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Abstract. A fluid queuing network constitutes one of the simplest models in which to study
flow dynamics over a network. In thismodel we have a single source-sink pair, and each link
has a per-time-unit capacity and a transit time. A dynamic equilibrium (or equilibrium flow
over time) is a flow pattern over time such that no flow particle has incentives to unilaterally
change its path. Although the model has been around for almost 50 years, only recently
results regarding existence and characterization of equilibria have been obtained. In par-
ticular, the long-termbehavior remains poorly understood. Ourmain result in this paper is to
show that, under a natural (and obviously necessary) condition on the queuing capacity, a
dynamic equilibrium reaches a steady state (after which queue lengths remain constant) in
finite time. Previously, it was not even known that queue lengths would remain bounded.
The proof is based on the analysis of a rather nonobvious potential function that turns out to
be monotone along the evolution of the equilibrium. Furthermore, we show that the steady
state is characterized as an optimal solution of a certain linear program. When this program
has a unique solution, which occurs generically, the long-term behavior is completely
predictable. On the contrary, if the linear program has multiple solutions, the steady state is
more difficult to identify as it depends on the whole temporal evolution of the equilibrium.
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1. Introduction
The theory of flows over time provides a natural
and convenient model to describe the dynamics of a
continuous stream of particles traveling from a source
to a sink in a network, such as urban or Internet
traffic. Probably the most basic model for the prop-
agation of flow is the so-called fluid-queue model in
which each arc in the network consists of a fluid
queue with an arc-specific capacity followed by a link
with constant delay. Thus, the time to traverse an
edge is composed of a flow-dependentwaiting time in
the queue plus a constant travel time after leaving the
queue. This model was initially studied in the frame-
work of optimization. Ford and Fulkerson (1958, 1962)
considered a fluid queue model in a discrete time
setting and designed an algorithm to compute a flow
over time carrying the maximum possible flow from
the source s to the sink t in a given timespan. Gale
(1959) then showed the existence of aflowpattern that
achieves this optimum simultaneously for all time

horizons. These results were extended to continuous
time by Anderson and Philpott (1994) and Fleischer
and Tardos (1998). We refer to Skutella (2009) for an
excellent survey. However, when network flows suffer
from a lack of coordination among the participating
agents, it is natural to take a game-theoretic approach.As
first described by Vickrey (1969) for a simple bottleneck
model, in a dynamic network routing game each in-
finitesimal particle is interpreted as a player that seeks
to complete its journey in the least possible time.
Players are forward-looking and anticipate the con-
gestion and queuing delays induced by others upon
arrival to any edge in the network. Equilibrium occurs
when each particle travels along a shortest path.
More formally, a fluid queuing network is a directed

graph G ! (V,E), where each arc e ∈ E consists of a
fluid queue with capacity νe > 0 followed by a link
with constant delay τe ≥ 0 (see Figure 1). A constant
inflow rate u0 > 0 enters the network at a fixed source
s ∈ V and travels toward a terminal node t ∈ V. A
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dynamic equilibriummodels the temporal evolution of
the flows in the network. Loosely speaking, it consists
of a flow pattern in which every particle travels
along a shortest path, accounting for the fact that
travel times depend on the instant at which a particle
enters the network as well as the state of the queues
that will be encountered along its path by the time at
which they are reached. Intuitively, if the queues
are initially empty, the equilibrium should start by
sending all the flow along shortest paths considering
only the free-flow delays τe. These paths are likely to
become overloaded so that queues will grow on some
of its edges and at some point in time new paths will
become competitive and will be incorporated into the
equilibrium. These new paths may in turn build
queues so that even longer paths may come into play.
Hence, one might expect that the equilibrium pro-
ceeds in phases in which the paths used by the
equilibrium remain stable. However, it is unclear if
the number of such phases is finite and whether the
equilibrium will eventually reach a steady state in
which the queues and travel times stabilize.

Although dynamic equilibria have been around for
almost 50 years (see, e.g., Ford and Fulkerson 1958,
Gale 1959, Vickrey 1969, Merchant and Nemhauser
1978a, b, Friesz et al. 1993, Ran and Boyce 1996, Xu
et al. 1999, Peeta and Ziliaskopoulos 2001), their ex-
istence has only been proved recently by Zhu and
Marcotte (2000) though in a somewhat different setting
and byMeunier andWagner (2010) who gave the first
existence result for a model that covers the case of
fluid queuing networks. These proofs, however, rely
heavily on functional analysis techniques and pro-
vide little intuition on the combinatorial structure of
dynamic equilibria, their characterization, or feasible
approaches to compute them. Substantial progress
was recently achieved by Koch and Skutella (2011)
by introducing the concept of thin flows with resetting
that characterizes the time derivatives of a dynamic
equilibrium and which provides in turn a method to
compute an equilibrium by integration. A slightly re-
fined notion of normalized thin flows with resetting
was considered byCominetti et al. (2015), who proved
existence and uniqueness and provided a construc-
tive proof for the existence of a dynamic equilibrium.

In recent work, further extensions and variants of
themodel have been studied. In particular, Sering and
Skutella (2018) extend some of the known results
about dynamic equilibria to the case in which there

are multiple sources and terminal nodes. However,
the multicommodity case is largely open. Further-
more, Sering and Vargas Koch (2019) consider spill-
back effects to model the fact that in practice the
queues cannot grow arbitrarily large and that their
effect propagates back in the network. Graf andHarks
(2019) consider a related model in which particles
behavemyopically andmake routing decisions based
on the current state of the network, without antici-
pating its evolution. Finally, we mention the work of
Cao et al. (2017), who consider an atomic model and
establish that in series-parallel networks queues re-
main bounded in a dynamic equilibrium.
In this paper we focus on the long-term behavior

of dynamic equilibria in fluid queuing networks.
Clearly if the inflow u0 is very large compared with
the queuing capacities, the queues will grow with-
out bound, and no steady state can be expected.
More precisely, let δ+(S) be an st-cut with minimum
queuing capacity ν̄ ! ∑

e∈δ+(S) νe; if there are multiple
options, choose S (containing s) to be setwiseminimal.
If u0 > ν̄, all the arcs in δ+(S) will grow unbounded
queues, whereas for u0 ≤ ν̄, it is natural to expect that
the equilibrium should eventually reach a steady
state, where queue lengths remain constant. This was
not known—in fact, it was not even known that queue
lengths remain bounded!
Our main goal in this paper is to show that both these

properties do indeed hold: more precisely, when u0 ≤ ν̄,
the dynamic equilibrium reaches a steady state in
finite time. At first glance, these convergence prop-
erties might seem “obvious,” and it might seem
surprising that they are at all difficult to prove. We
will present some examples that illustrate why this is
not the case. For instance, it may occur that the flow
across the cut δ+(S) may temporarily exceed its ca-
pacity ν̄ by an arbitrarily large factor, forcing the
queues to grow very large. This phenomenon may
occur since the inflow u0 entering the network at
different points in time may experience different
delays and eventually superpose at δ+(S), which gets
an inflow larger than u0. In other cases, some queues
may grow during a period of time after which they
reduce to zero and then grow again later on. In fact,
we give a construction that shows that this can
happen an exponential (in the input size) number of
times during the evolution! Along the way to our
main result, we provide a characterization of the
steady state as an optimal solution of a certain linear
programming problem, and we discuss when this
problem has a unique solution. Despite the fact that
convergence to a steady state occurs in finite time, it
remains as an open question whether this state is
attained after finitely many phases.

Figure 1. An Arc in the Fluid Queuing Network
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The paper is structured as follows. Section 2 re-
views themodel of fluid queuing networks, including
the precise definition of dynamic equilibrium and the
main results known so far. Then, in Section 3 we
discuss the notion of steady state and provide a
characterization in terms of a linear program. In-
spired by the objective function of this linear pro-
gram, in Section 4 we introduce a potential function
and we prove that it is a Lyapunov function for the
dynamics. This potential turns out to be piecewise
linear in time with finitely many possible slopes. We
then prove that the potential remains bounded so that
there is a finite time at which its slope is zero, and we
show that in that case the system has reached a steady
state. Further, we provide an explicit pseudopoly-
nomial bound on the convergence time. Finally, in
Section 5 we discuss the interesting (and perhaps
surprising) examples alluded to earlier, as well as
some remaining open questions.

2. Dynamic Equilibria in Fluid
Queuing Networks

In this section we recall the definition of dynamic
equilibria in fluid queuing networks, and we briefly
review the known results on their existence, character-
ization, and computation. The results are stated without
proofs for which we refer to Koch and Skutella (2011)
and Cominetti et al. (2015).

2.1. The Model
Consider a fluid queuing network G ! (V,E)with arc
capacities νe and delays τe. The network dynamics are
described in terms of the inflow rates f +e (θ) that enter
each arc e ∈ E at time θ, where f +e : [0,∞) → [0,∞)
is measurable.

Arc Dynamics. If the inflow f +e (θ) exceeds νe, a queue
ze(θ) will grow at the entrance of the arc.

The queues are assumed to operate at capacity, that
is to say, when ze(θ) > 0 the flow is released at rate νe,
whereas when the queue is empty the outflow is
the minimum between f +e (θ) and the capacity νe.
Hence, the queue evolves from its initial state ze(0)!0
according to

że θ( ) ! f +e θ( ) − νe if ze θ( ) > 0,
f +e θ( ) − νe

[ ]
+ if ze θ( ) ! 0.

{
(1)

These dynamics uniquely determine the queue lengths
ze(θ) as well as the arc outflows

f −e θ+τe( ) !
νe if ze θ( ) > 0,

min f +e θ( ), νe
{ }

if ze θ( ) ! 0.

{
(2)

Flow Conservation. A flow over time is a family ( f +e )e∈E
of arc inflows such that flow is conserved at every
node v ∈ V \ {t}, namely, for almost all θ ≥ 0

∑

e∈δ+ v( )
f +e θ( ) −

∑

e∈δ− v( )
f −e θ( ) ! u0 if v ! s,

0 if v (! s, t.

{
(3)

Dynamic Shortest Paths. Aparticle entering an arc e at
time θ experiences a queuing delay ze(θ)/νe plus a
free-flow delay τe to traverse the arc after leaving the
queue, so that it will exit the arc at time

Te θ( ) ! θ + ze θ( )
νe

+ τe. (4)

Consider a particle entering the source node s at
time θ. If this particle follows a path p ! e1e2 · · · ek, it
will reach the end of the path at time

Tp θ( ) ! Tek ◦ · · · ◦ Te2 ◦ Te1 θ( ). (5)

Denote by Pv the set of all sv-paths. The minimal time
at which node v can be reached is

%v θ( ) ! min
p∈Pv

Tp θ( ). (6)

The paths attaining these minima are called dynamic
shortest paths. The arcs in these paths are said to be
active at time θ, and we denote them by E′

θ. Observe
that %v(θ) can also be defined through the dynamic
Bellman’s equations

%s θ( ) ! θ,
%w θ( ) ! min

e!vw∈E
Te %v θ( )( ),

{
(7)

so that e ! vw is active precisely if %w(θ) ! Te(%v(θ)).

Dynamic Equilibrium. A dynamic equilibrium is a
flow pattern that uses only dynamic shortest paths.
More precisely, let Θe ! {θ : e ∈ E′

θ} be the set of en-
trance times θ at which the arc e is active, and let Ξe !
%v(Θe) be the set of local times ξ ! %v(θ) at which e will
be active. A flow over time ( f +e )e∈E is called a dynamic
equilibrium if and only if for almost every ξ ≥ 0 we
have f +e (ξ) > 0 ⇒ ξ ∈ Ξe.

Figure 2. Dynamics of an Arc in the Queuing Network

518
Cominetti, Correa, and Olver: Long-Term Behavior of Dynamic Equilibria

Operations Research, 2022, vol. 70, no. 1, pp. 516–526, © 2021 INFORMS



2.2. Characterization of Dynamic Equilibria
Since the inflows f +e (·) are measurable, the same holds
for f −e (·), and wemay define the cumulative inflows and
cumulative outflows as

F+e θ( ) !
∫ θ
0 f +e z( ) dz,

F−e θ( ) !
∫ θ
0 f -e z( ) dz.

These cumulative flows allow one to express the
queues as ze(θ) ! F+e (θ) − F−e (θ + τe). It turns out that a
dynamic equilibrium can be equivalently character-
ized by the fact that for each arc e ! vw ∈ E we have

F+e %v θ( )( ) ! F−e %w θ( )( ) ∀ θ ≥ 0. (8)

In this case, the functions xe(θ)≜ F+e (%v(θ)) are static
flows with

∑

e∈δ+ v( )
xe θ( ) −

∑

e∈δ− v( )
xe θ( ) !

u0θ if v ! s,
−u0θ if v ! t,

0 if v (! s, t.

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

(9)

2.3. Derivatives of a Dynamic Equilibrium
The labels %v(θ) and the static flows xe(θ) are non-
decreasing functions which are also absolutely con-
tinuous so that they can be reconstructed from their
derivatives by integration.1 Moreover, from these
functions one can recover the equilibrium inflows
f +e (·) using the relation x′e(θ) ! f +e (%v(θ))%′v(θ). Hence,
finding a dynamic equilibrium reduces essentially to
computing the derivatives %′v(θ), x′e(θ).

Let θ be a point of differentiability, and set %′v !
%′v(θ) ≥ 0 and x′e ! x′e(θ) ≥ 0. From (9) we see that x′ is a
static st-flow of size u0, namely,

∑

e∈δ+ v( )
x′e −

∑

e∈δ− v( )
x′e !

u0 if v ! s,
−u0 if v ! s,

0 if v (! s, t,

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

(10)

while using (7), (4), (1), and the differentiation rule
for a minimum we get

%′s ! 1,
%′w ! min

e!vw∈E′
θ

ρe %′v, x
′
e

( )
,

{
(11)

where

ρe %
′
v, x

′
e

( ) ! x′e/νe if e ∈ E∗θ,
max %′v, x

′
e/νe

{ }
if e /∈ E∗θ,

{
(12)

with E∗θ the set of arcs e ! vw with positive queue
ze(%v(θ)) > 0. In addition to this, the conditions for
dynamic equilibria imply that E∗θ ⊂ E′

θ as well as that

∀ e ∈ E′
θ

( )
x′e > 0 ⇒ %′w ! ρe %

′
v, x

′
e

( )
,

∀ e /∈ E′
θ

( )
x′e ! 0. (13)

These equations fully characterize the derivatives of a
dynamic equilibrium. In fact, for all subsets E∗ ⊆ E′ ⊆
E the system (10)–(13) admits at least one solution
(%′, x′), and moreover, the %′-component is unique.
These solutions are called normalized thin flows with
resetting (NTFR) and can be used to reconstruct a dy-
namic equilibrium by integration, proving the exis-
tence of equilibria.We refer toCominetti et al. (2015) for
the existence and uniqueness of NTFRs and to Koch
and Skutella (2011) for a description of the integra-
tion algorithm and how to find the equilibrium in-
flows f +e (·).
Observe that there are only finitely many options

for E∗ and E′. Since the corresponding %′ is unique, it
follows that the functions %v(θ) will be uniquely de-
fined and piecewise linear with finitely many options
for the derivatives. Although the static flows xe(θ) are
not unique in general, one can still find an equilibrium
in which these functions are also piecewise linear by
fixing a specific x′ in the NTFR for each pair E∗,E′.

2.4. A Detailed Example
We now work out the details of a small example that
already provides some intuition on how the dynamic
equilibria behaves. In particular, this example ex-
hibits an unexpected property, namely, that the flow
coming into the sink can be larger than the net-
work inflow.

Example 1. Consider the network consisting of the
vertices {s, v, t} with edges e ! (s, t), f ! (s, v), g ! (v, t),
h ! (v, t) and inflow u0 ! u. Capacities are νe ! u/3,
νf ! 3u/4, νg ! u/3, and νh ! u, and delays are τe ! τh !
τ and τf ! τg ! 0.
In a dynamic equilibrium for this instance, flow is

initially routed through the shortest path fg. Then
queues grow in both edges until at time τ/2 the path
consisting of e enters the shortest path network. From
that point in time the flow splits in equal proportions
between paths e and fg, implying that a queue starts
growing on edge e, the queue of f starts decreasing,
and the queue on g continues to increase. Then, at time
0.7τ, the queue on ghas grown enough tomake h enter
the shortest path network. At this point all edges
except h have a queue, and the flow starts splitting as
follows: 4u/13 take path e, 4u/13 take path fg, and
5u/13 take path fh. Therefore, all queues start de-
creasing until at time 2τ the queues on edges e and
f deplete simultaneously. When this happens the
shortest path network stays the same but the edges
with queue change since only g still has a queue. The
new thin flow is thus computed, and the flow starts
splitting evenly between the paths e, fg, and fh. (Each
gets flow u/3.) This last phase constitutes a steady
state so it lasts forever. More precisely in this instance
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one can compute the derivative of the distance labels
at node t as

%′t θ( ) !

3 for θ ∈ 0, τ/2[ ),
3/2 for θ ∈ τ/2, τ/2 + τ/5[ ),

12/13 for θ ∈ τ/2 + τ/5, 2τ[ ),
1 for θ ∈ 2τ,∞[ ).

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Interestingly, the amount of flow arriving at t at time
%t(θ) can readily be computed as u/%′t (θ). So that if we
consider the local time at node t, this flow is then

f −e θ( ) + f −g θ( ) + f −h θ( )

!

u/3 for θ ∈ 0, 3τ/2[ ),
2u/3 for θ ∈ 3τ/2, 9τ/5[ ),

13u/12 for θ ∈ 9τ/5, 3τ[ ),
u for θ ∈ 3τ,∞[ ).

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

This brings us to the surprising fact that, for some time
interval, the flow arriving at the sink is larger than
the inflow.

3. Steady States
We say that a dynamic equilibrium attains a steady
state if for sufficiently large times all the queues are
frozen to a constant ze(θ) ≡ z∗e . This is clearly equiv-
alent to the fact that the arc travel times become
constants equal to τ∗e ! τe + q∗e with q∗e ! z∗e /νe the
corresponding queuing times.

Lemma 1. A dynamic equilibrium attains a steady state if
and only if there exists some θ∗ ≥ 0 such that %′v(θ) ! 1 for
every node v ∈ V and all θ ≥ θ∗.

Proof. In a steady state we clearly have %v(θ) ! θ + d∗v ,
where d∗v is the minimum travel time from s to v with
arc times τ∗e , so that %′v(θ) ! 1. Conversely, if all these
derivatives are equal to 1, then %v(θ) ! θ + d∗v for some
constant d∗v and θ ≥ θ∗. Moreover, an arc e ! vw with
nonempty queuemust be active so that %w(θ) ! Te(%v(θ)),
which yields

ze θ + d∗v
( ) ! ze %v θ( )( ) ! νe %w θ( ) − %v θ( ) − τe( )

! νe d∗w − d∗v − τe
( )

,

which shows that all queues eventually become con-
stant. □

Theorem 1. Consider a steady state with queues z∗e ≥ 0,
and let d∗v be the minimum travel time from s to v under arc
travel times τ∗e ! τe + q∗e , where q∗e ! z∗e /νe. Let (%′, x′)with
%′v ! 1 for all v ∈ V be a corresponding NTFR, and denote
by F 0 the set of st-flows of value u0. Then x′ and (d∗, q∗)

are optimal solutions to the following pair of dual lin-
ear programs:

min
y′

∑

e∈E
τey′e

s.t. y′ ∈ F 0,

0 ≤ y′e ≤ νe ∀e ∈ E, (14)
max
d,q

u0dt −
∑

e∈E
νeqe

s.t. ds ! 0,
dw ≤ dv + τe + qe ∀e ! vw ∈ E,
qe ≥ 0 ∀e ∈ E. (15)

Proof. Clearly (d∗, q∗) is feasible for (15). Also (10) gives
x′ ∈ F 0, while (13) implies that if x′e > 0, then 1 ! ρe(1,
x′e). This implies that x′e ≤ νe, so x′ is feasible for (14).
If x′e > 0, then certainly the arc is active (formally,
by (13)) and hence d∗w ! d∗v + τe + q∗e . And if q∗e > 0,
also implying that e is active, then (11) implies that
1 ≤ ρe(1, x′e) ! x′e/νe, which yields x′e ! νe. This proves
that x′ and (d∗, q∗) are complementary solutions and,
hence, are optimal for (14) and (15), respectively. □

According to this result, if a dynamic equilibrium
eventually settles to a steady state, then the corre-
sponding queue lengths must be optimal for (15).
Generically (after perturbing capacities) this linear
program has a unique solution, in which case the
steady state is fully characterized. Otherwise, if (15)
has multiple solutions, it is not evident which queue
lengths will be obtained in steady state. Note that,
even if the min cost flow for (14) is unique, this does
not mean that only one steady state situation is
possible, because there may be flexibility in the queue
lengths. For instance, if u0 ! 1 and the network has a
single link from s to t of unit capacity, if we create a
queue of some length at time 0, this queue will remain
in the steady state solution. This point will be further
discussed in Section 5.3.

Remark. It is not difficult to show that, when we start
with initial conditions ze(0) ! z∗e where z∗e ! νeq∗e with
q∗ optimal for (15), the dynamic equilibrium is already
at a steady state and the queues remain constant.

4. Convergence to a Steady State
In this section we prove that a steady state exists and
that it is actually reached in finite time. To this end we
introduce a Lyapunov potential function that in-
creases along the evolution of the dynamic equilib-
rium. The potential function is inspired from the
previous dual program and is given by

Φ θ( ) :! u0 %t θ( ) − %s θ( )( ) −
∑

e∈E
ze %v θ( )( ).
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Remark. The potential is the difference between the
total travel time experienced by users leaving at time θ
and the total queue volumes as seen by users leaving at
time θ. We are not aware of a more insightful inter-
pretation of it. In fact, none of the more “natural”
quantities we tried as candidate potential functions
(total delay, time spent queueing, total delay excluding
queueing delays, etc.) are monotone.

Theorem 2. For every θ that is a point of differentiability of
Φ, Φ′(θ) is nonnegative, and strictly positive unless the
dynamic equilibrium has reached a steady state.

Proof. The queues can be expressed as ze(%v(θ)) !
νe[%w(θ) − %v(θ) − τe]+, and therefore, Φ(θ) ! u0(%t(θ)−
%s(θ)) −∑

e∈E νe[%w(θ) − %v(θ) − τe]+. To take the deriv-
ative we recall that E′

θ is the set of active edges, that is,
those for which %w(θ) − %v(θ) ≥ τe, while in E∗θ the in-
equality is strict. Using the derivative of a max function
and taking an NTFR (%′, x′) at time θ, we thus obtain

Φ′ θ( ) ! u0 %′t − %′s
( ) −

∑

e∈E′
θ\E∗

θ

νe %
′
w − %′v

[ ]
+

−
∑

e∈E∗
θ

νe %
′
w − %′v

( )
.

Notice that the dependency of the τe’s in the previous
derivative is somewhat hidden in the set of active
edges E′

θ. Now, for e ∈ E′
θ\E∗θ we have %′w ≤ ρe(%′v, x′e) !

%′v if x′e ! 0 and %′w ! ρe(%′v, x′e) ≥ %′v if x′e > 0, so that
letting E+

θ ! E∗θ ∪ {e ∈ E′
θ \ E∗θ : x′e > 0} we may write

Φ′ θ( ) ! u0 %′t − %′s
( ) −

∑

e∈E+
θ

νe %
′
w − %′v

( )
.

Let us introduce a return arc ts with capacity νts !
u0 and flow x′ts ! u0 so that x′ is a circulation.
Let Er

θ ! E+
θ ∪ {ts}, and for each e ! vw ∈ Er

θ define
the function

He z( ) !
1 if %′v ≤ z < %′w ,
−1 if %′w ≤ z < %′v ,
0 otherwise.

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

Then the derivative Φ′(θ) can be expressed as

Φ′ θ( ) ! −
∫ ∞

0

∑

e∈Er
θ

νeHe z( ) dz.

For the remainder of the proof, let δ+(S) (respec-
tively, δ−(S)) denote the arcs in Er

θ leaving (respec-
tively, entering) S. Let Vz ! {v : %′v ≤ z}, and consider
an arc e ! vw ∈ E+

θ . If e ∈ δ+(Vz), then %′v ≤ z < %′w
and therefore %′w ! x′e/νe. Similarly, if e ∈ δ−(Vz), then
%′w ≤ z < %′v, which implies e ∈ E∗θ and again %′w ! x′e/νe.
Hence, x′e ! νe%′w for all e ∈ E+

θ ∩ δ(Vz). This equality

also holds for the return arc ts, while in the remaining
arcs x′e ! 0. Hence,

∑

e∈δ+ Vz( )
νez ≤

∑

e!vw∈δ+ Vz( )
νe%

′
w !

∑

e∈δ+ Vz( )
x′e !

∑

e∈δ− Vz( )
x′e

!
∑

e!vw∈δ− Vz( )
νe%

′
w ≤

∑

e∈δ− Vz( )
νez (16)

with strict inequality if δ+(Vz) is nonempty. It follows
that for all z > 0 we have

∑

e∈Er
θ

νeHe z( ) !
∑

e∈δ+ Vz( )
νe −

∑

e∈δ− Vz( )
νe ≤ 0

and therefore Φ′(θ) ≥ 0 with strict inequality unless
δ+(Vz) is empty for almost all z ≥ 0. Since for δ+(Vz) to
be empty we need that it either contains all vertices in
V or none of them,we have thatΦ′(θ) ! 0 if and only if
all %′v are equal and hence (since %′s ! 1) all equal to 1.
By Lemma 1, this exactly characterizes a steady
state. □

Theorem 3. Let ν̄ ! ∑
e∈C νe be the minimal queuing ca-

pacity among all st-cuts C. If u0 ≤ ν̄, then the dynamic
equilibrium attains a steady state in finite time.

Proof. From Theorem 2 it follows that there is some
κ > 0 such thatΦ′(θ) ≥ κ for every phase other than the
steady state. This is simply because the thin flow de-
pends only on the current shortest path network E′

θ and
the set of queuing edges E∗θ, and so there are only fi-
nitely many possible derivatives.
Thus, in order to prove that a steady state is reached

in finite time it suffices to show that Φ(θ) remains
bounded. To this end we note that the condition u0 ≤ ν̄
implies that (14) is feasible, and hence, it has a finite
optimal value α. The conclusion then follows by not-
ing that the point (d, q) with dv ! %v(θ) − %s(θ) and qe !
ze(%v(θ))/νe is feasible for the dual (15) so that
Φ(θ) ≤ α. □

Given that convergence to a steady state does
happen in finite time, it is natural to ask for explicit
bounds. It is easy to see that a polynomial bound
(in the input size encoding) is impossible; simply
consider a network consisting of two parallel links:
one with capacity 1 − 2−L and length zero, the other
with capacity 1 and length 1. The first phase, where all
traffic takes the shorter edge, lasts until time 2L − 1.
However, we can give a pseudopolynomial bound on
the convergence time (and, hence, queue lengths). The
following result shows this bound. We present it in a
slightly more general setting that allows for rational
inflow and capacities and arbitrary initial queues
since we will need it in this form in Section 5.2.

Theorem 4. Consider an instance for which all arc capacities
νe as well as the inflow u0 are multiples of 1/K, K ∈ Z+.

521
Cominetti, Correa, and Olver: Long-Term Behavior of Dynamic Equilibria
Operations Research, 2022, vol. 70, no. 1, pp. 516–526, © 2021 INFORMS



We allow for an arbitrary initial state at time 0 with possi-
bly nonempty queues. Let M ! ∑

e∈E νe and T ! ∑
e∈E(τe +

qe(0)). Then assuming the dynamic equilibrium attains
a steady state, it is reached by time 2K2M2T, and moreover,
the waiting time in any queue never exceeds 2u0K3M2T.

Proof. We first remark that it suffices to prove the
result for K ! 1, that is, integer capacities and inflow.
For consider the instance where the inflow as well as all
arc capacities have been scaled up by a factor K. The
equilibrium flow on this new instance is obtained by
scaling the equilibrium flow on the original one, and so
the time to reach steady state, as well as the queue
waiting times at any moment in time, are the same for
both instances. Considering the impact of the scaling on
the claimed bounds, the claim on this new instance thus
implies the claim on the original instance, and so we
assume K ! 1 for the remainder.

We use the same notions defined in the proof of
Theorem 2. Assume that a steady state is attained; thus,
(14) has a finite objective value, and this is at most∑

e∈E νeτe ≤ M
∑

e∈E τe. Thus, Φ(θ) ≤ M
∑

e∈E τe for all
θ. Initially,

Φ 0( ) ! u0(%t(0) − %s(0)) −
∑

e∈E
νeqe 0( ) ≥ −M

∑

e∈E
qe 0( ).

So Φ(θ) −Φ(0) ≤ MT for all θ.
Consider some time θ which is a point of differen-

tiability not in the steady state phase; so Φ′(θ) > 0 by
Theorem 2. Our first goal will be to show that
Φ′(θ) ≥ 1/(2M); this clearly implies the bound on the
time to reach steady state.

Let θ be any time before steady state is reached and
for which Φ′(θ) is defined. Let z1 ! minv∈V %′v(θ) and
z2 ! maxv∈V %′v(θ). From the proof of Theorem 2, we
have ∑e∈Er

θ
νeHe(z) ≤ −1 for any z ∈ (z1, z2). (It is strictly

negative and integral.) And certainly He(z) ! 0 for all
e ∈ Er

θ and z /∈ [z1, z2]. Thus,

Φ′ θ( ) ! −
∫ z2

z1

∑

e∈Er
θ

νeHe z( )dz ≥ z2 − z1.

To bound this, choose an arbitrary z for which z1 <
z < z2. (Recall that z1 < z2 since we have not reached
steady state.) We have, following the lines of (16),

z1
∑

e∈δ− Vz( )
νe ≤

∑

e!vw∈δ− Vz( )
νe%

′
w !

∑

e∈δ− Vz( )
x′e !

∑

e∈δ+ Vz( )
x′e

!
∑

e!vw∈δ+ Vz( )
νe%

′
w ≤ z2

∑

e∈δ+ Vz( )
νe.

Thus,

z2 − z1 ! z2 1 − z1
z2

( )
≥ z2 1 −

∑
e∈δ+ Vz( ) νe∑
e∈δ− Vz( ) νe

( )
≥ 1
2M

.

Since z2 > z1,
∑

e∈δ−(Vz) νe ≤ M + u0 ≤ 2M, and z2 ≥
%′s(θ) ! 1, z2 − z1 ≥ 1/(2M).

Our next goal is to bound the queue lengths. The only
extra ingredient we need is a bound on the speed at
which a queue can grow. There is always an NTFR
which does not route flow along cycles (see Koch 2012,
theorem 6.64), so that x′e ≤ u0 for all e ∈ E. Therefore,
maxv %′v ! max{%′s,maxe x′e/νe} ≤ u0. Hence, for all times
θ before steady state is reached,

%t θ( ) − %s θ( ) ≤ %t 0( ) − %s 0( ) + u0 − 1( )θ
≤ T + 2(u0 − 1)M2T ≤ 2u0M2T.

This implies the same bound on all queue waiting
times. □

5. Some Constructions and Conjectures
While we have settled the finite-time convergence to a
steady state, there are a number of questions about
dynamic equilibria that remain open. In this section
we provide some constructions exhibiting somewhat
surprising behavior. First we show that in a dy-
namic equilibrium the flow across a cut can be arbitrarily
larger than the inflow. Then we build an instance
forwhich the dynamic equilibria have exponentiallymany
phases. We wrap up the section by discussing the possi-
bility of characterizing the steady state queues and some
conjectures regarding more general steady state results.

5.1. Flow Across a Cut
As mentioned in the introduction a first conjecture
would be that, similarly to what happens for static
flows, the flow across any cut is always bounded by
the inflow. This would provide a way to estimate the
queues and to prove their boundedness. Unfortunately
the property fails in a dynamic equilibrium. The reason
for this is thatflowentering thenetworkatdifferent times
may experience different delays in such a way that they
later superpose across an intermediate cut. In Example 1
we constructed one such instance, where the peak
outflow rate was a factor 13/12 larger than the inflow
rate. We will now show how to construct instances in
which the outflow is arbitrarily larger than the inflow.
The base of the construction, given in Figure 3,

consists of appending to the instance in Example 1
(slightly rescaled for convenience) an extra sink t′ and

Figure 3. The Modified Instance
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two arcs, e′ and f ′, connecting t with t′. Since the
outflow in Example 1 (with τ ! 5ρ/6) is

u/3 for θ ∈ 0, 5ρ/4
[ )

,

2u/3 for θ ∈ 5ρ/4, 3ρ/2
[ )

,

13u/12 for θ ∈ 3ρ/2, 5ρ/2
[ )

,

u for θ ∈ 5ρ/2,∞[ )
.

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

the outflow in the new instance will be

u/3 for θ ∈ 0, 7ρ/4
[ )

,

13u/12 for θ ∈ 7ρ/4, 11ρ/4
[ )

,

u for θ ∈ 11ρ/4,∞[ )
.

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

Indeed, while the flow leaving t is u/3, it will directly
take arc f ′ and therefore immediately reach t′. Then
the flow leaving t increases to 2u/3, and it will con-
tinue to choose arc f ′, though a queue will start
to build up on that arc. At time 3ρ/2 (considering
the local time at t) the queue in f ′ will be of size
(u/3) · (ρ/4), implying a queuing time of ρ/4. Since this
is exactly the delay of arc e′, at this point e′ enters the
shortest path network. From this point the flow
leaving t increases to 13u/12 and thus the flow splits:
u/3 flow units take arc f ′ while the remaining 9u/12
take arc e′. The latter pattern stays until time 5ρ/2
when the flow leaving t changes to u, and thus, it splits
as u/3 taking arc f ′ and 2u/3 taking arc e′, at which
point steady state has been reached.

Some observations are in order:
• The length of the “pulse” in this construction is

exactly ρ, and so this can bemade as large as required.
• The full pulse is produced as long as the inflow is

u for a period of 7ρ/4; if it were to decrease or oth-
erwise vary after this, it would only interfere with the
final steady state phase.

• All arcs in the gadget have capacity at least u/3,
meaning that no queues will form if the inflow is
bounded by u/3. This means that the instance would
still produce a pulse if the inflow was at most u/3 for
some initial period and then equal to u for a period (of
length at least 7ρ/4).

Building on these observations, we now construct
an instance where the “pulse” is arbitrarily larger
than the inflow. More precisely, we will construct a
gadget PULSE(u, k, q), for any k ∈ N and u, q ∈ R+, with
the following properties. (We define λ :! 13/12 for
convenience.)

i. There is some value αk ! O((5/3)k) such that,
assuming a constant inflow rate of u in the interval
[0, (5/3)kρ], the inflow rate into the sink is at most u/3
for θ < ραk and exactly λk · u for θ ∈ [ραk, ραk + ρ)
(where θ is the local time at the sink).

ii. All arcs have capacity at least u/3.
iii. The gadget has 6k arcs, with all free-flow delays

being multiples of 3−kρ and bounded by O((5/3)kρ),

and all arc capacities being multiples of 12−ku and
bounded by λku.
We have already seen in Figure 3 the construction

of a PULSE(u, 1, ρ) gadget; all the required properties
clearly hold. We construct a PULSE(u, k, ρ) gadget for
k ≥ 1 by chaining together in series a PULSE(u, k −
1, 53ρ) gadget (call itG) followed by a PULSE(λk−1u, 1, ρ)
gadget (call it H). Properties (i)–(iii) are then mostly
easy to verify inductively. An important observa-
tion is that, since the outflow of G before its pulse is at
most u/3, which is smaller than the smallest capacity
arc in H, this initial flow does not cause any distur-
bance. The bound on αk follows easily by making the
stronger inductive claim that αk ! 21

8 ((5/3)k − 1). Now
α1 ! 7/4, so this is correct for k ! 1. For k ≥ 2, the flow
intoH increases to λk−1u at time ραk−1 · (5/3), meaning
that the outflow increases to λku at time ραk−1(5/3) +
(7/4)ρ ! ραk, and thus, the inductive claim holds.

5.2. Instances with an Exponential
Number of Phases

A natural hope would be that the number of phases
is always polynomial in the input size (ideally as
measured by the number of arcs in the instance, but
failing that, as measured by the total encoding length
of the instance). Unfortunately, as we show next, this
is not the case, and indeed, the number of phases of a
dynamic equilibrium may be exponential even in
relatively simple series-parallel networks. This may
help explain why it is so notoriously difficult to
practically compute dynamic equilibria in real-world
networks (Wagner 2012, Friesz and Han 2018).
The PULSE gadget of the previous section will be a

first key ingredient. The next step of our construction
is to use it to build a “damping” gadget. For any
k ∈ Z+, ρ ∈ R+ we construct a gadget DAMPER(k, ρ)
with the following properties. (Recall thatλ :! 13/12.)
i. There are values Q ! eO(k)ρ and θ1 + 2ρ < θ2 !

eO(k)ρ so that the following holds. Given an inflow
of rate 1 in the interval [0,Q), the gadget produces
an outflow that is precisely 1 in the intervals [θ1,θ1 +
ρ) and [θ2, θ2 + ρ) and precisely λ−k in the inter-
val [θ2 − ρ, θ2).
ii. All arc capacities are multiples of 12−k between

λ−k/3 and 1.
iii. Assuming an inflow rate that is always bounded

by 1, the sum of queueing delays and free-flow delays
within the gadget can never exceed eO(k)ρ.
iv. The construction has O(k) arcs, with total encoding

lengthO(k · |ρ|) (where |ρ| denotes the encoding length
of ρ).
The construction of this gadget is shown in Figure 4.

(The precise value of τf is discussed below.) Initially,
no flowuses arc f ; a queue grows on e, which sends the
correct inflow of λ−k into the PULSE(λ−k, k, ρ) gadget.
After some time, the pulse gadget generates a pulse of
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size exactly 1, for a period of length ρ. We set θ1 to the
time that this pulse begins (as measured at t); by
property (i) of the PULSE gadget, θ1 ! O((5/3)kρ).
Since all free-flow delays in the gadget are bounded
by O((5/3)kρ) and all capacities are multiples of 12−k
bounded by 1, Theorem 4 yields a bound of eO(k)ρ,
both on the time to reach steady state and also on the
total delay within the pulse gadget. Once the pulse
gadget has reached steady state, its outflow remains
at λ−k; this will be the outflow of the DAMPER gadget
as well, as long as f has not joined the shortest
path network.

We now see how to choose τf large enough that f
only joins the shortest path network after the pulse
gadget has been sending outflow λ−k for at least a ρ
amount of time. Since the queue on arc e grows at rate
λk − 1 and the delay within the pulse gadget itself is at
most eO(k)ρ, it is clear that we can choose τf ! eO(k)ρ.
Once f does join the shortest path network, the en-
tire DAMPER gadget reaches steady state, and the
flow into t increases to 1. This determines θ2, and from
this we can fix Q, ensuring that both are bounded by
eO(k)ρ. Property (iii) also follows immediately from the
choice of τf .

Now we come to the construction of the gadget
EXPONENTIAL(d), which for any d ∈ Z+ will have
size quadratic in d and at least 2d phases. The con-
struction is recursive. In the following,Cwill denote a
constant chosen large enough in relation to the hidden
implicit constants in the definition of the DAMPER
gadget; the precise requirements on C will become
clear. We construct EXPONENTIAL(1) by simply tak-
ing two parallel arcs: one of capacity 1/3 and length 0,
and the other of capacity 2/3 and length 1; this clearly
has two phases. To construct EXPONENTIAL(d) for
d ≥ 2, take a DAMPER(15d,C(d−1)2) gadget (call it G)
and follow this in series by an EXPONENTIAL(d − 1)
gadget (call it H).

The idea behind this construction is that, because
the outflow λ−15d from the damper gadget G dur-
ing the damped period is smaller than the minimum
arc capacity (of at least λ−15(d−1)/3) inH, queueswithin
the gadget will decrease. The length of the damped
phase has been chosen to be long enough that all
queues in H empty out completely. (This is the only

really delicate aspect of this construction.) The two
high-outflowperiods ofG last long enough thatH runs
(inductively) through 2d−1 phases during both pe-
riods, giving a total of at least 2d phases.
The following properties about EXPONENTIAL(d)

are then straightforward to confirm inductively, exploit-
ing also the properties of the DAMPER gadget.
i. Given a constant inflow of 1 in the interval

[0,Cd2), the gadget goes through 2d phases.
ii. All arc capacities are multiples of 12−15d between

λ−15d/3 and 1.
iii. Assuming an inflow rate that is always bounded

by 1, the sum of queueing delays and free-flow delays
within the gadget can never exceed Cd2−d.
iv. The gadget consists of less than (10d)2 arcs and

has encoding length O(d4).
Property (iii) requires that C is chosen large enough

that the bound on the total delays in G given by
property (iii) of the DAMPER gadget is smaller than
Ck/15−2ρ, which for k ! 15d and ρ ! C(d−1)2 yields a
bound of Cd2−d−1. Inductively the total delays inH sum
to at most C(d−1)2−(d−1) ! Cd2−3d. Overall, we obtain a
bound of at most Cd2−d−1+ Cd2−3d ≤ Cd2−d.
Let us now see that all queues in H do empty out

during the damped period. By properties (ii) and (iii),
Theorem 4 tells us that the time to reach steady state
from the beginning of the damped period is at most

2C(d−1)2−(d−1) · (10d)4 · (1215d)2 ≤ Cd2−3d+2 · Cd−1

! C(d−1)2 ,

which is the length of the damped phase. (We as-
sume in the above that C is large enough that
2(10d)4 · (1215d)2 ≤ Cd−1.) Since the inflow into H in the
damped period, namely, λ−15d < λ−15(d−1)/3, is lower
than the capacity of any arc in H, the steady state
necessarily has no queues.
While we know that the number of phases may be

very large, it is natural to expect that there are only a
finite number of phases. While we conjecture that this
is true, it is not ruled out by our result. Our result does
show that if the length of all phases in the evolution is
bounded away from zero, then there can only be a
finite number. It is not ruled out, however, that an
infinite sequence of phases occurs in afinite amount of
time. This is the same issue discussed in Cominetti
et al. (2015). The issue is significant; it is the one
obstacle to showing the uniqueness (in an appropriate
sense) of dynamic equilibria.
If such a result could be shown, an even stronger

conjecture would be that the number of phases is
pseudopolynomially bounded in the input size. This
would show that the exponential capacities and free-
flow delays in the EXPONENTIAL gadget construc-
tion are in fact necessary.

Figure 4. Construction of a DAMPER(k,ρ) Gadget
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5.3. Steady State Queue Lengths
Since the dynamic equilibriumalways reaches a steady
state, a natural question iswhether steady state queues
can be characterized without having to compute the
full equilibrium evolution. While we already observe
that this is the case when the dual problem (15) has a
unique solution, which occurs generically, the following
example suggests that this is likely not possible in general.

Example 2. Consider the network of Example 1, setting
τ ! 2 and u ! 1, with an extra node t̂, which becomes
the new sink, and two additional arcs, a ! (t, t̂) and
b ! (t, t̂). Let νa ! 2/3, νb ! 1/3, τa ! 0, and τb ! 1.

Clearly, up to time 3 + 3/5 all flow will simply take
arc a and will not queue at t. Therefore, we can ignore
this initial phase, and the queues that will form at
equilibrium in arcs a and b are the same as those that
we would have in a network consisting of just nodes t
(the source) and t̂ (the sink) and inflow

u0 θ( ) ! 13/12 for θ ∈ 0, 2 + 2/5[ ),
1 for θ ∈ 2 + 2/5,∞[ ).

{

In this instance all flow will take arc a for time
θ ∈ [0, 8/5), forming a queue ze(8/5) ! 2/3. At this
point flow will start splitting between arcs a and b in
proportions 2/3 and 1/3, implying that queues will
grow on both arcs until time 2 + 2/5, where the steady
state is achieved. The steady state queues will thus be
z∗a ! 32/45 and z∗b ! 1/45. This example shows that the
steady state queues are notminimal in any reasonable
sense and that, furthermore, slightly changing the
instance (e.g. τ4) will change the steady state queues.
Furthermore, if we slightly increase the capacity of arc
b, say, to 1/3 + ε, the steady state queues jump to z∗a !
2/3 and z∗b ! 0.

Additionally, one can observe from a slight variant
of this instance, namely, taking τ large and νb ! 1/3 + ε,
that queues may grow very large in the transient and
then go down to zero at steady state.

5.4. Conjectures on More General Steady
State Results

Suppose that the inflow into the network is not a
constant, but a time-varying function u0(θ). Suppose
moreover that u0(θ) is always bounded by themin-cut
capacity of the network. Of course, there cannot be
convergence to a steady state in this setting; but it is
natural to expect that queues stay bounded. We
conjecture that this is the case. It is not clear how our
potential argument can aid in proving this conjecture.
In particular, note that the boundedness of Φ alone is
not helpful, as this does not imply any bounds on the
queue sizes.

Suppose now that the inflow is constant, but larger
than the min-cut capacity. Then again the evolution
can of course not converge to a steady state in the
way that we have defined it: queues cannot remain
bounded. However, we conjecture that it is still true
that, after a finite amount of time, the equilibrium
settles into a final phase that lasts forever.
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Endnote
1These derivatives exist almost everywhere and are locally integrable.
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