

Gn(x) � 1+ log(x)� 1
n +

log(x)(log(x)� 1)
2n2 �

n� 1
n

� �

x 1
n�1�

1:173
6xn6 :

To prove (b), it suffices to show that Gn(x) ≥ 0 for every x ∈ [0:01, 0:199] because �ε log(x) ≥ 0 for every x ∈ [0:01, 
0:199], and therefore,

Fn,ε(x)�
n� 1

n

� �

x n
n�1�

1:173
6n6 ≥ x ·Gn(x) ≥ 0:

We have that {Gn(0:199)}n∈N is a strictly positive and decreasing sequence, and therefore, it is sufficient to show 
that Gn is decreasing in the interval [0:01, 0:199]. We have

G′n(x) �
1

nx+
log(x)

n2x �
1

2n2x�
1
n x 1

n�1�1 +
1:173
6n6x2

�
1

nx2 x+ x log(x)� x=2
n � x n

n�1 +
1:173
6n5

� �

, 

and let

hn(x) � x+ x log(x)� x=2
n � x n

n�1 +
1:173
6n5 :

It is sufficient to show that hn is nonpositive in [0:01, 0:199]. We have

h′n(x) � 1+ log(x) + 1=2
n � 1� 1

n

� �

x 1
n�1,

h′′n (x) �
1

nx
�

1
n

x 1
n�1�1 �

1
nx

1� x 1
n�1

� �
, 
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and therefore, h′′n (x) > 0 for every x ∈ [0:01, 0:199]. This implies that hn is convex in the interval [0:01, 0:199], and 
therefore, it is sufficient to verify that hn(0:01) < 0 and hn(0:199) < 0. In fact, we have

hn(0:01) � 0:01+ 0:01 log(0:01)� 0:005
n

� 0:01 n
n�1 +

1:173
6n5

≤
0:01 log(0:01)� 0:005

2 +
1:173
6 · 25 <�0:019,

hn(0:199) � 0:199+ 0:199 log(0:199)� 0:0995
n � 0:199 n

n�1 +
1:173
6n5

≤
0:199 log(0:199)� 0:0995

2 +
1:173
6 · 25 <�0:2, 

and therefore, we conclude that hn is nonpositive in [0:01,0:199], which implies that Gn is positive in [0:01,0:199]. 
This proves (b). Finally, to prove (c), consider the function Ψ : R3

+ → R given by

Ψ(x, y,ε) � x+ x(log(x)� 1)
y +

log(x)(x(log(x)� 1)� ε)
2y2 +

Mε(x)
6y6 � 1� 1

y

� �

x
y

y�1:

Then, we have

inf
n≥2,

ε∈(0, 0:25],
x∈[0, 0:07]

Fn, ε(x) +
Mε(x)

6n6 �
n� 1

n

� �

x n
n�1

� �

≥ min
y≥2,

ε∈(0, 0:25],
x∈[0, 0:07]

Ψ(x, y, ε) ≥ 0, 

which concludes the proof. w

Proof of Lemma 5. Part (a) holds by Proposition 5. To prove (b), we proceed by induction. When j� 1, we have 
ρn�1
ε, 1 � 1 � yε(0). For every j ≥ 1, Taylor’s theorem implies that

yε
j
n

� �

� yε
j� 1

n

� �

+
1
n

y′ε
j
n

� �

+
1

2n2 y′′ε
j
n

� �

+
1

6n6 y′′′ε (ξ)

� yε
j� 1

n

� �

+
1
n

y′ε
j
n

� �

1+ 1
2n

log yε
j� 1

n

� �� �� �

+
1

6n6 y′′′ε (ξ)

� yε
j� 1

n

� �

+
yε j�1

n

� �
log yε j�1

n

� �� �
� 1

� �
� ε

n 1+ 1
2n log yε

j� 1
n

� �� �� �

+
1

6n6 y′′′ε (ξ)

� Fn,ε yε
j� 1

n

� �� �

�
ε

n+
1

6n6 y′′′ε (ξ), 

where ξ ∈ ((j� 1)=n, j=n), and the second and third equalities come from the ODE definition. We consider four dif-
ferent cases.

Case 1. Suppose that ε ≥ 0:25. By Proposition 6(e) we have y′′′ε (ξ) ≥ 0, and therefore,

yε
j
n

� �

� Fn,ε yε
j� 1

n

� �� �

�
ε

n
+

1
6n6 y′′′ε (ξ)

≥ Fn,ε yε
j� 1

n

� �� �

�
ε

n

≥
n� 1

n

� �

yε
j� 1

n

� � n
n�1

�
ε

n
≥

n� 1
n

� �

ρn
ε, j �

ε

n
� ρn�1

ε, j+1, 

where the second inequality holds from Proposition 7(a), and in the third inequality, we used the inductive step.
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Case 2. Suppose that ε ≤ 0:25 and 2 ≤ j ≤ αεn+ 1. In particular, we have (j� 1)=n ∈ [0,αε]. By Proposition 6(b), 
we have y′′′ε (ξ) ≥ 0, and therefore,

yε
j
n

� �

� Fn,ε yε
j� 1

n

� �� �

�
ε

n+
1

6n6 y′′′ε (ξ)

≥ Fn,ε yε
j� 1

n

� �� �

�
ε

n

≥
n� 1

n

� �

yε
j� 1

n

� � n
n�1

�
ε

n ≥
n� 1

n

� �

ρn
ε, j �

ε

n � ρ
n�1
ε, j+1, 

where the second inequality holds from Proposition 7(a), and in the third inequality, we used the inductive step.

Case 3. Suppose that ε ≤ 0:25 and αεn+ 1 ≤ j ≤ y�1
ε (xε)n+ 1, where xε�is the value guaranteed by Proposition 

6(d). In particular, we have (j� 1)=n ∈ [αε, y�1
ε (xε)], and by Proposition 6(d), we have 0:01 < xε, which implies 

that 0:01 < yε((j� 1)=n) ≤ 0:199. By Proposition 6(c), we have y′′′ε (ξ) ≥�1:173, and therefore,

yε
j
n

� �

� Fn,ε yε
j� 1

n

� �� �

�
ε

n+
1

6n6 y′′′ε (ξ)

≥ Fn,ε yε
j� 1

n

� �� �

�
ε

n
�

1:173
6n6

≥
n� 1

n

� �

yε
j� 1

n

� � n
n�1

�
ε

n ≥
n� 1

n

� �

ρn
ε, j �

ε

n � ρ
n�1
ε, j+1, 

where the second inequality holds from Proposition 7(b), and in the third inequality, we use the inductive step.

Case 4. Suppose that ε ≤ 0:25 and j ≥ y�1
ε (xε)n+ 1. In particular, we have (j� 1)=n ≥ y�1

ε (xε) and yε((j� 1)=n) ≤ xε�
< 0:067. By Proposition 6(d), y′′′ε� is increasing in [y�1

ε (xε),φ(ε)], and therefore, y′′′ε (ξ) ≥ y′′′ε ((j� 1)=n). Then, we 
have

yε
j
n

� �

� Fn,ε yε
j� 1

n

� �� �

�
ε

n
+

1
6n6 y′′′ε (ξ)

≥ Fn,ε yε
j� 1

n

� �� �

�
ε

n+
1

6n6 y′′′ε
j� 1

n

� �

� Fn,ε yε
j� 1

n

� �� �

+
1

6n6 Mε yε
j� 1

n

� �� �

�
ε

n

≥
n� 1

n

� �

yε
j� 1

n

� � n
n�1

�
ε

n ≥
n� 1

n

� �

ρn
ε, j �

ε

n � ρ
n�1
ε, j+1, 

where the second inequality holds from Proposition 7(c), and in the third inequality, we use the inductive step.
Part (c) is a direct extension of Kertz [25, corollary 6.9]. Finally, we prove (d). By definition, recall that

φ(ε) �
Z 1

0

1
y(1� log(y)) + εdy:

We apply the change of variables x ��log(y) to get that

φ(ε) �
Z ∞

0

1
1+ x+ εexdx:

Note that the function f (x) � 1+ x� εex has a unique root in x ∈ [0,∞) that we denote rε�(i.e., f (rε) � 0). In particu-
lar, we have 1+ x ≥ εex for every x ≤ rε, and 1+ x ≤ εex for every x ≥ rε. Then, we have

Z rε

0

1
2(1+ x)dx ≤

Z rε

0

1
1+ x+ εexdx 
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and
Z ∞

rε

1
2εexdx ≤

Z ∞

rε

1
1+ x+ εexdx:

By adding both inequalities, we get
1
2

Z rε

0

1
1 + xdx +

Z ∞

rε

1
εexdx

� �

≤ φ(ε):

On the other hand, we have

φ(ε) ≤
Z rε

0

1
1 + x

dx +
Z ∞

rε

1
εexdx, 

and therefore, by evaluating the integrals, we have
1
2 log(1 + rε) +

exp(�rε)
ε

� �

≤ φ(ε) ≤ log(1 + rε) +
exp(�rε)
ε

:

Observe that rε � log(1+ rε) + log(1=ε), and therefore, rε ≥ log(1=ε). Furthermore, when ε�is sufficiently small, we 
have f (2 log(1=ε)) � 1+ 2 log(1=ε)� 1=ε < 0, and therefore, rε ≤ 2 log(1=ε). Then, for ε�sufficiently small, we have 
log(1=ε) ≤ rε ≤ 2 log(1=ε), which implies that

log 1+ log 1
ε

� �� �

+
exp �2 log 1

ε

� �� �

ε
≤ log(1+ rε) +

exp(�rε)
ε

≤ log 1+ 2 log 1
ε

� �� �

+
exp �log 1

ε

� �� �

ε
:

The result now follows from the fact that the leftmost expression is lower bounded as

log log 1
ε

� �

≤ log 1 + log 1
ε

� �� �

+
exp �2 log 1

ε

� �� �

ε
, 

and the rightmost is upper bounded as log 1+ 2 log 1
ε

� �� �
+

exp �log 1
ε( )( )

ε ≤ 2 log log 1
ε

� �
: w

We are now ready to prove Theorem 2. w

Proof of Theorem 2. Fix ε > 0 and consider the nontrivial case in which n ≥ 2. We begin with the first part of the 
theorem. By Lemma 4, it suffices to find the largest index j for which ρε, j is well-defined. Suppose for a contradic-
tion that, for some m ≥ φ(ε)n, ρε, m is well-defined, but (n� 1)ρn

ε, m� ε > 0: Define ε′ > 0 such that m=n � φ(ε′). 
Note that such an ε′ exists and ε′ ≤ ε�because φ�is monotone and continuous.

Claim 4. For every positive integer j, ρε′, j is well-defined when ρε, j is well-defined, and ρε′, j ≥ ρε, j.

Using Claim 4, we have
n� 1

n ρn
ε, m �

ε

n ≤
n� 1

n ρn
ε′, m �

ε′

n ≤ yε′ (φ(ε′)) � 0, 

where the second inequality holds by Lemma 5(b) and the final equality holds by Lemma 5(a). This yields a contra-
diction. To prove the claim, we consider an inductive argument. The claim clearly holds for j� 1, and assume that it 
holds for every k ≤ j� 1. If ρε, j is well-defined, that is (n� 1)ρn

ε, j�1� ε > 0, by the inductive step we have ρε′, j�1 ≥

ρε, j�1, and therefore,

(n� 1)ρn
ε′, j�1� ε

′ ≥ (n� 1)ρn
ε, j�1� ε > 0, 

meaning ρε′, j is also well-defined. Furthermore, in this case, we have

nρn�1
ε, j � (n� 1)ρn

ε, j�1� ε ≤ (n� 1)ρn
ε′, j�1� ε

′ � nρn�1
ε′, j , 

which implies that ρε′, j ≥ ρε, j.
By Lemma 5(d), we have φ(ε) �Θ(log log 1=ε). The second part of the theorem holds by Lemma 4 and Lemma 

5(c). This finishes the proof of the theorem. w
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Appendix
In this appendix, we show that, for sufficiently large values of m, we have 1� 2 log(m)=m ≤ A′m ≤ 1� log(m)=(3m). First, observe 
that the expected welfare with m buyers, obtained by a static price of T, can be lower bounded by the expected revenue, which is 
equal to T ·P(maxj∈{1: : : , m}Xj > T) � T(1�Tm). Then, the optimal welfare with static prices can be lower bounded by the revenue 
of the static price T?m that maximizes the expected revenue R(T) � T�Tm+1, which is equal to T?m � 1

m+1
� �1=m. In particular, the 

expected revenue with price T?m satisfies that

R(T?
m) � T?m � (T

?
m)

m+1
�

1
m+ 1

� �1=m
�

1
m+ 1

� �(m+1)=m
:

For every m ≥ 1, we have R(T?
m) ≥ R((1=m)1=m

) � (1=m)1=m
� (1=m)1+1=m, and we have (1=m)1+1=m

≤ 2=m. Therefore, R(T?m) ≥
(1=m)1=m

� 2=m. Furthermore, observe that (1=m)1=m
� exp(�log(m)=m) ≥ 1� log(m)=m, where the last inequality holds because 

exp(�x) ≥ 1� x for every x ≥ 0. Hence, we conclude that the optimal revenue is at least 1� log(m)=m� 2=m ≥ 1� 2 log(m)=m. 
For a given static price T>0, the expected welfare with m buyers is equal to

W(T) � (1�Tm)T+ (1�Tm)(1�T)=2 � 1
2 (1+T)(1�Tm) �

1
2

1
T+ 1
� �

R(T), 

and if T > T?m, we have R(T) < R(T?m), and therefore,

W(T) � 1
2

1
T+ 1
� �

R(T) < 1
2

1
T?m
+ 1

� �

R(T?m) �W(T?m):

Let Tm be the maximizer of the welfare W. The previous inequality implies that Tm ≤ T?m, and therefore,

w(T) � 1
2 (1+T?m)(1�T?m)

≤
1
2 (1+T?m) �

1
2 1+ 1

m+ 1

� �1=m
 !

≤ 1� log(m)
3m

, 

where the last inequality holds because the function f (x) � 1� log(x)
3x �

1
2 1+ 1

x+1
� �1=x

� �
is strictly decreasing in [1,∞)] and 

limx→∞ f (x) � 0.
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