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Abstract
In the classic prophet inequality, a well-known problem in optimal stopping theory,
samples from independent random variables (possibly differently distributed) arrive
online. A gambler who knows the distributions, but cannot see the future, must decide
at each point in timewhether to stop and pick the current sample or to continue and lose
that sample forever. The goal of the gambler is to maximize the expected value of what
she picks and the performance measure is the worst case ratio between the expected
value the gambler gets and what a prophet that sees all the realizations in advance
gets. In the late seventies, Krengel and Sucheston (Bull Am Math Soc 83(4):745–
747, 1977), established that this worst case ratio is 0.5. A particularly interesting
variant is the so-called prophet secretary problem, in which the only difference is that
the samples arrive in a uniformly random order. For this variant several algorithms
are known to achieve a constant of 1 − 1/e ≈ 0.632 and very recently this barrier
was slightly improved by Azar et al. (in: Proceedings of the ACM conference on
economics and computation, EC, 2018). In this paper we introduce a new type of
multi-threshold strategy, called blind strategy. Such a strategy sets a nonincreasing
sequence of thresholds that depends only on the distribution of the maximum of the
random variables, and the gambler stops the first time a sample surpasses the threshold
of the stage. Ourmain result shows that these strategies can achieve a constant of 0.669
for the prophet secretary problem, improving upon the best known result of Azar et al.
(in: Proceedings of the ACM conference on economics and computation, EC, 2018),
and even that of Beyhaghi et al. (Improved approximations for posted price and second
price mechanisms. CoRR arXiv:1807.03435, 2018) that works in the case in which
the gambler can select the order of the samples. The crux of the result is a very precise
analysis of the underlying stopping time distribution for the gambler’s strategy that
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is inspired by the theory of Schur-convex functions. We further prove that our family
of blind strategies cannot lead to a constant better than 0.675. Finally we prove that
no algorithm for the gambler can achieve a constant better than

√
3 − 1 ≈ 0.732,

which also improves upon a recent result of Azar et al. (in: Proceedings of the ACM
conference on economics and computation, EC, 2018). This implies that the upper
bound on what the gambler can get in the prophet secretary problem is strictly lower
than what she can get in the i.i.d. case. This constitutes the first separation between
the prophet secretary problem and the i.i.d. prophet inequality.

Mathematics Subject Classification 60G40

1 Introduction

Prophet Inequalities. For fixed n > 1, let V1, . . . , Vn be non-negative, independent
random variables and Tn the set of stopping times associated with the filtration gen-
erated by V1, . . . , Vn . A classic result of Krengel and Sucheston [25,26] asserts that
E(max{V1, . . . , Vn}) ≤ 2 ·sup{E(VT ) : T ∈ Tn}, and that 2 is the best possible bound.
The interpretation of this result says that a gambler, who only knows the distribution
of the random variables and that looks at them sequentially, can select a stopping rule
that guarantees her half of the value that a prophet, who knows all the realizations,
could get. The study of this type of inequalities, known as prophet inequalities, was
initiated by Gilbert and Mosteller [18] and attracted a lot of attention in the eighties
[21,22,30]. In particular Samuel-Cahn [30] noted that rather than looking at the set
of all stopping rules one can (quite naturally) only look at threshold stopping rules
in which the decision to stop depends on whether the value of the currently observed
random variable is above a certain threshold (and possibly on the rest of the history). In
the last decade the theory of prophet inequalities has resurged as an important problem
due to its connections to posted price mechanisms (PPMs) which are frequently used
in online sales (see [7,12]). The way these mechanisms work is as follows. Suppose
a seller has an item to sell. Consumers arrive one at a time and the seller proposes
to each consumer a take-it-or-leave-it offer. The first customer accepting the offer
pays that price and takes the item. This is again a stopping problem, and we refer the
reader to [2,7,9,20,27] for the connection between this stopping problem and Prophet
inequalities.

Although the situation for the standard prophet inequality just described is well
understood, there are variants of the problem, which are particularly relevant given
the connection to PPMs, for which the situation is very different. In what follows we
describe three important variants that are connected to each other and constitute the
main focus of this paper.

• Order selection (or free order) In this version the gambler is allowed to select
the order in which she examines the random variables. For this version, Chawla
et al. [7] improved the bound of 1/2 (of the standard prophet inequality) to 1 −
1/e ≈ 0.6321. This bound remained the best known for quite some time until
Azar et al. [3] improved it to 1− 1/e + 1/400 ≈ 0.6346. Interestingly, the bound
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of Azar et al. actually applies to the random order case described below. Very
recently, Beyhaghi et al. [5], used order selection to further improve the bound to
1 − 1/e + 0.022 ≈ 0.6541.

• Prophet secretary (or randomorder) In this version the randomvariables are shown
to the gambler in random order, as in the secretary problem. This version was first
studied by Esfandiari et al. [13] who found a bound of 1 − 1/e. Their algorithm
defines a nonincreasing sequence of n thresholds τ1, . . . , τn that only depend on
the expectation of the maximum of the V ′

i s and on n. The gambler at time-step i
stops if the value of Vσi (the variable shown at step i) surpasses τi . Later, Correa et
al. [8] proved that the same factor of 1− 1/e can be obtained with a personalized
but nonadaptive sequence of thresholds, that is thresholds τ1, . . . , τn such that
whenever variable Vi is shown the gambler stops if its value is above τi . In recent
work, Ehsani et al. [14] show that the bound of 1 − 1/e can be achieved using a
single threshold (having to randomize to break ties in some situations). This result
appears to be surprising since without the ability of breaking ties at random, 1/2
is the best possible constant and this insight turns out to be the starting point of
our work. Shortly after the work of Ehsani et al., Azar et al. [3] improved it to
1 − 1/e + 1/400 ≈ 0.6346 through an algorithm that relies on some subtle case
analysis.

• IID prophet inequality Finally, we mention the case when the random variables
are identically distributed. Here, the constant 1/2 can also be improved. Hill and
Kertz [21] provided a family of “bad” instances from which Kertz [22] proved
the largest possible bound one could expect is 1/β ≈ 0.7451, where β is the
unique solution to

∫ 1
0

1
y(1−ln(y))+(β−1)dy = 1. Quite surprisingly, 1/β is still the

best known upper bound for the order selection problem, and was the best known
upper bound for the random order case, prior to our work. Regarding algorithms,
Hill and Kertz also proved a bound of 1−1/ewhich was improved by Abolhassani
et al. [1] to 0.7380. Finally Correa et al. [8] proved that 1/β = 0.7451 is a tight
value. To this end they exhibit a quantile strategy for the gambler in which some
quantiles q1 < · · · < qn , that only depend on n (and not on the distribution), are
precomputed and then translated into thresholds such that if the gambler gets to
step i , she will stop with probability qi .

Prophet inequalities have also been studied for combinatorial structures such as
matroids, bipartite matchings, matroid intersection, general matchings, and combi-
natorial auctions [10,11,15–17,19,23,24]. Furthermore, data-driven versions of the
problem where the gambler does not know the underlying distribution, but only has
access to samples from them, have also been studied in recent years [4,6,29].

1.1 Our contribution

In this paper we study the prophet secretary problem and propose improved algorithms
for it. In particular ourwork improves upon the recentwork of Ehsani et al. [14],Azar et
al. [3], and Beyhaghi et al. [5] by providing an algorithm that guarantees the gambler
a fraction of 0.669 ≈ 1 − 1/e + 1/27 in the prophet secretary setting. Our main
contribution however is not the actual numerical improvement but rather the way in
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which this is obtained. In addition, we provide an example that shows that no algorithm
can achieve a factor better than

√
3 − 1 ≈ 0.732 for the prophet secretary setting.

From a conceptual viewpoint we introduce a class of algorithmswhichwe call blind
strategies, that are very robust in nature. This type of algorithm is a clever generaliza-
tion of the single threshold algorithm of Ehsani et al. to a multi-threshold setting. In
their algorithmEhsani et al. first compute a threshold τ such thatP(max{V1, . . . , Vn} ≤
τ) = 1/e and then use this τ as a single threshold strategy, so that the gambler stops
the first time in which the observed value surpasses τ . They observe that this strat-
egy only works for random variables with continuous distributions, however they
also note that by allowing randomization the strategy can be extended to general ran-
dom variables. Rather than fixing a single probability of acceptance we fix a function
α : [0, 1] → [0, 1] which is used to define a sequence of thresholds in the follow-
ing way. Given an instance with n continuous distributions, we draw uniformly and
independently n random values in [0, 1], and reorder them as u[1] < · · · < u[n]. Then
we set thresholds τ1, . . . , τn such that P(max{V1, . . . , Vn} ≤ τi ) = α(u[i]) and the
gambler stops at time i if Vσi > τi . Note that if the function α is nonincreasing, this
leads to a nonincreasing sequence of thresholds.

The idea of blind strategies comes from the i.i.d. case mentioned above. In that
setting the blind strategies are indeed best possible as shown by Correa et al. [8]. What
makes blind strategies attractive is that although decisions are time dependent, this
dependence lies completely in the choice of the function α, which is independent of
the instance. This independence significantly simplifies the analysis ofmulti-threshold
strategies. Again, when facing discontinuous distributions we also require randomiza-
tion for our results to hold.

From a technical standpoint our analysis introduces the use of Schur-convexity [28]
in the prophet inequality setting.We start our analysis by revisiting the single threshold
strategy of Ehsani et al., which corresponds to a constant blind strategyα(·) = 1/e.We
exhibit a new analysis of this strategy, which allows us to prove a stochastic dominance
type result. Indeed we prove that the probability that the gambler gets a value of more
than t is at least that of the maximum being more than t , rescaled by a factor 1− 1/e.
This result uses Schur-convexity to deduce that if there is a value above the threshold
τ , then it is chosen by the gambler with probability at least 1 − 1/e. Then we extend
this analysis to deal withmore general functions α which require precise bounds on the
distribution of the stopping time corresponding to a function α. These bounds make
use of results of Esfandiari et al. [13] and Azar et al. [3] and of newly derived bounds
that follow from the core ideas in Schur-convexity theory.

Again in this more general setting we find an appropriate stochastic dominance
type bound on the probability that the gambler obtains at least a certain amount with
respect to the probability that the prophet obtains the same amount. Interestingly we
manage to make the bound solely dependent on the blind strategy by controlling the
implied stopping time distribution (patience of the gambler). Then optimizing over
blind strategies leads to the improved bound of 0.669. Through the paper, we show
two lower bounds on the performance of a blind strategy, the second more involved
than the first one. In the first case, there is a natural way to optimize over the choice
of α solving an ordinary differential equation, leading to a guarantee of 0.665. In the
second case, using a refined analysis, we derive the stated bound of 0.669. Although
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it may seem that our general approach still leaves some room for improvement, we
prove that blind strategies cannot lead to a factor better than 0.675. This bound is
obtained by taking two carefully chosen instances and proving that no blind strategy
can perform well in both.

Finally,we prove an upper bound on the performance of any algorithm:we construct
an instance (which is not i.i.d.) inwhich no algorithm can perform better than

√
3−1 ≈

0.732. This improves upon the best possible bound known of 0.745which corresponds
to the i.i.d. case and was proved by Hill and Kertz [21]. Furthermore it improves
and generalizes a recent bound of 11/15 ≈ 0.733 of Azar et al. [3] for the more
restricted class of deterministic distribution-insensitive algorithms. Prior to our work,
no separation between prophet secretary and i.i.d. prophet inequality was known.

1.2 Preliminaries and statement of results

Given nonnegative independent random variables V1, . . . , Vn and a random permu-
tation σ : [n] → [n],1 in the prophet secretary problem a gambler is presented with
the random variables in the order given by σ , i.e., at time j she sees the realization of
Vσ j . The goal of the gambler is to find a stopping time T such that E(VσT ) is as large
as possible. In particular we want to find the largest possible constant c ∈ [0, 1] such
that

sup{E(VσT ) : T ∈ Tn} ≥ c · E(max{V1, . . . , Vn}),

where Tn is the set of stopping times. Note that the optimal stopping time can be
computed recursively on n (dynamic programming principle). Nonetheless, in general
this does not give an explicit expression of the reward given by such stopping time,
and thus another approach is required to solve the above problem.

Throughout this paper we denote by F1, . . . , Fn the underlying distributions of
V1, . . . , Vn , which we assume to be continuous. All our results apply unchanged to
the case of general distributions by introducing random tie-breaking rules (this is
made precise in Sect. 8). To see why random tie-breaking rules are actually needed,
consider the single threshold strategy of Ehsani et al. [14]. Recall that they compute a
threshold τ such that P(max{V1, . . . , Vn} ≤ τ) = 1/e and then use this τ as a single
threshold strategy, which, by allowing random tie-breaking, leads to a performance of
1 − 1/e. However, if random tie-breaking is not allowed, a single threshold strategy
cannot achieve a constant better than 1/2. Indeed, consider the instance with n − 1
deterministic random variables equal to 1 and one random variable giving n with
probability 1/n and zero otherwise. Now, for a fixed threshold τ < 1 the gambler gets
n with probability 1/n2 and 1 otherwise so that she gets approximately 1, whereas
if τ ≥ 1 the gambler gets n with probability 1/n, leading to an expected value of
1. Noting that the expectation of the maximum in this instance is approximately 2,
we conclude that fixed thresholds cannot achieve a guarantee better than 1/2, for n
tending to infinity. However, as Ehsani et al. note, if in this instance the gambler
accepts a deterministic random variable with probability 1/n, then her expected value

1 Here [n] denotes the set {1, . . . , n}.
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approaches (1 + 1/e), which leads to a guarantee of (1 + 1/e)/2 	 0.68. In Sect. 8
we extend this idea to the more general multi-threshold strategies.

The main type of stopping rules we deal with in this paper use a nonincreasing
threshold approach. This is quite a natural idea, since Esfandiari et al. [13] already
use such an approach to derive a guarantee of 1 − 1/e. Interestingly, the analysis
of multi-threshold strategies becomes rather difficult when trying to go beyond this
bound. This is evident from the fact that the more recent results take a different
approach. In this paper we use a rather restrictive class of multi-threshold strategies
that we call blind strategies. These are simply given by a nonincreasing function
α : [0, 1] → [0, 1] which is turned into an algorithm as follows: given an instance
F1, . . . , Fn of continuous distributions, we independently draw u1, . . . , un from a
uniform distribution on [0, 1] and find thresholds τ1, . . . , τn such that

P(max
i∈[n]{Vi } ≤ τi ) = α(u[i]),

where u[i] is the i th order statistic of u1, . . . , un . Then the algorithm for the gambler
stops at the first time in which a value exceeds the corresponding threshold. In other
words, the gambler applies the following algorithm:

Algorithm 1 Time Threshold Algorithm (T T A(τ1, . . . , τn))
1: for i = 1, . . . , n do
2: if Vσi > τi then
3: Take Vσi
4: end if
5: end for

Note that a blind strategy is uniquely determined by the choice of function α,
independent of the actual distributions or even size of the instance. This justifies that
we may simply talk about strategy α. Our goal is thus to find a good function α such
that the previous algorithm performs well against any instance.

For a blind strategy α and an instance F1, . . . , Fn , we will be interested in the
underlying stopping time T which is the random variable defined as T := inf{i ∈
[n] : Vσi > τi }, where the τ1, . . . , τn are the corresponding thresholds. In particular
the reward of the gambler is VσT 1T<∞, which we simply denote by VσT .
Our main result is the following:

Theorem 1.1 There exists a nonincreasing function α : [0, 1] → [0, 1] such that for
any instance F1, . . . , Fn

E(VσT ) ≥ 0.669 · E(max
i∈[n]{Vi }),

where T is the stopping time of the blind strategy α.

In addition,we prove the following upper bound on the performance of blind strategies:
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Theorem 1.2 No blind strategy can guarantee, for all instances, a constant better than
0.675.

Theorem 1.3 No strategy can guarantee a constant better than
√
3− 1 ≈ 0.732, as n

goes to infinity.

The rest of the paper is organized as follows. Section 2 presents an alternative
simple proof that single threshold strategies guarantee a constant 1 − 1/e, that will
help the reader to understand the proof of Theorem 1.1. Section 3 explains how we
analyze blind strategies. Section 4 proves that blind strategies guarantee a constant
0.665. Section 5 sharpens the analysis of Sect. 4 to prove Theorem 1.1. Sections 6 and
7 prove the upper bounds of Theorems 1.2 and 1.3. Section 8 explains how to deal
with discontinuous distributions.

2 Single threshold

In the rest of the paper we assume for simplicity that F1, F2, . . . , Fn are continuous
(see Sect. 8 for an explanation on how to extend the results to the discontinuous case).
As a warm-up exercise, we illustrate the main ideas in this paper by providing an
alternative proof of a recent result by Eshani et al. [14].

Proposition 2.1 Consider the blind strategy given by α ≡ 1/e, which corresponds
exactly to the single threshold algorithm of Eshani et al. [14]. Then

E(VσT ) ≥
(

1 − 1

e

)

· E(max
i∈[n]{Vi }).

Notice that, for a nonnegative random variable V we have that E(V ) = ∫ ∞
0 P(V >

t)dt . Thus, having a stopping time T such that P(VσT > t) ≥ c ·P(maxi∈[n]{Vi } > t),
implies that c is a lower bound for the prophet inequality. Therefore, we will focus
on deriving stochastic dominance type results. The general structure of our approach
follows three steps: first, we express P(VσT > t) in terms of a weighted sum of
(P(Vi > t))1≤i≤n . In a second step, we bound frombelow theweights by an expression
involving only α. In a third step, we optimize over the choice of α, to obtain the desired
stochastic dominance inequality.

Step 1: decomposition Recall that given an instance V1, . . . , Vn , the blind strategy
α ≡ p ∈ [0, 1] first computes τ such that P(maxi∈[n]{Vi } ≤ τ) = p and then uses
T T A(τ1 = τ, . . . , τn = τ), which simply stops the first time a value above τ is
observed.

Lemma 2.1 Let t ≥ 0.

P(VσT > t) =
{
1 − p; t ≤ τ∑

i∈[n] P(Vi > t)P(σT = i |Vi > τ); t > τ .

Proof Note that for t ≤ τ , we have that P(VσT > t) = P(maxi∈[n]{Vi } > τ) = 1− p.
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On the other hand, for t > τ , we have that

P(VσT > t) =
∑

i∈[n]
P(Vi > t |σT = i)P(σT = i)

=
∑

i∈[n]

P(Vi > t)

P(Vi > τ)
P(σT = i)

=
∑

i∈[n]
P(Vi > t)P(σT = i |Vi > τ).

The second equality stems from the independence of the Vi . �
Step 2: Lower bounds and Schur-convexity The novelty of this lower bound relies on
the use of Schur-convexity.

Lemma 2.2 Consider V1, . . . , Vn independent random variables and σ an inde-
pendent random uniform permutation of [n]. Consider α ≡ p ∈ (0, 1) and let
τ be defined by P(maxi∈[n]{Vi } ≤ τ) = p. Then, with T the stopping time of
T T A(τ1 = τ, . . . , τn = τ), we have that for all i such that P(Vi > τ) > 0

P(σT = i |Vi > τ) ≥ 1 − p

− ln p
.

Proof Denoting the distribution of Vj by Fj , using the fact that σ is a uniform random
order and the definition of τ , we get the following:

P(σT = i |Vi > τ) =
∑

S⊆[n]\{i}
P(σT = i, { j : Vj > τ } = S ∪ {i}|Vi > τ)

=
∑

S⊆[n]\{i}
P({ j : Vj > τ } = S ∪ {i}, σi ≤ min

j∈S σ j |Vi > τ)

=
∑

S⊆[n]\{i}
P({ j : Vj > τ } = S ∪ {i}, σi ≤ min

j∈S σ j )

=
∑

S⊆[n]\{i}

1

|S| + 1

∏

j∈S
1 − Fj (τ )

∏

j∈[n]\(S∪{i})
Fj (τ )

=
∏

j∈[n]\{i}
Fj (τ )

∑

S⊆[n]\{i}

1

|S| + 1

∏

j∈S

1 − Fj (τ )

Fj (τ )

= p

Fi (τ )

∑

S⊆[n]\{i}

1

|S| + 1

∏

j∈S

1 − Fj (τ )

Fj (τ )
.

Define φ : Rn−1+ −→ R by

φ(y) :=
∑

S⊆[n−1]

1

|S| + 1

∏

j∈S

1 − e−y j

e−y j
=

∑

S⊆[n−1]

1

|S| + 1

∏

j∈S
ey j − 1
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and β := − ln p + ln Fi (τ ). The previous inequality can be written as

P(σT = i |Vi > τ) ≥ p

Fi (τ )
φ(y),

where y = (− ln Fj (τ )) j �=i . Because

∑

j �=i

− ln Fj (τ ) = − ln
∏

j �=i

Fj (τ ) + ln Fi (τ ) = β,

we deduce that

P(σT = i |Vi > τ) ≥ p

Fi (τ )
min

y∈Rn−1+

⎧
⎨

⎩
φ(y) :

∑

j∈[n−1]
y j = β

⎫
⎬

⎭
.

Clearly φ ∈ C∞((0, 1)n−1;R) and is permutation symmetric. Therefore, to check
that it is Schur-convex we must simply confirm the following condition, known as the
Schur–Ostrowski criterion [28],

∀y ∈ (0, 1)n−1 (y1 − y2)[∂y1φ(y) − ∂y2φ(y)] ≥ 0.

Straightforward calculations yield

∂y1φ(y) =
∑

S⊆[n−1]
S�1

1

|S| + 1
ey1

∏

j∈S
j �=1

ey j − 1

= ey1(ey1 − 1)−1

⎛

⎜
⎜
⎝

∑

S⊆[n−1]
S�1,2

1

|S| + 1

∏

j∈S
ey j − 1

⎞

⎟
⎟
⎠

+ ey1(ey1 − 1)−1

(ey2 − 1)

⎛

⎜
⎜
⎝

∑

S⊆[n−1]
S�1,2

1

|S|
∏

j∈S
ey j − 1

⎞

⎟
⎟
⎠

=: ey1

ey1 − 1
a + ey1

(ey1 − 1)(ey2 − 1)
b

and, by symmetry, ∂y2φ(y) = ey2
ey2−1a + ey2

(ey2−1)(ey1−1)b. Then,
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[∂y1φ(y) − ∂y2φ(y)] = a

[
ey1

ey1 − 1
− ey2

ey2 − 1

]

+ b

[
ey1

(ey1 − 1)(ey2 − 1)
− ey2

(ey2 − 1)(ey1 − 1)

]

= (b − a)

[
ey1 − ey2

(ey2 − 1)(ey1 − 1)

]

.

Finally, since ey j −1 > 0 and b > a, we get that (y1 − y2)[∂y1φ(y)− ∂y2φ(y)] ≥ 0 if
and only if (y1 − y2) (ey1 − ey2) ≥ 0, which holds by monotonicity of the exponential
function. Therefore we have proven that φ is Schur-convex.

Schur-convexity readily implies that the optimization problem

min
{
φ(y); s.t .∑ j∈[n−1] y j = β

}
is solved at y∗ = (β/(n−1), . . . , β/(n−1)). Con-

sequently, for fixed Fi (τ ), and under the constraint that
∏

j∈[n]\{i} Fj (τ ) = p/Fi (τ ),

the quantityP(σT = i |Vi > τ) isminimalwhen, for all j �= i , Fj (τ ) = (p/Fi (τ ))
1

n−1 .
It follows that, since σ and Vi are independent,

P(σT = i |Vi > τ) = 1

n

n∑

j=1

P(σT = i |Vi > τ, σ j = i)

≥ 1

n

n−1∑

j=0

(
p

Fi (τ )

) j
n−1

≥ 1

n

n−1∑

j=0

p
j

n−1 = 1

n

1 − p
n

n−1

1 − p
1

n−1

.

Nowwe note that the left hand side does not depend on n: we can add some dummy
variables (Vn+1, Vn+2, . . . ≡ 0) and the probability does not change. Therefore, taking
limit on n −→ ∞ we get

P(σT = i |Vi > τ) ≥ 1 − p

− ln p
.

�
Step 3: optimization and proof of Proposition 2.1 The previous parts imply the fol-
lowing result:

Lemma 2.3

P(VσT > t) ≥ min

{

1 − p,
1 − p

− ln p

}

· P(max
i∈[n]{Vi } > t)

Proof The inequality stems from 2.1, Lemma 2.2 and the inequality
∑

i∈[n] P(Vi >

t) ≥ P(max
i∈[n]{Vi } > t). �
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We now turn to optimize the choice of α ≡ p ∈ (0, 1). The optimum is obtained
by taking p = 1/e, which gives Proposition 2.1.

3 Reduction to deterministic blind strategies

This section reduces the analysis of blind strategies to a simpler class of strategies,
and constitutes a preliminary step towards proving Theorem 1.1.

Recall that a blind strategy is determined by a nonincreasing function α : [0, 1] →
[0, 1] which is turned into an algorithm as follows: given an instance F1, . . . , Fn of
continuous distributions, we independently draw u1, . . . , un from a uniform distribu-
tion on [0, 1] and find thresholds τ1, . . . , τn such that

P(max
i∈[n]{Vi } ≤ τi ) = α(u[i]),

where u[i] is the i th order statistic of u1, . . . , un . Then the algorithm for the gambler
is to apply T T A(τ1, . . . , τn). Therefore, to analyze blind strategies, we would have
to take into account randomness from u1, . . . , un and V1, . . . , Vn .

Consider a deterministic version of a blind strategy defined as follows.

Definition 3.1 Consider a nonincreasing function α : [0, 1] → [0, 1]. The determinis-
tic blind strategy given by α, upon the instance F1, . . . , Fn , is the strategy that applies
T T A(τ1, . . . , τn), where the thresholds τ1, . . . , τn are defined by the following con-
dition:

∀ j ∈ [n], P(max
i∈[n]{Vi } ≤ τ j ) = α

(
j

n

)

.

Given a nonincreasing function α : [0, 1] → [0, 1], the difference between its
corresponding deterministic blind strategy and blind strategy is that u[i] = i/n for
the deterministic case, instead of being drawn from a uniform distribution between 0
and 1. The following lemma shows that in order to analyze the performance of blind
strategies, it is sufficient to study the performance of deterministic blind strategies in
the limit as n grows to infinity.

Lemma 3.1 For any nonincreasing function α : [0, 1] → [0, 1],

inf
F1,...,Fn

E(VσT )

E(maxi∈[n]{Vi }) ≥ lim
n→∞ inf

F1,...,Fn

E(VσTd
)

E(maxi∈[n]{Vi }) ,

where T (respectively Td) are the stopping times given by the blind strategy (respec-
tively deterministic blind strategy) defined by α.

Proof Consider a nonincreasing function α : [0, 1] → [0, 1], an instance of size
n given by F1, . . . , Fn and m ≥ 1. Consider the new instance of size n + m
given by F1, . . . , Fn, Fn+1, . . . , Fn+m , where Fn+i = 1[0,∞) for i = 1, . . . ,m,
i.e. : now there are m deterministic random variables equal to zero. Denoting by
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Tm the stopping time given by the deterministic blind strategy α upon the instance
F1, . . . , Fn, Fn+1, . . . , Fn+m , we claim that

lim
m→∞E(VσTm

) = E(VσT ).

Indeed, recalling the definition of blind strategies in Sect. 1.2, it is easy to see that
a deterministic blind strategy applied to instance F1, . . . , Fn+m is approximately a
blind strategy applied to instance F1, . . . , Fn , where the random variables u1, . . . , un
are drawn from U ({ 1

n+m , . . . , 1}), rather than from U (0, 1). Thus, by taking the limit
as m → ∞, the lemma follows. �

4 Beating 1− 1
e

In this section, we prove the following proposition, that is aweaker version of Theorem
1.1 (the constant is 0.665 instead of 0.669):

Proposition 4.1 There exists a nonincreasing function α : [0, 1] → [0, 1] such that

E(VσT ) ≥ 0.665 · E(max
i∈[n]{Vi }),

where T is the stopping time of the blind strategy α.

Wefirst present this result because it alreadybeats significantly the best knownconstant
in the literature, and it is simpler to prove than Theorem 1.1. As in Sect. 2, we proceed
in three steps.

Step 1: Decomposition

Lemma 4.1 Given an instance F1, F2, . . . , Fn and nonincreasing thresholds ∞ =
τ0 ≥ τ1 ≥ · · · ≥ τn ≥ τn+1 = −∞, it holds that, for j ∈ [n + 1] and t ∈ [τ j , τ j−1),

P(VσT > t) = P(T ≤ j − 1) +
∑

i∈[n]
P(Vi > t)

⎛

⎝
n∑

k= j

P(T ≥ k|σk = i)

n

⎞

⎠ ,

where T is the stopping time given by T T A(τ1, . . . , τn).

Proof Let j ∈ [n + 1] and t ∈ [τ j , τ j−1). Then, since thresholds are nonincreasing,

P(VσT > t) = P(T ≤ j − 1) + P(VσT > t, T ≥ j).

Therefore, we must simply analyze the second term.
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By partitioning among all possible values of σT , and then of T , we notice that:

P(VσT > t, T ≥ j) =
∑

i∈[n]
P(Vi > t, σT = i, T ≥ j)

=
∑

i∈[n]

n∑

k= j

P(Vi > t, σk = i, T = k).

Notice that, since t ∈ [τ j , τ j−1), we have that for all k ≥ j , if Vi > t and σk = i ,
then T ≤ k. Therefore,

P(Vi > t, σk = i, T = k) = P(Vi > t, σk = i, T ≥ k).

Define �−i (k) := {σ, ordered subset of [n]\{i} with size k}. Then, by partition-
ing over all possible realizations of σ1, . . . , σk−1, and using the independence of
V1, . . . , Vn, σ , we have that

P(Vi > t, σk = i, T ≥ k)

= 1

|�−i (k − 1)|
∑

σ∈�−i (k−1)

P(Vi > t, σk = i, Vσ1 ≤ τ1, . . . , Vσk−1 ≤ τk−1)

= 1

|�−i (k − 1)|
∑

σ∈�−i (k−1)

P(Vi > t)P(σk = i, Vσ1 ≤ τ1, . . . , Vσk−1 ≤ τk−1)

= P(Vi > t)P(σk = i, T ≥ k).

Using all previous equalities, and the fact that σ is uniform, we conclude that

P(VσT > t, T ≥ j) =
∑

i∈[n]
P(Vi > t)

⎛

⎝
n∑

k= j

P(σk = i, T ≥ k)

⎞

⎠

=
∑

i∈[n]
P(Vi > t)

⎛

⎝
n∑

k= j

P(T ≥ k|σk = i)

n

⎞

⎠ .

�
Step 2: Lower bounds and weak Schur convexity In this section, we give lower bounds
on the terms that appear in Lemma 4.1, namely P(T ≤ k) and P(T ≥ k|σk = i),
i, k ∈ [n]. We start with the following simple inequality:

Lemma 4.2 For all i, k ∈ [n],

P(T ≥ k|σk = i) ≥ P(T > k). (4.1)
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Proof Inspired by the proof given by Esfandiari et al. [13], let i, k ∈ [n]. Conditioning
on the value of σ−1(i),

P(T > k) = 1

n

∑

l∈[n]
P(T > k|σl = i). (4.2)

Notice that for all l = k + 1, . . . , n,

P(T > k|σl = i) = P(T > k|σk+1 = i) ≤ P(T ≥ k|σk = i).

Define

�−i (k) := {σ, ordered subset of [n]\{i} with size k}.

Then, for l ∈ [k], since the thresholds are nonincreasing,

P(T > k|σl = i) = P(Vi ≤ τl)

|�−i (k − 1)|
∑

σ∈�−i (k−1)

∏

j∈[k−1]
Fσ j (τ j+1 j≥l )

≤ 1

|�−i (k − 1)|
∑

σ∈�−i (k−1)

∏

j∈[k−1]
Fσ j (τ j )

= P(T ≥ k|σk = i).

Plugging both inequalities back into Eq. (4.2) give the result. �
We can now bound from below P(VσT > t) by a quantity that depends only on the
cumulative distribution of T and on α.

Proposition 4.2 Let α : [0, 1] → [0, 1] be nonincreasing, and let T be the determin-
istic blind strategy stopping time. For every instance F1, . . . , Fn and t > 0,

P(VσT > t) ≥ min
j∈[n+1]

⎧
⎨

⎩
P(T ≤ j − 1)

1 − α(
j
n )

+
⎛

⎝1

n

n∑

k= j

P(T > k)

⎞

⎠

⎫
⎬

⎭
P(max

i∈[n]{Vi } > t),

where α( n+1
n ) = 0.

Proof Note that for all j ∈ [n+1] and t ∈ [τ j , τ j−1), 1−α( j/n) = P(maxi∈[n]{Vi } >

τ j ) ≥ P(maxi∈[n]{Vi } > t). Plugging this inequality and inequalities
∑

i∈[n] P(Vi >

t) ≥ P(maxi∈[n]{Vi } > t) and (4.1) into Lemma 4.1 yield the result. �
To achieve a lower bound from this point, we need to have a lower and an upper

bound of the distribution of T in terms of {α( j/n)} j∈[n+1]. It turns out that P(T ≤ ·) is
maximized andminimized in opposite instances: themaximum is achieved when there
is only one non-zero variable, while the minimum is achieved when all distributions
are equal. This behavior is closely related to Schur-convexity.
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Recall that in the proof of Lemma 2.2 we solved the following optimization

problem: min
{
φ(y); s.t .∑ j∈[n−1] y j = β

}
. This problem was solved by noticing

that φ is Schur-convex. This time we consider the problem

{
opt P(T > k; F1, . . . , Fn)
s.t .

∏
i∈[n] Fi = F and Fi is a distribution.

where “opt” is a symbol in {min,max}. This problem is harder since it involves opti-
mizing over functions rather than real numbers. Trying to applySchur-convexity theory
again, one could see P(T > k; F1, . . . , Fn) as a function of the distributions evalu-
ated at each threshold, that is, as a function of the vector (F1(τ1), . . . , F1(τn), . . . ,
Fn(τ1), . . . , Fn(τn)). Unfortunately, the corresponding domain is not symmetric and
the constraint on the product being constant results in n different constraints. Both
difficulties are not addressed in the Schur-convexity literature. However, we are only
interested in the value of the optimization problem. Therefore, weaker properties than
Schur-convexity can solve our problem.

The following lemma formalizes the idea that P(T > k; F1, . . . , Fn), as a function
of F1, . . . , Fn, increases upon concentration and decreases upon homogenization.

Lemma 4.3 Fix α1, . . . , αn ∈ [0, 1]. For every instance F1, . . . , Fn, consider
τ1, . . . , τn the sequence of thresholds such that

P(max
i∈[n]{Vi } ≤ τi ) = αi .

Denote by T the stopping time of T T A(τ1, . . . , τn). For all k ∈ [n], we have

1

n

∑

j∈[k]
(1 − α j ) ≤ P(T ≤ k) ≤ 1 −

⎛

⎝
k∏

j=1

α j

⎞

⎠

1
n

.

Proof Despite that P(T > k; F1, . . . , Fn) is not always monotone along the curve λ ∈
[0, 1] �→ (F1Fλ

2 , F1−λ
2 , . . . , Fn), a property that would be satisfied by a log-Schur-

convex function if F1, . . . , Fn were numbers, there is a step by step way to go from
(F1, F2, . . . , Fn) to (F1F2 . . . Fn,1R+ , . . . ,1R+) that exhibits a monotonic behavior,
while maintaining the product. This property is enough to deduce the upper bound. For
the lower bound, there is a step by step monotonic way to go from (F1, F2, . . . , Fn)
to ( n

√
F1F2 . . . Fn, . . . , n

√
F1F2 . . . Fn).

The proof consists in describing this step by step process. Specifically, we highlight
the role of F1 and F2 in P(T > k) in order to compare the instance F1, . . . , Fn with
the instances given by F1F2,1R+ , F3, . . . , Fn and

√
F1F2,

√
F1F2, F3, . . . , Fn . Then,

we use the symmetry of the random order σ and a step by step iteration to derive the
claimed inequalities.

We start by introducing a decomposition in three cases:

1. σ−1(1) ≤ k � σ−1(2) ≤ k, i.e. : only one of the variables V1 and V2 shows before
time k.
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2. σ−1(1) ≤ k ∧ σ−1(2) ≤ k, i.e. : both V1 and V2 show before time k.
3. σ−1(1) > k ∧ σ−1(2) > k, i.e. : neither V1 nor V2 shows before time k.

To express this formally, define

�(k) := {σ, ordered subset of [n] with size k}
�−1,−2(k) := {σ, ordered subset of [n]\{1, 2} with size k}.

For σ ∈ �(k), we have that either

1. ∃p ∈ [k], ∃i ∈ {1, 2} s.t. σp = i and (σ j ) j∈[k]\{p} ∈ �−1,−2(k − 1).
2. ∃p < q ∈ [k] s.t. {σp, σq} = {1, 2} and (σ j ) j∈[k]\{p,q} ∈ �−1,−2(k − 2).
3. σ ∈ �−1,−2(k).

In what follows, wewriteP(T > k; F1, . . . , Fn) for the probability that T is strictly
larger than k, given that the instance is F1, . . . , Fn . Using the previous decomposition,
we can derive the following identity:

P(T > k; F1, . . . , Fn) = 1

|�(k)|
∑

σ∈�(k)

∏

i∈[k]
Fσi (τi )

= (n − k)!
n!

⎛

⎝
∑

σ∈�−1,−2(k)

∏

i∈[k]
Fσi (τi )

+
∑

σ∈�−1,−2(k−1)
p∈[k]

p−1∏

i=1

Fσi (τi )
[
F1(τp) + F2(τp)

] k−1∏

i=p

Fσi (τi+1)

+
∑

σ∈�−1,−2(k−2)
p<q∈[k]

p−1∏

i=1

Fσi (τi )
[
F1(τp)F2(τq)

+F2(τp)F1(τq)
] q−1∏

i=p

Fσi (τi+1)

k−2∏

i=q

Fσi (τi+2)

⎞

⎠ .

To simplify the notation, let us define

A(F1, F2) :=
∑

σ∈�−1,−2(k−1)
p∈[k]

[
F1(τp) + F2(τp)

] ∏

i∈[k−1]
Fσi (τi+1i≥p ),
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B(F1, F2) :=
∑

σ∈�−1,−2(k−2)
p<q∈[k]

[
F1(τp)F2(τq) + F2(τp)F1(τq)

] ∏

i∈[k−2]
Fσi (τi+1i≥p+1i≥q ),

C :=
∑

σ∈�−1,−2(k)

∏

i∈[k]
Fσi (τi ).

Then,

P(T > k; F1, . . . , Fn) = (n − k)!
n! [A(F1, F2) + B(F1, F2) + C] .

The next step in the proof is to show that

A(
√
F1F2,

√
F1F2) ≤ A(F1, F2) ≤ A(F1F2,1R+)

and

B(
√
F1F2,

√
F1F2) ≤ B(F1, F2) ≤ B(F1F2,1R+).

This is a consequence of the two following points:

1. For all p ∈ [k],

2
√
F1(τp)F2(τp) ≤ F1(τp) + F2(τp) ≤ 1 + F1(τp)F2(τp).

2. For all p < q ∈ [k],

2
√
F1(τp)F2(τp)F1(τq)F2(τq) ≤ F1(τp)F2(τq) + F2(τp)F1(τq)

≤ F1(τp)F2(τp) + F2(τq)F1(τq).

Thus, we have proven that

P(T > k;√F1F2,
√
F1F2, F3, . . . , Fn) ≤ P(T > k; F1, . . . , Fn)

≤ P(T > k; F1F2,1R+ , . . . , Fn).

The lower bound of Lemma 4.3 is derived by applying the inequality n times and
noticing that

P

⎛

⎝T ≤ k;
∏

i∈[n]
Fi ,1R+ , . . . ,1R+

⎞

⎠ = 1

n

∑

j∈[k]
(1 − α j ).
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The upper bound of Lemma 4.3 follows from applying the inequality infinitely
many times and noticing that

P

⎛

⎝T ≤ k;
∏

i∈[n]
F

1
n
i , . . . ,

∏

i∈[n]
F

1
n
i

⎞

⎠ = 1 −
∏

j∈[k]
α

1
n
j .

�
Step 3: Optimization and proof of Theorem 4.1 The previous analysis gives a lower
bound on P(VσT > t) that only depends on α:

Theorem 4.4 Let α : [0, 1] → [0, 1] be nonincreasing, and let T be the deterministic
blind strategy stopping time. For every instance F1, . . . , Fn and t > 0,

P(VσT > t) ≥ min
j∈[n+1]

{
f j (α)

} · P(max
i∈[n]{Vi } > t),

where, for all j ∈ [n + 1], taking α( n+1
n ) = 0,

f j (α) =
j−1∑

k=1

1 − α
( k
n

)

n
(
1 − α

(
j
n

)) + 1

n

n∑

k= j

(
k∏

l=1

α

(
l

n

)) 1
n

.

Proof This is a direct consequence of Lemma 4.1 and the lower bounds of Lemmas
4.2 and 4.3, as well as the inequality

∑
i∈[n] P(Vi > t) ≥ P(max

i∈[n]{Vi } > t). �

Thus, for every n, we get a lower bound on the performance of a deterministic blind
strategy α, that only depends on α( 1n ), . . . , α( nn ). As we explained before, we only
care about the performance of this strategy when n tends to +∞. Assume that α is
continuous. A standard Riemann sum analysis shows that

lim
n→∞ min

j∈[n+1]{ f j (α)}

= min

{∫ 1

0
1 − α(y)dy , inf

x∈[0,1]

∫ x

0

1 − α(y)

1 − α(x)
dy +

∫ 1

x
e
∫ y
0 ln α(w)dwdy

}

. (4.3)

Thus, in order to prove Theorem 1.1, we would like to find a blind strategy α

maximizing the latter expression. As this is a nontrivial optimal control problem, we
aim at finding a function α such that the above expression is larger than 0.665.

Remark Consider α being constant equal to 1/e. Then the above quantity is equal
to 1−1/e. Thus, we recover the one-threshold result in Proposition 2.1. Furthermore,
if for instance we take α(x) = 0.53 − 0.38x the guarantee of the strategy (given by
expression (4.3)) is greater than 0.657. This gives an explicit α that beats significantly
1 − 1/e.
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To maximize over expression (4.3), we resort to a numerical approximation. Note
that ifα is such thatα(1) = 0 and x �→ ∫ x

0
1−α(y)
1−α(x)dy+∫ 1

x e
∫ y
0 ln α(w)dwdy is a constant,

then this constant is a lower bound for the infimum in (4.3).
Consequently, we solve the following integro-differential equation:

⎧
⎪⎪⎨

⎪⎪⎩

d
dx

⎛

⎝
x∫

0

1−α(y)
1−α(x)dy +

1∫

x
e

y∫

0
ln α(w)dw

dy

⎞

⎠ = 0; x ∈ (0, 1)

α(1) = 0.

To this end we consider a change of variables leading to the following second order
ODE:

⎧
⎨

⎩

(u′(x))2K (x, u) − u′′(x)u(x) = 0; x ∈ (0, 1)
u′(1) = 1
u(0) = 0,

where

u(x) :=
x∫

0

1 − α(x)dx

K (x, u) := 1 − exp

⎛

⎝
x∫

0

ln(1 − u′(t))dt

⎞

⎠ .

We approximately solved this equation by taking an initial guess u0 and defining un+1
as the solution to (u′(x))2K (x, un) − u′′(x)u(x) = 0. To be more precise, the initial
guessu0 was the result ofmaximizingoverαmin j∈[n+1]{ f j (α)}, given inTheorem4.4,
for n = 23. Then,we iterated the process eleven times and obtained anα withα(1) = 0
and such that the function x �→ ∫ x

0
1−α(y)
1−α(x)dy + ∫ 1

x exp
(∫ y

0 ln α(w)dw
)
dy varies

between0.6653and0.6720.The code to achieve this result is available at https://github.
com/rasa200/prophet-secretary-through-blind-strategies.git. Even if we did not find
an exact solution for the ODE, its performance is given by computing (4.3). This gives
the claimed factor of 0.665.

5 Improved analysis and proof of Theorem 1.1

In this section, we present how to get the factor 0.669 in Theorem 1.1. As done in
Sect. 4, we analyze the performance of the corresponding deterministic blind strategy
with an instance of size n and we only care about the performance guarantee of α

as n grows to ∞. The difference is that in this section we restrict ourselves to use
blind strategies that take only m possible values, which allows us to derive different
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inequalities. Specifically, we consider α = αα1,...,αm given by

αα1,...,αm (x) =
∑

j∈[m]
α j1

[
j−1
m ,

j
m

)(x),

in other words, piece-wise constant functions. The general method is similar and
proceeds in three steps.

Step 1: Decomposition In the same spirit as in Lemma 4.1, we have the following
lemma, in which the notation �x� stands for the upper integer part of x .
Lemma 5.1 Given an instance F1, F2, . . . , FmN and ∞ = τ0 ≥ τ1 ≥ τ2 ≥ · · · ≥
τm ≥ τm+1 = −∞ a sequence of nonincreasing thresholds it holds that, for j ∈
[m + 1] and t ∈ [τ j , τ j−1),

P(VσT > t) = P(T ≤ ( j − 1)N )+
∑

i∈[n]
P(Vi > t)

⎛

⎝
Nm∑

k=( j−1)N+1

P(T ≥k|σk = i)

Nm

⎞

⎠ ,

where T is the stopping time given by T T A(τ1 = τ1, . . . , τi = τ�i/N�, . . . , τmN =
τm).

Proof This is a special instance of Lemma 4.1. Indeed, define τ ′
0, τ

′
1, . . . , τ

′
mN+1 by

τ ′
l := τ�l/N�, for l ∈ {0, 1, . . . ,mN + 1}. Notice that

⋃

l∈[mN+1]
[τ ′
l , τ

′
l−1) =

⋃

j∈[mN+1]
[τ ′

( j−1)N+1, τ
′
( j−1)N ).

Taking j ∈ [m + 1] and l = ( j − 1)N + 1, by Lemma 4.1 we have that, for all
t ∈ [τ ′

l = τ j , τ
′
l−1 = τ j−1),

P(VσT > t) = P(T ≤ l − 1) +
∑

i∈[n]
P(Vi > t)

(
Nm∑

k=l

P(T ≥ k|σk = i)

Nm

)

= P(T ≤ ( j − 1)N )+
∑

i∈[n]
P(Vi > t)

⎛

⎝
Nm∑

k=( j−1)N+1

P(T ≥k|σk = i)

Nm

⎞

⎠ ,

which is the desired decomposition. �
Step 2: Lower bounds and weak Schur convexity The main novelty is to sharpen the
lower bound of Lemma 4.2:

Lemma 5.2 Given V1, . . . , Vn independent random variables and τ1 ≥ · · · ≥ τn
a sequence of nonincreasing thresholds, we denote by T the stopping time of
T T A(τ1, . . . , τn). Then, for all i, k ∈ [n],

P(T ≥ k|σk = i) ≥ P(T > k)

1 − k
n + 1

n

∑

l∈[k]
P(Vi ≤ τl)

.
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Proof Inspired by the proof given by Esfandiari et al. [13], fix i, k ∈ [n]. Conditioning
on the value of σ−1(i),

P(T > k) = 1

n

∑

l∈[n]
P(T > k|σl = i). (5.1)

Note that for all l = k + 1, . . . , n,

P(T > k|σl = i) = P(T > k|σk+1 = i) ≤ P(T ≥ k|σk = i).

Define

�−i (k) := {σ, ordered subset of [n]\{i} with size k}.

Then, given l ∈ [k], since the thresholds are nonincreasing,

P(T > k|σl = i) = P(Vi ≤ τl)

|�−i (k − 1)|
∑

σ∈�−i (k−1)

∏

j∈[k−1]
Fσ j (τ j+1 j≥l )

≤ P(Vi ≤ τl)

|�−i (k − 1)|
∑

σ∈�−i (k−1)

∏

j∈[k−1]
Fσ j (τ j )

= P(Vi ≤ τl)P(T ≥ k|σk = i).

Plugging both inequalities back into Eq. (5.1) we get the result. �

Recall that in the proof of Proposition 4.1, we used the inequality
∑

i∈[n] P(Vi >

t) ≥ P(maxi∈[n]{Vi } > t). We will now use the following more sophisticated inequal-
ity:

Lemma 5.3 Let V1, . . . , Vn be independent random variables and τ1 ≥ max{τ2, τ3,
. . . , τn} be a sequence of thresholds. Then, for any t < τ1 and k ≤ n

2 ,

∑

i∈[n]

P(Vi > t)

1 − 1
n

∑

l∈[k]
P(Vi > τl)

≥
P(max

i∈[n]{Vi } > t)

1 − k
nP(max

i∈[n]{Vi } > τ1)
.
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Proof Define λ := k
n ∈ [0, 1

2 ] and notice that

∑

i∈[n]

P(Vi > t)

1 − 1
n

∑

l∈[k]
P(Vi > τl)

=
∑

i∈[n]

P(Vi > t)
n−k
n + 1

n

∑

l∈[k]
P(Vi ≤ τl)

≥
∑

i∈[n]

P(Vi > t)

1 − λ + λP(Vi ≤ τ1)

=
∑

i∈[n]

1 − Fi (t)

1 − λ + λFi (τ1)

=: C(t; λ, F1, . . . , Fn).

Therefore, it is sufficient to prove that

1 − F1(t)

1 − λ + λF1(τ1)
+ 1 − F2(t)

1 − λ + λF2(τ1)
≥ 1 − F1(t)F2(t)

1 − λ + λF1(τ1)F2(τ1)
, (5.2)

since we can iterate this argument n times to deduce the result. To prove this inequality,
define the following variables

β := F1(τ1)F2(τ1), γ := F1(t)F2(t),

x := F1(τ1), y := F1(t).

Note that if β = 0, the inequality is trivial, so we can assume that β > 0. Consider
the following optimization problem.

(P)

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

minx,y fλ(x, y) := 1−y
1−λ+λx + 1− γ

y

1−λ+λ
β
x

s.t . β ≤ x ≤ 1
β ≤ β

x ≤ 1
γ ≤ y ≤ x
γ ≤ γ

y ≤ β
x .

Notice that the function fλ defined by

fλ(x, y) = 1

1 − λ + λx
−

(
1

1 − λ + λx

)

y + 1

1 − λ + λ
β
x

−
(

γ

1 − λ + λ
β
x

)
1

y
,

is concave in y. Rearranging the inequalities, the problem reduces to

(P)

{
minx fλ(x) := 1−x

1−λ+λx + 1− γ
x

1−λ+λ
β
x

s.t . β ≤ x ≤ 1
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Then, all we have to show is that, if λ ∈ [0, 1
2 ], x = 1 is the minimum, since this

would imply inequality (5.2). The following are three sufficient conditions for x = 1
to be the minimum:

1. fλ(β) ≥ fλ(1).
2. x = 1 is local minimum.
3. There exists at most one critical point in the interval [β, 1].
All these conditions are true for λ ∈ [0, 1/2], but since the formal computations

are long they are in Appendix A. This implies inequality (5.2). Then, the lemma is
proved iterating this inequality n times.

�

Step 3: Optimization and proof of Theorem 1.1 The previous analysis gives a new
lower bound on P(VσT > t) that only depends on α. An auxiliary function to express
this lower bound is useful. Let us define for m ≥ 1 and p ∈ (0, 1) the function
gm,p : [m] → R+ by

gm,p(k) =
{ 1

1− k
m (1−p)

; k ≤ m
2

2
1+p ; k > m

2 .

Notice that it is a nondecreasing function in k that is always greater than 1.
Wemust bound frombelowP(VσT > t)by aquantity that depends only onα. In light

of the decomposition of Lemma 5.1, we first handle the case where j ∈ {2, . . . ,m},
which is more complicated than the extreme cases j = 1 and j = m+1. The notation
�x� stands for the lower integer part of x .

Proposition 5.1 Given an instance F1, F2, . . . , FmN and ∞ = τ0 ≥ τ1 ≥ τ2 ≥
. . . ≥ τm ≥ τm+1 = −∞ a sequence of nonincreasing thresholds it holds that, for
j ∈ {2, . . . ,m} and t ∈ [τ j , τ j−1),

P(VσT > t) ≥
∑

k∈[ j−1]

1−αk

m
+

⎡

⎣
Nm∑

k=( j−1)N+1

P(T > k)
gNm,α1(k)

Nm

⎤

⎦P(max
i∈[n]{Vi } > t),

where T is the stopping time given by T T A(τ1 = τ1, . . . , τi = τ�i/N�+1, . . . , τmN =
τm+1).

Proof From Lemma 5.1, we have that

P(VσT > t) = P(T ≤ ( j − 1)N ) +
∑

i∈[n]
P(Vi > t)

Nm∑

k=( j−1)N+1

P(T ≥ k|σk = i)

Nm
.

We will bound each of the terms in this decomposition.
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For the first term, using Lemma 4.3 we get that

P(T ≤ ( j − 1)N ) ≥
∑

k∈[( j−1)N ]

1 − α(k/Nm)

Nm
=

∑

k∈[ j−1]

1 − αk

m
,

which is the desired bound.
For the second term, since α is nonincreasing, the corresponding thresholds are

nonincreasing too. Then, we can use both Lemmas 5.2 and 5.3. First, for every i, k ∈
[Nm],

P(T ≥ k|σk = i) ≥ P(T > k)

1 − 1
Nm

∑
l∈[k] P(Vi > τl)

.

Then, interchanging the order of the sums,

∑

i∈[n]
P(Vi > t)

Nm∑

k=( j−1)N+1

P(T ≥ k|σk = i)

Nm

≥
Nm∑

k=( j−1)N+1

P(T > k)
∑

i∈[n]

P(Vi > t)

Nm − ∑
l∈[k] P(Vi > τl)

.

Now, by Lemma 5.3, for k ≤ Nm/2,

∑

i∈[n]

P(Vi > t)

Nm − ∑
l∈[k] P(Vi > τl)

≥ P(maxi∈[n]{Vi } > t)

Nm − kP(maxi∈[n]{Vi } > τ1)

= gNm,α1(k)

Nm
P

(

max
i∈[n]{Vi } > t

)

,

and for k > Nm/2,

∑

i∈[n]

P(Vi > t)

Nm − ∑
l∈[k] P(Vi > τl)

≥ P(maxi∈[n]{Vi } > t)

Nm − Nm
2 P(maxi∈[n]{Vi } > τ1)

= gNm,α1(k)

Nm
P

(

max
i∈[n]{Vi } > t

)

.

All in all, we have proven the following bound:

∑

i∈[n]
P(Vi > t)

Nm∑

k>( j−1)N

P(T ≥ k|σk = i)

Nm

≥
⎡

⎣
Nm∑

k=( j−1)N+1

P(T > k)
gNm,α1(k)

Nm

⎤

⎦P

(

max
i∈[n]{Vi } > t

)

,
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which is the desired bound for the second term, and so we have proven the
proposition. �

The following lemma has the same flavor as Theorem 4.4 and allows us to deduce
a lower bound for the performance of blind strategies taking only m values.

Lemma 5.4 Let α = αα1,...,αm be a nonincreasing function where αm > 0, and let T
be the blind strategy stopping time. Then, for every instance F1, . . . , Fn and t > 0,

P(VσT > t) ≥ min
j∈[m+1]{ f j (α1, . . . , αm)} · P(max

i∈[n]{Vi } > t),

with

f j (α1, . . . , αm)

=

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

m∑

k=1

(
∏

l∈[k−1]
αl

) 1
m
(

1−α
1
m
k− ln αk

)

; j = 1

∑

k∈[ j−1]
1−αk

m(1−α j )
+

m∑

k= j

(
∏

l∈[k−1]
αl

) 1
m

gm,α1(k − 1)

(
1−α

1
m
k− ln αk

)

; j ∈ {2, . . . ,m}
∑

k∈[m]
1−αk
m ; j = m + 1.

Proof Case j = m + 1 (i.e. : t ∈ [0, τm))

By the decomposition of Lemma 5.1 and using Lemma 4.3, we have that

P(VσT > t) = P(T ≤ mN ) ≥
∑

k∈[mN ]

1 − α(k/Nm)

Nm
=

∑

k∈[m]

1 − αk

m
,

which concludes the case j = m + 1.

Case j ∈ {2, . . . ,m}
By Proposition 5.1, we have that

P(VσT > t) ≥
∑

k∈[ j−1]

1 − αk

m
+

⎡

⎣
Nm∑

k=( j−1)N+1

P(T > k)
gNm,α1(k)

Nm

⎤

⎦

P

(

max
i∈[n]{Vi } > t

)

.

Notice that, since t ∈ [τ j , τ j−1), we have that 1 − α j ≥ P(maxi∈[n]{Vi } > t).
Then,

∑

k∈[ j−1]

1 − αk

m
≥

∑

k∈[ j−1]

1 − αk

m(1 − α j )
P

(

max
i∈[n]{Vi } > t

)

.
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On the other hand,

Nm∑

k=( j−1)N+1

P(T > k)
gNm,α1(k)

Nm
=

m∑

l= j

N∑

k=1

P(T > (l − 1)N + k)
gNm,α1((l − 1)N + k)

Nm

≥
m∑

l= j

(
l−1∏

l ′=1

αl ′

) 1
m N∑

k=1

(

α
1
Nm
l

)k gNm,α1((l − 1)N )

Nm

=
m∑

l= j

(
l−1∏

l ′=1

αl ′

) 1
m

gm,α1(l − 1)
α

1
Nm
l

Nm

1 − α
1
m
l

1 − α
1
Nm
l

−−−−→
N→∞

m∑

k= j

⎛

⎝
∏

l∈[k−1]
αl

⎞

⎠

1
m

gm,α1(k − 1)

⎛

⎝1 − α
1
m
k

− ln αk

⎞

⎠ .

Putting these two inequalities together, we can conclude the case j ∈ {2, . . . ,m}.
Case j = 1 (i.e. : t ∈ [τ1,∞))
We first decompose according to Lemma 5.1, then use Lemma 4.2 and finally we reuse
the previous computation replacing j = 1 and noticing that gm,p(·) ≥ 1.

P(VσT > t) = 1

n

∑

i∈[n]
P(Vi > t)

Nm∑

k=1

P(T ≥ k|σk = i)

≥
[
1

n

Nm∑

k=1

P(T > k)

]

P

(

max
i∈[n]{Vi } > t

)

≥
⎡

⎢
⎣

m∑

k=1

⎛

⎝
∏

l∈[k−1]
αl

⎞

⎠

1
m
⎛

⎝1 − α
1
m
k

− ln αk

⎞

⎠

⎤

⎥
⎦P

(

max
i∈[n]{Vi } > t

)

,

where the last inequality is only valid in the limit as N → ∞. �
With the previous lemma we can easily establish the improved guarantee. Indeed,

take the right-hand-side of the expression in Lemma 5.4 and optimize over the choice
of α1, . . . , αm . We do this optimization numerically and find a particular collection
α1, . . . , αm such that the guarantee evaluates to 0.669, as stated in the following
corollary. We must note however that there might be other choices leading to slightly
improved guarantees.

Corollary 5.5 There exists 1 ≥ α1 ≥ . . . ≥ αm ≥ 0 such that

E(VσT )

E(max
i∈[n]{Vi })

≥ 0.66975,
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where T is the stopping time corresponding to the blind strategy α = αα1,...,αm .

In particular, taking m = 30 was enough to derive this result. The code to achieve
this result is available at https://github.com/rasa200/prophet-secretary-through-blind-
strategies.git

6 A 0.675 upper bound for blind strategies: proof of Theorem 1.2

In order to prove Theorem 1.2, we consider two instances and show that no blind
strategy can guarantee better than 0.675 for both instances.

The first instance consists simply of a single random variable which is nearly
deterministic, given by V1 ∼ U (1− ε, 1+ ε). The second instance has n i.i.d. random
variables defined by (and we take n → ∞):

Vi ∼
{
1/ε w.p. ε
U (0, ε) w.p. 1 − ε.

Combining these two instances one can show the following result.

Lemma 6.1 Let T be the stopping time corresponding to the blind strategy given by
α. Then,

sup
α

inf
n;F1,...,Fn

E(VσT )

E(max
i∈[n]{Vi })

≤ sup
α

min

⎧
⎨

⎩
1 −

1∫

0

α(s)ds ,

1∫

0

e

s∫

0
ln α(w)dw

ds

⎫
⎬

⎭
.

With this result we need to compute the quantity on the right-hand-side of the pre-
vious lemma to obtain an upper bound on the performance guarantee of any blind
strategy. This is done using optimal control theory. The basic procedure consists first
in proving that the supremum right-hand-side in Lemma 6.1 is attained, then we have
Mayer’s optimal control problem for which the necessary optimality conditions can
be expressed as an integro-differential equation. We conclude by solving this equation
numerically, and thus have the following result.

Corollary 6.2 Let T be the stopping time corresponding to the blind strategy given by
α. Then,

sup
α

inf
n;F1,...,Fn

E(VσT )

E(max
i∈[n]{Vi })

≤ 0.675.

Proof of Lemma 6.1 The first instance is V1 = U (1 − ε, 1 + ε), with ε > 0. Notice
that, τ = 1 − ε + α(u)2ε, where u ∼ U (0, 1) and, by direct computation, we have
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that

E(VσT ) =
1∫

0

E(VσT |u = s)ds

=
1∫

0

(

1 + ε

(

α(s) − 1

2

))

(1 − α(s))ds

−−→
ε→0

1∫

0

(1 − α(s))ds.

The second instance has n i.i.d. random variables defined by:

Vi ∼
{ 1

ε
w.p. ε

U (0, ε) w.p. 1 − ε.

Moreover, for ε small enough,

P

(

max
i∈[n]{Vi } ≤ t

)

=

⎧
⎪⎪⎨

⎪⎪⎩

0; t < 0( 1−ε
ε

)n
tn; 0 ≤ t < ε

(1 − ε)n; ε ≤ t < 1
ε

1; 1
ε

≤ t

Notice that we can assume α(x) < 1, for x > 0, since there is no gain in rejecting
all instances. Then, τi = n

√
α(u[i]) ε

1−ε
and we have that P(Vi ≤ τi ) = n

√
α(u[i]). By

direct computation,

lim
ε→0

E(VσT |u) = 1 + n
√

α(u[1]) + n
√

α(u[1])α(u[2]) + · · · + n
√

α(u[1]) . . . α(u[n−1])

=
n−1∑

i=0

i∏

j=1

n
√

α(u[ j]).

In addition, we have E(max
i∈[n]{Vi }) = 1

ε
(1 − (1 − ε)n) −−→

ε→0
n. Then,

lim
n→∞ lim

ε→0

E(VσT )

E

(

max
i∈[n]{Vi }

) = lim
n→∞Eu

⎡

⎣1

n

n−1∑

i=0

i∏

j=1

n
√

α(u[ j])

⎤

⎦ =
1∫

0

e

s∫

0
ln α(w)dw

ds.

�
Sketch of Proof of Corollary 6.2 We first show that the supremum given by Lemma 6.1
is attained at a certain α∗. To this end we note that, without loss of generality, we can
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consider the supremum over nonincreasing functions α, by a simple exchange of mass
argument. Then, we note that the set of nonincreasing functions from [0, 1] to itself
is compact for the || · ||∞ and the functional being optimized is continuous for that
metric. Then we deduce the existence of α∗, and furthermore it satisfies

1 −
∫ 1

0
α∗(s)ds =

∫ 1

0
exp

[∫ s

0
ln α∗(w)dw

]

ds.

Therefore, α∗ is the solution of the following optimal control problem:

(P)

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

min
α

−x1(1) = −
1∫

0
1 − α(t)dt

s.t . : ẋ(t) = f (x(t), α(t)) =
⎛

⎝
1 − α(t)
exp[x3(t)]
ln α(t)

⎞

⎠

x(0) = (0, 0, 0)′
(t, x(t)) ∈ [0, 1] × R

3

α(t) ∈ [0, 1]
x1(1) = x2(1).

This is generally called a Mayer problem and the necessary optimality conditions
(Pontryagin maximum principle) leads to identify α∗ with αK ,t defined by

αK ,t (t) =
{
1; 0 ≤ t < t
βK ,t (t); t ≤ t ≤ 1,

where K ∈ [0, 3] and t ∈ [0, 1/3] and βK ,t is the solution of the following integro-
differential equation

⎧
⎪⎨

⎪⎩

β̇(t) = −K exp

[
t∫

t

ln β(s)ds

]

t ∈ (t, 1)

β(1) = 0.

(6.1)

To solve numerically this equation, consider the change of variables g(t) =∫ t
t ln β(s)ds, so that the equation becomes the second order ODE

⎧
⎨

⎩

eġ(t)g̈(t) = −Keg(t) ; t ∈ (t, 1)
g(t) = 0
ġ(t) = ln β(t).

Because exp(·) is continuous and locally Lipschitz, this is a well-posed Cauchy prob-
lem with a unique local solution. The initial condition ġ(t) = ln β(t) turns out to be
simply a replacement for ġ(1) = −∞ in the sense that we search for the solutions g
such that g(t) = 0 and exploits at time 1. This seemingly numerical difficulty is well
treated using solvers for stiff ODE such as ode15s of Matlab.
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Then, we numerically compute (6.1) to determine that

sup
α

min

⎧
⎨

⎩
1 −

1∫

0

α(s)ds,

1∫

0

e

s∫

0
ln α(w)dw

ds

⎫
⎬

⎭

= sup
K∈[0,3]
t∈[0,1/3]

min

⎧
⎨

⎩
1 −

1∫

0

αK ,t (s)ds,

1∫

0

e

s∫

0
ln αK ,t (w)dw

ds

⎫
⎬

⎭

≤ 0.675.

Finally we note that if (6.1) has no solution, this simply means that α∗ does not
corresponds to αK ,t and thus it is not taken into account in the previous supremum.
The code to achieve this result is available at https://github.com/rasa200/prophet-
secretary-through-blind-strategies.git. �

7 A 0.732 upper bound for any strategies: proof of Theorem 1.3

We now obtain an upper bound on the performance of any algorithm for the prophet
secretary problem. Surprisingly, our bound comes fromanalyzing the following simple
instance. Take a ∈ [0, 1] and consider n + 1 random variables whose values are
distributed as:

V1, . . . , Vn ∼
{
n w.p. 1

n2

0 w.p. 1 − 1
n2

Vn+1 ≡ a.

Clearly any reasonable algorithmwould always accept a value of n and never accept
a value of 0. Therefore the only decision an algorithm has to make is that of whether
accepting a value of a or not. The algorithm picks the value a if it was presented after
some time j∗n ∈ [n + 1], and from j∗n , the expectation of the future is less than the
value a. Let σ be the random permutation and T be the implied stopping time, then
we have that for i = 1, . . . , j∗n − 1

E(VσT |σi = n + 1) = n

[

1 −
(

1 − 1

n2

)n]

,

and for i = j∗n , . . . , n + 1,

E(VσT |σi = n + 1) = n

[

1 −
(

1 − 1

n2

)i−1
]

+
(

1 − 1

n2

)i−1

a.
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Therefore,

E(VσT ) = j∗n − 1

n + 1
n

[

1 −
(

1 − 1

n2

)n]

+ 1

n + 1

n+1∑

i= j∗n

n

[

1 −
(

1 − 1

n2

)i−1
]

+
(

1 − 1

n2

)i−1

a.

Consider λ := lim supn→∞
j∗n
n ∈ [0, 1], then

lim sup
n→∞

E(VσT ) = λ +
∫ 1

λ

x + a dx = λ + 1 − λ2

2
+ a(1 − λ) ≤ 1 + a2

2
,

where the last inequality comes from maximizing over λ ∈ [0, 1].
On the other hand,

E

(

max
i∈[n]{Vi }

)

= n

[

1 −
(

1 − 1

n2

)n]

+
(

1 − 1

n2

)n

a −−−→
n→∞ 1 + a.

We notice that choosing a = √
3 − 1 we get that

lim sup
n→∞

E(VσT )

E

(

max
i∈[n] {Vi }

) ≤ 1 + a2
2

1 + a
= √

3 − 1 ≈ 0.732.

8 Dealing with discontinuous distributions

In this section we explain how to use a blind strategy in instances where the dis-
tributions F1, . . . , Fn are not necessarily continuous. Recall that in the definition of
blind strategies in Sect. 1.2, we need the existence of τi such that P(maxi∈[n]{Vi } ≤
τi ) = α(u[i]). So, what happens if such thresholds τ1, . . . , τn do not exist? For the
purpose of studying the prophet inequality, the performance of a strategy defined over
instances with continuous distributions is always extendable to discontinuous ones
allowing stochastic tie breaking. In this case, we can explicitly define the strategy that
α induces over discontinuous instances. The resulting strategy no longer depends on
the distribution of the maximum only.

The procedure to compute the tie breaking is quite natural:

1. Approximate the instance.
2. Study the strategy induced by α in the approximated instance.
3. Replicate what would happen in the original instance, allowing tie breaking.

Given a realization of uniform random variables u1, . . . , un , assume that τi does not
exist, in other words, for some i ∈ [n], there is a τ ∈ R such that

lim
ε→0

P

(

max
i∈[n]{Vi } ≤ τ − ε

)

< α(u[i]) < P

(

max
i∈[n]{Vi } ≤ τ

)

.
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The stochastic tie breaking consists in accepting the value τ with some probability, say
pi . This acceptance rate depends on the whole instance, not only on the distribution of
themaximum, andon the identity of the revealedvariable. To compute these acceptance
rates we use the following procedure. For ε > 0, consider the following approximated
instance

Fε
i (t) =

{
Fi (t)
Fi (τ − ε) + t−τ+ε

ε
(F(τ ) − Fi (τ − ε))

,

for t /∈ [τ − ε, τ ] in the first case and t ∈ [τ − ε, τ ] in the second case. This instance
has a continuous distribution of the maximum in [τ − ε, τ ] and we are able to find τ ε,
the corresponding threshold for the approximated instance, such that

P

(

max
i∈[n]{Vi } ≤ τ ε

)

= α(u[i]).

Then, we compute, for j ∈ [n], β j := limε→0 Fε
j (τ

ε). To finish, we define, for j such
that P(Vj = τ) > 0,

pi ( j; F1, . . . , Fn) := Fj (τ ) − β j

P(Vj = τ)

and pi = 0 otherwise. This will induce that, faced with Vj at time i , the gambler
accepts its realizationwith probability 1−β j . To bemore precise, we use the following
procedure.

Algorithm 2 Stochastic TTA
1: for i = 1, …, n do
2: if Vσi > τi then
3: Take Vσi
4: else if Vσi = τi then
5: Take Vσi with probability pi (σi ; F1, . . . , Fn)

6: end if
7: end for

With this procedure, all results extend to general instances.

Appendix AMissing proofs in Lemma 5.3

Lemma A.1 Consider 0 < β ≤ 1, 0 ≤ γ ≤ β and the optimization problem

(P)

{
minx fλ(x) := 1−x

1−λ+λx + 1− γ
x

1−λ+λ
β
x

s.t . β ≤ x ≤ 1
.

If λ ∈ [0, 1/2], then the value of (P) is fλ(1).
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In order to prove Lemma A.1, we will prove three conditions that will imply the
result, namely:

1. fλ(β) ≥ fλ(1).
2. x = 1 is local minimum.
3. There exists at most one critical point in the interval [β, 1].
Each of these conditions are formally stated in the next three lemmata.

Lemma A.2 Consider 0 < β ≤ 1, 0 ≤ γ ≤ β and fλ(x) := 1−x
1−λ+λx + 1− γ

x

1−λ+λ
β
x

. If

0 ≤ λ < 1, then

fλ(β) ≥ fλ(1).

Proof By direct computation, we have that

fλ(β) ≥ fλ(1)

⇔ 1 − β

1 − λ + λβ
+ 1 − γ /β

1 − λ + λ
≥ 0 + 1 − γ

1 − λ + λβ

⇔ β − γ

β
≥ β − γ

1 − λ + λβ

⇔ (β − γ )(1 − λ)(1 − β) ≥ 0,

which is true by assumption. �
Lemma A.3 Consider 0 < β ≤ 1, 0 ≤ γ ≤ β and fλ(x) := 1−x

1−λ+λx + 1− γ
x

1−λ+λ
β
x

. If

0 ≤ λ ≤ 1/2, then

x = 1 is local minimum of fλ(·) in [β, 1].
Proof Since the domain is [β, 1], it’s sufficient to prove that

d

dx
fλ(1) ≤ 0.

Since fλ(x) = 1−x
1−λ+λx + x−γ

(1−λ)x+λβ
, we have that

d

dx
fλ(x) = −1

(1 − λ + λx)2
+ λβ + (1 − λ)γ

((1 − λ)x + λβ)2
.

Therefore,

d

dx
fλ(1) = −1 + λβ + (1 − λ)γ

(1 − λ + λβ)2

= λβ + (1 − λ)γ − (1 − λ + λβ)2

(1 − λ + λβ)2

= −λ2[β − 1]2 + λ[γ + β − 2] + [1 − γ ]
(1 − λ + λβ)2

.
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Then, ∂x fλ(1) ≤ 0 if and only if

gβ,γ (λ) := λ2[β − 1]2 + λ[γ + β − 2] + [1 − γ ] ≥ 0.

The function gβ,γ (·) is a convex quadratic function.Moreover, gβ,γ (0) = 1−γ ≥ 0
and gβ,γ (1) = (β−1)β ≤ 0. There are some corner cases where it is easy to conclude.
Assume that γ = 1, then β = 1 and gβ,γ (·) ≡ 0, therefore, we can assume that
γ < β. Consider the case β = 1, in which gβ,γ (·) is a linear function satisfying
gβ,γ (0) = 1 − γ ≥ 0 and gβ,γ (1) = 0. Therefore, we can assume β < 1, i.e. :
gβ,γ (·) is a strictly convex quadratic function such that gβ,γ (0) > 0 and gβ,γ (1) < 0.
Moreover, if β = 0, then gβ,γ (λ) = (λ − 1)2, so we can also assume that β > 0.
Define

λm(β, γ ) := inf{λ > 0 : gβ,γ (λ) ≤ 0},

the smallest root of the polynomial gβ,γ (·). We will prove that

inf
0<β<1
0≤γ≤β

λm(β, γ ) = 1

2
. (A.1)

By solving the quadratic equation,

λm(β, γ ) = 2 − β − γ − √
(2 − β − γ )2 − 4(1 − γ )(1 − β)2

2(1 − β)2
.

Note that λm(β, γ ) > 0, since 0 ≤ γ ≤ β < 1.
We will first show that for all 0 ≤ γ ≤ β, ∂γ λm(β, γ ) ≤ 0, i.e. : λm(β, ·) is

decreasing, which allows us to consider only λm(β, β) to prove (A.1). We will finish
the proof by proving that inf0<β<1 λm(β, β) = 1/2.

To see that ∂γ λm(β, γ ) ≤ 0, we’ll prove that

∂γ λm(β, 0) ≤ 0 and ∀0 ≤ γ ≤ β ∂γ,γ λm(β, γ ) ≤ 0.

By direct computation,

∂γ λm(β, γ ) ≤ 0

⇔ ∂γ

(
2 − β − γ − √

(2 − β − γ )2 − 4(1 − γ )(1 − β)2

2(1 − β)2

)

≤ 0

⇔ −1 − ∂γ

(√
(2 − β − γ )2 − 4(1 − γ )(1 − β)2

)

≤ 0
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⇔ −1 − −2(2 − β − γ ) + 4(1 − β)2

2
√

(2 − β − γ )2 − 4(1 − γ )(1 − β)2
≤ 0

⇔ −1 + 3β − γ − 2β2
√

(2 − β − γ )2 − 4(1 − γ )(1 − β)2
≤ 0

Therefore,

∂γ λm(β, 0) ≤ 0

⇔ −1 + 3β − 2β2
√

(2 − β)2 − 4(1 − β)2
≤ 0

⇔ β(3 − 2β)√
β(4 − 3β)

≤ 1

⇔ √
β(3 − 2β) ≤ √

(4 − 3β)

⇔ 9β − 12β2 + 4β3 ≤ 4 − 3β

⇔ β(3 − 2β)2 ≤ 4 − 3β,

which is true for all β ∈ (0, 1).
On the other hand,

∂γ,γ λm(β, γ ) ≤ 0

⇔ ∂γ,γ

(
2 − β − γ − √

(2 − β − γ )2 − 4(1 − γ )(1 − β)2

2(1 − β)2

)

≤ 0

⇔ ∂γ

(

−1 + 3β − γ − 2β2
√

(2 − β − γ )2 − 4(1 − γ )(1 − β)2

)

≤ 0

⇔ −
√

(2 − β − γ )2 − 4(1 − γ )(1 − β)2 + (3β − γ − 2β2)2
√

(2 − β − γ )2 − 4(1 − γ )(1 − β)2
≤ 0

⇔ (3β − γ − 2β2)2 − (2 − β − γ )2 + 4(1 − γ )(1 − β)2 ≤ 0

⇔ 9β2 + γ 2 + 4β4 − 6βγ + 4γβ2 − 12β3 − 4 − β2 − γ 2

+ 4β − 2βγ + 4γ + 4(1 − γ )(1 − 2β + β2) ≤ 0

⇔ 8β2 + 4β4 − 8βγ + 4γβ2

− 12β3 − 4 + 4β + 4γ + 4(1 − γ )(1 − 2β + β2) ≤ 0

⇔ 8β2 + 4β4 − 8βγ + 4γβ2 − 12β3 − 4 + 4β + 4γ + 4 − 8β

+ 4β2 − 4γ + 8βγ − 4β2γ ≤ 0

⇔ 12β2 + 4β4 − 12β3 − 4β ≤ 0

⇔ 3 − 3β + β2 ≤ 1

β
,

which, again, is true for all β ∈ (0, 1).
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We have proved that for all β ∈ (0, 1), λm(β, ·) is decreasing. Therefore, we just
need to prove that inf0<β<1 λm(β, β) = 1/2, which is true because:

λm(β, β) = 2 − 2β − √
(2 − 2β)2 − 4(1 − β)3

2(1 − β)2
= 1 − √

β

1 − β
= 1

1 + √
β

≥ 1

2
.

This implies that gβ,γ (λ) ≥ 0, for all λ ∈ [0, 1/2], which in turn implies that x = 1
is a local minimum of fλ(·) in [β, 1]. �

Lemma A.4 Consider 0 < β ≤ 1, 0 ≤ γ ≤ β and fλ(x) := 1−x
1−λ+λx + 1− γ

x

1−λ+λ
β
x

. If

0 ≤ λ ≤ 1/2, then

∣
∣
∣
∣{x ∈ (β, 1) : d

dx
fλ(x) = 0}

∣
∣
∣
∣ ≤ 1.

Proof Notice that

fλ(x) = 1 − x

1 − λ + λx
+ x − γ

(1 − λ)x + λβ

= x2[2λ − 1] + x[2 − 2λ − λβ − λγ ] + [λβ − γ (1 − λ)]
x2[λ(1 − λ)] + x[(1 − λ)2 + λ2β] + [λβ(1 − λ)] ,

which implies that fλ(·) has at most two extreme points. We will prove that one of
them is always negative when λ ≤ 1/2, which will conclude the proof. To do this,
we compute d

dx fλ(x) and notice that extreme points solve a quadratic equation. By
analyzing the corresponding coefficient wewill conclude that, if there is a real extreme
point, then there must be a real negative extreme point.

By direct computation, notice that d
dx fλ(x) if and only if

(2x[2λ−1]+[2 − 2λ − λβ − λγ ])(x2[λ(1−λ)] + x[(1 − λ)2 + λ2β] + [λβ(1 − λ))

− (2x[λ(1 − λ)] + [(1 − λ)2 + λ2β])(x2[2λ − 1] + x[2 − 2λ − λβ − λγ ]
+ [λβ − γ (1 − λ)]) = 0.

Define and compute relevant terms by

a := (2 − 2λ − λβ − λγ )λ(1 − λ) + ((1 − λ)2 + λ2β)2(2λ − 1)

· · · − (2λ − 1)((1 − λ)2 + λ2β) − (2 − 2λ − λβ − λγ )2λ(1 − λ)

= (2λ − λ2(2 + β + γ ))(1 − λ) + (1 − 2λ + λ2 + λ2β)(4λ − 2)

· · · − (1 − 2λ + λ2 + λ2β)(2λ − 1) − (2λ − λ2(2 + β + γ ))(2 − 2λ)

= (2λ − λ2(2 + β + γ ))(λ − 1) + (1 − 2λ + λ2 + λ2β)(2λ − 1)

= λ3[β − γ ] + λ2[γ − 1] + λ[2] + [−1],
b := (2 − 2λ − λβ − λγ )((1 − λ)2 + λ2β) + 2(2λ − 1)λβ(1 − λ)

123



Prophet secretary through blind strategies 519

· · · − ((1 − λ)2 + λ2β)(2 − 2λ − λβ − λγ ) − 2λ(1 − λ)(λβ − γ (1 − λ))

= 2(2λ − 1)λβ(1 − λ) − 2λ(1 − λ)(λβ − γ (1 − λ))

= 2λ(1 − λ)2(γ − β),

c = (2 − 2λ − λβ − λγ )λβ(1 − λ) − ((1 − λ)2 + λ2β)(λβ − γ (1 − λ)).

Then,wehave that, if x is an extremepoint of fλ(·), then x is a solution toax2+bx+c =
0.

Notice that b ≤ 0, since γ ≤ β. Then, one of the extreme points has the same sign
as a (when it is a real number). Moreover,

∀γ ≤ β ∈ [0, 1] a = λ3[β − γ ] + λ2[γ − 1] + λ[2] + [−1]
= γ λ2(1 − λ) + βλ3 − λ2 + 2λ − 1 ≤ 0

⇔ ∀β ∈ [0, 1](β − 1)λ2 + 2λ − 1 ≤ 0

⇔ 2λ − 1 ≤ 0.

Then, for all λ ∈ [0, 1
2 ], a ≤ 0, therefore one of the extreme points of fλ(x), when

real, is negative. �
Proof of LemmaA.1 Recall the optimization problem (P) is given by

(P)

{
minx fλ(x) := 1−x

1−λ+λx + 1− γ
x

1−λ+λ
β
x

s.t . β ≤ x ≤ 1
.

Since fλ(·) is a continuous function, there exists x∗ ∈ [β, 1] such that fλ(x∗) =
minβ≤x≤1 fλ(x). By Lemma A.2, we can consider that x∗ ∈ (β, 1].

Assume by contradiction that there is y ∈ (β, 1) such that fλ(y) < fλ(1). Since we
would also have that fλ(x∗) < fλ(β), we can conclude that there exists x∗ ∈ (β, 1)
local minimum of fλ(·). But, by Lemma A.3, fλ(·) is decreasing close to 1, so there
must exist y∗ ∈ (x∗, 1) which is a local maximum of fλ(·). Then,

∣
∣
∣
∣{x ∈ (β, 1) : d

dx
fλ(x) = 0}

∣
∣
∣
∣ ≥ 2,

which contradicts Lemma A.4. Therefore, the value of (P) is fλ(1). �
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