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Abstract. The classic prophet inequality states that, when faced with a finite sequence of
nonnegative independent random variables, a gambler who knows the distribution and is
allowed to stop the sequence at any time, can obtain, in expectation, at least half as much
reward as a prophet who knows the values of each random variable and can choose the
largest one. In this work, we consider the situation in which the sequence comes in random
order. We look at both a nonadaptive and an adaptive version of the problem. In the former
case, the gambler sets a threshold for every random variable a priori, whereas, in the latter
case, the thresholds are set when a random variable arrives. For the nonadaptive case, we
obtain an algorithm achieving an expected reward within at least a 0.632 fraction of the
expected maximum and prove that this constant is optimal. For the adaptive case with
independent and identically distributed random variables, we obtain a tight 0.745-
approximation, solving a problem posed by Hill and Kertz in 1982. We also apply these
prophet inequalities to posted price mechanisms, and we prove the same tight bounds for
both a nonadaptive and an adaptive posted price mechanism when buyers arrive in
random order.

Funding: Thisworkwas supported byAgencia Nacional de Investigación y Desarrollo [Grant CMM-AFB
170001] and Fondo Nacional de Desarrollo Cientı́fico y Tecnológico [Grant 1190043].
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1. Introduction
One of the most basic economic problems is that of eliciting information to make optimal decisions. Consider,
for instance, the fundamental problem of a seller who holds a single item and wants to sell it to buyers with
private valuations for the item. The seller places no value on the item, whereas the buyers have independent,
not necessarily identical, random valuations for the item. The main question is to design an incentive-
compatible mechanism maximizing the revenue of the seller. This question was answered in a seminal paper
by Myerson [35], and, as the solution is incentive compatible, it is in the buyers’ best interest to declare their
true valuations. Implementing this mechanism is remarkably simple in some situations. For instance, the
optimal mechanism if the valuations are independent and identically distributed (i.i.d.) can be implemented
as a second price auction with a common reserve price. However, this simple auction cannot always be
implemented, for example, when not all prospective buyers are in the same place at the same time.

As implementing an auction is not always possible, a simple alternative to optimal auctions is provided by
posted price mechanisms. In this setting, again we have a seller holding a single item to sell to a set of
customers, who have independent random valuations for the item. Customers arrive sequentially, and the
arrival sequence may be fixed, random, or chosen by the seller, depending on the specific context. In any case,
upon arrival of a customer, the seller offers a price as a take-it-or-leave-it offer, and the customer either takes
the item at that price or simply leaves it. The goal of the seller is to find the prices (and possibly the sequence
of arrival) that maximize his expected revenue. These mechanisms are very appealing because of their
simplicity and the fact that strategic behavior vanishes. So, quite naturally, they have been vastly studied,
particularly in the marketing community (Bult and Wansbeek [8]). A common example of this practice is that
of direct mail campaigns, in which the seller contacts his potential buyers directly and offers each one a certain
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price for the item. The item is then sold to the first consumer who accepts the offer (Bult and Wansbeek [8],
Cominetti et al. [13]).

Due to the relevance of these mechanisms in electronic commerce, several companies have started to apply
personalized pricing to sell their products. Under this policy, companies set different prices for different
consumers based on purchase history or other factors that may affect their willingness to pay. For example, the
online data provider Lexis-Nexis sells to virtually every user at a different price (Shapiro and Varian [40]). In
2012, Orbitz online travel agency found that people who use Mac computers spent as much as 30% more on
hotels, so it started to show them different, and sometimes costlier, travel options than those shown to
Windows visitors (Mattioli [33]). Similarly, retailers and supermarket chains such as Safeway are using data
culled from billions of purchases to offer deals tailored to specific shoppers (Kharif [27]). Recently, the Council
of the European Union [36] has even agreed on regulation that will prevent such price discrimination based on
nationality or place of residence.

Choudhary et al. [12] further investigated this issue, providing more examples and developing a theoretical
framework to analyze equilibrium between firms that apply personalized pricing and those who do not.

In recent years, there has been a significant effort to understand the expected revenue of the outcome
generated by different posted price mechanisms when compared with that of the optimal auction (Adamczyk
et al. [2]; Blumrosen and Holenstein [7]; Chawla et al. [9],[10]; HajiAghayi et al. [21]; Yan [42]). Interestingly,
first HajiAghayi et al. [21] and then Chawla et al. [10] noted a close connection between online mechanisms in
general, and posted price mechanisms in particular, and prophet inequalities. These prophet inequalities
measure the expected payoff of an all-knowing prophet relative to the best gambler in the theory of optimal
stopping that was very active in the probability theory community three decades ago. Specifically, Chawla
et al. [10] implicitly show that the problem of designing posted price mechanisms can be reduced to that of
finding stopping rules of a related optimal stopping problem. Recently, Correa et al. [15] proved that the
reverse direction also holds and therefore established an equivalence between designing posted price
mechanisms and finding stopping rules for optimal stopping problems. This connection opened the way
for new approaches and results and constitutes the starting point of this paper. We refer to the survey of
Lucier [32] for further details.

1.1. Optimal Stopping Theory
Optimal stopping theory is concerned with choosing the right time to take a particular action, so as to
maximize the expected reward. The famous prophet inequalities are a key example of a result in optimal
stopping. There, a gambler faces a finite sequence of nonnegative independent random variables X1, . . . ,Xn
with known distributions from which iteratively a prize is drawn. After seeing a prize, the gambler can either
accept the prize and the game ends, or reject the prize and the next prize is presented to her. The classical
result of Krengel and Sucheston [29, 30], also attributed to Garling, states that the gambler can obtain at least
half of the expected reward that a prophet can make who knows the realizations of the prizes beforehand.
That is, sup{E[Xt] : t stopping rule} ≥ E{sup1≤i≤n Xi}/2. Moreover, Krengel and Sucheston also showed that
this bound is best possible. Samuel-Cahn [38] showed that the bound of 1/2 can be obtained by a good
threshold rule, which stops as soon as a prize is above a fixed threshold. In later work, Samuel-Cahn [39]
considers the case in which the random variables have a negative dependence. In this setting, she proves a
slightly better bound and also shows that this bound is obtainable by the best threshold rule. Hill [22] studies
the situation in which the order in which the random variables are presented can be chosen by the gambler.
Kennedy [25], as well as Assaf et al. [4], considered the setting in which the gambler can select k different
prizes. Whereas Kennedy looked at the situation in which the sum of the prizes is compared with that of the
prophet, Assaf et al. studied the situation in which the maximum of the prizes is given as a reward. We refer
the reader to the survey of Hill and Kertz [24] for more results on prophet inequalities. More recently,
Esfandiari et al. [17] considered an interesting combination of the prophet inequality and the secretary
problem, now known as the prophet secretary problem. This is basically a prophet inequality, but the the random
variables are presented in a random order to the gambler. This setting provides the ground for the problems
studied in this paper.

1.2. Problem Description
In the optimal stopping problem that we study, a gambler faces a sequence of n nonnegative independent
random variables Xi with known distributions Fi for i ∈ N $ {1, . . . ,n}. In this paper, we assume that the
random variables arrive in a random order, where each order is equally likely. In every stage, a prize πi ∼ Fi is
drawn and the gambler needs to decide whether to accept and keep that prize, or to reject it and wait for the
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next realization. The goal is to maximize his expected reward. We consider a nonadaptive and an adap-
tive scenario.

Nonadaptive. The gambler sets for each i ∈ N a threshold τi ≥ 0, with the goal of maximizing his expected
reward defined as

E
∑

i∈N
πτ
i P i $ argmin

j∈N
σ j
( ) |πj ≥ τj

{ }
[ ][ ]

,

where the probability is taken over the arrival permutation σ and the distributions F of the random variables.
Furthermore, πτ

i denotes the random variable (πi |πi ≥ τi).

Adaptive. The gambler sets thresholds upon arrival of every random variable. So, the gambler sets functions
τi : 2N → R for each random variable Xi, such that, if S is the set of random variables that did not exceed their
threshold before, then τi(S) is the threshold for random variable Xi if this is the next random variable to arrive.
For an arrival permutation σ, we denote τi(σ) $ τi({σ−1(1), . . . , σ−1(σ(i) − 1)}) and πτ

i (σ) $ (πi |πi ≥ τi(σ)), and
therefore we can write the gambler’s expected revenue as

E
∑

i∈N
πτ
i σ( )P i $ argmin

j∈N
σ j
( ) |πj ≥ τj σ( )

{
[ ][ ]

,

where the expectation is taken over the arrival permutation σ, and the probability is taken over the distri-
butions F of the random variables.

1.3. Related Work
For the nonadaptive version of the problem, we provide a stopping rule that guarantees an expected reward
within a factor 1 − 1/e of the expected value of the maximum. Interestingly, this bound matches the bound of
Chawla et al. [10] for the so-called sequential posted price mechanisms (SPM) in which the arrival order of the
random variables is chosen by the gambler rather than at random. Furthermore, the bound also matches that
of Esfandiari et al. [17]; however, their bound is obtained through a stopping rule that is adaptive.1 Inter-
estingly, subsequent to our work, there have been several improvements. First, Ehsani et al. [16] find yet
another nonadaptive stopping rule with the same performance guarantee. Their stopping rule is essentially a
fixed threshold stopping rule, though it requires randomized tiebreaking. This is indeed quite surprising, since
their stopping rule is nonadaptive and anonymous. Furthermore, their result is best possible since, as we show
in this paper, there does not exist a nonadaptive stopping rule achieving a guarantee on the expected reward
within a factor strictly better than 1 − 1/e of the expected value of the maximum. Very recently, the factor
1 − 1/e for prophet secretary has been improved. Indeed, using a subtle analysis and case distinctions, Azar
et al. [5] were able to design an algorithm achieving a ratio of 1 − 1/e + 1/400. Furthermore, Correa et al. [14]
obtained the currently best known guarantee by using randomized stopping rules based on the quantiles
of the distribution of the maximum. In terms of upper bounds, Correa et al. [14] (in the full version of their
paper) establish that no stopping rule can achieve a ratio better than

̅̅
3

√
− 1 ≈ 0.732 for the prophet secre-

tary problem.2

This latter upper bound, together with the fact that we show that the impossibility for nonadaptive stopping
rules to beat 1 − 1/e holds even if the random variables are i.i.d., lead us to study adaptive stopping rules in
this simpler setting. Of course, in the i.i.d. case, the classic prophet inequality and the prophet secretary
problem are equivalent, and its study dates back to the work Hill and Kertz [23]. They provide a recursive
characterization of the best possible an such that, if Tn is the set of stopping times of random variables
X1, . . . ,Xn, then

E max X1, . . . ,Xn{ }( ) ≤ an sup E Xt( ) : t ∈ Tn{ }. (1)

They also prove that, for all n > 1, 1.1 < an < 1.6, and they conjectured that the sequence an is monotone and
that an ≤ 1 + 1/e ≈ 1.368. Shortly after, Samuel-Cahn [38] reported that Kertz [26] proved that an → β∗ ≈
1.341< 1

0.745 and conjectured that this limit constitutes the best possible upper bound (Saint-Mont [37]
provides a simpler proof of this result). However, the best bound known until then was an ≤ e/(e − 1) ≈ 1.582
(Kertz [26, lemma 3.4]). Recently, and independent from our work, Abolhassani et al. [1] improved the bound
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to 1.355. In this context, we study an adaptive stopping rule for i.i.d. distributions and prove that it leads to
the optimal prophet inequality. Indeed, we show that its guarantee exactly matches the upper bound of 1/β∗ ≈
0.745 of Hill and Kertz [23], and Kertz [26]. It should be noted that this optimal prophet inequality was not
only known in the limit when n → ∞ (Kertz [26]), but also when the number of random variables is not fixed
to n but is determined by a Poisson process (Allaart [3]). More recently, Kleinberg and Kleinberg [28] obtain
the same bound in a continuous time setting, and Singla [41] provides a remarkably simple analysis for the
Poisson arrival case.

Due to the reduction of Chawla et al. [10], our stopping rules carry over to posted price mechanisms. Thus,
when the arrival order is random, we obtain a nonadaptive posted price mechanism obtaining an expected
revenue within a factor 1 − 1/e of the expected revenue of the optimal auction. Also for i.i.d. valuations, we
obtain an adaptive posted price mechanism that improves this bound to 1/1.341 > 0.745.

It is worth mentioning that our work is indeed related to some of the literature in dynamic pricing. In this
context, we typically have one or more units to sell to a number of strategic consumers with random valuation
for a unit and that arrive according to a stochastic process, typically Poisson (Besbes and Lobel [6], Chen and
Farias [11], Gallien [20]). In dynamic pricing, the goal of the seller is to come up with a price path, that is, a
sequence of prices for the future, so as to maximize her revenue. Although the number of precise models is
vast, a key difference between posted price mechanisms and dynamic pricing is that, in the former, the offers
are take-it-or-leave-it, and thus strategic behavior vanishes, whereas, in the latter, buyers are long lived and
forward looking. This means that a buyer may decide to wait and buy later so as to pay a lower price. In light
of this, it is interesting to observe, for instance, that the fixed threshold algorithm of Ehsani et al. [16] for the
prophet secretary problem does not translate into a fixed anonymous price in the setting of posted price
mechanism, and thus it may be vulnerable to strategic behavior. The reason for this is that, to use a prophet
inequality algorithm in the context of posted price mechanisms, one needs to go through Myerson’s virtual
values (see Section 5), and thus the price corresponding to a given threshold is given by the preimage of such a
threshold through the virtual valuation (Chawla et al. [10], Correa et al. [15]). Thus, if the valuation dis-
tributions of different consumers are different, then the resulting prices will also be different.

1.4. Our Results
More formally, our nonadaptive stopping rule takes the form of the following result.

Theorem 1. Given n independent nonnegative random variables X1, . . . ,Xn with Xi ∼ Fi, there exist values τ1, . . . , τn
such that

E

∑n
i$1 XiYi∑n
i$1 Yi

[ ]
≥ 1 − 1

e

( )
E max

i$1,...,n
Xi{ }

[ ]
,

where Yi is a Bernoulli random variable that has value 1 if Xi > τi. Here, when evaluating the expectation on the left-
hand side, we define 0/0 $ 0.

As the Xi’s are ordered uniformly at random, each variable Xi that is above τi, that is, when Yi $ 1, is equally
likely to be the first Xi above τi. Hence, the expected reward of the gambler can be written as the quantity on
the left.

The cornerstone of our analysis is a basic result about Bernoulli random variables that may be of inde-
pendent interest. The result states that if we are given a set of nonhomogeneous independent Bernoulli
random variables with associated prizes, then there is a subset of variables so that the expected average prize
of the successes is at least a factor 1 − 1/e of the expectation of the maximum prize over all random variables.

Lemma 1 (Bernoulli Selection Lemma). Given a set N $ {1, . . . , n} of independent Bernoulli random variables Y1, . . . ,Yn,
where Yi $ 1 with probability qi and 0 otherwise, and associated prizes b1, . . . , bn, the following inequalities hold:

max
S⊆N

E

∑
i∈S biYi∑
i∈S Yi

[ ]{ }
≥ 1 − 1

e

( )
max
zi≤qi

∑

i∈N
bizi

⃒⃒
⃒⃒
⃒
∑

i∈N
zi ≤ 1

{ }
≥ 1 − 1

e

( )
E max

i∈N
biYi{ }

[ ]
.

Here, when evaluating the leftmost term, we define 0/0 $ 0.
Note that, in Theorem 1, the rewards denoted by Xi are random variables, whereas, in the Bernoulli selection

lemma, the prizes bi are fixed. The lemma is related to online contention resolution schemes as described by
Feldman et al. in [19, theorem 1.6].
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To complement our results, we provide instances that show that the bounds in Lemma 1 and Theorem 1 are
tight. In particular, we show that, even with i.i.d. random variables, the bound of Theorem 1 cannot be beaten.
Therefore, to go beyond 1 − 1/e, even when the random variables are i.i.d., a different setting needs to be
considered. We examine the adaptive setting, and our adaptive stopping rule for the i.i.d. case takes the form
of the following theorem.

Theorem 2. Given nonnegative i.i.d. random variables X1, . . . ,Xn, there exist thresholds τ1, . . . , τn, such that

E max X1, . . . ,Xn{ }( ) ≤ β∗E Xt( ),

where t :$ min{i ∈ {1, . . . ,n} : Xi ≥ τi} and β∗ ≈ 1.341> 1
0.745 is the unique solution to

∫ 1

0

1
y 1 − ln y

( )( ) + β − 1
( ) dy $ 1. (2)

Theorem 2 can be seen as a follow-up on a result by Hill and Kertz [23] on the prophet inequality for i.i.d.
random variables. They study the performance of the best stopping time when compared with a prophet
that can extract the expectation of the maximum. The main result of Hill and Kertz is a recursive charac-
terization of an, the best possible factor when faced with n random variables. More precisely, they prove that if
X1, . . . ,Xn are i.i.d. nonnegative random variables and Tn denotes the set of stopping rules for X1, . . . ,Xn, then

E max X1, . . . ,Xn{ }( ) ≤ an sup E Xt( ) : t ∈ Tn{ }.

Furthermore, Hill and Kertz find instances in which it is not possible to beat the factor an. They also prove that
an ≤ e/(e − 1), conjecture that the sequence is monotone, and leave open the existence and computation of its
limit. The monotonicity, together with the limit calculation, would readily give a universal bound (valid for
all n) on the performance of the best stopping rule. Shortly after, Samuel-Cahn [38] reports that Kertz proves
the existence of the limit a of the an sequence and conjectures that it equals 1.341 (obtained as the solution to∫ 1
0 (y − y ln(y)) + a − 1)−1dy $ 1). Finally, Kertz [26, lemma 6.2] proves the latter conjecture (for which Saint-
Mont [37] derives a simpler proof). However, he is unable to prove that the sequence is monotone, and
therefore the best upper bound on the whole an sequence still stood at e/(e − 1) ≈ 1.582 (Kertz [26, lemma 3.4]).
Very recently, and independently of our work, Abolhassani et al. [1] improved this upper bound to
1/0.738 ≈ 1.355. Our Theorem 2 closes the gap and implies that, for all n, an ≤ a ≈ 1.341, and, by the tight
examples of Hill and Kertz [23], this constant is best possible.

All results carry over to the setting of posted price mechanisms, and the corresponding corollaries and
algorithms can be found in Section 5.

2. The Bernoulli Selection Lemma
In this section, we prove Lemma 1. We also provide a tight instance. To prove the lemma, we consider a
continuous relaxation of the maximization problem and then guess a solution in which each random variable
is included in S with some instance-dependent probability. Then, we look for the worst possible instance by
applying the first-order optimality conditions of a nonlinear problem. These conditions reveal some structural
insight on what a worst-case instance looks like. Using this, we obtain the desired bound.

The second inequality of Lemma 1 is trivial, as the expectation of the maximum is a sum over all values bi
weighted by the probability with which that value is the maximum. Since these probabilities sum to at most
one, the inequality follows. Therefore, we only need to prove the first inequality, which is equivalent to

max
S⊆N

E

∑
i∈S biYi∑
i∈S Yi

[ ]{ }
≥ e − 1

e
max
zi≤qi

∑

i∈N
bizi

⃒⃒
⃒
∑

i∈N
zi ≤ 1

{ }
. (3)

The proof of this inequality has two main ingredients. First, we reformulate the left-hand side in an ap-
propriate way, and lower-bound it by another function using Karush-Kuhn-Tucker (KKT) conditions. Then,
we show that this function is bounded from below by 1 − 1/e times the maximization problem on the right-
hand side. We note here that a simpler proof of Lemma 1 can be derived using a recent result of Ehsani et al. [16].
This alternative proof is presented in Appendix C.
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A Simplified Proof. To provide the main intuition of the proof, we first show how to get a weaker result, that only
gives us a factor of 1/

̅̅
e

√
instead of (e − 1)/e, with more straightforward arguments.

Proof. We start the proof by rewriting the optimization problem:

max
S⊆N

E

∑
i∈S biYi∑
i∈S Yi

[ ]{ }
. (P)

Instead of choosing a subset of N, we set for each i ∈ N a value χi ∈ [0, 1], which represents the probability with
which we actually choose i. Now, let πi $ χiqi denote the probability of i being picked and having Yi $ 1. So,
we can consider the following maximization problem, with decision variables π, as a relaxation of (P):

max
0≤πi≤qi

∑

S⊆N

b S( )
|S|

∏

i∈S
πi

( )
∏

i/∈S
1 − πi( )

( )( ){ }
,

where b(S) $ ∑
i∈S bi. Note that, in this maximization problem, the objective function is linear in each πi so that

there is an extreme optimal solution. Thus, the previous problem is in fact equivalent to (P). Now, by changing
the order of the summations, we obtain

max
0≤πi≤qi

∑

i∈N
biπi

∑

S⊆N\ i{ }

1
1 + |S|

∏

j∈S
πj

( )
∏

j∈N\ S∪ i{ }( )
1 − πj
( )

( )( )( ){ }
. (4)

Using this equivalent form, we can lower bound (P) by guessing a feasible solution. To this end, consider an
optimal solution z∗ to the maximization problem of the right-hand side in (3), that is, to

max
∑

i∈N
bizi

⃒⃒
⃒
∑

i∈N
zi ≤ 1, zi ≤ qi for all i ∈ N

{ }
,

and set πi $ z∗i/(1 + z∗i/2). Note that πi ≤ z∗i ≤ qi, and thus it is feasible for (4). Moreover, as 1 − πi $ (1 − z∗i/2)/
(1 + z∗i/2) and ∏

j∈S z∗j $ 2|S| ∏j∈S z∗j/2, (P) can be lower-bounded by

∑

i∈N
biz∗i

∏

j∈N

1
1 + z∗j

2

( )
∑

S⊆N\ i{ }

2|S|

1 + |S|
∏

j∈S

z∗j
2

( )
∏

j∈N\ S∪ i{ }( )
1 − z∗j

2

( )( )( )( )
.

It is easy to see that

∑

S⊆N\ i{ }

2|S|

1 + |S|
∏

j∈S

z∗j
2

( )
∏

j∈N\ S∪ i{ }( )
1 − z∗j

2

( )( )( )
≥ 1,

since the left-hand side corresponds to E[ f (S)] over all S ⊆ N \ {i} under probabilities z∗j/2 for every element i
and f (S) $ 2|S|/(|S| + 1) ≥ 1. Whereas for any values zi such that ∑i∈N zi ≤ 1, we have

∏n

j$1

1
1 + zj

2
≥ e−

∑n
j$1

zj
2 ≥ 1̅̅

e
√ ,

where the first inequality follows from 1 + x ≤ ex, concluding the proof. □

Obtaining a Bound of 1 − 1/e. To obtain the factor 1 − 1/e, we make a subtle modification in the choice of πi. We
will show that, for this choice of πi, we can lower-bound (P) by ∑

i∈N biz∗iϕk(i)(z∗i ), where k(i), and thus ϕk(i)(z∗i ) is a
function that is only dependent on i. We then show that, for each i, ϕk(i)(z∗i ) ≥ 1 − 1/e.
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Thus, take πi $ 2z∗i/[2 + (e − 2)z∗i ],3 such that 1 − πi $ [2 − (4 − e)z∗i ]/[2 + (e − 2)z∗i ]. Note that this is a feasible
choice of πi for all i ∈ N, since, for this choice, πi ≤ z∗i ≤ qi.4 We plug this back into (4) and obtain that (P) is
lower-bounded by

∑

i∈N
2biz∗i

∏

j∈N

1
2 + e − 2( )z∗j

( )
∑

S⊆N\ i{ }

2|S|

1 + |S|
∏

j∈S
z∗j

( )
∏

j∈N\ S∪ i{ }( )
2 − 4 − e( )z∗j
( )

( )( )( )

$
∑

i∈N
biz∗i

2
2 + e − 2( )z∗i

fN\ i{ } z∗−i( ), (5)

where x−i denotes the vector x with coordinate i eliminated and, for a given set M, fM(x) is defined as

fM x( ) $
∏

j∈M

1
2 + e − 2( )xj

( )
∑

S⊆M

2|S|

1 + |S|
∏

j∈S
xj

( )
∏

j∈M\S
2 − 4 − e( )xj
( )

( )( )
.

We find a lower bound on (5), by lower-bounding fN\{i}(z∗−i) by the minimum value for fN\{i}(x) over all vectors
x satisfying ∑

j∈N\{i} xj ≤ 1 − z∗i . According to Proposition A.1 in Appendix A, the minimum value is obtained
by a solution x∗ satisfying that all nonzero variables are equal and the sum of these variables is equal to 1 − z∗i .

Conditioning on the cardinality of the set S, and using the binomial theorem, a straightforward but tedious
calculation shows that

fN\ i{ } x∗
( ) $ 2k + e − 2( ) 1 − z∗i( )

2 k + 1( ) 1 − z∗i( ) 1 − 1 − 2 1 − z∗i( )
2k + e − 2( ) 1 − z∗i( )

( )k+1( )
.

As this quantity only depends on k and z∗i , we may define

ϕk z
∗
i( ) $ 2

2 + e − 2( )z∗i
fN\ i{ } x∗

( )
,

to conclude that expression (5) [and in turn (P)] is lower-bounded by
∑

i∈N
biz∗iϕk i( ) z

∗
i( ),

where the index k(i) $ |S| denotes the number of nonzero variables in x∗ and is always at least 1, yet may vary
depending on i.

Bounding ϕ by 1 − 1/e. If ϕk(i)(z∗i ) ≥ 1 − 1/e, then we can bound (P) from below by ∑
i∈N biz∗iϕk(i)(z∗i ) ≥ (1 − 1/e)∑

i∈N biz∗i and the Bernoulli selection lemma is proved. Hereto, we show that, for any n ≥ 2 and y ∈ [0, 1],
ϕn(y) ≥ 1 − 1

e. Recall that

ϕn y
( ) $ 2

2 + e − 2( )y
2n + e − 2( ) 1 − y

( )

2 n + 1( ) 1 − y
( ) 1 − 1 − 2 1 − y

( )

2n + e − 2( ) 1 − y
( )

( )n+1⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠. (6)

We start with a lemma that rephrases this claim. Since the proof basically consists of algebraic manipulations,
we defer it to Appendix A.

Lemma 2. Let ϕn(y) be as defined in (6), and let

hn x( ) :$ 1
n + 1

− 1 − x( )n+1
n + 1

− e − 1
2

x + e − 1( ) e − 2( )n
e 2 − e − 2( )x( ) x

2.

Then, ϕn(y) ≥ 1 − 1
e for all y ∈ [0, 1] and all n ≥ 2 if and only if hn(x) ≥ 0 for all n ≥ 1 and x ∈ [0, x̄], where

x̄ $ 1/(n − 1 + e/2).
Hence, according to this lemma, we only need to prove that hn(x) ≥ 0 for all n ≥ 1 and x ∈ [0, x̄]. This is the

subject of the following lemma, the proof of which can be found in Appendix A, for the same reason as for the
proof of the previous lemma.

Lemma 3. We have that hn(x) ≥ 0 for all n ≥ 1 and x ∈ [0, x̄].
From Lemmas 2 and 3, we conclude that indeed ϕn(z∗i ) ≥ 1 − 1/e for all z∗i ∈ [0, 1] and n ≥ 2.
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2.1. Tightness
We now provide a family of instances that shows that the 1 − 1/e bound in the Bernoulli selection lemma is
actually best possible. First note that tightness with respect to the first inequality of the lemma is immediate by
taking n Bernoulli random variables with parameter 1/n and all prizes equal to 1. To obtain tightness with
respect to the second inequality, we need a more involved instance. Consider thus n2 i.i.d. Bernoulli random
variables with parameter 1/n and prizes b1 $ n/(e − 2) and bi $ 1 for 2 ≤ i ≤ n2. The expectation of the
maximum prize is given by

E max
1≤i≤n2

biYi{ }
[ ]

$ 1
e − 2

+ 1 − 1
n

( )
1 − 1 − 1

n

( )n2−1( )
−→ 1

e − 2
+ 1.

In this particular setting, where the Bernoulli random variables are i.i.d., the best strategy is to sort by prize
and take some subset with those of higher prize. This means to choose the first random variable and a subset
of size k − 1 of the rest for some 1 ≤ k ≤ n2. This yields an expected prize that is equal to

1 − 1 − 1
n

( )k( )
n
e−2 + k − 1

k
≤ 1 − 1 − 1

n

( )k( )
n

k e − 2( ) + 1
( )

.

Setting x $ k/n, as n → ∞, the aforementioned expression converges to

max
x≥0

1 − e−x( ) 1
x e − 2( ) + 1
( )

.

Proposition A.3, in Appendix A shows that this expression is maximized at x $ 1. This yields, for n → ∞, the
value [1 − 1/e][1/(e − 2) + 1] $ (1 − 1/e)E[max1≤i≤n2{biYi}].

3. Nonadaptive Threshold Rule
The Bernoulli selection lemma can be extended to more general random variables, namely, to the prophet
inequality setting.

Theorem 1. Given n independent nonnegative random variables X1, . . . ,Xn with Xi ∼ Fi, there exist values τ1, . . . , τn
such that

E

∑n
i$1 XiYi∑n
i$1 Yi

[ ]
≥ 1 − 1

e

( )
E max

i$1,...,n
Xi{ }

[ ]
,

where Yi is a Bernoulli random variable that has value 1 if Xi > τi. Here, when evaluating the expectation on the left-
hand side, we define 0/0 $ 0.

Proof. Assume first that the Fi’s are continuous for all i. Let qi $ P(Xi ≥ Xj, ∀j $ 1, . . . ,n) be the probability thatXi is
the largest, and let αi be a value for which 1 − Fi(αi) $ qi. Consider bi $ E[Xi | Xi > αi] and the Bernoulli random
variables Z1, . . . ,Zn, where Zi has parameter qi. We apply the Bernoulli selection lemma to this instance, and we
thus let S ⊆ {1, . . . ,n} be a set for which the lemma holds. Now define τi $ αi for i ∈ S and τi $ ∞ otherwise, and
note that, for i /∈ S, we have Yi $ 0 almost surely and that, for i ∈ S, we have P(Xi > αi) $ P(Yi $ 1) $ qi. It fol-
lows that

E

∑n
i$1 XiYi∑n
i$1 Yi

[ ]
$
∑

i∈S
E

XiYi∑
j∈S Yj

[ ]

$
∑

i∈S
E Xi | Yi $ 1[ ]E 1 +

∑

j∈S\ i{ }
Yj

( )−1 ⃒⃒
⃒⃒
⃒Yi $ 1

[ ]
P Yi $ 1( )

$
∑

i∈S
E Xi | Xi > αi[ ]E Yi∑

j∈S Yj

[ ]

$ E

∑
i∈S E Xi | Xi > αi[ ]Zi∑

i∈S Zi

[ ]

≥ e − 1
e

max
zi≤qi

∑n

i$1
E Xi | Xi > αi[ ]zi

⃒⃒
⃒⃒
⃒
∑n

i$1
zi ≤ 1

{ }

≥ e − 1
e

∑n

i$1
E Xi | Xi > αi[ ]qi,
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where the second-to-last inequality follows from the Bernoulli selection lemma, and the last holds since∑n
i$1 qi $ 1. Now note that E[maxi$1,...,n{Xi}] $ ∑n

i$1 E[Xi | Xi ≥ Xj, ∀j $ 1, . . . , n]qi. To finish the proof, it suffices
to show that

E Xi | Xi > αi[ ] ≥ E Xi | Xi ≥ Xj, ∀j $ 1, . . . , n
[ ]

.

Indeed, if x > αi, then we have P(Xi > x | Xi > αi) $
∫ ∞
x (1/qi)dFi(t), whereas, if x ≤ αi, then this probability

equals 1. On the other hand,

P Xi > x | Xi ≥ Xj ∀j $ 1, . . . ,n
( ) $

∫ ∞

x

∏
j/$i Fj t( )
qi

dFi t( ).

From this, it follows that P(Xi > x | Xi > αi) ≥ P(Xi > x | Xi ≥ Xj, ∀j $ 1, . . . ,n) for all x ≥ 0. Thus, Xi | (Xi > αi)
stochastically dominates Xi | (Xi ≥ Xj ∀j $ 1, . . . ,n), and the conclusion follows.

When some Fi are not continuous, it could be the case that there is no αi such that 1 − Fi(αi) $ qi or that
∑
qi > 1. If

the former happens, then the result still holds provided that αi is chosen randomly. The latter case is solved by
slightly perturbing the support of the random variables in a way that the probability that two or more are the
maximum simultaneously is negligible. □

In the case of continuous distributions, the algorithm that achieves this result becomes remarkably simple.
The algorithm, although randomized, can be derandomized using the method of conditional expectations (see,
e.g., Motwani and Raghavan [34, section 5.6]).

Algorithm 1
Input: Random variables Xi, i ∈ N with distributions Fi.

(1) Compute qi $ P(Xi $ maxj∈N{Xj}).
(2) Set threshold τi $ F−1i (1 − qi) with probability 2/[2 + (e − 2)qi],

∞ otherwise.

{

(3) Accept the first random variable having Xi > τi.
To see that Algorithm 1 indeed yields an expected reward of at least 1 − 1/e of the reward of a prophet, we

note that, in the proof of the Bernoulli selection lemma (Lemma 1), we set the variables πi $ 2qi/[2 + (e − 2)qi].
Therefore, the probability that we include a random variable in the set S is equal to χi $ 2/[2 + (e − 2)qi], which
is exactly the probability that we set a finite threshold for variable Xi in step (2) of the algorithm. Furthermore,
the thresholds αi, defined in the proof of Theorem 1, are equal to F−1(1 − qi) for continuous distributions.

Algorithm 1 may seem counterintuitive since, in step (2), the higher the probability is that a random variable
is the maximum, the higher the probability is that the algorithm rejects it a priori (by setting a threshold of ∞),
though the probability of rejecting any random variable is at most 1 − 2/e. The following example gives some
intuition as to why random variables need to be rejected. Consider just two random variables: X1, which has
deterministic value equal to 1, and X2, which has a value of 100 with probability 1/10 and 0 with probability
9/10. In this situation, the expectation of the maximum equals 10 + 9/10. Note that, in this instance, X1 is much
more likely to be the maximum; however, a nonadaptive algorithm that never discards it can get at most 50.5
when X2 evaluates to 100 due to the random order. Therefore, it can get in total at most (1/10)(50.5) +
(9/10)(1) $ 5.95, which is not within the claimed ratio of the expectation of the maximum. Another somewhat
surprising element of Algorithm 1 is that the probability of not accepting any random variable can be
computed as ∏i∈N(1 − 2qi/(2 + (e − 2)qi)) ≥ 2/e. Again, the previous example provides intuition to the fact that,
if we shoot for an algorithm that accepts too frequently, we risk settling for too low a prize. This intuition does
not hold in the adaptive case.

3.1. Tight Instance with I.I.D. Distributions
We construct a family of instances with i.i.d. random variables, such that, for all ε > 0, there is an instance from
this family for which no nonadaptive threshold rule can achieve an expected value within a factor (1 + ε)(1 −
1/e) of the expected maximum. The idea is to mimic the instance that makes the Bernoulli selection lemma
tight, but here we achieve this with i.i.d. distributions. Consider n2 i.i.d. random variables following the law

X $
n
e−2 w.p. 1

n3 ,
1 w.p. 1

n ,
0 w.p. 1 − 1

n − 1
n3 .

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩
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Then, a prophet that can foresee all future prizes, obtains an expected reward of (e − 1)/(e − 2) as n → ∞. On
the other hand, the best nonadaptive stopping rule sets a threshold of 1 for, say, random variables X1, . . . ,Xk
and n/(e − 2) for the remaining random variables. The best value for k turns out to be roughly n (see Appendix B).
The expected reward for this stopping rule approaches [1/(e − 2) + 1][1 − 1/e] in the limit.

4. Adaptive Threshold Rule
In the previous section, we considered the setting in which the threshold value only depends on the random
variable Xi, not on the order. Furthermore, we saw that, even when the distributions are i.i.d., no better factor
than 1 − 1/e could be achieved under these assumptions. In this section, we consider the setting in which the
threshold value may depend both on Xi and on the prizes that were rejected earlier. For i.i.d. random variables,
we design an adaptive threshold strategy that achieves an expected revenue of at least a 1/β∗ ≈ 0.745 fraction
of the expected maximum value.

To achieve this result, we use a quite natural idea: we start with a high threshold, and, as fewer random
variables are left, the thresholds will decrease. Besides this, the key ingredient of our algorithm is to use
random thresholds drawn from a well-chosen distribution that mimics an expression that we obtain for the
expected maximum value. In subsection “Quantile Stopping Rule,” we describe the following algorithm that
achieves the bound in Theorem 2 in the case of continuous distributions. Like Algorithm 1, this algorithm can
also be derandomized using the method of conditional expectations (see, e.g., Motwani and Raghavan [34,
section 5.6]).

Algorithm 2
Input: i.i.d. random variables Xi, i ∈ N each with distribution F.

(1) Partition the interval [0, 1] into intervals Ai $ [εi−1, εi], such that ε0 $ 0, εn $ 1.
(2) Sample qi from Ai with an appropriately chosen distribution that only depends on n.5

(3) When the i-th random variable comes, set threshold τi $ F−1(1 − qi).
In the remainder of this section, we prove the bound of 0.745 for our adaptive threshold rule. Hereto, some

notation is introduced, and this is summarized in Table 1.
For X1, . . . ,Xn nonnegative i.i.d. random variables, we take F as their probability distribution function and

refer to X as a random variable with the same common distribution. Let F−1(q) $ inf{x ≥ 0 | F(x) ≥ q} be the
generalized inverse of F (or quantile function), and let τ(q) $ F−1(1 − q). Therefore, we have that P(X ≥ τ(q)) ≥
q ≥ P(X > τ(q)) $ 1 − F(τ(q)), and this holds with equalities if F is continuous at τ(q). We start by deriving an
expression for the expectation of the maximum of X1, . . . ,Xn. Let R(q) $

∫ q
0 F−1(1 − θ)dθ, which, as we will see

later, is equal to the expected reward from a random variable that is accepted with probability q. Now, we use
Fubini’s theorem and integration by parts on the product of u(q) $ (1 − q)n−1 and v′(q) $ F−1(1 − q):

E max X1, . . . ,Xn{ }( ) $
∫ ∞

0
1 − Fn t( )dt

$
∫ 1

0
F−1 n ̅̅z

√( )
dz

$ n
∫ 1

0
1 − q
( )n−1F−1 1 − q

( )
dq

$ n
∫ 1

0
n − 1( ) 1 − q

( )n−2
∫ q

0
F−1 1 − θ( )dθ

( )
dq

$ n
∫ 1

0
n − 1( ) 1 − q

( )n−2R q
( )

dq. (7)

Table 1. Notation used in Section 4.

R(q) =
∫ q
0 F−1(1 − θ)dθ Expected reward of variable acceptedwith probability q

Ai = [εi−1, εi] Interval for ith acceptance probability qi
ψ(q) = (n − 1)(1 − q)n−2

γi =
∫
q∈Ai

ψ(q)dq Normalization parameter
fi(q) = ψ(q)/γi Probability density function for choosing qi
ρ1 = 1/γ1

ρi+1 = (ρi/γi+1)
∫
q∈Ai

ψ(q)(1 − q)dq
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Rather than directly constructing a threshold rule, our approach is to choose at each step a probability of
acceptance, which naturally will be increasing as less random variables are left. One could compute the
optimal threshold at each step. However, the analysis of such an optimal strategy becomes difficult. Here we
use a less direct algorithm but obtain two big advantages: first, the thresholds that we end up with are explicit;
and second, the posterior analysis becomes quite simple.

Specifically, when faced with a random variable X, we select a proper acceptance probability q. Now if F is
continuous at τ(q), then we stop if X ≥ τ(q) (so the acceptance probability is q). Otherwise (there is mass at
τ(q)), there may be no value that accomplishes the previous condition; so we stop if X > τ(q), and if X $ τ(q),
then we stop with probability s $ [q − P(X > τ(q))]/P(X $ τ(q)) (so again the acceptance probability is q). The
goal behind this seemingly obscure rule is that, if at a given step we are faced with a random variable X and
have decided on an acceptance probability q, then the expected reward in that step equals R(q). Indeed, the
reward can be calculated as

R q
( ) $ P X $ τ q

( )( ) · s · τ q
( ) + P X > τ q

( )( )
E X|X > τ q

( )[ ]

$ q − P X > τ q
( )( )( )

τ q
( ) + P X > τ q

( )( ) ∫ ∞

0
P X > t|X > τ q

( )( )
dt

$ q − P X > τ q
( )( )( )

τ q
( ) + P X > τ q

( )( )
τ q
( ) +

∫ ∞

τ q( )
P X > t|X > τ q

( )( )
dt

( )

$ qτ q
( ) +

∫ ∞

τ q( )
1 − F t( )dt $

∫ q

0
F−1 1 − θ( )dθ,

where the last equality follows from the definition of τ(q).

Quantile Stopping Rule. As described in Algorithm 2, our stopping rule is constructed as follows. We first
partition the interval A $ [0, 1] into n intervals Ai $ [εi−1, εi], with 0 $ ε0 < ε1 < . . . < εn−1 < εn $ 1. For random
variable Xi, we draw an acceptance probability qi at random from the interval Ai, according to the probability
density function fi(q) $ ψ(q)/γi, where ψ(q) $ (n − 1)(1 − q)n−2 and γi is a normalization parameter equal to
γi $

∫
q∈Ai

ψ(q)dq. As this qi is the acceptance probability of variable Xi, the corresponding threshold at step i is
τi $ τ(qi). With all the qi’s at hand, we scan X1, . . . ,Xn and stop at step i with probability qi using the previously
described rule [i.e., if F is continuous at τ(qi), then we stop if X ≥ τ(qi); otherwise, we stop for sure if X > τ(qi),
and if X $ τ(qi), then we stop with probability si $ [qi − P(X > τ(qi))]/P(X $ τ(qi))].

The next two lemmas allow us to write the expected value of our algorithm as a constant (that only depends
on n) times the expectation of the maximum Xi. In Lemma 4, we first write the value as the sum of the expected
values that the algorithm would get from each of the Xi’s, and Lemma 5 states that, by fine-tuning the εi’s, we
can obtain the desired result.

Lemma 4. Let ρ1 $ 1/γ1 and ρi+1 $ (ρi/γi+1)
∫ εi
εi−1

ψ(q)(1 − q)dq for i $ 1, . . . , n − 1. Then the expected value of the random
variable at which we stop, Xr, satisfies

E Xr( ) $
∑n

i$1
ρi

∫ εi

εi−1
n − 1( ) 1 − q

( )n−2R q
( )

dq.

Proof. We have already shown that the expected value at step i equals R(qi). On the other hand, the probability that
we get to step i is equal to ∏i−1

j$1(1 − qj). Hence, by the linearity of expectation and independence of the qi’s, the
expected value of Xr is

E Xr( ) $
∑n

i$1
E R qi

( )( )∏i−1

j$1
E 1 − qj
( )

$
∑n

i$1

∫ εi

εi−1
n − 1( ) 1 − q

( )n−2R q
( )

dq

∏i−1
j$1

∫ εj
εj−1

ψ(q) 1 − q
( )

dq
∏i

j$1 γi

$
∑n

i$1
ρi

∫ εi

εi−1
n − 1( ) 1 − q

( )n−2R q
( )

dq,

where the last equality comes from the definition of ρi. □

1462
Correa et al.: Optimal Threshold Strategies for Random Arrivals

Mathematics of Operations Research, 2021, vol. 46, no. 4, pp. 1452–1478, © 2021 INFORMS



Our stopping rule still has freedom in the choice of ε1, . . . , εn−1. The next lemma tells us that an appropriate
choice leads to an expression of the expected value of Xr in terms of the expectation of the maximum
of X1, . . . ,Xn.

Lemma 5. If we choose ε1, . . . , εn−1 such that ρ1 $ ρ2 $ . . . $ ρn, then

E max X1, . . . ,Xn{ }( ) $ nγ1E Xr( ).

Proof. If we choose ε1, . . . , εn−1 such that ρi $ ρ1 $ 1/γ1 for all i, then by (7) and Lemma 4 we can express

E max X1, . . . ,Xn{ }( ) $ n
∫ 1

0
n − 1( ) 1 − q

( )n−2R q
( )

dq

$ nγ1ρ1
∑n

i$1

∫ εi

εi−1
n − 1( ) 1 − q

( )n−2R q
( )

dq

$ nγ1
∑n

i$1
ρi

∫ εi

εi−1
n − 1( ) 1 − q

( )n−2R q
( )

dq

$ nγ1E Xr( ). □

Bounding γ1. Since ρi+1 $ (ρi/γi+1)
∫ εi
εi−1

ψ(q)(1 − q)dq for all i, choosing ε1, . . . , εn−1 such that all ρi’s are equal
amounts to choosing them such that

∫ εi+1
εi

ψ(q)dq $
∫ εi
εi−1

ψ(q)(1 − q)dq for all i. By the definition of ψ(q), this is
equivalent to choosing them such that, for all i,

n − 1
n

1 − εi−1( )n − 1 − εi( )n( ) $ 1 − εi( )n−1 − 1 − εi+1( )n−1.

Substituting xi $ 1 − εi, we obtain the following equivalent recursion on xi:

xi−1n

n
− xin

n
$ xin−1

n − 1
− xi+1n−1

n − 1
, (8)

where x0 $ 1 and xn $ 0. With these boundary constraints, we can write this recursion as follows:

xi+1 $
n − 1
n

xin −
αn

n

( )1/ n−1( )
. (9)

When we substitute αn $ n − 1 − nx1n−1, we have that (9) is the recursion from Hill and Kertz [23]. Indeed, for
i $ 1, Equation (8) gives

x2 $ x1n−1 +
n − 1
n

x1n −
n − 1
n

( )1/ n−1( )
. (10)

Now, suppose that (9) holds for i $ 1, . . . , j. From (8), we have that

xj+1n−1 $ xjn−1 +
n − 1
n

xjn −
n − 1
n

xj−1n

$ n − 1
n

xj−1n + x1n−1 −
n − 1
n

+ n − 1
n

xjn −
n − 1
n

xj−1n

$ n − 1
n

xjn + x1n−1 −
n − 1
n

.

Note that our quantity of interest γ1 is equal to
∫ ε1
0 ψ(q) dq $ 1 − x1n−1. Therefore, if n(1 − x1n−1) ≤ β∗, then the

expected value of the maximum is at most that of our stopping rule times β∗. Note that the value of x1 (and all
of the recursion) depends on n, but we have omitted this dependency for simplicity.

Observe that n(1 − x1n−1) ≤ β is equivalent to x1 ≥ (1 − β/n)1/(n−1). Thus, if we find the minimum value of β
such that x1 < (1 − β/n)1/(n−1) implies xn < 0, then we know that x1 ≥ (1 − β/n)1/(n−1) for that value of β. Hence,
we proceed by showing an upper bound on the value of xn.
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Comparing this to Hill and Kertz [23], they prove that the smallest possible value an that satisfies their initial
recurrence is equal to 1 + αn, and therefore we can write an in terms of this new recursion as an $ n(1 − x1n−1).
By bounding γ1, we thus also bound their quantity of interest and prove their conjecture.

Bounding the Recursion Through a Differential Equation. In the following, we show that each of the terms xi in
the recursion can be upper-bounded by a function y(t) : [0, 1] → R, defined through the differential equation:6

y′ t( ) $ y t( ) ln y t( )
( ) − 1

( ) − β − 1
( )

,

y 0( ) $ 1.
(ODE)

Furthermore, y(1) :$ limt↑1 y(t) is the continuous extension of y(t).
Later, we choose β $ β∗ ≈ 1.341. For this β, we have y ∈ [0, 1], and so we restrict our analysis of (ODE) to this

interval. We assume that β > 1.25 and y ∈ [0, 1]. We validate these assumptions at the end of our analysis.
In the proof of Theorem 2, we use the following two lemmas. The proofs of these lemmas are deferred to

Appendix D.

Lemma 6. Differential equation (ODE) has a unique solution y(t), which is a decreasing and strictly convex function on the
interval [0, 1]. Furthermore, y′′′(t) > 0 for y ∈ (0, 1).

The following lemma shows that the solution of (ODE) dominates the terms of the recurrence.

Lemma 7. For x1 < (1 − β/n) 1
n−1, we have xin−1 < y(i/n) for i $ 1, . . . ,n, where y(t) is the unique solution of (ODE).

Now we are ready to prove Theorem 2.

Theorem 2. Given nonnegative i.i.d. random variables X1, . . . ,Xn, there exist thresholds τ1, . . . , τn, such that

E max X1, . . . ,Xn{ }( ) ≤ β∗E Xt( ),

where t :$ min{i ∈ {1, . . . ,n} : Xi ≥ τi} and β∗ ≈ 1.341 > 1/0.745 is the unique solution to
∫ 1

0

1
y 1 − ln y

( )( ) + β − 1
( ) dy $ 1. (2)

Proof. Consider the thresholds of the optimal threshold strategy, which can be easily computed by dynamic
programming through the recurrence:

τn $ 0, Vn $ E X( )
τi $ Vi+1, Vi $ E X|X ≥ τi( ), i $ n − 1 , . . . , 1.

{

Note that, under these thresholds, it is irrelevant whether to stop when X ≥ τi or X > τi, since they are
constructed such that there is indifference between selecting a variable and keeping its value, or to continue for
the expected value of the remaining variables. Therefore, any stopping rule that uses deterministic thresholds
obtains an expected reward less than or equal to E(Xt).

We argue that the expected reward obtained by our randomized threshold rule E(Xr) is upper-bounded by the
reward of a rule that uses only deterministic thresholds. Recall that our stopping rule randomizes at step i every
time the corresponding threshold τ(qi) has mass, choosing between accepting when X > τ(qi) or X ≥ τ(qi).
If we denote q̄i $ P(X ≥ τ(qi)) and q

i
$ P(X > τ(qi)), then F−1(1 − q) is constant in [q

i
, q̄i]. Thus, R(q) $

∫ q
0 F−1(1 −

θ)dθ is linear in that interval, implying that E(Xr) is linear as a function of qi when τ(qi) has mass. This means
that either the strategy that stops in step iwhenever X ≥ τ(qi), or the strategy that does so when X > τ(qi), attains a
larger expected reward than E(Xr), and because both these strategies use only deterministic thresholds, they are in
turn upper-bounded by E(Xt). Then, we know by Lemma 5 that

E max X1, . . . ,Xn{ }( ) ≤ nγ1E Xr( ) ≤ nγ1E Xt( ),

where γ1 $ 1 − x1n−1.
It remains to show that n(1 − xn−11 ) ≤ β∗ for β∗ ≈ 1.341. Lemma 7 yields xn < y(1), sowe choose β such that y(1) $ 0

to reach a contradiction with the fact that xn $ 0. Note that this indeed implies that y ∈ [0, 1], as we assumed.
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Hereto, note that y(t) is invertible by Lemma 6. Hence, we can consider t as a function of y, for which we know that
t(1) $ 0, and we want to choose β such that t(0) $ 1. In particular, we have that

t 1( ) $ t 0( ) +
∫ 1

0

dt
dy

dy $ 1 +
∫ 1

0

1
dy
dt

dy $ 1 −
∫ 1

0

1
y 1 − ln y

( )( ) + β − 1
( ) dy.

So β∗ is the value such that the last integral equals 1. This yields β∗ ≈ 1.341. □

Remark. A routine exercise shows that the sequence an defined by Hill and Kertz [23] exactly equals our nα1.
Note here that our α1 does depend on n, though we have omitted this dependency for simplicity of notation.
Thus, our result implies that an ≤ β∗ for all n > 1, and by the work of Kertz [26], we know that an → β∗. Let Tn
be the set of stopping rules for X1, . . . ,Xn. Recalling that an is the smallest possible value for which

E max X1, . . . ,Xn{ }( ) ≤ an sup E Xt( ) : t ∈ Tn{ }, (11)

we know that β∗ is the smallest value satisfying (11) for all n > 1, and hence, it is tight.

5. Application to Posted Price Mechanisms
In this section, we discuss how our results can be applied to the setting of posted price mechanisms. In this
setting, a seller has a single item to sell to a given set of customers I . We assume that the seller has no value for
keeping the item. Customers have independent random valuations for the item with customer i ∈ I valuing the
item at vi, drawn from distribution Fi(·). Customers arrive in (uniformly) random order, and, upon arrival of a
customer, the seller offers a price as a take-it-or-leave-it offer, with the goal of maximizing his expected
revenue. Similar to our optimal stopping problem, here we consider a nonadaptive and an adaptive scenario.

Nonadaptive. The seller sets prices pi ≥ 0 for all i ∈ I , with the goal of maximizing his expected revenue,
defined as

∑

i∈I
piP i $ argmin

j∈I
σ j
( ) | vj ≥ pj

{ }
[ ]

,

where the probability is taken over the arrival permutation σ and the customers’ valuations v.

Adaptive. The seller offers each customer a price as she arrives. So, the seller sets functions pi : 2I → R for each
customer i, such that, if S is the set of customers who already arrived and declined the offer, then pi(S) is
the price offered to customer i if she is next to arrive. For an arrival permutation σ, we denote pi(σ) $
pi({σ−1(1), . . . , σ−1(σ(i) − 1)}), and therefore we can write the seller’s expected revenue as

E
∑

i∈I
pi σ( )P i $ argmin

j∈I
σ j
( ) | vj ≥ pj σ( )

{ }
[ ][ ]

,

where the expectation is taken over the arrival permutation σ, and the probability is taken over the customers’
valuations v.

Our prophet inequalities translate into this posted price setting by a nice connection first made by Chawla
et al. [10]. To briefly describe this connection, we first need a standard in the literature: we say that a valuation
distribution Fi is regular if the virtual value function ci(v) $ v − (1 − Fi(v))/fi(v) is nondecreasing, where fi is the
density of Fi. A classic result of Myerson [35] states that the expected revenue of the optimal auction for
selling a single item to the buyers in I equals the expectation of the maximum virtual value, E(maxi∈I{ci(v)}).
On the other hand, if X is the positive part of the virtual valuation of a nonnegative random variable V with
regular distribution F, then one can show that for τ ≥ 0 we have E(X | X > τ) $ F−1(1 − q), where q $ P(X > τ).
These two facts (with a slightly more involved version in case the distributions are not regular) amount to the
conclusion that a comparison of posted price mechanisms to the optimal mechanism can be seen as a prophet
inequality on the virtual values. Therefore, prophet inequalities can be applied in the context of posted price
mechanisms and thus we obtain the following results.7

Corollary 1. For any given set of potential customers I , there exists a nonadaptive posted price mechanism that achieves an
expected revenue of at least a 1 − 1/e fraction of that of Myerson’s optimal auction on I .
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Corollary 2. For any given set of potential customers I whose values are independent and identically distributed, there exists
an adaptive posted price mechanism that achieves an expected revenue of at least a 1/β∗ > 0.745 fraction of that of Myerson’s
optimal auction on I , where β∗ is the unique value satisfying (2).

For the nonadaptive result, in the case of monotone virtual valuations, the mechanism can be directly
derived from the threshold rule, and it becomes remarkably simple.

Algorithm 3
Input: Customers i ∈ I with valuation distributed according to Fi.

(1) Compute qi $ probability that optimal auction assigns to i.
(2) Discard customer i with probability 1 − 2/[2 + (e − 2)qi].
(3) Offer nondiscarded customers price F−1i (1 − qi).
(4) Item is allocated to a random customer accepting the offer.

When valuations are nonregular, that is, the virtual values are not monotone, the price offered in step (3) is
chosen randomly between two prices (see, e.g., Correa et al. [15]).

We remark that the tight instance constructed to prove the tightness of the Bernoulli selection lemma
(Lemma 1) is also a valid instance for the nonadaptive setting of a posted price mechanism. The basic ob-
servation here is that, in that instance, the expectation of the maximum valuation and that of the optimal
auction coincide, implying that the result from Corollary 1 is tight.

In the adaptive setting, our mechanism is as follows.

Algorithm 4
Input: Customers i ∈ I with valuation i.i.d. according to F.

(1) Partition the interval [0, 1] into intervals Ai $ [εi−1, εi], such that ε0 $ 0, εn $ 1.
(2) Sample qi from Ai with an appropriately chosen distribution.
(3) When the i-th buyer comes, offer price pi $ max{F−1(1 − qi), v∗}, where v∗ is the reservation price of the

optimal auction.
The assumption here is again that virtual valuations are monotone, and, as is the case for the nonadaptive

algorithm, if the distribution is nonregular, then it suffices to set some prices as a lottery between two
other prices.

Derivation of the Adaptive Posted Price Mechanism. Unlike the nonadaptive case, to derive the previous al-
gorithm starting from the threshold rule is not as straightforward, due to the fact that we need to take a
reservation price in the optimal auction into account. First we derive an exact expression for the expected
revenue of the optimal auction for i.i.d. customers with cumulative distribution function F(·) and probability
density function f (·). As in Myerson [35], we define the virtual valuation as c(v) $ v − [1 − F(v)]/f (v) and the
ironed virtual valuation as c̄(v) $ G′(F(v)), where G $ conv(H) is the convexification of the negative revenue
curve H(q) $

∫ q
0 c(F−1(θ))dθ as a function of the acceptance probability q. Let E(MY(n,F)) be the expected

revenue of the optimal auction over n customers with values drawn from distribution F.

Lemma 8. For a given set of n i.i.d. potential customers with cumulative distribution function F(·), the expected revenue of
Myerson’s optimal auction is

E MY(n,F)( ) $ n n − 1( )
∫ 1

0
1 − q
( )n−2Ḡ 1 − q

( )
dq, (12)

where

Ḡ 1 − q
( ) $ −G 1 − q

( )
if 1 − q > F v∗( ),

v∗ 1 − F v∗( )( ) otherwise.

{

Proof. As mentioned earlier, the expected profit of the optimal auction equals its expected virtual surplus, that is,
the sum over all customers of the expected value of the maximum of c̄ above zero. Note that c̄ is an increasing
function, and let v∗ be the value at which c̄(v∗) $ 0 or zero, if no such value exists. Then, the latter can be evaluated as

E MY(n,F)( ) $
∫ ∞

v∗
nF v( )n−1c̄ v( )f v( )dv.
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Performing the change of variables q $ 1 − F(v) and α∗ $ 1 − F(v∗), we obtain

E MY(n,F)( ) $ n
∫ α∗

0
1 − q
( )n−1c̄ F−1 1 − q

( )( )
dq

$ n
∫ α∗

0
1 − q
( )n−1G′ 1 − q

( )
dq

$ −nG 1 − q
( )

1 − q
( )n−1 ⃒⃒⃒

α∗
0

−
∫ α∗

0
n n − 1( ) 1 − q

( )n−2G 1 − q
( )

dq

$ nG 1( ) − nG F v∗( )( )F v∗( )n−1 − n n − 1( )
∫ α∗

0
1 − q
( )n−2G 1 − q

( )
dq.

Since c̄(v∗) $ 0, we know that G attains a minimum at F(v∗) and, therefore, equals H(F(v∗)) at that point. Now,
observe that

H q
( ) $

∫ q

0
F−1 θ( ) − 1 − θ

f F−1 θ( )( ) dθ $ − 1 − q
( )

F−1 q
( )

.

Therefore, we can conclude that

E MY(n,F)( ) $ −nH F v∗( )( )F v∗( )n−1 − n n − 1( )
∫ α∗

0
1 − q
( )n−2G 1 − q

( )
dq

$ nv∗ 1 − F v∗( )( )F v∗( )n−1 − n n − 1( )
∫ α∗

0
1 − q
( )n−2G 1 − q

( )
dq.

Using the definition of Ḡ, we can write the expected revenue of the optimal mechanism as (12), and the proof
is complete. □

We note that expression (12), although fairly natural to derive from (7), appears to be new. In the adaptive
setting, the price offered to every customer also depends on the set of customers that previously declined their
offer. However, since the customers are i.i.d., it suffices to know only how many customers arrived before the
current customer.

As in Section 4, we partition the interval A $ [0, 1] into n intervals Ai $ [εi−1, εi] with 0 $ ε0 < ε1 < . . . <
εn $ 1. We draw an acceptance probability qi for the ith customer who arrives from interval Ai according to the
probability density function ψ(qi) $ (n − 1)(1 − qi)n−2/γi, where γi is a normalization factor. We offer the
customer a price of max{F−1(1 − qi), v∗}, where v∗ is the reservation price of the optimal auction.

The expected revenue from selling the item to customer i is Ḡ(1 − qi). To see this, suppose that qi < 1 − F(v∗).
Then, for monotone virtual valuations, the price offered to customer i is F−1(1 − qi), and thus the expected
revenue is qiF−1(1 − qi) $ −G(1 − qi) $ Ḡ(1 − qi). On the other hand, if qi > 1 − F(v∗), then the price offered to
customer i is v∗, which is accepted with probability 1 − F(v∗). Similar arguments hold when the virtual
valuation is not monotone, where it might be the case that qiF−1(1 − qi) $ −H(1 − qi) < Ḡ(1 − qi), and, by
offering a price F−1(1 − qi), we might not get the best revenue. To circumvent this problem, we can ran-
domize between two acceptance probabilities qi1 and qi2 such that G(1 − qi) $ γH(1 − qi1) + (1 − γ)H(1 − qi2)
and qi $ γqi1 + (1 − γ)qi2.

Following the same reasoning as in Section 4, we can bound the expected revenue of this adaptive posted
price mechanism by

∑n

i$1
ρi

∫ εi

εi−1
n − 1( ) 1 − q

( )n−2Ḡ 1 − q
( )

dq,

where ρ1 $ 1/γ1 and ρi+1 $ (ρi/γi+1)
∫ εi
εi−1

ψ(q)(1 − q)dq for i $ 1, . . . ,n − 1. Again, if we choose ε1, . . . , εn−1 such
that ρ1 $ ρ2 $ . . . $ ρn and solve the recurrence on the εi values, then this quantity can be lower-bounded by

1
nγ1

E MY(n,F)( ) ≥ 1
β∗ E MY(n, F)( ) ≈ 0.745E MY(n,F)( ).
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Corollary 2 follows. As Correa et al. [15] show that the family of instances provided by Hill and Kertz [23] in
the context of prophet inequalities for i.i.d. random variables can be transformed into a tight family of in-
stances, the bound in Corollary 2 is tight.

6. Concluding Remarks
In this paper, we studied prophet inequalities in two contexts. First, we studied the prophet secretary problem
in which the random variables are independent but distributed differently and are presented to the gambler in
uniform random order. For this problem, we obtain a collection of thresholds, one for each random variable
such that the associated stopping rule guarantees, in expectation, a value of at least 1 − 1/e for the expectation
of the maximum value. In recent work, this bound has been beaten by Azar et al. [5] and further improved by
Correa et al. [14]. Also, recent work of Eshani et al. [16] shows that the bound of 1 − 1/e can be obtained by a
simpler, single-threshold stopping rule.

Then, we studied the i.i.d. prophet inequality, in which the random variables are independent and
identically distributed. We obtain the best possible prophet inequality in this setting, solving an open problem
of Hill and Kertz [23]. Interestingly, the optimal stopping rule can be obtained using a quantile strategy that,
even before knowing the distribution, fixes the probabilities of stopping at each point in time.

An important problem that remains open is to find the optimal prophet inequality for the prophet secretary
problem. Recently, it was discovered that the worst case for this problem is not the i.i.d. case (Correa
et al. [14]), but it is perfectly plausible that the worst case consists of n − 1 i.i.d. random variables plus one
deterministic one.

The main obstacle in applying our technique for the multiunit case is that we do not have the clean ex-
pression for the expectation of the maximum. This is key to our approach, as we basically use this seemingly
new expression for the expectation of the maximum of n i.i.d. random variables to guide the decision rule at
each step. This guidance is such that, overall, we recover a constant times the same area that is represented by
the latter expectation. In the multiunit case, we lose this clean expression, and therefore our approach falls
apart. Moreover, it is not even clear whether a quantile approach is best possible in this more general setting.
Finally, it should be noted that this problem is essentially solved in the literature. Indeed, Ezra et al. [18] get a
guarantee approaching to 1 exponentially fast as the number of items to select grows. This bound even works
in the more general prophet secretary setting (not necessarily i.i.d.).

In the remainder of the paper, we present some technical results. First, in Appendix A, we present the many
technicalities required to complete the picture of Section 2. In Appendix B, we analyze the tight instance for
our approach for the prophet secretary problem with i.i.d. random variables. Later, in Appendix C, we present
an alternative derivation of the Bernoulli selection lemma based on a recent result of Ehsani et al. [16], and, in
Appendix D, we present the technical details concerning the ODE of Section 4.
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Appendix A. Proofs and Propositions of Section 2

Lemma 2. Let ϕn(y) be as defined in (6), and let

hn x( ) :$ 1
n + 1

− 1 − x( )n+1
n + 1

− e − 1
2

x + e − 1( ) e − 2( )n
e 2 − e − 2( )x( ) x

2.

Then, ϕn(y) ≥ 1 − 1/e for all y ∈ [0, 1] and all n ≥ 2 if and only if hn(x) ≥ 0 for all n ≥ 1 and x ∈ [0, x̄], where x̄ $ 1/(n − 1 + e/2).

Proof. Consider the variable change

x $ 2 1 − y
( )

2 n − 1( ) + e − 2( ) 1 − y
( ) ,

so that

y $ 2 − 2 n − 1( ) + e − 2( )x
2 − e − 2( )x .
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As y ranges from 0 to 1, x ranges from 0 to 1/(n − 2 + e/2). Note that

2
2 + e − 2( )y $ 2 2 − e − 2( )x( )

e 2 − e − 2( )x( ) − 2 e − 2( ) n − 1( )x .

Substituting this, we see that ϕn(y) ≥ (e − 1)/e holds for all y ∈ [0, 1] and n ≥ 2 if and only if

1
n

1 − 1 − x( )n( ) ≥ e − 1
e

x
e 2 − e − 2( )x( ) − 2 e − 2( ) n − 1( )x

2 2 − e − 2( )x( ) ,

for all x ∈ [0, 1/(n − 2 + e/2)] and n ≥ 2. Moving the index of n by 1, the result follows. □

Lemma 3. We have that hn(x) ≥ 0 for all n ≥ 1 and x ∈ [0, x̄].

Proof. We split the proof into the following parts, which together imply the result. All derivatives are with respect to x:
(i) hn(0) $ 0 for all n ≥ 1;
(ii) hn(x̄) ≥ 0 for all n ≥ 1;
(iii) h′n(0) > 0 for all n ≥ 1;
(iv) h′n(x̄) < 0 for all n ≥ 1;
(v) h′′′n (x) > 0 for all x ∈ [0, x̄] and n ≥ 1.
First, we show how the lemma follows from these parts (see also Figure A.1). Assume that (i)–(v) hold. We prove hn(x) ≥ 0 by

contradiction. Assume that for some n there exists an x1 ∈ [0, x̄] such that hn(x1) < 0. As hn(x) is differentiable and
hn(x̄) ≥ hn(0) $ 0, there exists an x2 such that hn(x2) < 0 and h′n(x2) $ 0. Since hn increases from a negative value in x2 to a
nonnegative value in x̄, there exists some x3 ∈ (x2, x̄) such that h′n(x3) > 0. However, as h′n(x̄) < 0 and h′n(x3) > 0, there exists an
x4 ∈ (x3, x̄) with h′′n (x4) $ 0. By symmetry, the same analysis holds in the interval (0, x2) and, therefore, there also exists an
x5 ∈ (0, x2) with h′′n (x5) $ 0. However, this contradicts (v), as h′′n is strictly increasing in x.

To prove the required statements, we compute the first three derivatives of f with respect to x:

h′n x( ) $ 1 − x( )n− e − 1
2

+ n e − 1( ) e − 2( )
e

4x − e − 2( )x2
2 − e − 2( )x( )2

( )
,

h′′n x( ) $ n − 1 − x( )n−1+ 8 e − 1( ) e − 2( )
e 2 − e − 2( )x( )3

( )
,

h′′′n x( ) $ n n − 1( ) 1 − x( )n−2+ 24 e − 1( ) e − 2( )2
2 − e − 2( )x( )4

( )
.

We finish the proof by proving the five statements:
(i) We have that hn(0) $ 0 for all n ≥ 1 by a direct calculation.
(ii) From the proof of Lemma 2, it follows that hn(x̄) ≥ 0 for all n ≥ 1 is equivalent to ϕn(z∗i ) ≥ 1 − 1/e for z∗i $ 0 and all n ≥ 2.

By direct evaluation, we see that the latter is true for n $ 2, 3, 4. Thus, it remains to show that, for all n ≥ 5, we have

n − 1 + e−2
2

n
1 − 1 − 1

n − 1 + e−2
2

( )n( )
≥ 1 − 1

e
,

Figure A.1. (Color online) Example function hn(x) with all implications of (i)–(v).
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or, equivalently, that for all n ≥ 4, we have

n − 1 + e
2

n + 1
1 − 1 − 1

n − 1 + e
2

( )n+1( )
≥ 1 − 1

e
.

We write this as

1 − 1
n − 1 + e

2

( )n+1
≤ 1 − n + 1( ) 1 − 1

e

( )

n − 1 + e
2

$
n+1
e + e

2 − 2
n − 1 + e

2
,

and multiplying both sides by (1 − 1/(n − 1 + e/2))(e−5)/2 yields

1 − 1
n − 1 + e

2

( )n+e
2−3

2

≤
n+1
e + e

2 − 2
n − 1 + e

2
1 − 1

n − 1 + e
2

( )e
2−5

2

$
n+1
e + e

2 − 2
( )

n − 1 + e
2

( )3−e
2

n − 2 + e
2

( )5−e
2

.

According to Proposition A.2, the left-hand side is nondecreasing, and we see that it has limit 1/e. For the right-hand side,
note that the limit for n to infinity is also 1/e, and the derivative with respect to n of the right-hand side is

4
3 − e
e

1 − 3 − e( )n( ) 2n + e − 2( )1−e2
2n + e − 4( )7−e2

,

which is negative for n ≥ 4. The proof of (ii) is complete.
(iii) We have h′n(0) $ 1 − (e − 1)/2 > 0.
(iv) For n $ 1 and n $ 2, direct evaluation of h′1(x̄) and h′2(x̄) gives negative values. For n ≥ 3, proving that

h′n x̄( ) $ 1 − 1
n + e

2 − 1

( )n
+ e − 1( ) e − 2( )2 + 2n e − 4( )

( )

4en
< 0,

which is equivalent to proving that

e 1 − 1
n + e

2 − 1

( )n
+ e − 1( ) e − 2( )2

4n
<

e − 1( ) 4 − e( )
2

.

According to Proposition A.2, (1 − 1/(n + e/2 − 1)n is nondecreasing, and by taking its limit and using n ≥ 3 for the second
term, we get

e 1 − 1
n + e

2 − 1

( )n
+ e − 1( ) e − 2( )2

4n
< 1 + e − 1( ) e − 2( )2

12
<

e − 1( ) 4 − e( )
2

< 0.

(v) Since 0 ≤ x ≤ x̄ < 1 for all n, h′′′n (x) consists of sums, products, and quotients of only strictly positive terms. □

To complete the proof of the Bernoulli selection lemma, we need to prove Propositions A.1 and A.2.

Proposition A.1. Consider the problem minx∈RM
+
{ fM(x) : ∑i∈M xi ≤ a}, where a ≤ 1 and

fM x( ) $
∏

j∈M

1
2 + e − 2( )xj

( )
∑

S⊆M

2|S|

1 + |S|
∏

j∈S
xj

( )
∏

j∈M\S
2 − 4 − e( )xj
( )

( )( )
.

An optimal solution satisfies that all nonzero variables have to be equal and ∑
i∈M xi $ a.

Proof. Consider an optimal solution x∗, and assume its support is M′ ⊆ M. Let y∗ be the restriction of x∗ to M′. Then, fM(x∗) $
fM′ (y∗) and y∗ minimizes fM′ . Consider the function f (y1, y2) as the function fM′ restricted to the first two variables, and the others
are fixed to y∗i . Clearly, y∗1 , y∗2 minimize f (y1, y2) subject to the constraints that y1, y2 > 0, and y1 + y2 ≤ a −∑

i∈M′\{1,2} y∗i . Now
f (y1, y2) can be written as

f y1, y2
( ) $ A + By1 + By2 + Cy1y2

2 + e − 2( )y1
( )

2 + e − 2( )y2
( ) ,

1470
Correa et al.: Optimal Threshold Strategies for Random Arrivals

Mathematics of Operations Research, 2021, vol. 46, no. 4, pp. 1452–1478, © 2021 INFORMS



where

A $ 4 ∏
j∈N′

1
2+ e−2( )y∗j

( )
∑

S⊆N′
2|S|
1+|S|

∏
j∈S

y∗j
( )

∏
j∈N′\S

2 − 4 − e( )y∗j
( )( )( )

,

B $ e−4
2 A + 2 ∏

j∈N′
1

2+ e−2( )y∗j

( )
∑

S⊆N′
2|S|+1
2+|S|

∏
j∈S

y∗j
( )

∏
j∈N′\S

2 − 4 − e( )y∗j
( )( )( )

,

C $ e−4
2 B + ∏

j∈N′
1

2+ e−2( )y∗j

( )
∑

S⊆N′
2|S|+2
3+|S|

∏
j∈S

y∗j
( )

∏
j∈N′\S

2 − 4 − e( )y∗j
( )( )( )

,

withN′ $ M′ \ {1, 2}. Since the constraint y1 + y2 ≤ a −∑
i∈N′ y∗i is the only active constraint, and it is symmetric with respect to y1

and y2, the KKT conditions dictate that a minimum of f (y1, y2) satisfies

∂f z∗1, z∗2( )
∂z∗1

$ ∂f z∗1, z∗2( )
∂z∗2

. (A.1)

Taking the derivatives

∂f y1, y2
( )

∂y1
$ 2B + 2y2C − e − 2( )A − e − 2( )y2B

2 + e − 2( )y1
( )2 2 + e − 2( )y2

( ) ,

∂f y1, y2
( )

∂y2
$ 2B + 2y1C − e − 2( )A − e − 2( )y1B

2 + e − 2( )y1
( )

2 + e − 2( )y2
( )2 ,

we see that (A.1) holds if and only if

4C − e − 2( )2A
( ) + 2 e − 2( )C − e − 2( )2B

( )
y2 + y1
( )( )

y2 − y1
( ) $ 0.

So either y1 $ y2, or at least one is strictly positive and

y1 + y2 $
e − 2( )2A − 4C

2 e − 2( )C − e − 2( )2B .

We evaluate the right-hand side of the latter, using the formulas for A, B, and C. Note first that A ≥ 0, and observe that

B $ e−4
2 A + 2 ∏

j∈N′
1

2+ e−2( )y∗j

( )
∑

S⊆N′
2|S|+1
2+|S|

∏
j∈S

y∗j
( )

∏
j∈N′\S

2 − 4 − e( )y∗j
( )( )( )

≤ e−4
2 A + 4 ∏

j∈N′
1

2+ e−2( )y∗j

( )
∑

S⊆N′
2|S|
2+|S|

∏
j∈S

y∗j
( )

∏
j∈N′\S

2 − 4 − e( )y∗j
( )( )( )

≤ e−4
2 A + A $ e−2

2 A. (A.2)

Now, note that (2|S|+i+1)/(i + 2 + |S|) ≥ (2|S|+i)/(i + 1 + |S|) for all i, |S| ∈ R+.
We can bound C by

C $ e−4
2 B + ∏

j∈N′
1

2+ e−2( )y∗j

( )
∑

S⊆N′
2|S|+2
3+|S|

∏
j∈S

y∗j

( )
∏

j∈N′\S
2 − 4 − e( )y∗j
( )( )( )

≥ e−4
2 B + ∏

j∈N′
1

2+ e−2( )y∗j

( )
∑

S⊆N′
2|S|+1
2+|S|

∏
j∈S

y∗j
( )

∏
j∈N′\S

2 − 4 − e( )y∗j
( )( )( )

≥ e−4
2 B + 1

2B − e−4( )
4 A

≥ e−3
2 B − e−4( )

4 A

≥ e−3( ) e−2( )
4 A − e−4( )

4 A

$ e2−6e+10
4 A, (A.3)
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where the last inequality follows from (A.2). Now, using (A.2) and (A.3), we bound

y∗1 + y∗2 $ e − 2( )2A − 4C
2 e − 2( )C − e − 2( )2B

≤ e − 2( )2A − e2 − 6e + 10
( )

A
e−2( ) e2−6e+10( )

2 A − e−2( )3
2 A

$ 2e − 6( )A
e−2( ) e2−6e+10( )− e−2( )2( )

2 A

$ 2 2e − 6( )
e − 2( ) 6 − 2e( ) ,

which is negative. This contradicts the constraint y1, y2 > 0. As the choice of the index {1, 2} is arbitrary, we conclude that all
coordinates of y∗ have to be equal.

To finish the proof, we still need to show that, in an optimal solution, the constraint ∑i∈M x∗i $ ∑
i∈M′ y∗i ≤ a is tight. As all

coordinates of y∗ are equal, we know that y∗i $ ȳ, for some ȳ. Let k denote the number of nonzero variables in x∗, that is, k $ |M′|.
Then, abusing notation, we let

fM′ ȳ
( ) $

∏

j∈M′

1
2 + e − 2( )ȳ

( )
∑

S⊆M′

2|S|

1 + |S|
∏

j∈S
ȳ

( )
∏

j∈M′\S
2 − 4 − e( )ȳ
( )

( )( )

$ 2 + e − 2( )ȳ
( )−k∑k

-$0

k
-

( )
2-

1 + -
ȳ- 2 − 4 − e( )ȳ
( )k−-

$ 2 + e − 2( )ȳ
( )k+1 − 2 − 4 − e( )ȳ

( )k+1

2 + e − 2( )ȳ
( )k · 2ȳ k + 1( )

.

We claim that fM′ (ȳ + ε) ≤ fM′ (ȳ), for small ε > 0 and ȳ < a
k. Hereto, we take the derivative of fM′ (ȳ) with respect to ȳ and

show that this is nonpositive for ȳ ≥ 0, from which the claim follows. After some tedious calculations, we have that

∂fM′ ȳ
( )

∂ȳ
$ 2 + e − 2( )ȳ
( )− k+1( )

k + 1( )ȳ2 2 − 4 − e( )ȳ
( )k 2 + e − 2( )ȳ + 2kȳ

( ) − 2 + e − 2( )ȳ
( )k+1( )

.

As ȳ ≥ 0, it is easy to see that the sign of the derivative is equal to the sign of (2 − (4 − e)ȳ)k(2 + (e − 2)ȳ + 2kȳ)−
(2 + (e − 2)ȳ)k(2 + (e − 2)ȳ). Therefore, to show that the derivative is nonpositive for ȳ ≥ 0, we need to show that

2 + e − 2( )ȳ
( )k+1 ≥ 2 − 4 − e( )ȳ

( )k 2 + e − 2( )ȳ + 2kȳ
( )

. (A.4)

We prove this inequality by induction on k. For k $ 1, we have

2 + e − 2( )ȳ
( )2 $ 2 − 4 − e( )ȳ

( )
2 + e − 2( )ȳ + 2ȳ
( ) + 4ȳ2

≥ 2 − 4 − e( )ȳ
( )

2 + e − 2( )ȳ + 2ȳ
( )

.

Assume that (A.4) is true for given k. Then,

2 + e − 2( )ȳ
( )k+2 ≥ 2 − 4 − e( )ȳ

( )k 2 + e − 2( )ȳ + 2kȳ
( )

2 − 4 − e( )ȳ + 2ȳ
( )

$ 2 − 4 − e( )ȳ
( )k+1 2 + e − 2( )ȳ + 2kȳ

( )

+ 2 − 4 − e( )ȳ
( )k 2 − 4 − e( )ȳ + 2 k + 1( )ȳ

( )
2ȳ

≥ 2 − 4 − e( )ȳ
( )k+1 2 + e − 2( )ȳ + 2kȳ

( ) + 2 − 4 − e( )ȳ
( )k+12ȳ

$ 2 − 4 − e( )ȳ
( )k+1 2 + e − 2( )ȳ + 2 k + 1( )ȳ

( )
,

where the first inequality is due to the induction hypothesis. Hence, (A.4) is true. For each k ≥ 1 and ȳ ≥ 0, the derivative is
nonpositive, and fM′ (ȳ) is minimized for ȳ as large as possible, that is, ∑i∈M′ ȳ $ a. □

Proposition A.2. Let c ∈ [0, 12]. Then, f (x) $ [1 − 1/(x + c)]x is a nondecreasing function of x in (1,∞).

Proof. Define g(x) $ ln( f (x)) $ x ln[1 − 1/(x + c)]. We prove that f (x) is nondecreasing by proving that g′(x) ≥ 0. Note that

g′ x( ) $ ln
x + c − 1
x + c

( )
+ x

x + c − 1( ) x + c( ) ,
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which is nonnegative if and only if

x
x + c − 1( ) x + c( ) ≥ ln 1 + 1

x + c − 1

( )
.

We substitute 1/(x + c − 1) $ z. Thus, the right-hand side becomes ln(1 + z), and the left-hand side becomes

x
x + c − 1( ) x + c( ) $

1
z − c + 1

1
z + 1

z $ 1 + z − cz
1 + z

z $ z
1 + z

1 + 1 − c( )z( ).

We expand ln(1 + z) $ z − z2/2 + z3/3 − z4/4 ± . . ., so it is sufficient to prove

z
1 + z

1 + 1 − c( )z( ) ≥ z − z2

2
+ z3

3
− z4

4
± . . . .

We multiply both sides by (1 + z)/z to retrieve

1 + 1 − c( )z ≥ 1 + z
2
− z2

6
+ z3

12
− z4

20
± . . . .

As c ≤ 1/2, it suffices to prove −z2/6 + z3/12 − z4/20 ± . . . ≤ 0, that is,

∑∞

i$2

−1( )izi
i i + 1( ) ≥ 0.

We rewrite this as

∑∞

i$2

1
z
−1( )izi+1
i i + 1( ) $

∑∞

i$2

1
z

∫ z

0

−1( )iti
i

dt $ 1
z

∫ z

0

∑∞

i$2

−1( )iti
i

dt,

so the proof is complete if we show that

∑∞

i$2

−1( )iti
i

≥ 0.

This is true, because

∑∞

i$2

−1( )iti
i

$ −
∑∞

i$1

−1( )i+1ti
i

+ t $ − ln 1 + t( ) + t ≥ 0,

where the last inequality follows from t ≥ ln(1 + t) for t ≥ 0. □

Proposition A.3. The function f (x) $ [1 − e−x][1/(x(e − 2)) + 1] has a global maximum in x $ 1.

Proof. We compute the first two derivatives and find

f ′ x( ) $ −ex + e − 2( )x2 + x + 1
e − 2( )x2 e−x,

f ′′ x( ) $ 2ex − e − 2( )x3 + x2 + 2x + 2
( )

e − 2( )x3 e−x.

We see that f ′(1) $ 0. To show that x $ 1 is a global maximum, we prove that f ′(x) > 0 for x < 1 and f ′(x) < 0 for x > 1.
To see this, first note that f ′′(x) has the same sign as the function

g x( ) $ 2ex − e − 2( )x3 + x2 + 2x + 2
( )

.

Note further that g(0) $ 0. Since this is an exponential function with a positive coefficient minus a polynomial with only
positive coefficients, g(x) first decreases until some point because of the polynomial, after which it is increasing because of
the exponential term that starts to dominate the polynomial. So there exists some x∗ > 0 such that g(x) < 0 for x < x∗,
g(x∗) $ 0, and g(x) > 0 for x > x∗. Since g(1) $ e − 3 < 0, we know that x∗ > 1. Therefore, f ′′(x) < 0 up to x∗ > 1 and f ′′(x) > 0
afterward, and hence, f ′(x) is decreasing up to x∗ > 1 and increasing afterward.

Since f ′(1) $ 0 and f ′(x) is decreasing for x ≤ 1, we know that f ′(x) > 0 for x < 1.
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Furthermore, f ′(x) < 0 for 1 < x ≤ x∗, since f ′(1) $ 0 and f ′(x) is decreasing for 1 < x < x∗. Since limx→∞ f ′(x) $ 0 and f ′(x) is
increasing from x∗ onward, we know that f ′(x) < 0 for x > x∗, and hence, f ′(x) < 0 for all x > 1.

Therefore, x $ 1 is a global maximum. □

Appendix B. Proof for the Optimal Nonadaptive Threshold Rule in Section 3.1
We now perform the analysis of the tight instance with i.i.d. distributions. We note first that, as n grows to infinity, the
prophet’s reward approaches n/(e − 2) · (1/n) + 1 $ (e − 1)/(e − 2). To upper-bound the expected reward of the best non-
adaptive stopping rule, we condition on the number of random variables that have a high value and then estimate the
right value of k. Thus, let V denote the random variable that has value equal to the reward that the stopping rule achieves.
The expectation of V can be computed by conditioning on the number of random variables Xi that have a high value
(i.e., value n/(e − 2)). Denote the number of random variables Xi with high value by K; then,

E V[ ] $ P K $ 0[ ]E V|K $ 0[ ] + P K $ 1[ ]E V|K $ 1[ ] + P K ≥ 2[ ]E V|K ≥ 2[ ].

We bound each summand separately. The first term is straightforward:

P K $ 0[ ]E V|K $ 0[ ] $ 1 − 1
n3

( )n2
1 − 1 − 1

n

1 − 1
n3

( )k⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

≤ 1 − 1 − 1
n

( )k

≤ 1 − e−
k
n.

For the second term, we additionally condition on how many of the k selected random variables turn out to be 1:

P K $ 1[ ]E V|K $ 1[ ] ≤ n2
1
n3

1 − 1
n3

( )n2( )
∑k

i$0

n
e−2 + i
i + 1

k
i

( )
1
n

( )i
1 − 1

n

( )k−i

≤ 1
n

1 +
∑k

i$0

n
e−2
i + 1

k
i

( )
1
n

( )i
1 − 1

n

( )k−i( )

$ 1
n

1 + n2

e − 2( ) k + 1( )
∑k+1

i$1

k + 1
i

( )
1
n

( )i+1
1 − 1

n

( )k+1−i( )

$ 1
n

1 + n2

e − 2( ) k + 1( ) 1 − 1 − 1
n

( )k+1( )( )

≤ 1
n

1 + n2

e − 2( )k 1 − e−
k
n

( )( )

≤ n
e − 2( )k 1 − e−

k
n

( )
.

For the third term, the probability is so tiny that the obtained reward becomes irrelevant:

P K ≥ 2[ ]E V|K ≥ 2[ ] ≤ 1 − 1 − 1
n3

( )n2
−n2

n3
1 − 1

n3

( )n2( )
n

e − 2

≤ 1 − 1 − 1
n

( )
1 + 1

n

( )( )
n

e − 2( )

≤ 1
n e − 2( ) .

Summing the three terms, and using Proposition A.3, we conclude that, for all ε > 0, there exists a large-enough n such that

E V[ ] ≤ ε +max
x

1 − e−x( ) 1 + 1
x e − 2( )

( )
≤ 1 − e−1
( ) e − 1

e − 2
+ ε.

Appendix C. Alternative Proof for the Bernoulli Selection Lemma
In this section, we present an alternative proof of the Bernoulli selection lemma, based on a recent result of Ehsani
et al. [16].
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Claim C.1 (Ehsani et al. [16, claim 23]). Let Z1, . . . ,Zn be random variables such that
∑

i P(Zi > 0) ≤ 1. Then, there exists a threshold τ
such that the expected value of a random variable chosen uniformly at random from the random set R $ {i : Zi ≥ τ} is at least

1 − 1
e

( )∑n

i$1
E Zi[ ].

Using this claim, we can prove Lemma 1 as follows. Let z∗ be the optimal (fractional) solution to maxzi≤qi
{∑i∈N bizi

⃒⃒
⃒ ∑ zi ≤ 1}. Define the random variables

Zi $ biYi with probability z∗i /qi,
0 with probability 1 − z∗i /qi,

{

which are well defined, as z∗i ≤ qi. Also,
∑

i
P Zi > 0( ) $

∑

i
P Zi $ bi( ) $

∑

i
z∗i ≤ 1,

as z∗ is feasible. We now proceed to use the previous claim. Let Zτ be the value of the random variable chosen from the
random set R $ {i : Zi ≥ τ}. Thus, there exists τ such that

E Zτ[ ] ≥ 1 − 1/e( )
∑

i
E Zi[ ] $ 1 − 1/e( )

∑

i
biz∗i .

In the original proof for the Bernoulli selection lemma, we argue that

max
S⊆N

E

∑
i∈S biYi∑
i∈S Yi

[ ]

is in fact equivalent to the relaxation

max
0≤πi≤qi

∑

i∈N
biπi

∑

S⊆N\ i{ }

1
1 + |S|

∏

j∈S
πj

( )
∏

j∈N\ S∪ i{ }( )
1 − πj
( )

( )( )( ){ }
.

Now, let T $ {i : bi ≥ τ} denote the set of random variables that can possibly cross τ. Set

π∗i $ z∗i if i ∈ T,
0 otherwise.

{

Then,

∑

i∈N
biπ∗i

∑

S⊆N\ i{ }

1
1 + |S|

∏

j∈S
π∗j

( )
∏

j∈N\ S∪ i{ }( )
1 − π∗j
( )( )( )( )

$
∑

i∈T
biz∗i

∑

S⊆T\ i{ }

1
1 + |S|

∏

j∈S
z∗j

( )
∏

j∈T\ S∪ i{ }( )
1 − z∗j
( )( )( )( )

$
∑

i∈T
biz∗i

∑

S⊆T\ i{ }

1
1 + |S|P S $ R \ i{ }( )

$
∑

i∈T
E Zi | Zi $ bi[ ]P Zi $ bi( ) · P i is chosen at random from R ∪ i{ }( )

$
∑

i∈T
E Zi | i ∈ R[ ]P i ∈ R, i is chosen at random from R( )

$ E Zτ[ ] ,

where the second and second-to-last equalities follow due to the fact that, for any i ∈ T, Zi $ bi is equivalent to Zi ≥ τ
(or i ∈ R).

Appendix D. Proofs and Proposition for Section 4

Lemma 6. Differential equation (ODE) has a unique solution y(t),which is a decreasing and strictly convex function on the interval [0, 1].
Furthermore, y′′′(t) > 0 for y ∈ (0, 1).
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Proof. Note that y′(0) $ −β < 0 because y(0) $ 1. For y ∈ (0, 1], we know that ln(y) ≤ 0. Also, as β > 1, we conclude that y′(t) < 0.
Furthermore, y(t) is convex, as for y ∈ [0, 1),

y′′ $ y′ ln y
( ) − 1

( ) + y
y′

y
$ y′ ln y

( )
> 0,

and y′′ $ 0 for y $ 1. Finally,

y′′′ $ y′′ ln y
( ) + y′

y′

y
$ y′ ln2 y

( ) + y′
( )2

y
$ y′ ln2 y

( ) + ln y
( ) − 1 − β − 1

y

( )
.

We show that ln2(y) + ln(y) − 1 − (β − 1)/y < 0 for y ∈ (0, 1) or, equivalently, that g(y) $ y ln2(y) + y ln(y) − y − β + 1 < 0 for
y ∈ (0, 1). To determine the maximum value of g(y), observe that

dg y
( )

dy
$ ln2 y

( ) + 2y ln y
( ) 1

y
+ ln y

( ) + y
1
y
− 1

$ ln2 y
( ) + 3 ln y

( ) $ ln y
( )

ln y
( ) + 3

( )
.

Note that dg(y)/dy ≥ 0 on y ∈ (0, e−3) and g′(y) < 0 on y ∈ (e−3, 1). Hence, since g(y) is continuous, its maximum is attained at
y $ e−3, and g(e−3) $ 5e−3 − β + 1 < 0, as β > 1.25.

Moreover, note that if y ∈ (0, 1), then |y′′| is bounded, and hence y′ is Lipschitz continuous. Therefore, by the Picard-Lindelöf
theorem (Lindelöf [31]), y(t) is unique on (0, 1). As y(0) is given, and we defined y(1) as the continuous extension of y(t), the
solution y(t) is unique on [0, 1]. □

Lemma 7. For x1 < (1 − β/n)1/(n−1), we have xin−1 < y(i/n) for i $ 1, . . . ,n, where y(t) is the unique solution of (ODE).

Proof. First note that x0 $ y(0) $ 1, by definition. Moreover, we already saw that y′(0) $ −β. As y(t) is strictly convex and since
x1 < (1 − β/n)1/(n−1), we have that y(1/n) > y(0) − 1

n β > x1n−1, proving the statement for i $ 1.We proceed by induction, assuming
that xin−1 < y( in). Taylor’s theorem states that there exists ζ ∈ [i/n, (i + 1)/n] such that

y
i + 1
n

( )
$ y

i
n

( )
+ 1
n
y′

i
n

( )
+ 1
2n2

y′′
i
n

( )
+ 1
6n6

y′′′ ζ( ).

The previous expression follows from the mean value form of the remainder of the Taylor expansion of y((i + 1)/n) around
i/n. Now,

y
i + 1
n

( )
> y

i
n

( )
+ 1
n
y′

i
n

( )
+ 1
2n2

y′′
i
n

( )
$ y

i
n

( )
+ y′ i

n

( )

n
1 + ln y i

n

( )(

2n

( )

$ y
i
n

( )
+ y i

n

( )
ln y i

n

( )( ) − 1
( ) − β − 1

( )

n
1 + ln y i

n

( )(

2n

( )

≥ n − 1
n

y
i
n

( ) n
n−1
− β − 1

n
>
n − 1
n

xin −
β − 1
n

> xi+1n−1.

Here, the first inequality follows from y′′′ > 0, the second from Proposition D.1, the third from the induction hypothesis,
and the last from Equation (9) and the assumption that x1n−1 < 1 − β/n. □

To finalize the proof of Lemma 7, we show the following proposition.

Proposition D.1. For x ∈ (0, 1] and n ≥ 2, we have

x + x ln x( ) − 1( )
n

+ ln x( ) x ln x( ) − 1( ) − β − 1
( )( )

2n2
≥ n − 1

n
x

n
n−1.

Proof. Fix a value for n. Since −(β − 1) ln(x) is nonnegative, and since x > 0, it suffices to prove that

f x( ) :$ 1 + ln x( ) − 1
n

+ ln x( ) ln x( ) − 1( )
2n2

− n − 1
n

x
1

n−1 ≥ 0.
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As f (1) $ 0 for all n, showing that f is nonincreasing completes the proof. We have that f ′(x) $ [1 − x1/(n−1) + (2ln(x) − 1)/
(2n)]/(nx), so f ′ has the same sign as g(x) :$ 1 − x1/(n−1) + (2ln(x) − 1)/(2n) for x ∈ (0, 1]. We prove that g has a maximum
x∗ ∈ (0, 1] with g(x∗) ≤ 0. This implies that both g and f ′ are nonpositive. Indeed,

g′ x( ) $ 1
nx

− x 1
n−1−1

n − 1
,

g′′ x( ) $ − 1
nx2

+ n − 2
n − 1( )2 x

1
n−1−2.

Thus, g′(x∗) $ 0 only when x∗ $ [(n − 1)/n]n−1. Furthermore, g′′ has the same sign as h(x) :$ −1/n + [n − 2]/[(n − 1)2]x1/(n−1),
which is an increasing function in x for all n ≥ 2. As h(1) $ −1/[n(n − 1)2] < 0, g′′ is negative. Thus, g is concave and attains
its maximum at x∗. Finally,

g x∗( ) $ 1
2n

+ n − 1
n

ln 1 − 1
n

( )
≤ 1
2n

+ n − 1
n

− 1
n

( )
$ 1
n2

− 1
2n

≤ 0,

where the last inequality follows from n ≥ 2. □

Endnotes
1 It is worth mentioning that the sequence of thresholds that they found is anonymous in that they do not depend on the distribution of the
random variable considered at that stage.
2The prophet secretary problem of our nonadaptive setting has been studied widely in the computer science community, where the ap-
proximation ratio is usually a number smaller than 1. On the other hand, our adaptive results stem from the line of research into prophet
inequalities in the probability theory community. There, the ratio is usually expressed as a number larger than 1. We shall stay in line with
previous literature by adhering to these conventions.
3Because of the choice of πi, we actually prove the slightly stronger bound, where we maximize over zi ≤ 2qi/[2 − (e − 2)qi].
4The choice of πi suggests that the random variables are not picked deterministically, but with probability less than 1, since πi < z∗i if z∗i > 0.
However, as noted in the beginning of the proof, because of the linearity of the objective in each variable, there is always an extreme optimal
solution where the random variables are picked deterministically.
5More precisely, the distribution has density exactly proportional to (n − 1)(1 − q)n−2 in the interval Ai. Naturally, as the intervals Ai contain
larger values as i progresses, the sampled quantiles will increase and the thresholds decrease.
6All derivatives of y are with respect to t.
7One may think here that the right benchmark should be the expectation of the maximum valuation. However, this cannot yield useful results.
Consider a single customer whose valuation lies in [1,+∞) distributed according to F(v) $ 1 − 1/v. Clearly, if we charge price p, then the
acceptance probability is 1/p, for a total revenue of 1. On the other hand, the expectation of the valuation is actually +∞. This example can easily
be turned into one with finite expectation but arbitrarily large ratio between the optimal pricing and the expectation of the random variable.
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