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We study the asymptotic behavior of the expectation of the maximum of n i.i.d. random variables drawn 
from a fixed distribution F , with finite expectation. In this setting, Downey (1990) [4] showed that this 
expectation grows as o(n). We provide an alternative simpler proof of Downey’s result together with a 
tight lower bound.
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1. Introduction

In this paper we study the asymptotic behavior of the expec-
tation of the maximum order statistic X(n) = maxi=1,...,n Xi of an 
independent sample X1, . . . , Xn drawn from a fixed distribution F , 
with finite expectation. The problem we address is to determine 
the worst case growth rate of E(X(n)) as n increases to infinity. 
This question is indeed quite natural and has been considered ex-
tensively in the applied probability and statistics communities in 
the past fifty years (see e.g. [1], [3], [4], [6]).

Note first that, since the maximum is upper bounded by the 
sum, we have that E(X(n)) ≤ nE(|X1|), so E(X(n)) = O (n). Sim-
ilarly if E(X1)

p < ∞, it is easy to derive that E(X(n)) = O ( p
√

n)

using Jensen’s inequality. Moreover, when the distribution F from 
where X1, . . . , Xn are drawn can depend on n, explicit bounds that 
depend on F where obtained by e.g. Arnold [1] and Downey [4], 
among others. However, when F is fixed and does not depend on 
n a much stronger and general bound can be obtained. Indeed, 
Downey [4] established that E(X(n)) = o(n).1

Specifically, to establish that E(X(n)) = o(n), Downey studies 
the sequence X(n)/

p
√

n, and uses a result by Freedman [5] to es-
tablish the convergence in probability of the sequence. Then he 
turns to prove that the sequence also converges in Lp . To this end, 
he shows that for p = 1 the sequence is uniformly integrable and 
thus, by Vitali convergence theorem (see e.g. [2, Theorem 4.5.4]), 
obtains L1-convergence. For general p ≥ 1, and under the assump-

* Corresponding author.
E-mail address: correa@uchile.cl (J.R. Correa).

1 More generally Downey establishes that if E(X1)
p < ∞ then E(X(n)) = o( p

√
n).
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tion E(|X |p) < ∞, Downey uses Hölder inequality to reduce to the 
p = 1 case and concludes that E(|X(n)|) = o( p

√
n). Finally, Downey 

also argues that this bound is best possible in a certain sense.
In this note we present an elementary proof for the o(n) bound 

for E(X(n)), which only uses the dominated convergence theorem 
and a basic calculus result. We also obtain Downey’s result for gen-
eral p as a corollary. Finally, we construct a lower bound that is 
stronger than Downey’s, and conclude that o(n) is indeed best pos-
sible.

2. Main result

In this section, we present our simple proof of Downey’s result 
and use Jensen’s inequality to state it in Downey’s general form.

Theorem 1. Let X1, . . . , Xn be independent random variables drawn 
from a common distribution F . Suppose E(|X1|) < ∞, then

lim
n→∞

E(X(n))

n
= 0.

Proof. First note that it is enough to consider non-negative ran-
dom variables, since E(X(n)) ≤E 

(
maxi=1,...,n |Xi |

)
. Now, as X(n) ∼

F n and it is also non-negative, its expectation can be written as

E(X(n)) =
∞∫

0

1 − F n(x)dx =
∞∫

0

(1 − F (x))
n−1∑
k=0

F k(x)dx.

The linearity of the integral implies that
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E(X(n))

n
= 1

n

n−1∑
k=0

∞∫
0

F k(x)(1 − F (x))dx.

To conclude the proof recall that the arithmetic mean of a con-
vergent sequence, converges to the same limit (see e.g. [7, Corol-
lary 1.5]). Thus, to establish the theorem it is enough to argue that

lim
n→∞

∞∫
0

F k(x)(1 − F (x))dx = 0.

This follows by the dominated convergence theorem since the se-
quence (F k(1 − F ))k≥0 converges pointwise to 0 and it is domi-
nated by the integrable function 1 − F .2 �

Note that by Vitali convergence theorem, the L1-convergence of 
the sequence (X(n)/n)n≥1, is equivalent to its convergence in prob-
ability, and also to its uniform integrability. Therefore, the conver-
gence in expectation we just showed also implies the convergence 
in probability and the uniform integrability shown by Downey. Fur-
thermore, using Jensen’s inequality for a convex function h, we get

h(E(X(n))) ≤E(h(X(n))) ≤ E

(
max

i=1,...,n
h(Xi)

)
.

Thus we immediately obtain the following more general result:

Corollary 1.1. For any convex function h, if E(h(X1)) < ∞, then 
h(E(X(n))) = o(n). In particular, for all p ≥ 1, if E(|X1|p) < ∞, then 
E(X(n)) = o( p

√
n).

3. Lower bound

Downey states that the bound E(X(n)) = o(n) is best possible 
in the following sense. He proves that for all ε > 0 there exists 
a distribution F , such that E(X(n)) = �(n1−ε). However, this does 
not rule out the possibility of having a result stronger than that 
in Theorem 1, such as E(X(n)) = O (n/ log(n)). In this section, we 
argue that the bound from Theorem 1 is indeed best possible.

Theorem 2. For any function g with sublinear growth, namely such 
that g = o(n), there is a finite expectation distribution F such that if 
X1, . . . , Xn are independently drawn from F , then

lim inf
n→∞

E(Xn)

g(n)
> 0.

Proof. We establish the statement by constructing a distribution F
such that for all sufficiently large n.

E(X(n)) ≥ g(n).

For k ≥ 1, define ak = g(k) − g(k −1). It is clear that ak → 0. We 
may assume wlog that (ak)k≥1 is a positive and non-increasing se-
quence. For otherwise we may take ãk = maxm≥k(g(m) − g(m − 1))

and g̃(n) = ∑n
k=1 ãk + g(0), which satisfies g̃(n) ≥ g(n) and g̃ =

o(n).3 Thus it is enough to show E(X(n)) ≥ g̃(n). Also, as we only 
need to show the inequality for sufficiently large n, we may as-
sume that ak < 1 for all k ≥ 1 and that g(0) ≥ 0.

2 Note that the sequence actually decreases to 0, so monotone convergence can 
also be invoked.

3 Indeed, lim
n→∞

g̃(n)

n
= lim

n→∞
1

n

n∑
k=1

ãk = lim
n→∞ ãk = lim sup

k→∞
g(k) − g(k − 1) = 0.

Therefore we construct a distribution F of the form

F (x) =
∑
k≥0

(1 − ak)1Ik (x),

for some disjoint intervals Ik ⊆ R with length δk ≥ 0. Letting 
k(m) = min{k ≥ 1 : ak < 1/m} for each m ≥ 1, allows us to set

δk =
{(

g(m)
m − g(m+1)

m+1

)
1

ak(m)
, if k = k(m) for some m ∈ N,

0, otherwise.

Note that since the sequence ak is non-increasing we have that 
δk ≥ 0. To establish this we need to show that (m + 1)g(m) −
mg(m +1) ≥ 0, which easily follows by induction because g(0) ≥ 0.

With the previous choice of δk we immediately get that F has 
finite expectation. Indeed,

∞∫
0

(1 − F (x))dx =
∑
k≥0

akδk =
∑
m≥1

g(m)

m
− g(m + 1)

m + 1
= g(1) < ∞.

On the other hand, if Y1, . . . , Yn are independent random vari-
ables drawn from F , we have that

E(Y(n)) =
∞∫

0

(1 − F n(x))dx =
∑
k≥0

(1 − (1 − ak)
n)δk.

To wrap up the proof we lower bound the latter expression. First 
recall that (1 − 1/x)x grows to e−1 as x → ∞. Also, from the strict 
convexity of the exponential function, we have that if x ∈ (0, 1), 
then exp(−x) < 1 − (1 − 1/e)x < 1 − x/2. Thus, since by definition 
of k(n) we have that 0 < nak < 1, for all k ≥ k(n), we obtain

(1 − ak)
n =

((
1 − 1

1/ak

)1/ak
)nak

≤ exp(−nak) < 1 − nak/2.

Putting all together we derive the lower bound

E(Y(n)) >
n

2

∑
k≥k(n)

akδk = n

2

∑
m≥n

g(m)

m
− g(m + 1)

m + 1
= 1

2
g(n),

which concludes the statement by taking Xi = 2Yi . �
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