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Abstract. Network pricing games provide a framework for modeling real-world settings
with two types of strategic agents: operators of a network and users of the network.
Operators of the network post a price so as to attract users andmaximize profit; users of the
network select routes based on these prices and congestion from other users. Motivated by
the fact that equilibrium in these games may not exist, may not be unique, and may induce
an inefficient network performance, our main result is to observe that a simple regulation
on the network owners’market solves these three issues. Specifically, if an authority could
set appropriate caps (upper bounds) on the tolls (prices) operators can charge, then the
game among the link operators has a unique and strong Nash equilibrium and the users’
game results in a Wardrop equilibrium that achieves the optimal total delay. We call any
price vector with these properties a great set of tolls and investigate the efficiency of great
tolls with respect to the users’ surplus. We derive a bicriteria bound that compares the
users’ surplus under great tolls with the users’ surplus under optimal tolls. Finally, we
consider two different extensions of the model. First, we assume that operators face
operating costs that depend on the amount of flow on the link, for which we prove ex-
istence of great tolls. Second, we allow operators to ownmore than one link. In this case, we
prove that, when operators own complementary links (i.e., links for which an increase in
toll value may only increase the flow on the other owned links), any toll vector that induces
the optimal flow and that is upper bounded by the marginal tolls is a great set of tolls, and
furthermore, we show that, when all links in the network are complementary, then the
aforementioned toll vector is also a strong cap equilibrium.
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1. Introduction
Network pricing games provide a framework for
modeling real-world settings with two types of stra-
tegic agents: operators of a network and users of the
network. Operators of the network post a price for
usage of the links they own so as to attract users and
maximize profit, and users of the network select routes
based on these prices and congestion from other
users. A landmark example of this type of interaction,
which sets the ground in which we describe our work,
occurs in transportation networks. Here, link owners

are road operators and may toll the usage of their road.
Users are travelers that seek to minimize their travel
time plus payments. The challenge in these games is
that there are two levels of competition: one among the
owners to attract users to their link so as to maximize
profit and second among users of the network to select
routes that are cheap yet not too congested.
In the absence of self-interested link owners, these

games reduce to the well-studied network conges-
tion games—a widely accepted and practically useful
model for selfish resource allocation in transportation
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andcommunicationnetworks (see, e.g., Beckmann et al.
1956, Roughgarden 2005, Correa and Stier-Moses
2011, and references therein). In congestion games,
self-interested users travel in a network from their
origin to their destinationwith the goal ofminimizing
their own travel cost. The natural solution concept of
the game is the so-called Wardrop equilibrium flow,
under which all users route along the shortest paths
given the strategic choices of other users. We assume
that the total amount of traffic is dependent on the
disutility the users experience—a model also known
as congestion games with elastic demand.

Because selfish behavior usually drives systems to
socially inefficient situations, a central authority is
typically interested in optimizing the social welfare
for the network users—a task that can be implemented
by setting appropriate marginal tolls (Beckmann et al.
1956), which simply charge each user the negative
externality the user imposes on the system. However,
the goal of the link owners is to set tolls so as to attract
users and maximize their own profit. Imagine a link
owner increasing the price. Clearly, some of the users
will move to alternative routes, thereby increasing the
congestion on these routes and making them less
attractive. This implies that link owners have an in-
centive to set a price that is higher than what is socially
desired and thereby introduce new inefficiencies. For
instance, under marginal tolls, some operators may
want to increase their toll in order to make a higher
profit. In this regard, an equilibrium for the link owners
is a toll vector such that a change in a single toll does not
increase the profit of the corresponding toll operator
(under the implied user Wardrop equilibrium flow).

In this more complex game-theoretic environment,
(i) an equilibrium may fail to exist (the only case in
which an equilibrium is proved to exist is in parallel
link networks with affine latency functions; see, e.g.,
Acemoglu and Ozdaglar 2007a, Hayrapetyan et al.

2007, Harks et al. 2019); (ii) an equilibrium might not
be unique (see, e.g., Acemoglu and Ozdaglar 2007b,
Harks et al. 2019); and (iii) the total delay of the
equilibrium flow can be arbitrarily higher than the
optimal delay, implying that the network can behave
arbitrarily worse than the case in which tolls are
completely absent (see, e.g., Acemoglu and Ozdaglar
2007b, Harks et al. 2019).
In the face of these challenges, we set out to find

ways to mitigate the effect of selfish toll-operator
behavior. We introduce competition regulation by
allowing a regulator to set specific price caps on the
toll values that each toll operator can set on a link.
Setting different price caps for different operators is
consistent with the practice in some privately oper-
ated networks of highways. For example, in Santiago
de Chile, there are currently 12 different operators
who set tolls on different urban highways as shown
in Figure 1. The current regulation sets a price cap
that is unique to each highway, and the toll operators
are allowed to set tolls upper bounded by the caps
(Gonzalez 2016). As it turns out, introducing such
regulation can resolve all of the previouslymentioned
issues as there are caps for which the game has a
unique (strong) Nash equilibrium under which the
Wardrop equilibrium is optimal.

1.1. Contribution
Because the unregulated network pricing game be-
haves so poorly, in Section 3, we set out to study a
simple mechanism that improves it. In particular, we
investigate the regulatory policy of setting upper
bounds (caps) on the toll values that each operator
is allowed to set. Note that there is a tension between
the toll charged by the operator and the amount of
flow the operator will get. It is plausible for a toll
operator to gain from decreasing a toll because the
link will attract more flow, which may result in an

Figure 1. (Color online) Privately Operated Highways in Santiago de Chile

Note. Each highway has its own toll cap.
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overall higher profit. For large enough caps, it indeed
happens that it is optimal for the operator to set a toll
upper bounded by the cap. Ourmain result, Theorem 1,
shows that, when the central planner chooses the
marginal tolls as caps, then the unique Nash equi-
librium for the operators is to set the tolls equal to the
caps, which is known to induce the optimal flow as a
Wardrop equilibrium. Inwhat follows, any toll vector
that induces the optimal flow as a Wardop equilib-
rium is called an optimal toll. Under this definition,
the theorem shows something stronger: any optimal
cap vector upper bounded by the marginal tolls when
chosen as toll caps leads to a uniqueNash equilibrium
in which every operator charges precisely the cap.
Moreover, we show this equilibrium is robust to
coalitions, a concept known as strong Nash equilibrium.
We show that, even though the flow on a given link
is a decreasing function of the toll on that link (as we
show in Lemma 1), the profit of the toll operator as
a function of the toll the operator charges is an in-
creasing function up to a certain point (Lemma 2),
which is a key tool to prove Theorem 1.

Inspired by Theorem 1, we study great tolls in more
detail in Section 4. These are optimal toll vectors and,
when they are set as caps, are themselves the unique
Nash equilibrium. It is easy to observe that, given an
optimal flow, if, for every commodity, there are some
users that do not travel, then great tolls are unique.
However, there are also simple examples in which
great tolls are not unique. A basic question to ask is
how efficient great tolls are with respect to the users’
surplus. Note that the users’ total delay under great
tolls is fixed because all great tolls are optimal; thus,
our question is equivalent to that of finding great tolls
that minimize the total payments. By the results in
Section 3, any optimal toll vector that is upper bounded
by the marginal toll vector is a great set of tolls. As a
benchmark, we use the minimum payment tolls (MPT),
defined as those tolls that, among the optimal ones,
minimize the total payments. Minimum payment
tolls, just as great tolls upper bounded by the mar-
ginal tolls, can be computed by a linear program. On
the negative side, we give an example that shows the
users’ surplus under great tolls can be arbitrarily
worse than the optimal users’ surplus. On the positive
side, we prove that the users’ surplus under great tolls
is at least as high as the optimal surplus if each user has
no less than half the original valuation (Theorem 2).

In Section 5, we study two different extensions of
ourmodel. First, we consider the setting inwhich each
of the operators faces operating costs for maintaining
the link. We prove that the main result, the existence
of great tolls, is still valid. However, if toll caps are too
low or operating costs are too high, there might be
links for which the profit in the Nash equilibrium
is negative.

Second, we study the setting in which operators are
allowed to own more than one link. We start by
showing that, for instances in which players own
complementary links, that is, links for which an increase
of the toll value in one of them may only increase the
flow on the other (complementary) links, any optimal
tolls upper bounded by the marginal tolls are great
tolls (Theorem 5). Intuitively, this holds because an
operator that operates a single link has an incentive to
use the upper bound as a toll, and this incentive re-
mains if, by doing so, the operator only gains more
flow on the operator’s other links and, thus, only
gains more profit. Then, we show that, when all the
links are complementary, for example, in a parallel
link network, such tolls are additionally a strong
Nash equilibrium for the operators (Theorem 6). Fi-
nally, we show that Theorems 5 and 6 are essentially
tight by providing two examples.

1.2. Related Work
Acemoglu andOzdaglar (2007a) introduce amodel of
price competition between link operators in which
each user has some fixed reservation value for travel.
They show that increasing competition among op-
erators from a monopoly to an oligopoly may cause a
reduction in efficiency, measured as the difference
between the users’ willingness to pay and the delay,
and provide a (tight) bound on efficiency in pure
strategy equilibria. In a follow-up work, Acemoglu
and Ozdaglar (2007b) generalize the preceding study
to slightly more general topologies in which parallel
paths with multiple links may replace the parallel links.
They show that even this slight generalization can make
the game arbitrarily inefficient when the efficiency is
measured as mentioned.
Hayrapetyan et al. (2007) consider instances on

parallel links in which the demand to be routed is
elastic and decreases in a concave way as the cost for
using the network increases. The social cost in that
work is the sum of the players’ profits plus a term
that represents the utility gathered by the traffic that
gets routed with a nice trade-off occurring between
these two terms. For that game, they show that, in a
network with parallel links and linear latencies, there
is always a pure Nash equilibrium with the price of
anarchy, that is, the measure for inefficiency, being
bounded by a constant factor even when the latency
functions are relaxed to be convex. For the case in
which latencies have zero value under zero flow, they
improve the constant.
Following that work, Ozdaglar (2008) studies the

same model and manages to prove tight bounds on
the efficiency of that game. Musacchio (2009) and
Musacchio and Wu (2007) rederive and generalize
those (upper) bounds for the case of series-parallel
networks via a connection to electrical circuits; see
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the survey by Ozdaglar and Srikant (2007) for further
discussion. Johari et al. (2010) study an extension of
network pricing games inwhich operators compete in
prices and investments.

Harks et al. (2019) use a very similar policy to
regulate competition between link operators. There, a
regulator is able to set a unique price cap for all link
operators. As it turns out, this restricts the regulator
so that the induced network performance is not al-
ways optimal. For two-link parallel networks, this
reduction in performance is characterized for dif-
ferent classes of latency function.

Our price competition model corresponds to Ber-
trand competition in a network setting (Dixon 2001,
chapter 6). Under this setting Chawla et al. (2008)
address questions regarding the price of anarchy and
of stability with respect to two objectives: the social
welfare of all the players (users and sellers) and the
total profit obtained by all the sellers. Their work only
considers capacity-based congestion (this corresponds
to latency functions that are identically zero until ca-
pacity is reached and then jump to infinity), and no
regulation is imposed on the game. Their results show a
dependence of the price of anarchy or stability on the
number of monopolistic links, namely the links whose
removal disconnects an origin–destination pair. In
contrast, our model does not suffer from monopolies:
setting caps on prices prevents monopolistic links
from charging arbitrarily large prices. Following the
same model and focusing on the social welfare of the
consumers as the objective, Chawla and Niu (2009)
extend the results of Chawla et al. (2008).

An interesting and related model is raised by
Anshelevich and Sekar (2015). They consider the
edges of a network as goods, and each edge is owned
by a different profit-maximizing seller. In the first
stage of the game, sellers set prices for the use of their
edges and have production costs depending on the
level of use. In the second stage, the users of the net-
work, that is, the buyers, choose origin-to-destination
paths so that each of themmaximizes the buyer’s utility
minus the payments to the sellers. The main differ-
ence with the model presented here is that users
impose an externality on the sellers via the production
costs and not on the other users as is the case in our
model. This crucially affects the equilibrium pricing
and the social welfare (e.g., for single commodity
networks, if no monopolies are present, there is al-
ways an optimal equilibrium, which is not the case in
our model).

In other related work, Papadimitriou and Valiant
(2010) consider the case in which the routing is no
longer selfish but is controlled by the edges of the
network, and each edge either minimizes its average
latency or announces a suitable price to its neighbors
in order tomaximize its profit. Caragiannis et al. (2017)

consider a model of buyers and sellers of a similar
product, which, under some reformulation, can be seen
as a variant of the parallel links model of Acemoglu
and Ozdaglar (2007a) with heterogeneous buyers but
constant latencies. Instead of minimizing traffic costs,
maximizing the profit from tolls is considered in
Kuiteing et al. (2016), Castelli et al. (2017), and Briest
et al. (2012). There, a central authority or unique
owner has control of all the toll-able edges, yet more
importantly, the edge costs are constants rather than
flow-dependent. Recently, Schmand et al. (2019) con-
sider a two-stage game inwhich operators compete in
investments so as to increase the bandwith of a link to
attract users.
The study of network congestion games in which a

central operator is allowed to charge tolls in order to
improve efficiency has a long history, starting with
Beckmann et al. (1956). Cole et al. (2003) and Fleischer
(2005) provide upper bounds on tolls that induce the
optimal flow as an equilibrium, and Dial (1999) con-
siders the objective of minimizing users’ payments
among optimal flow-inducing tolls. The study of
network user games in which, for each link, a (po-
tentially adversarially chosen) upper bound on the toll
is present was first considered by Bonifaci et al. (2011)
and later by Jelinek et al. (2014) and Fotakis et al.
(2015). Results in these papers show that, when upper
bounds are present, optimality cannot, in general, be
achieved, yet on the positive side, algorithms are
proposedunder rather restrictive settingswith provable
guarantees regarding the efficiency of the network.
The transportation literature also addresses ques-

tions regarding the pricing of privately operated
roads in transportation networks. A recent stream of
papers focuses on the so-called build-operate-transfer
scheme in which private investors build and operate
roads at their own expense and, in return, receive the
revenue from tolls charged within some years, after
which the roads are transferred to the government.
See, for example, Yang and Meng (2000), Yang et al.
(2002), and Meng and Lu (2017).

2. Preliminaries
We study a network pricing game, in which non-
atomic players, which we call users, selfishly mini-
mize their cost (delays plus tolls) across a network; on
top of this, each network link is operated by a dif-
ferent selfish agent that maximizes profit by charging
tolls on users traversing the agent’s link.

2.1. The Network Users’ Game: Selfish Routing
LetG ! (V,E)be a networkwithV the set of nodes and
E the set of directed edges/links of the network. We
consider a multicommodity flow instance described
by origin–destination node pairs {(ok, dk)}k∈K for a fi-
nite set of commodities K. For each commodity k,
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we assume that the total amount of traffic is depen-
dent on the costs the traffic experiences; the higher
the costs, the lower the traffic. We analyze the elas-
tic traffic demand model as introduced by Beckmann
et al. (1956) and later used for network pricing games
by Hayrapetyan et al. (2007) and Ozdaglar (2008).
We model elastic demand with a utility function uk :
[0,rk]→R+ for each k ∈ K, where uk(x) captures the
reservation value for travel of the particle of the de-
mand (i.e., the infinitesimally small user) at level x
and rk ∈ R+ is the maximum demand of commodity k.
We assume that uk(·) is nonincreasing and continuous
for each k ∈ K so that, in a sense, the users are ordered
decreasingly according to their utility for traveling. Let
u ! (uk)k∈K be thevector of all utility functions.Define the
aggregate utility function Uk : [0, rk] → R+ by Uk(x) !∫ x
0 uk(y) dy. By definition, this function is nonde-
creasing, concave, and continuously differentiable.

For each link e ∈ E, there is a latency function
!e : R+ → R+, that represents the delay experienced
by users traversing this link as a function of the total
flow on the link. We assume this function to be
nondecreasing, convex, and smooth.

2.1.1. Paths and Flows. For each commodity k ∈ K, let
Pk denote the set of ok − dk paths and let P ! ∪kPk be
the union of all these paths. A flow for commodity k is a
nonnegative vector xk ! (xkP)P∈Pk such that ∑P∈Pk xkP ≤ rk.
For each commodity k ∈ K, let r kx ! ∑

P∈Pk xkP be the
amount of flow that is routed on the network by xk. A
flow x is a vector (xk)k∈K, where each xk is a flow for
commodity k. Let X denote the set of all flows. For a
flow x ∈ X and e ∈ E, let xke !

∑
P∈Pk :e∈P xkP be the amount

of flow that xk routes on each link e and let xe ! ∑
k∈K xke

be the amount of flow that x routes on e. With a slight
abuse of notation, we also denote x ! (xe)e∈E, the link-
wise description of a flow.

2.1.2. Wardrop Equilibria and Optimal Flows. Given a
flow x ∈ X, the delay experienced on e is !e(xe). In the
case a toll te ≥ 0 is charged for link usage, the com-
bined cost of traversing e is [!e(xe) + α · te], where α > 0
represents the trade-off factor between delay and tolls
and is assumed to be identical for all users. Without
loss of generality (w.l.o.g.), we can assume α to be
equal to one because we can always divide all tolls by
α. A flow x ∈ X is aWardrop equilibrium if all the routed
traffic goes through shortest paths for the respective
commodity, the utility for each traveling user is at
least equal to the common shortest path cost of the
user’s commodity, and the utility of each user not
traveling is at most equal to the common shortest
path cost of the user’s commodity. Formally, for
every k, for every path P ∈ Pk with xkP > 0, and every
path P′ ∈ Pk, ∑

e∈P[!e(xe) + te] ≤ ∑
e∈P′[!e(xe) + te] and

∑
e∈P[!e(xe) + te]≤uk(rkx)with r kx ! rk if∑e∈P[!e(xe) + te] <

uk(r kx ). Given such a flow, any ok − dk path achieving
the minimum end-to-end cost is called an active path,
and any link that belongs to an active path is called an
active link.
For any toll vector t ≥ 0, a Wardrop equilibrium

exists; moreover, it minimizes the convex Wardrop
potential Φt(x) (Beckmann et al. 1956) and, thus, is
given by

x t( )≜ argmax
x∈X

∑

k∈K
Uk r kx

( ) −
∑

e∈E

{ ∫ xe

0
!e y
( ) + te

( )
dy

}
.

(1)
We restrict attention to instances in which the War-
drop equilibrium is unique for all t ≥ 0. In particular,
this can be achieved by assuming that !e(x) is strictly
increasing for all e ∈ E or by assuming that there is
no pair of paths with common endpoints and con-
stant latency. In particular, (xe(t))e∈E is a well-defined
function that is moreover continuous by Berge’s
(1963) theorem.
Given a flow x ∈ X and toll vector t, define the total

users’ cost by C(x, t) ! ∑
e∈E[!e(xe) + te]xe and the users’

surplus (or consumer surplus) by

CS x, t,u( ) !
∑

k∈K
Uk r kx

( ) − C x, t( ).

We define the social welfare by

SW x,u( ) !
∑

k∈K
Uk r kx

( ) −
∑

e∈E
!e xe( ) · xe.

Notice that the social welfare is simply the users’
surplus plus the toll operators’ profits, yet the tolls do
not appear in the definition as they are transfers from
users to toll operators.
An optimal flow x∗(u) is a flow that maximizes the

social welfare with respect to (w.r.t.) u. The classical
result by Beckmann et al. (1956) shows that a flow
x∗(u) is an optimal flow if and only if x∗(u) ! x(t̂(u)),
where t̂e(u) ! x∗e (u)!′e(x∗e (u)): the toll vector t̂ is known
as the marginal tolls. By our assumptions on the la-
tency functions, optimal flows are unique. Any toll
vector that induces the optimal flow is called optimal.

2.2. The Network Operators’ Game: Price
Competition on Tolls

In our model, additionally, every link e ∈ E is oper-
ated by a different operator: these are the players of
the price competition game. Each player e is allowed
to charge a nonnegative toll te for the usage of the
player’s link. Under the resulting toll vector t, each
link gets flow xe(t) according to the inducedWardrop
equilibrium, and thus, the profit of player e is given by
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πe(t)≜ texe(t). We are interested in the equilibrium
outcomes of this game.

2.2.1. Profit Functions. For each player e ∈ E, strategy
is given by toll te, and profit is given by πe(te, t−e) !
texe(te, t−e), where we use the standard game-theoretic
notation t ! (te, t−e).

2.2.2. Regulated Network Pricing Game and Nash
Equilibria. The regulated network pricing game we
consider is the following. A central planner may
choose a cap vector t̄ ≥ 0 for tolls, and each player
wants to maximize the player’s own profit under this
constraint. We study two solution concepts: (pure)
Nash equilibrium and strong (pure) Nash equilib-
rium. Tolls t are a Nash equilibrium for the network
pricing game if, for every e ∈ E, te is the best response
of player e to t−e; that is, we have te ∈ BRe(t−e), where
the best response mapping BRe(t−e) is defined as

BRe t−e( )≜ argmax πe se, t−e( ) : 0 ≤ se ≤ t̄e
{ }

.

Tolls t are a strong Nash equilibrium if there is no
coalition that jointly decides for a deviation so that
all operators in the coalition increase their profit
(Aumann 1959). Formally, tolls t are a strong Nash
equilibrium if, for any set E∆ ⊆ E, there exists no t′
with {e ∈ E : t′e +! te} ⊆ E∆ such that πe(t′) > πe(t) for all
e ∈ E∆. Notice that any strong Nash equilibrium is a
Nash equilibrium.

Definition 1 (Cap Equilibrium and Great Tolls). Given an
instance of the profit maximization game, we say that a
nonnegative vector t̄ ! (t̄e)e∈E is

a. A (strong) cap equilibrium if, when restricting the
strategy space for every player e to tolls se ∈ [0, t̄e], then
(se)e∈E ! (t̄e)e∈E is the unique (strong) Nash equilibrium.

b. A great set of tolls if it is optimal (i.e., induces the
optimal flow) and a cap equilibrium.

3. Regulated Network Pricing Game
In this section, we study the regulated profit-maximization
game and some of its structural properties. We prove
that themarginal tolls, when used as caps, are always a
Nash equilibrium for the profit-maximization game,
thus resolving the issues of equilibrium existence,
uniqueness, and inefficiency raised in the literature.
Our main result, presented in Theorem 1, strengthens
this by showing that a potentially larger set of optimal
tolls, when used as caps, leads to a unique Nash equi-
librium, which is, furthermore, robust to coalitions.

We start the section by proving two monotonicity
properties of the Wardrop flow as a function of tolls.
These properties are related to the lower level game.

Lemma 1. Let t, t′ ≥ 0 be two toll vectors such that t ≤ t′
and E< ≜ {e ∈ E : te < t′e} is nonempty. Then, there exist e1,
e2 ∈ E< such that
i. xe1(t′) ≤ xe1(t).
ii. [xe2(t′)−xe2(t)][!e2(xe2(t′))+t′e2 −!e2(xe2(t))−te2]≤0.

Proof. To prove (i), we compare flows x(t) and x(t′)
with respect to the Wardrop potentials. By the opti-
mality of the Wardrop flow on its respective potential,
we get the following inequalities:

∑

k∈K
Uk rkx(t)

( )
−
∑

e∈E

∫ xe t( )

0
!e x( ) + te( ) dx

≥
∑

k∈K
Uk rkx(t′)

( )
−
∑

e∈E

∫ xe t′( )

0
!e x( ) + te( ) dx

∑

k∈K
Uk rkx(t′)

( )
−
∑

e∈E

∫ xe t′( )

0
!e x( ) + t′e
( )

dx

≥
∑

k∈K
Uk rkx(t)

( )
−
∑

e∈E

∫ xe t( )

0
!e x( ) + t′e
( )

dx.

Combining these inequalities, we get

∑

e∈E<

t′e − te
[ ]

xe t( ) − xe t′( )[ ] ≥ 0,

and thus, because E< is nonempty, there must exist an
e1 ∈ E< such that xe1(t′) ≤ xe1(t), proving (i).
Let us now prove (ii). Notice that, because x(t) +

(x(t′) − x(t)) ! x(t′) is a feasible flow, then x(t′) − x(t)
is a feasible direction for x(t) in the space of feasible
flows. By the first order optimality conditions of the
Wardrop potential,

∑

k∈K

∑

P∈Pk

uk rkx(t)
( )

−
∑

e∈P
!e xe t( )( ) + te[ ]

[ ]

× xkP t′( ) − xkP t( ))
[ ] ≤ 0.

Analogously, x(t) − x(t′) is a feasible direction for x(t′),
and thus,

∑

k∈K

∑

P∈Pk

uk rkx(t′)
( )

−
∑

e∈P
!e xe t′( )( ) + t′e
[ ]

[ ]

× xkP t( ) − xkP t′( )
[ ] ≤ 0.

Adding up these inequalities and using that, for any
two flows y, z, we have

∑

k∈K

∑

P∈Pk

ykP ·
∑

e∈P
!e ze( ) + te( )

[ ]
!
∑

e∈E
ye · !e ze( ) + te( )
[ ]

,
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we obtain
∑

k∈K
rkx(t′) − rkx(t)
[ ]

uk rkx(t)
( )

− uk rkx(t′)
( )[ ]

+
∑

e∈E!
xe t′( ) − xe t( )[ ] !e xe t′( )( ) − !e xe t( )( )[ ]

+
∑

e∈E<

xe t′( ) − xe t( )[ ] !e xe t′( )( ) + t′e
[

− !e xe t( )( ) − te] ≤ 0,

where E! ≜ {e ∈ E : te ! t′e}. Observe now that the first
and second summation terms are nonnegative as uk
is decreasing for all k and !e is noncreasing for all e.
Thus, ∑

e∈E<[xe(t′) − xe(t)][!e(xe(t′)) + t′e − !e(xe(t)) −
te] ≤ 0, implying that there exists e2 ∈ E< such that
[xe2(t′) − xe2(t)][!e2(xe2(t′)) + t′e2 − !e2(xe2(t)) − te2] ≤ 0,
proving (ii). □

The following result gives an intriguing inequality
satisfied by any profit-maximizing toll. It says that
in a (local) maximum, the toll is at least as high as the
induced marginal costs of the users. The interpreta-
tion of this result is that firms have an incentive to
increase prices above what is socially desired because
of the congestion effects of the users. This property is
a consequence of the first order optimality condi-
tions, in combination with the monotonicity prop-
erties stated.We later see that this lemma is crucial for
our main result.

Lemma 2. Let t ≥ 0 be a toll vector. If te is a local optimum
for the profit-maximization problem (that is, for objective
πe(·, t−e)), then xe(t) · !′e(xe(t)) ≤ te.

Proof. Notice first that, in the case xe(t) ! 0, the result
obviously holds, and thus, we may restrict ourselves to
the case xe(t) > 0. By continuity of the induced War-
drop flow, te ! 0 is not a local maximizer. Also by
continuity and te being a local maximizer, there exists a
δ > 0 so that 0 < xe(se, t−e) < xe(t) for any se ∈ (te, te + δ).

Now, because te is a local maximizer, we can use
the first-order optimality conditions,D+[πe(te, t−e)] ≤ 0,
where D+[ f (x)]≜ lim suph→0+

f (x+h)−f (x)
h is the upper

right Dini derivative. Using the linearity of Dini deriv-
atives, we get

xe t( ) + teD+ xe t( )[ ] ! D+ πe te, t−e( )[ ] ≤ 0. (2)

On the other hand, because xe(se, t−e) < xe(t) for any se ∈
(te, te + δ), by Lemma 1(ii), we have that [!e(xe(se, t−e)) +
se − !e(xe(t)) − te]/[xe(se, t−e) − xe(t)] ≤ 0. After rearrang-
ing terms, we get

!e xe se, t−e( )( ) − !e xe t( )( )
xe se, t−e( ) − xe t( ) ≤ − se − te

xe se, t−e( ) − xe t( ) .

Taking lim supse→t+e
in the expression, we get that

the left-hand side converges to !′e(xe(t)), whereas the

right-hand side converges to −(D+[xe(t)])−1. Because
D+[xe(t)]<0, we conclude that !′e(xe(t))≤−1/D+[xe(t)].
This, in combination with (2), gives

xe t( )!′e xe t( )( ) ≤ − xe t( )
D+ xe t( )[ ] ≤ te,

which proves the result. □

Our main result shows a strong consequence of the
preceding lemma. All optimal tolls upper bounded by
themarginal tolls, when used as caps, lead to a unique
(strong) Nash equilibrium and, thus, are great tolls.

Theorem 1. Let t̄ be an optimal toll vector with t̄ ≤ t̂, where
t̂e(u) ! x∗e (u)!′e(x∗e (u)). Then, t̄ is a (strong) cap equilibrium.

Remark 1. Our proof shows a property that is stronger
than a strong Nash equilibrium. In fact, what we prove
is that, for any E∆ ⊆ E, there exists no t′ with {e ∈ E :
t′e +! te} ⊆ E∆ such that πe(t′) ≥ πe(t) for all e ∈ E∆ with
at least one strict inequality. This property clearly
implies the classical notion of strong Nash equilibrium
stated in Section 2, but we believe it might be of in-
dependent interest. The same stronger property is
proved in Theorems 4 and 6.

Proof. First, we prove that t̄ is a strong Nash equi-
librium. By way of contradiction, let E∆ be a set of links
and t ≤ t̄ with e ∈ E< ≜ {e ∈ E : te < t̄e} ⊆ E∆ such that
πe(t) ≥ πe(t̄) for all e ∈ E∆ with at least one strict in-
equality. Then, for all e ∈ E<, we have texe(t) ≥ t̄exe(t̄),
which implies xe(t) > xe(t̄) and

te ≥
t̄exe t̄

( )

xe t( ) . (3)

By Lemma 1(ii), there exists e ∈ E< such that [xe(t̄)−
xe(t)][!e(xe(t̄)) + t̄e − !e(xe(t)) − te] ≤ 0, which, in com-
bination with xe(t) > xe(t̄), gives

!e xe t̄
( )( ) + t̄e ≥ !e xe t( )( ) + te. (4)

Let e ∈ E< be a link satisfying (4). We have the fol-
lowing inequalities:

!′e xe t̄
( )( )

xe t( ) − xe t̄
( )( ) ≤ !e xe t( )( ) − !e xe t̄

( )( )

≤ t̄e − te ≤ t̄e 1 − xe t̄
( )

xe t( )

( )
, (5)

where the first inequality follows from the convexity
of !e, the second from (4), and the third from (3).
Because t̄e ≤ t̂e ! !′e(xe(t̄))xe(t̄) as t̄ is optimal, we obtain
from (5) that

!′e xe t̄
( )( )

xe t( ) − xe t̄
( )( ) ≤ !′e xe t̄

( )( )
xe t̄
( ) xe t( ) − xe t̄

( )

xe t( )

( )
.
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Because !′e(xe(t̄)) > 0 and xe(t) > xe(t̄), we conclude
that xe(t) ≤ xe(t̄), a contradiction.

Now, we show that there is a unique Nash equi-
librium. By way of contradiction, suppose there exists
another Nash equilibrium t ≤ t̄ (with at least one strict
inequality) for the profit-maximization game with caps
t̄. Because all players are playing their best response,
we can use Lemma 2, concluding that xe(t)!′e(xe(t)) ≤ te
for all e ∈ E< (which is nonempty by assumption),
which, in turn, gives

xe t( )!′e xe t( )( ) ≤ te < t̄e ≤ t̂e ! x∗e !′e x∗e
( )

,

concluding that xe(t) < x∗e ! xe(t̄) for all e ∈ E<. But,
fromLemma 1(i), there exists e1 ∈ E< such that xe1(t) ≥
xe1(t̄), a contradiction. □

Remark 2. If, for an optimal flow, we have that, for
every commodity, there are some users that travel and
some users that do not travel, then marginal tolls are
the unique optimal toll vector and, thus, the unique toll
vector that satisfies the condition of Theorem 1. Oth-
erwise, theremight bemultiple optimal toll vectors.We
refer to Appendix A for a related discussion on the
linear program MPT, whose feasible set is all optimal
toll vectors, and its solution minimizes the users’
surplus at equilibrium.

4. Maximizing Consumer Surplus
We now consider the question of how efficient great
tolls are with respect to consumer surplus. The main
result in this section, Theorem 2, only applies to
single-source, single-sink networks, and thus, we
restrict ourselves to these instances and omit any
dependence on k ∈ K.

In what follows, we compare the maximum con-
sumer surplus of an optimal toll vector upper bounded
by the marginal tolls (this is a great set of tolls by
Theorem 1) to the maximum consumer surplus of any
optimal toll vector. Among all optimal toll vectors, let
tM be the one that maximizes consumer surplus, and
let t B be the one that maximizes consumer surplus
restricted to being upper bounded by the marginal
tolls. Both these toll vectors can be calculated by
means of a linear program, that is, linear programs
Below Marginal Tolls (BMT) and Minimum Payment
Tolls (MPT) inAppendix A for t B and tM, respectively,
and in general, they may differ. The following example
shows that the consumer surplus under t B can be ar-
bitrarily lower than the consumer surplus under tM.

Example 1. Consider the Braess network of Figure 2
with r units of flow to be routed and u(x) ! 2r for
x ∈ [0, r].

An optimal flow in this case is to split the demand
into half on the upper and half on the lower path; in

particular, no flow traverses the middle uv link.
This way, marginal tolls are given by (t̂ou, t̂uv, t̂vd) !
(r/2, 0, r/2), and notice that this is the only feasible toll
vector that satisfies the conditions of Theorem 1,
achieving a value of 2r2 − 2r2 ! 0. On the other hand, it
is easy to see that the consumer surplus–maximizing
optimal toll vector just needs to assign a sufficiently
large value for tuv (more precisely, tuv ≥ r/2), and the
rest of the tolls can be zero; therefore, the optimal
consumer surplus is 2r2 − 3r2/2 ! r2/2.
The main result of this section is a comparison in

the spirit of the bicriteria bound of Roughgarden and
Tardos (2002): by how much should we decrease the
utility function in order to induce the same level of
consumer surplus when comparing t B to tM? A
consequence of this result is that the consumers’
surplus under t B is at least as much as the optimal
surplus if each of them had half the valuation.
For particular values of the parameter β ∈ [1,∞) in

the next theorem, we refer to Theorems A.1 and A.2.
For the proof of Theorem 2 we need the following
lemma. The proof of Lemma 3 can be found in Ap-
pendix A.

Lemma 3. Let ũ and u be utility functions so that ũ(x) !
α · u(x), where 0 < α ≤ 1. Then,
i. rx∗(u) ≥ rx∗(ũ).
ii. CS(x∗(u), t B,u) ≥ CS(x∗(ũ), t B, ũ).
iii. CS(x∗(u), tM,u) ≥ CS(x∗(ũ), tM, ũ).

Theorem 2. Let C(x∗(u), t B) ≤ β · C(x∗(u), tM) for some
β ∈ [1,∞). Then,

CS x∗ u( ), t B, u
( ) ≥ CS x∗ ũ( ), tM, ũ

( )
,

where ũ(x) ! β/(2β − 1) · u(x).

Proof. By the optimalflow characterization of Beckmann
et al. (1956), we have that rx∗(u) < r for all u with
C(x∗(u), t̂)> r ·u(r) and rx∗(u)! r for all uwithC(x∗(u), t̂)≤
r ·u(r).
We consider the following three cases: (1) u(r)<

C(x∗(u),t̂)/r, (2) C(x∗(u),t̂)/r≤u(r)<(2β−1)/β·C(x∗(u),t̂)/r,
and (3) u(r)≥ (2β − 1)/β · C(x∗(u), t̂)/r.

Figure 2. (Color online) The Network of Example 1
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Case 1. Assume that u(r)<C(x∗(u), t̂)/r. Then, rx∗(u) < r,
and thus,

CS x∗ u( ), t B,u
( ) ! CS x∗ u( ), tM,u

( )

≥ CS x∗ ũ( ), tM, ũ
( )

,

where the equality follows because CS(x∗(u), t, u) !
U(rx∗(u)) − rx∗(u) · u(rx∗(u)) for all optimal t and the in-
equality by Lemma 3.

Case 2. Assume that C(x∗(u), t̂)/r≤ u(r)< (2β−1)/β·
C(x∗(u), t̂)/r. Then, rx∗(u) ! r, and because ũ(r) !
β/(2β − 1) · u(r) < C(x∗(u), t̂)/r, we have rx∗(ũ) < r. Thus,

CS x∗ u( ), t B,u
( ) ≥ CS x∗ ũ( ), t B, ũ

( )

! CS x∗ ũ( ), tM, ũ
( )

,

where the inequality follows by Lemma 3 and the
equality because CS(x∗(u),t,u)!U(rx∗(u))− rx∗(u) ·u(rx∗(u))
for all optimal t.

Case 3. Assume that u(r) ≥ (2β − 1)/β · C(x∗(u), t̂)/r.
Then, rx∗(u) ! r, and because ũ(r) ! β/(2β − 1) · u(r) ≥
C(x∗(u), t̂)/r, we have rx∗(ũ) ! r. Thus,

C x∗ u( ), t B
( ) − C x∗ u( ), tM

( )

≤ 1 − 1
β

( )
· C x∗ u( ), t B

( )

≤ 1 − 1
β

( )
· C x∗ u( ), t̂

( )

≤ r · β − 1
2β − 1

· u r( ) −
∫ r

0
u x( )dx +

∫ r

0
u x( )dx

≤ −
∫ r

0

β
2β − 1

· u x( )dx +
∫ r

0
u x( )dx

! −
∫ r

0
ũ x( )dx +

∫ r

0
u x( )dx ! U r( ) − Ũ r( ),

where the first inequality follows from C(x∗(u), t B) ≤
β · C(x∗(u), tM), which is true by assumption; the
second from C(x∗(u), t B) ≤ C(x∗(u), t̂); the third from
β/(2β − 1) · u(r) ≥ C(x∗(u), t̂)/r; and the fourth from r ·
u(r) ≤

∫ r
0 u(x)dx and the definition of ũ(x). Rear-

ranging terms yields

CS x∗ u( ), t B,u
( ) ≥ Ũ r( ) − C x∗ u( ), tM

( )

! Ũ r( ) − C x∗ ũ( ), tM
( )

! CS x∗ ũ( ), tM, ũ
( )

,

as needed. □

Remark 3. Theorem 2 cannot be extended to multi-
commodity networks. Consider, for example, the net-
work of Figure 3. Commodities o − d1, o − d2 have a
maximum demand of one. If u1(x) ! 8 for x ∈ [0, 1] and
u2(x) ! 4 for x ∈ [0, 1], then the optimal flow is 3/4 for

commodity 1 and one for commodity 2. The unique
optimal toll vector is (3/4, 7/4), inducing a consumer
surplus of 1/2.
If u1(x) ! 4 for x ∈ [0, 1] and u2(x) ! 2 for x ∈ [0, 1],

then the optimal flow is zero for commodity 1 and one
for commodity 2. The unique optimal toll vector is
(0, 0), inducing a consumer surplus of one.

5. Extensions
In this last section, we consider two different exten-
sions of our model. First, we study an extension in
which operators face operating costs. The main result
states that any optimal toll vector upper bounded
by the marginal tolls is a great set of tolls with a
unique equilibrium. Second, we investigate the set-
ting in which operators own multiple links. We show
that marginal tolls induce a unique Nash equilib-
rium as long as the links owned by each operator
are complementary.

5.1. When Links Have Operating Costs
5.1.1. Extra Preliminaries. In this case, each operator
e ∈ E is allowed to charge a nonnegative toll te for its
usage while additionally facing operating costs as a
function of the amount of flow on the link.We assume
that this (cost) function ce : R+ → R+ is nondecreas-
ing, convex, and smooth. Convexity of operating
costs reflects that, with higher traffic, there is a higher
chance for accidents and correspondingly higher costs
for clean up and maintenance for which the toll op-
erator is responsible. Under the resulting toll vector t,
each link gets flow xe(t) according to the induced
Wardrop equilibrium, and thus, the profit of player e
is given by πe(t)≜ texe(t) − ce(xe(t)).

5.1.1.1. Profit Functions. For each player e ∈ E, the
player’s strategy is given by toll te ≥ 0, and the player’s
profit is given by πe(te, t−e) ! texe(te, t−e) − ce(xe(t)).

5.1.1.2. Optimal Flows. Given a flow x, the social
welfare is defined by

SW x,u( ) !
∑

k∈K
Uk r kx

( ) −
∑

e∈E
!e xe( ) · xe −

∑

e∈E
ce xe( ).

An optimal flow x∗(u) is a flow that maximizes the
social welfare w.r.t. u. The vector of marginal tolls t̂,
now defined as t̂e ! x∗e (u)!′e(x∗e (u)) + c′e(x∗e (u)), induces
the optimal flow, that is, x(t̂) ! x∗(u).

Figure 3. (Color online) The Network of Remark 3
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5.1.2. Results. By the next theorem, even with oper-
ating costs, the existence of great tolls remains guar-
anteed. The proofs of the two theorems are along the
lines of the proof of Theorem 1 (their analogue in the
basic model) and can be found in Appendix B.

Theorem 3. Let t̄ be an optimal toll vector with t̄ ≤ t̂. Then,
t̄ is a cap equilibrium.

Remark 4. Theorem 3 does not guarantee that each
provider earns a positive profit. If the cap is too low or
the operating costs are too high, the profit of a provider
might be negative. Notice that it is easy to check
whether a given cap induces a negative profit as tolls
and flows are known in the equilibrium.

Theorem 4. Let t̄ ≤ t̂ be an optimal toll vector. If πe(t̄) ≥ 0
for all e ∈ E and operating costs are affine, that is, ce(x) !
ae · xe + be with ae ≥ 0 for all e ∈ E, then t̄ is a strong
cap equilibrium.

Remark 5. If operating costs are linear, that is, ce(x) !
ae · xe with ae ≥ 0 for all e ∈ E, we have, by definition of
t̂, that πe(t̂) ≥ 0 for all e ∈ E. Thus, marginal tolls are a
strong cap equilibrium if operating costs are linear.

5.2. Allowing Multiple Links per Operator
5.2.1. Extra Preliminaries. In the case of multiple links
per operator, the network users’ game remains the
same, but we have to redefine some notions for the
network operators’ game. For every player i ∈ [n],
where n is the number of players, player i owns a
subset Ei ⊆ E and is allowed to charge a nonnegative
toll te to every e ∈ Ei. We assume that Ei and Ej are
disjoint for all i, j ∈ [n] with i +! j. Under the resulting
toll vector t, each link gets flow xe(t) according to the
induced Wardrop equilibrium, and the profit from
link e is πe(t) :! texe(t). The profit of player i is given
by πi(t) :! ∑

e∈Ei πe(t).

5.2.1.1. Profit Functions. For each player i ∈ [n], the
player’s strategy is given by toll vector ti ! (te)e∈Ei

,
and the player’s profit, as a function of the player’s
strategy, is given by πi(ti, t−i) ! ∑

e∈Ei πe(ti, t−i) !∑
e∈Ei texe(ti, t−i). We also need the profit function of a

link ewhen tolls on other links are fixed according to
some vector t−e, defined as πe(te, t−e). Whenever t−e is
clear from context, we simply write xe(te) and πe(te).
Note that all these profit functions are continuous
because, for every toll vector t, the flow function x(t)
is continuous.

The following definition is important for the analysis
when operators own multiple links.

Definition 2. A set of links E′ ⊆ E is called comple-
mentary if, for all e ∈ E′, all 0 ≤ te ≤ t′e, and all t−e ≥ 0, it
is xe′(te, t−e) ≤ xe′(t′e, t−e) for all e′ ∈ E′ with e′ +! e.

5.2.1.2. Series-Parallel Graphs. A directed o − d mul-
tigraph is series parallel if it consists of a single link
(o, d) or from two series-parallel graphs with termi-
nals (o1, d1) and (o2, d2) composed either in series or in
parallel. In a series composition, d1 is identified with o2,
o1 becomes o, and d2 becomes d. In a parallel compo-
sition, o1 is identified with o2 and becomes o, and d1 is
identified with d2 and becomes d. Any series-parallel
graph has a decomposition tree that reveals all the
“building blocks” of the graph; that is, every parent
is a series or a parallel combination of its children.
The following proposition shows that a set of links

whose pairs cannot belong to the same path in a
series-parallel graph is complementary. The proof lies
in Appendix B.

Proposition 1. Let G be series parallel and E′ ⊆ E. If, for
all e, e′ ∈ E′ and all paths P : e ∈ P, we have e′ /∈ P, then E′

is complementary.

Note that this proposition implies that, in parallel-
link networks, any set E′ ⊆ E is complementary.
The following example shows that two links of

different paths need not be complementary.

Example 2. Consider the graph of Figure 4 with two
units of flow to be routed from o to d and assume that
the utilities are sufficiently large so that all users travel.
If t1 ! 0 and t2 ! 0, then one unit of flow is routed on
the zigzag path, and one unit of flow is routed on the
direct path from o to d. If t1 ! 1 and t2 ! 0, then 3/5
units of flow are routed on the upper and lower paths,
and 4/5 units of flow are routed on the direct path from
o to d. Hence, by increasing t1, the flow on the direct
path is reduced.

5.2.2. Results. The existence of great tolls is guaran-
teed if all players own complementary links.

Theorem 5. Let G be an instance in which each player
owns a set of complementary links and let t̄ ≤ t̂ be an optimal
toll vector. Then, t̄ is a cap equilibrium.

The proof can be found in Appendix B and is quite
technical. The main idea of the proof is that an operator

Figure 4. (Color online) Noncomplementary Links
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that operates a single link has an incentive to use
the upper bound as a toll, and this incentive re-
mains if, by doing so, the operator only gains more
flow on the operator’s other links and, thus, only gains
more profit.

For series-parallel graphs, we get the following
corollary. For its proof, one simply has to combine
Proposition 1, which yields that players own com-
plementary links, with Theorem 5.

Corollary 1. Let G be an instance in which each player
owns a set of links that in pairs cannot belong to the
same path and let t̄ ≤ t̂ be an optimal toll vector. Then, t̄ is a
cap equilibrium.

Theorem 5 is tight in the sense that, for instances in
which some player operates noncomplementary links,
there exist optimal tolls upper bounded by the mar-
ginal ones and such that, when they are set as caps,
they are notNash equilibria. An example follows.Note
that the network is series parallel, which also makes
Corollary 1 tight.

Example 3. Consider the series-parallel graph of
Figure 5 with one unit of flow to be routed, and as-
sume that the utilities are sufficiently large so that all
users travel. Let player 1 operate links e1 and e3 and
the other links be operated by other players, one link
per player. It is easy to check that links e1 and e3 are
noncomplementary; for example, increasing the toll on
e1 may decrease the flow on e3. In this instance, the
optimal flow x∗ routes x∗1 ! 1/6 units through e1, x∗2 !
1/6 units through e2, x∗3 ! 1/3 units through e3, and
x∗4 ! 2/3 units through e4. Thus, the vector of marginal
tolls is t̂ ! (1/6, 1/6, 1/3, 0). If all players play the
marginal tolls, then player 1 has profit equal to (1/6)2 +
(1/3)2 ! 5/36. But playing marginal tolls is not a best
response for player 1 as player 1 can play t1 ! 1/8 < t̂1
and t3 ! 1/3 ! t̂3, getting a profit of 121/864 > 5/36 (the
equilibrium flow under t ! (1/8, 1/6, 1/3, 0) is x(t) !
(7/36, 11/72, 25/72, 47/72)). Thus, when t̂ are set as
caps, they are not Nash equilibria.

It is worth noting that, on instances in which
players operate complementary links, t̄ is not a strong
Nash equilibrium (despite being a Nash equilibrium).
Example 4 has such an instance.

Example 4. Consider the series-parallel graph of
Figure 6 with two units of flow to be routed, and
assume that utilities are high enough so that all users
travel. Let player 1 operate links e1 and e7, player 2
operate links e3 and e5, and the other links be operated
by other players, one link per player. It is easy to check
that links e1 and e7 are complementary, and the same
holds for links e3 and e5. Note that Figure 6 is essentially
two copies of Figure 5 connected in parallel. Based on
that, one can derive that the optimal flow x∗ is such that
(x∗1 , x∗2 , x∗3 , x∗4) ! (1/6, 1/6, 1/3, 0) and (x∗5 , x∗6 , x∗7 , x∗8) !
(1/6, 1/6, 1/3, 0), and the marginal tolls for links e1
through e8 are (t̂1, t̂2, t̂3, t̂4) ! (1/6, 1/6, 1/3, 0) and (t̂5, t̂6,
t̂7, t̂8) ! (1/6, 1/6, 1/3, 0). If all players play the marginal
tolls, then players 1 and 2 both have profit equal to
(1/6)2 + (1/3)2 ! 5/36. But players 1 and 3 can form a
coalition and together deviate and play t1 ! 1/8 < t̂1
and t3 ! 1/3 ! t̂3 and t5 ! 1/8 < t̂1 and t7 ! 1/3 ! t̂3,
getting this way a profit of 121/864 > 5/36 each.
Thus, when t̂ are set as caps, they are not a strong
Nash equilibrium.
Yet we have the following theorem. Its proof can be

found in Appendix B.

Theorem 6. Let G be an instance in which all links are
complementary links, and let t̄ ≤ t̂ be an optimal toll vector.
Then, t̄ is a strong cap equilibrium.

6. Conclusion
In this work, we propose a simple regulation policy
for network owners in network pricing games. Net-
work owners have an incentive to set prices that are
higher than their marginal externality, yielding in-
efficiencies for the network users. Moreover, Nash
equilibria in the network owners’ market need not
even exist. We show that, if a central authority reg-
ulates the market by setting the appropriate upper
bounds on the prices, all of these issues get resolved.
In particular, the well-known marginal tolls as caps
have the property that the network owners’ market
has a unique (strong) Nash equilibrium and induces a
socially optimalflow. In general, every toll vector that

Figure 5. (Color online) The Single-Commodity
Series-Parallel Network Used in Example 3

Figure 6. (Color online) The Single-Commodity Series-
Parallel Network Used in Example 4
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is upper bounded by marginal tolls and induces the
optimal flow results as the unique Nash equilibrium
when being imposed as caps.

Given that optimal social welfare can be achieved
by imposing great tolls as caps, we asked the question
of how to fairly distribute the social welfare among
the network owners and users. We study the effi-
ciency of great tolls that are upper bounded by
marginal tolls from the perspective of the network
users. Another approach could be to study the effi-
ciency of great tolls from the perspective of the net-
work owners. In order to do so, a complete charac-
terization of great tolls would be needed.

The main result, that marginal tolls are great tolls,
applies to the setting in which each link owners
owns only one link in the network. The result extends
to the setting in which link owners own comple-
mentary links (i.e., links for which an increase in toll
value may only increase the flow on the other owned
links). In general, the result thatmarginal tolls are great
tolls breaks down if network owners own non-
complementary links, for example, multiple links on
the same path. This implies that market regulation
works well in markets with a high degree of com-
petition, whereas it is less effective in markets with
less competition.
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Appendix A. Missing Proofs of Section 4
We start with the proof of Lemma 3 that we used to prove
Theorem 2.

Proof of Lemma 3. We first note that, by the definition of the
total users’ cost C(x(t), t), for an equilibrium x(t) under tolls t,
the common users’ path cost equals C(x(t), t)/rx.

To prove (i), we can assume that rx∗(u) < r as otherwise the
result follows trivially because r ≥ rx∗(ũ). By recalling that the
optimal flow is a Wardrop equilibrium w.r.t. the marginal
latency functions, rx∗(u) < r implies that the common users’
path cost at that equilibrium is equal to u(rx∗(u)), that is,
C(x∗(u), t̂(u))/rx∗(u) ! u(rx∗(u)).

To reach a contradiction, let rx∗(u) < rx∗(ũ). Hall (1978) and
Lin et al. (2004) show that the common path cost of aWardrop
equilibrium is nondecreasing in r, and additionally, the
common path cost is strictly increasing in rwhen the latencies
are strictly increasing. Because an optimal flow is a Wardrop
equilibrium w.r.t. the marginal latency functions and the
latency functions are strictly increasing, we have C(x∗(u),
t̂(u))/rx∗(u) < C(x∗(ũ), t̂(ũ))/rx∗(ũ). Additionally, by the defini-
tion of equilibrium, C(x∗(ũ), t̂(ũ))/rx∗(ũ) ≤ ũ(rx∗(ũ)). Putting it

all together and using the hypothesis for u(x) and ũ(x) for the
first inequality, we get

ũ rx∗(u)
( ) ≤ u rx∗(u)

( ) ! C x∗ u( ), t̂ u( )
( )

/rx∗(u)
< C x∗ ũ( ), t̂ ũ( )

( )
/rx∗(ũ)

≤ ũ rx∗(ũ)
( )

,

a contradiction because ũ(x) is nonincreasing.
To prove (ii) and (iii), we consider the following three

cases: (1) rx∗(u) < r and rx∗(ũ) < r, (2) rx∗(u) ! r and rx∗(ũ) < r,
and (3) rx∗(u) ! r and rx∗(ũ) ! r. We only give the proof of (ii);
the proof of (iii) follows analogously, simply by changing t B

with tM.

Case A.1. Assume that rx∗(u) < r and rx∗(ũ) < r. Then, by def-
inition of a Wardrop equilibrium, CS(x∗(u), t B, u) ! U(rx∗(u))−
rx∗(u) · u(rx∗(u)) and CS(x∗(ũ), t B, ũ) ! Ũ(rx∗(ũ))− rx∗(ũ) · ũ(rx∗(ũ)).
Thus, we have

CS x∗ u( ), t B, u
( ) !

∫ rx∗ (u)

x!0
u x( ) − u rx∗(u)

( )[ ]
dx

!
∫ rx∗ (u)

x!0

1
α

ũ x( ) − ũ rx∗(u)
( )[ ]

dx

≥
∫ rx∗ (ũ)

x!0
ũ x( ) − ũ rx∗(ũ)

( )[ ]
dx

! CS x∗ ũ( ), t B, ũ
( )

,

where, for the second equality, we use the definition of ũ(x),
and for the inequality, we use α ∈ (0, 1], rx∗(u) ≥ rx∗(ũ), and
ũ(rx∗(u)) ≤ ũ(rx∗(ũ)).
Case A.2. Assume that rx∗(u) ! r and rx∗(ũ) < r. Then, by
definition of aWardrop equilibrium,CS(x∗(ũ),tB, ũ)! Ũ(rx∗(ũ))−
rx∗(ũ)· ũ(rx∗(ũ)). Thus, we have

CS x∗ u( ), t B, u
( ) ! U r( ) − C x∗ u( ), t B

( )

≥
∫ r

x!0
u x( ) − u r( )[ ] dx

!
∫ r

x!0

1
α

ũ x( ) − ũ r( )[ ] dx

≥
∫ rx∗ (ũ)

x!0
ũ x( ) − ũ rx∗(ũ)

( )[ ]
dx

! CS x∗ ũ( ), t B, ũ
( )

,

where the first inequality follows from C(x∗(u), t B) ≤ C(x∗(u),
t̂(u)) ≤ r · u(r) because of all the demand being routed un-
der x∗(u) and the constraint νt − νs ≤ u(r) in (BMT2), and the
second inequality follows from α ∈ (0, 1], r > rx∗(ũ), and
ũ(r) ≤ ũ(rx∗(ũ)).
Case A.3. Assume that rx∗(u) ! r and rx∗(ũ) ! r. Then, we have

CS x∗ u( ), t B,u
( ) ! U r( ) − C x∗ u( ), t B

( )

≥ Ũ r( ) − C x∗ ũ( ), t B
( )

! CS x∗ ũ( ), t B, ũ
( )

,

where the inequality follows from u(x) ≥ ũ(x) for all x ∈ [0, r],
which implies U(r) ≥ Ũ(r), and x∗(u) ! x∗(ũ) ! x∗ because all
the flow is routed by the optimal solution under either utility
function. □
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Theorem A.1, Corollary A.1, and Theorem A.2, presented
next, can be used to get an upper bound on β in Theorem 2.
The family of Braess graphs (see, e.g., Roughgarden 2006,
Kleer and Schäfer 2016) can be used to show that these
bounds are tight.

Theorem A.1 considers an approximation bound based on
properties of the latency functions. The result can be inter-
preted as follows: if the sensitivity of links to changes in the
flows is bounded by a factor, then the performance of the
proposed solution is also bounded by that factor (plus one)
times the value of the optimal solution.

Theorem A.1. Suppose all latency functions ! in the profit-
maximization game satisfy supx≥0

x!′(x)
!(x) ≤ γ. Then, C(x∗(u),tB)≤

β ·C(x∗(u),tM), where β ! γ + 1.

Proof. By the assumption on latency functions,

C x∗ u( ), t B
( ) ≤

∑

e
!e x∗e u( )
( ) + x∗e u( )!′e x∗e u( )

( )[ ]

× x∗e u( ) ≤
∑

e
1 + γ
( )

!e x∗e u( )
( )

× x∗e u( ) ≤ γ + 1
( )

C x∗ u( ), tM
( )

,

proving the result. □

The following result is a direct corollary of Theorem A.1.

Corollary A.1. For polynomial latency functions of degree at most
d and nonnegative coefficients, C(x∗(u),tB)≤ (d+1)C(x∗(u),tM).

For TheoremA.2,we need LemmaA.1, but first we define
programs BMT and MPT that compute tolls t B and tM,
respectively. Both programs are in variables (t,ν) and
define a potential νk for each commodity k in such away that
any flow-carrying path is indeed a shortest path. The fol-
lowing linear program encodes all possible great set of tolls
upper bounded by marginal:

BMT( )
max ∑

k∈K
Uk rkx∗

( )−∑
e∈E

!e x∗e u( )
( )+te

[ ]
x∗e u( )

νku−νkv+te ! −!e x∗e u( )
( ) ∀k,e! u,v( ):x∗ke >0

νku−νkv+te ≥ −!e x∗e u( )
( ) ∀k,e! u,v( ):x∗ke !0

νkdk−νkok ! uk rkx∗(u)
( )

∀k:0<rkx∗<rk

νkdk−νkok ≤ uk rk
( ) ∀k:rkx∗ !rk

νkdk−νkok ≥ uk 0( ) ∀k:rkx∗ !0
te ≤ t̂e ∀e∈E
te ≥ 0 ∀e∈E.

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

The first two sets of constraints ensure that the flow is
routed on the shortest paths for the respective commodity.
The third, fourth, and fifth sets of constraints ensure that the
utilities of the users traveling (or not) have the correct re-
lation with the cost of the flow-carrying paths of the re-
spective commodity.

With a similar linear program, by dropping the con-
straints that upper bound the tolls, we encode all possible
optimal tolls:

MPT( )
max ∑

k∈K
Uk rkx∗

( )−∑
e∈E

!e x∗e u( )
( )+te

[ ]
x∗e u( )

νku−νkv+te ! −!e x∗e u( )
( ) ∀k,e! u,v( ):x∗ke >0

νku−νkv+te ≥ −!e x∗e u( )
( ) ∀k,e! u,v( ):x∗ke !0

νkdk−νkok ! uk rkx∗(u)
( )

∀k:0<rkx∗<rk

νkdk−νkok ≤ uk rk
( ) ∀k:rkx∗ !rk

νkdk−νkok ≥ uk 0( ) ∀k:rkx∗ !0
te ≥ 0 ∀e∈E.

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Because Theorem A.2 considers single-commodity in-
stances, and great tolls other than the marginal tolls exist
only when all the demand is routed, we may simplify BMT
to BMT’, which considers a single commodity of unit de-
mand (this assumption is w.l.o.g. as latency functions can
always be adjusted appropriately) in which all the flow is
routed (so we omit the dependence on u) andminimizes the
users’ cost (because the aggregate utility of the optimal flow
is still fixed):

BMT′( )
min ∑

e∈E
!e x∗e
( )+ te

[ ]
x∗e

νu−νv+ te ! −!e x∗e
( ) ∀e! u,v( ) : x∗e > 0

νu−νv+ te ≥ −!e x∗e
( ) ∀e! u,v( ) : x∗e ! 0

te ≤ t̂e ∀e ∈E
te ≥ 0 ∀e∈E.

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Lemma A.1 is a structural lemma that allows us to upper
bound the value of (BMT’). This is naturally important in
order to derive an approximation bound. We first need
some definitions. Consider a directed network G and the
undirected network Gu that comes from G if we drop the
directions of its links. Any path inGu is called an undirected
path in G. For an undirected path P, the links that are
traversed in their actual direction are called forward links,
denoted by P+, and the ones traversed in their reversed
direction are called backward links, denoted by P−. Finally,
an undirected path has J alternations if, when traversing it,
there are exactly J times at which a forward link is followed
by a backward link. For more on such alternating paths,
see, for example, Lin et al. (2011), Nikolova and Stier-
Moses (2015), and Kleer and Schäfer (2016).

LemmaA.1. There exists an undirected o − d path P such that the
first and last link of P belong in P+, all e ∈ P+ are flow carrying, and

C x∗, t B( ) !
∑

e∈P+
!e x∗e
( ) −

∑

e∈P−
!e x∗e
( ) + t̂e

[ ]
.
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Proof. We start by taking the dual of (BMT’), at which
variables y′ are associated with shortest path constraints and
variables z with the upper bounds on tolls.

DBMT′( )
max ∑

e∈E
−y′e!e x∗e

( )− zet̂e + !e x∗e
( )

x∗e
[ ]

∑
e∈δ+ u( )

y′e −
∑

e∈δ− u( )
y′e ! 0 ∀u ∈ V

y′e − ze ≤ x∗e ∀e ∈ E
y′e ≥ 0 ∀e : x∗e ! 0
ze ≥ 0 ∀e ∈ E.

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Let now ye ≜ y′e − x∗e , and notice that the nonnegativity con-
straints for y′e, where x∗e ! 0, can be rewritten as ye ≥ 0. Let us
observe that −y is a unit demand undirected flow (i.e., a flow
without sign constraints). By our unit demand assumption,

∑

e∈δ+ o( )
−ye
( ) −

∑

e∈δ− o( )
−ye
( ) !

∑

e∈δ+ o( )
x∗e −

∑

e∈δ− o( )
x∗e

! 1
∑

e∈δ+ d( )
−ye
( ) −

∑

e∈δ− d( )
−ye
( ) !

∑

e∈δ+ d( )
x∗e −

∑

e∈δ− d( )
x∗e

! −1
∑

e∈δ+ u( )
−ye
( ) −

∑

e∈δ− u( )
−ye
( ) !

∑

e∈δ+ u( )
x∗e −

∑

e∈δ− u( )
x∗e

! 0,

where, in the last equation, u +! o, d. This way, we can refor-
mulate (DBMT′) as

DBMT( )
−min ∑

e∈E
ye!e x∗e

( ) + zet̂e
[ ]

−y undirected unit flow
ze − ye ≥ 0 ∀e ∈ E
ye ≥ 0 ∀e : x∗e ! 0
ze ≥ 0 ∀e ∈ E.

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Now, we make the following observation: given any y sat-
isfying these constraints, there is a unique best choice of
z ! z(y); namely, if ye ≥ 0, then ze ! ye, and if ye < 0, then
ze ! 0. Furthermore, observe that z(y) is piece-wise affine: as
long as no y nonnegativity constraint becomes active, z
changes linearly as a function of y. Now, let (y, z(y)) be an
optimal solution for (DBMT): we show that we can choose
this optimal solution in such away that it does not support any
cycles. Suppose there exists an undirected cycle C ! C+ ∪ C−

(where C+ and C− are defined so that the links in C+ traverse
the cycle in the opposite direction from the links in C−) with
variables ye +! 0 for all e ∈ C. Given ε ∈ R, consider the per-
turbation yε such that, for all e ∈ C+, yεe ! ye + ε, and for all
e ∈ C−, yεe ! ye − ε. Notice that, up to the point at which, for the
first time, some ye becomes zero, the perturbations (yε, z(yε))
are feasible for (DBMT), and the objective function changes
linearly with ε. Because neither of these perturbations can
improve the objective, the objective has to be constant for these
perturbations. This way, we choose either a positive or neg-
ative ε until one of the y variables reaches zero. The resulting

perturbation (yε, z(yε)) is, thus, optimal, and it does not
contain C in its support. We can continue this procedure
until all cycles are eliminated.

As a conclusion, there exists an optimal solution (y, z(y))
whose support is an undirected simple o − d path that we
call P. By following this path and using the conservation
constraints, we have that each e ∈ P satisfies that either ye ! −1
(and, thus, ze ! 0) or ye ! 1 (and, thus, ze ! 1). Letting P+ !
{e ∈ P : ye ! −1} and P− ! {e ∈ P : ye ! 1}, we have that the
optimal value of (DBMT) equals

∑

e∈P+
!e x∗e
( ) −

∑

e∈P−
!e x∗e
( ) + t̂e

[ ]
;

furthermore, because of the nonnegativity constraints for y,
all links e ∈ P+ are necessarily flow carrying.

Finally, we prove that the first and last links of P are
forward, which, additionally, by flow conservation, implies
that links in P+ are forward and links in P− are backward. We
just prove it for the first link as the argument for the last is
analogous. Let e1 be the first link of P: by flow conservation,
ye1 ! −1, and thus, x∗e1 > 0. Because x∗ is optimal, then it is
acyclic, so e1 has to be forward. This completes the proof. □

We make the following assumption on the instance: there
exists a J ≥ 0 such that any simple o − d undirected path has at
most J alternations. The smallest constant J satisfying this
condition is called the alternation number, and our approxi-
mation bound only depends on this number.

Theorem A.2. Consider a single commodity and unit demand
instance of the network pricing game whose underlying network has
alternation number J. We have, C(x∗, t B) ≤ ( J + 1) · C(x∗, tM).

Proof. By Lemma A.1, we have C(x∗, t B) ! ∑
e∈P+ !e(x∗e )−∑

e∈P− [!e(x∗e ) + t̂e]. Because the alternation number ofG is J, we
can decompose P into at most J segments of consecutive
forward and backward links, P ! A1 − B1 − A2 − B2 − . . .−
BJ − AJ+1, from which C(x∗, t B) ≤ ∑J+1

j!1 [
∑

e∈Aj !e(x∗e )]. Now, let
(t∗, ν∗) be an optimal solution for (MPT); because all links
e ∈ Aj, j ! 1, . . . , J + 1 are flow carrying, for each j ! 1, . . . ,
J + 1, we have ∑

e∈Aj !e(x∗e ) ≤ ν∗d − ν∗o . Combining the in-
equalities, we obtain C(x∗, t B) ≤ ∑J+1

j!1 [
∑

e∈Aj !e(x∗e )] ≤ ( J + 1)
[ν∗d − ν∗o ] ! ( J + 1) · C(x∗, tM). □

Appendix B. Missing Proofs of Section 5
B.1. Missing Proofs from Section 5.1
In order to prove Theorem 3, we first restate the profit-
maximization property that yields the main result for the
model with operating costs.

Lemma B.1. Let t ≥ 0 be a toll vector and e ∈ E with xe(t) > 0. If
te is a local optimum for the profit-maximization problem (i.e., for
objective πe(·, t−e)), then xe(t) · !′e(xe(t)) + c′e(xe(t)) ≤ te.

Proof. In order to use the first-order optimality conditions,
we need to ensure that the flow on e neither suddenly drops to
zero nor remains constant. By continuity, there exists an
interval [te, te + δ′], where xe(·) > 0 with δ′ > 0; furthermore,
by local optimality, we may choose 0 < δ < δ′ so that te is a
profit-maximizing toll on the interval. This, in particular,
implies that 0 < xe(se) < xe(t) for any se ∈ (te, te + δ).
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Now, because te is a local maximizer, we can use the first-
order optimality conditions, D+[πe(te)] ≤ 0. Using the line-
arity of Dini derivatives, we get

xe t( ) + teD+ xe t( )[ ] − c′e xe t( )( ) ·D+ xe t( )[ ]
! D+ πe te( )[ ] ≤ 0.

(B.1)

On the other hand, because xe(se) < xe(t) for any se ∈
(te, te + δ), by Lemma 1(ii), we have that [!e(xe(se)) + se −
!e(xe(t)) − te]/[xe(se) − xe(t)] ≤ 0. After rearranging terms,
we get

!e xe se( )( ) − !e xe t( )( )
xe se( ) − xe t( ) ≤ − se − te

xe se( ) − xe t( ) .

Taking lim supse→t+e
in the expression, we get that the left-

hand side converges to !′e(xe(t)), whereas the right-hand
side converges to −(D+[xe(t)])−1. Because D+[xe(t)] < 0, we
conclude that !′e(xe(t)) ≤ − 1

D+[xe(t)]. This, in combination
with (B.1), gives

xe t( )!′e xe t( )( ) + c′e xe t( )( ) ≤ − xe t( )
D+ xe(t)[ ] + c′e xe(t)( )

≤ te,

which proves the result. □

Proof of Theorem 3. First, we prove that t̄ is a Nash
equilibrium. By way of contradiction, suppose that te < t̄e
maximizes profit given tf ! t̄f for all f +! e. Because t̄e > 0, we
must have xe(t) > 0, and thus, by Lemma 1(i), xe(te, t̄−e) > 0.
By Lemma B.1, we have te ≥ xe(te, t̄−e)!′e(xe(te, t̄−e)) +
c′e(te, t̄−e), implying

xe te, t̄−e
( )

!′e xe te, t̄−e
( )( ) + c′e te, t̄−e

( )

≤ te < t̄e ≤ t̂e ! x∗e !′e x∗e
( ) + c′e x

∗
e

( )
,

and thus, xe(te, t̄−e) < x∗e , contradicting Lemma 1(i).
Now that we have proven existence, we show that there

is a unique Nash equilibrium. By way of contradiction,
suppose there exists another Nash equilibrium t +! t̄ for
the profit-maximization game with caps t̄ and let E< !
{e ∈ E : te < t̄e}. Observe that, for a deviation to be possible
t̂e ≥ t̄e > 0 for all e ∈ E<, and also there is at least one player
with te < t̄e and xe(t) > 0. If not, then, for all players e ∈ E<, we
have xe(t) ! 0, but this contradicts Lemma 1(i) as there should
exist an e1 ∈ E< such that xe1 (t) ≥ xe1 (t̄) and xe1 (t̂) ! xe1 (t̄) > 0
because t̂e1 > 0.

So we can assume that there are some players with te < t̄e
and xe(t) > 0. Because all players are playing their best re-
sponse, we can use Lemma B.1, concluding that xe(t)!′e(xe(t)) +
c′e(xe(t)) ≤ te for all e ∈ E< with xe(t) > 0, which, in turn, gives

xe t( )!′e xe t( )( ) + c′e xe t( )( ) ≤ te < t̄e ≤ t̂e
! x∗e !′e x∗e

( ) + c′e x
∗
e

( ) ,

concluding that xe(t) < x∗e ! xe(t̄) for all e ∈ E< with xe(t) > 0.
But, from Lemma 1(i), there exists e1 ∈ E< such that xe1 (t) ≥
xe1 (t̄) and, by t̂e1 > 0, xe1 (t̄) ! xe1 (t̂) > 0, a contradiction. □

Proof of Theorem 4. By Theorem 3, it is sufficient to prove
that t̄ is a strong Nash equilibrium. By way of contradiction,

let E∆ be a set of links and t ≤ t̄with {e ∈ E : te +! t̄e} ⊆ E∆ such
that πe(t) ≥ πe(t̄) for all e ∈ E∆ with at least one strict in-
equality. Then, for all e ∈ E< ⊆ E∆, we have (te − ae) · xe(t)−
be ≥ (t̄e − ae) · xe(t̄) − be ≥ 0, where the second inequality
holds by assumption, which implies xe(t) > xe(t̄), and

te − ae ≥
t̄e − ae
( ) · xe t̄

( )

xe t( ) . (B.2)

By Lemma 1(ii), there exists e ∈ E< such that [xe(t̄) − xe(t)]×
[!e(xe(t̄)) + t̄e − !e(xe(t)) − te] ≤ 0, which, in combination with
xe(t) > xe(t̄), gives

!e xe t̄
( )( ) + t̄e ≥ !e xe t( )( ) + te. (B.3)

Let e ∈ E< be a link satisfying (B.3). We have the follow-
ing inequalities:

!′e xe t̄
( )( )

xe t( ) − xe t̄
( )( ) ≤ !e xe t( )( ) − !e xe t̄

( )( )

≤ t̄e − te ≤ t̄e − ae
( )

· 1 − xe t̄
( )

xe t( )

( )
, (B.4)

where the first inequality follows from the convexity of !e, the
second from (B.3), and the third from (B.2). Because t̄e ≤ t̂e !
!′e(xe(t̄))xe(t̄) + ae as t̄ is optimal, we obtain from (B.4) that

!′e xe t̄
( )( )

xe t( ) − xe t̄
( )( ) ≤ !′e xe t̄

( )( )
xe t̄
( )

× xe t( ) − xe t̄
( )

xe t( )

( )
.

Because !′e(xe(t̄)) > 0 and xe(t) > xe(t̄), we conclude that
xe(t) ≤ xe(t̄), a contradiction.

B.2. Missing Proofs from Section 5.2

Proof of Proposition 1. We first show that, for series-
parallel graphs under any fixed demand r and for any link
e, setting t′e > te only increases the common travel cost at
equilibrium. The proof is by induction on the decomposition
of the series-parallel graph. In the base case of a single link,
this is true by Lemma 1.

Let G be a series composition of series-parallel graphs G1
and G2, and w.l.o.g., let e belong to G1. Under toll te and
demand r, let the travel costs throughG1 andG2 beL1 andL2,
respectively. By induction, under toll t′e, the travel cost through
G1 only increases to L′

1 ≥ L1, and the travel cost through G2
remains the same. Thus, the common cost at equilibrium
only increases.

For the other case, let now G be a parallel composition of
series-parallel graphs G1 and G2, and w.l.o.g., let e belong in
G1. Under toll te and demand r, let the common travel cost
through G1 and G2 be L, and let the traffic routed through G1
andG2 be r1 and r2, respectively. By induction, under toll t′e, if
we let r1 units go through G1, the travel cost through G1 only
increases to some L′ ≥ L. Thus, at equilibrium r′1 ≤ r1 are
routed through G1 and r′2 ≥ r2 units are routed through G2 in
order to equalize the travel costs through G1 and G2, which
implies that the common cost at equilibrium only increases.

Given this, we go on to prove that, for elastic demand for
any link e, setting t′e > te only increases the common travel

486
Correa et al.: How to Induce Optimal Flows Under Strategic Link Operators

Operations Research, 2022, vol. 70, no. 1, pp. 472–489, © 2021 INFORMS



cost at equilibrium and only decreases the demand being
routed. Let r be the demand routed at equilibriumunder toll te
andL be the common cost at equilibrium. If r units are routed
when t′e is set, then, by the preceding, the travel cost only
increases to some L′ ≥ L. Yet this may not be the equilibrium
because some users may incur travel costs greater than their
utility. By removing flow (while in equilibrium), we reduce
the travel cost and increase the minimum utility among the
users that travel until these two get equal, at which point we
have an equilibrium with the traffic demand routed equal to
some r′ ≤ r and the travel cost equal to some L′′ : L ≤
L′′ ≤ L′, proving the claim.

Now, we go back to prove the proposition. Let E′ be a set of
links such that, for all e, e′ ∈ E′ and all paths P : e ∈ P, we have
e′ /∈ P. We prove that E′ is complementary. Consider an ar-
bitrary edge e ∈ E′. In order for e not to be in the same path
with some other arbitrary edge e′ ∈ E′, it should be that, in the
decomposition of G, e lies in some graph G1, e′ lies in some
graph G2, and G1 and G2 are connected in parallel. To prove
that xe′ (te, t−e) ≤ xe′ (t′e, t−e), it suffices to show that G1 gets at
most the same flow and G2 gets at least the same flow at
equilibrium under t′e comparedwith under te because, if this is
the case, all of G2’s edges may only gain flow.

We prove this by induction on the decomposition of the
series-parallel graph starting from the full graph. For the base
case, let G1 and G2’s composition happen the first time that a
parallel composition between a graph containing e1 and some
other graph occurs (some series compositions may have
occurred earlier). By what we have proven earlier, we know
that, under t′e, only less flow may go through G1 and G2, yet
their common travel costs only increase. This implies that the
flow through G2 only increases because its tolls remain un-
changed, implying, at the same time, that the flow throughG1
only decreases.

For the induction, consider all compositions of a graph
containing e1 and some other graph that happens before the
composition of G1 and G2, and let the induction hypothesis
hold for them. Using the induction hypothesis for the last
time such a composition occurs, we get that the graph that
contains e1 gets at most the same flow under t′e and has at least
the same cost. This further implies the flow throughG1 andG2
only decreases, and the cost only increases under t′e. Similar to
earlier, the latter implies the flow through G2 only increases
because its tolls remain unchanged, implying, at the same
time, that the flow through G1 only decreases, completing the
induction and the proof. □

Proof of Theorem 5. First, we prove that, if G admits a Nash
equilibrium, then it must be t̄. To reach a contradiction, as-
sume there exists a Nash equilibrium t +! t̄. Because t̄ are set
as caps, t +! t̄ implies that t ≤ t̄, and the set E< ! {e∈E : te < t̄e}
is nonempty. By Lemma 1(i), there exists an e1 ∈ E< such that
xe1 (t) ≥ xe1 (t̄). Let player k be the player operating e1. We show
that t is not a Nash equilibrium by showing that player k is not
on the player’s best response.

It is xe1 (t̄) > 0 or else 0 ≤ te1 ≤ t̄e1 ≤ t̂e1 ! xe1 (t̄)!′e1 (xe1 (t̄)) ! 0,
implying te1 ! t̄e1 , contradicting e1 ∈ E<. This further implies
that te1 > 0; otherwise, player k is not on the player’s best
response because, by continuity, the player can increase the
toll to te1 ! δ for some small enough δ > 0 so that e1 still gets

positive flow, and thus, the player gains strictly more profit:
positive profit from e1 (instead of zero) and at least the same
profit from the player’s other links because they do not lose
flow by the complementarity condition.

Consider the profit function πe1 (·) of link e1 when all other
tolls are kept fixed. Toll te1 cannot be a local optimum of πe1 (·)
because, by Lemma 2 (recall te1 > 0) and x!′(x) being in-
creasing, it would be te1 ≥ xe1 (t) · !′e1 (xe1 (t))≥ xe1 (t̄) ·!′e1 (xe1 (t̄))!
t̂e1 ≥ t̄e1 , contradicting e1 ∈ E<. Additionally, any local opti-
mum πe1 (·) must be above te1 as otherwise, if there was a
local optimum t′e1 < te1 , then, by Lemma 1(i), it would be
xe1 (t′e1 ) ≥ xe1 (te1 ), and by a similar reasoning as before, it
would be t′e1 ≥ t̄e1 , a contradiction.

By this, any local optimum of πe1 (·) is strictly above te1 , and
consequently, there exists a sufficiently small δ > 0 such that
increasing the toll of link e1 from te1 to te1 + δ, strictly increases
the profit made by link e1. Now consider the deviation for
player k in which the player increases the toll of e1 by δ. By the
previous discussion, the player strictly gainsmore profit from
e1, but also the player does not lose profit from the other links
the player operates because, by the complementarity con-
dition, each of the player’s links may only gain flow. Thus,
player k is not choosing a best response.

It remains to prove that t̄ is a Nash equilibrium. To reach a
contradiction, assume t̄ is not a Nash equilibrium, and let k
be a player that, by deviating from t̄ in some of the player’s
links, strictly gains more profit, that is, for the profit of player
k, it is πk(t̄) < πk(t1), where t1 is the resulting vector after
player k’s deviation. W.l.o.g., we may assume that, for all
links for which we have deviation from t̄, that is, t1e < t̄e, it is
t1e > 0 because, if a link has t1e ! 0 and xe(t1) ! 0, then set-
ting t1e > 0 does not change the flow or the profits, and thus,
we still have an improving deviation for player k although if
a link has t1e ! 0 and xe(t1) > 0, then player k is still on an
improving deviation if the player sets t1e ! δ for some small
enough δ > 0. The player is still at an improving deviation
because, by that small increase on the toll, e1 still has positive
flow, and thus, the player gains strictly more profit: positive
profit from e1 (instead of zero) and at least the same profit
from the player’s other links because they do not lose flow by
the complementarity condition.

The underlying idea for the proof is the following. Under
t1, because of Lemmas 1(i) and 2, there exists a link for which
player k can increase its toll and gain more profit from it and,
at the same time, not lose profit from other links. The resulting
toll vector gets closer to the cap vector t̄ and has strictly more
profit, and as long as it does not get equal to t̄, we may repeat
the procedure and get even closer to t̄ with even bigger
profits. Formally, though, we do it a bit differently. Starting
from the deviation t1, we create a sequence of toll vectors ti
that all correspond to deviations of player k and are such that,
for any i ≥ 2, player k’s profit under ti is only higher than the
profit under ti−1 (and t1 and t̄). Then, we show that this
sequence converges to t̄, getting a contradiction, because the
preceding implies πk(t̄) < πk(t1) ≤ . . . ≤ πk(ti) ≤ . . . ≤ πk(t̄).

Let Ek be the set of links that player k operates, and consider
any arbitrary cyclic order of the links of Ek. Also, let e1 be an
arbitrary link of Ek. To inductively create ti from ti−1 for i ≥ 2
let ei be the link that follows ei−1 in the cyclic order of Ek.
Consider the profit function πei (·) of link ei when the tolls on
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other links are fixed according to ti−1. Let ti∗ei be the smallest
local optimum of πei (·) and set tiei ! min{max{ti−1ei , ti∗ei }, t̄ei}. For
any other link e of Ek (e +! ei), set tie :! ti−1e . Note first that, by
construction, πk(ti) ≥ πk(ti−1) because the only toll that pos-
sibly changes is that of ei, and it only increases toward the first
maximizer of πei (·), implying that the profit from ei only in-
creases, and by the complementarity condition, the flow and
profit on any other link of Ek only increases. Additionally, note
that, for all i, it is ti ≤ t̄, and for all i ≥ 2, it is ti−1 ≤ ti because,
at every step, the only link getting its toll changed is ei, and it
gets a toll in between ti−1ei and t̄ei . Thus, ti is an increasing
sequence of toll vectors that additionally is upper bounded
by t̄, and consequently, it must converge to a toll vector, say t0,
that is, t i → t 0. Last, note that, for all i, ti ≤ t 0.

We prove that t0 ! t̄. To reach a contradiction, assume
otherwise and let E<

k ! {e ∈ Ek : t0e < t̄e} be nonempty. By
Lemma 1(i), there exists a link f ∈ E<

k such that xf (t 0) ≥ xf (t̄).
Consider the profit function πf (·) of link f when all other tolls
are kept fixed (according to t0). Toll t0f cannot be a local
optimum of πf (·) because in that case, by Lemma 2 (we can
apply Lemma 2 because t0f ≥ t1f , and for all e with t1e < t̄e, it is
t1e > 0, implying t0f > 0), it would be t0f ≥ xf (t0f ) · !′f (xf (t0f ))!
xf (t0) · !′f (xf (t0))≥ xf (t̄) · !′f (xf (t̄))! t̂f ≥ t̄f , contradicting f ∈E<

k .
Additionally, any local optimum πf (·) must be above tf as,
otherwise, if there is a local optimum t′f < t0f , then, by Lemma 1(i)
it would be xf (t′f ) ≥ xf (t0f ), and by a similar reasoning, it would
be t′f ≥ t̄f , a contradiction. Thus, any local optimum for πf (·) is
strictly above t0f , say at t0∗f ! t0f + δ, for δ > 0.

On the other hand, consider all those times when, while
creating the sequence ti, link f was a candidate for getting its
toll changed (recall the cyclic orderwhen choosingwhich tolls
to update). Intuitively, because ti → t0, there is some high
enough j such that the toll vectors t 0 and t j are so close to each
other that the corresponding profit functions of link f almost
coincide. More formally, for the δ defined earlier, because
ti → t0, theremust be some j for which link f is a candidate for
getting its toll changed and is such that the smallest local
optimum of the profit function of f under toll vector tj, say tj∗f ,
is such that |t0∗f − tj∗f | ≤ δ/2. The latter implies that tj∗f > t0f
because, by the preceding, t0∗f ! t0f + δ. But this readily gives a
contradiction as, for that j, based on the construction of the
sequence (namely tjf ! min{max{tj−1f , tj∗f }, t̄f }), link f would get
either tj∗f or t̄f as its toll, which are both strictly greater than t0f
(recall, tj−1f ≤ t0f by construction).

Thus, indeed t0 ! t̄, and so ti → t̄. Recall that the profit
function πk(·) of player k is a continuous function of tolls. This
yields πk(ti) → πk(t̄), which, combined with that for all i,
πk(ti)≥πk(t1)>πk(t̄), gives the desired contradiction: πk(t̄)>
πk(t̄). Consequently, every player is on the player’s best re-
sponse when playing according to t̄. □

Proof of Theorem 6. We need only prove that t̄ is a strong
Nash equilibrium. The proof is similar to that of Theorem 5.
Assume there is a coalition of players that deviates form t̄ on
some of their links so that no player loses profit and some
player, say player k, strictly gains profit. Because all links are
complementary, we may intuitively think that all deviated
links belong to player k. Wemay get a contradiction similar to
the proof of Theorem 5 because we may get a sequence of
deviations ti → t̄ such that, for every i ≥ 2, no deviating

player gets worse profit in ti compared with t i−1, and
for player k, it is πk(t i) ≥ πk(t i−1) ≥ πk(t1) > πk(t̄), yielding
πk(t̄) > πk(t̄). □
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