
Approximation Schemes for Multidimensional Packing

José R. Correa ∗ Claire Kenyon †

Abstract

We consider a classic multidimensional generaliza-
tion of the bin packing problem, namely, packing
d−dimensional rectangles into the minimum number
of unit cubes. Our two results are: an asymptotic
polynomial time approximation scheme for packing d-
dimensional cubes into the minimum number of unit
cubes and a polynomial time algorithm for packing rect-
angles into at most OPT bins whose sides have length
(1 + ε), where OPT denotes the minimum number of
unit bins required to pack the rectangles. Both algo-
rithms also achieve the best possible additive constant
term. For cubes, this settles the approximability of the
problem and represents a significant improvement over
the previous best known asymptotic approximation fac-
tor of 2 − (2/3)d + ε. For rectangles, this contrasts
with the currently best known approximation factor of
1.691

1 Introduction

Bin packing problems have attracted much attention in
the literature since the seventies. In the one dimensional
case the problem consists of using the minimum number
of unit (one dimensional) bins to pack a list of items of
size at most one. One dimensional bin packing is known
to be NP-hard; moreover, no approximation algorithm
with approximation factor better than 3/2 can exist
unless P = NP . This leads to the consideration of
asymptotic performance guarantees: Fernandez de la
Vega and Lueker [5] thus settled the approximability of
one dimensional bin packing by giving an asymptotic
approximation scheme. In spite of that, in many real
world applications the one dimensional framework is too
limited and extensions to higher dimensions are needed.
Unfortunately, the treatment of higher dimensional
versions of bin packing has not been as satisfactory as
the one dimensional case so far.

Several generalizations of one dimensional bin pack-
ing have been considered. Square packing, vector pack-
ing and rectangle packing seem to be the most com-

∗Operations Research Center, Massachusetts Institute of Tech-

nology, Cambridge, MA 02139-4307. jcorrea@mit.edu
†Laboratoire d’Informatique, Ecole Polytechnique, 91128

Palaiseau Cedex. kenyon@lix.polytechnique.fr

monly known extensions. The square packing problem
consists of packing a list of squares into the minimum
number of unit squares (bins). Leung et al. [10] proved
that deciding whether a list of squares can be packed in
a unit square is NP-hard; therefore, square packing is
NP-hard. This immediately implies [6] that there is no
better than 2 approximation algorithm for square pack-
ing unless P = NP . On the other hand, the best known
asymptotic approximation algorithms for square pack-
ing, independently obtained by Seiden and van Stee [13]
and Kohayakawa et al. [9], have an asymptotic perfor-
mance guarantee of 14/9+ε for any ε > 0. Kohayakawa
et al.’s algorithm also works in higher dimensions and
has an asymptotic approximation factor arbitrarily close
to 2 − (2/3)d; furthermore, it runs in polynomial time
when d is a fixed constant.

Here we first study the d−dimensional cube packing
problem, d-CP for short. For a list I of d−dimensional
cubes, let us denote by OPT(I) the minimum number
of unit cubes in which I can be packed. The first main
result in this paper reads as follows.

Theorem 1.1. There exists an algorithm A which,
given a list I of n d−dimensional cubes and a positive
number ε, produces a packing of I into A(I) copies of
[0, 1]d such that:

A(I) ≤ (1 + ε) OPT(I) + 1.

The running time of A is polynomial for fixed d and ε.

Note that our approximation scheme is best possible
in the sense that the hardness result above implies
that there can not be an approximation scheme with
constant term strictly less than 1. (Nevertheless, there
is not enough evidence to rule out the existence of a
polynomial time algorithm producing a packing into
no more than OPT(I) + 1 bins.). Theorem 1.1 was
independently proved by Bansal and Sviridenko [1] but
with an additive constant of O(1), that depends on 1/ε,
instead of just 1.

The rectangle packing problem (or two dimensional
bin packing) consists of packing a list of rectangles
into the minimum number of unit squares. Recently,
Bansal and Sviridenko [1] showed the following very
interesting result: there is no asymptotic polynomial

time approximation scheme for rectangle packing unless
P = NP . Their strong result contrasts with the best
approximation algorithm has an asymptotic guarantee
of 1.691... obtained by Caprara [3]. Nevertheless, the
approximation gap is still wide. Here is our second main
result.

Theorem 1.2. There exists an algorithm A which,
given a list I of rectangles and a positive number ε, pro-
duces a packing of I into A(I) copies of [0, 1 + ε]2 such
that:

A(I) ≤ OPT(I),

where OPT(I) is the minimum number of unit cubes
in which I can be packed. The running time of A is
polynomial for fixed ε.

The last theorem is also best possible in the sense that
the constant cannot be improved and that there is no
APTAS for rectangle packing.

In Section 2, we prove Theorem 1.1. Besides using
extensions of the approach of Fernandez de la Vega
and Lueker [5], the main idea behind the hypercube
packing algorithm is to divide the input list into three
sets, “large”, “medium” and “small”, in such a way such
that the medium cubes are negligible. As a warm up,
we first see how an almost optimal packing of the small
cubes can be found, then we do the same for large cubes;
finally we bring the pieces together and show how the
appropriate partition is found.

In Section 3, we prove Theorem 1.2. There is no
natural total order on rectangles, hence the rounding
technique used by Fernandez de la Vega and Lueker
does not seem to extend here. Hence, we round sizes in a
straightforward manner, at the cost of enlarging the bin
sizes from [0, 1]2 to [0, 1 + ε]2. This enables one to deal
with rectangles which are both wide and tall. The main
problem is to deal with the rectangles which are either
very wide and flat or very thin and tall, and for either
kind we can essentially use the strip-packing algorithm
of Kenyon and Rémila [7]. Our algorithm thus relies
on an appropriate partition of rectangles into “large”,
“small”, “horizontal”, “vertical”, and “medium”, in
such a way that the medium rectangles are negligible.
It only remains to mix gracefully the various kinds
of rectangles; this requires discretizing a near-optimal
solution appropriately so as to be able to “guess” not
only where the large rectangles go, but also the areas
used to pack horizontal rectangles and the areas used to
pack vertical rectangles.

Finally, in Section 4, we discuss a related packing
problem with applications in VLSI design. Specifically,
we show how the ideas in Section 3 can be used to obtain
a PTAS for this problem.

2 Hypercube Packings

2.1 Definitions and Preliminaries. We adopt two
standard assumptions in multidimensional bin packing:
first, items are allowed to “touch” i.e., they can intersect
in a face; second, items can not be rotated (orthogonal
packing without rotation).

A d−dimensional cube is given by a positive number
a, representing the length of its side. Since we will pack
squares into unit squares, we need to assume a ≤ 1.
Given an input list I of n d−dimensional cubes with
sides of length ai ∈ [0, 1] for i = 1, , . . . , n, the volume
of the list is defined as: vol(I) =

∑n
i=1 a

d
i . Given two

cubes and their positions in the space, we say that they
are nonoverlaping if their interiors are disjoint.

A packing of I into k bins, is a positioning of
the cubes into k copies H1, . . . , Hk of the unit hy-
percube [0, 1]d, so that no two cubes overlap. The
d−dimensional cube packing problem consists of find-
ing a packing of I into the minimum number of bins,
OPT(I). We denote A(I) the number of bins algorithm
A uses to pack I.

We now establish a simple result that will be needed
later.

Lemma 2.1. Let S be a set of n nonoverlaping
d−dimensional cubes positioned inside [0, 1]d. Then,
[0, 1]d \ S can be seen as the union of no more than
(2n+ 1)d nonoverlaping d−dimensional rectangles.

Proof. Extending each facet of each cube in S, we obtain
a grid in [0, 1]d consisting of (2n+ 1)d cells.

Observation 2.1. In the last lemma we can assume
without loss of generality that in the set S there is a cube
touching each of the hyperplanes xi = 0, for i = 1, . . . , d.
Thus, [0, 1]d\S can be seen as the union of no more than
(2n)d nonoverlaping d−dimensional rectangles.

Observation 2.2. In the 2-dimensional case, no more
than 3n rectangles are needed to cover [0, 1]2 \ S. This
bound can be seen as follows. For each square in S
draw an horizontal line at its top and bottom until it
intersects some other square as in Figure 1. Assuming
the bottom-most square is at height 0, we have drawn
2n − 1 horizontal lines. This partitions the unit square
into at most 3n rectangles (two to the side of each square
and another to the top of each square in S) plus the
original n squares.

2.2 Packing Small Cubes. In this section we look
at multidimensional cube packing in case all cubes are
small. In this setting we are given an input list S
of cubes with sides ai ≤ δ for some positive (small)
constant δ. We will use a multidimensional version of

Figure 1: Decomposing the unit square into rectangles

the Next-Fit-Decreasing-Height shelf heuristic (NFDH).
Coffman, Garey, Johnson, and Tarjan [2] analyzed this
heuristic in the context of strip packing pointing out
properties closely related to what we extend here to
higher dimensions.

In two dimensions, the NFDH algorithm is a level
algorithm which uses the next-fit approach to pack the
sorted (by nonincreasing size) list of squares. The
squares are packed, left-justified on a level (shelf) until
the next rectangle will not fit. This rectangle is used
to define a new level and the packing continues on this
level. The earlier levels are not revisited. In general
we define the NFDH heuristic inductively. Assume we
know how to perform NFDH in d− 1 dimensions. The
d−dimensional NFDH heuristic will look at a facet F of
the bin and pack squares on it using its d−1 dimensional
version. After it finishes packing the facet, it will cut off
from the bin a d−dimensional rectangle (slice) with base
F and height a1. It will proceed packing the remaining
list in the rest of the bin.

Lemma 2.2. Let S denote the instance and assume
all cubes in S have side smaller than δ. Consider
the NFDH heuristic applied to cubes in S. If NFDH
can not place any other cube in a rectangle R of size
r1×r2×· · ·×rd (with ri ≤ 1), the total wasted (unfilled)
space in that bin is no more than:

2δ

d
∑

i=1

ri

Proof. The key idea of the proof is that the smallest
cube in slice i is larger than the largest cube in slice
i + 1. This says that the volume covered by cubes in
slice i is almost as big as (could be even bigger) the total
volume of slice i+ 1.

Let us denote by h1, h2, . . . , hl the height of the
slices generated by the algorithm. Clearly

∑l
i=1 hi ≥

1− δ. For d = 2 the total wasted space can be bounded
by 2δr1+δr2. The factor 2δr1 comes from the first slice
(that we cannot bound) and the wasted space above
the last slice while the factor δr2 arises from the wasted
space to the right of each slice.

The same argument above applies in general and
the total wasted space can be bounded by

ε ·
∏

j 6=1

rj +

d
∑

i=1

ε ·
∏

j 6=i

rj ≤ 2ε

d
∑

i=1

ri.

Note that, as in the two-dimensional case, only for i = 1
we waste the volume of two slices.

Observation 2.3. If in the previous lemma we are us-
ing the NFDH heuristic to place cubes in many rectan-
gles, a slightly more careful argument (which will bound
the height of slice 1 of a given rectangle Ri with the size
of the smallest item in the last slice of rectangle Ri−1)
can be used to improve the bound on the wasted space in
rectangle R to: δ

∑d
i=1 ri.

Corollary 2.1. Let S denote the instance and assume
all cubes in S have side smaller than δ, then

NFDH(S) ≤ (1 + 2dδ)vol(S) + 1.

That is, NFDH is an APTAS when all cubes are small.

2.3 Packing Large Cubes. We now concentrate in
the case of packing large cubes. In this case we are
given an input list L of n cubes whose sides are at least
δ. For simplicity, we split the analysis into two steps (as
in [5, 14]).

Lemma 2.3. If the input list L contain only large cubes,
say ai ≥ δ for all i = 1, . . . , n and there are only K
different cube sizes for some constant K. Then, we can
solve d-CP optimally in polynomial time.

Proof. Clearly the number of items that fit in a bin is
bounded by M = b1/δdc. Let us see that the number
of bin types R is also constant.

Assume cubes of type i have side length equal to αi.
A bin type will be denoted by a vector (x1, x2, . . . , xK)
i.e., x1 cubes of type 1, x2 cubes of type 2, up
to xK cubes of type K , that fit in a bin. If a
given vector of cubes fit in a bin, they have fit in
an arrangement (position) that place their vertices in
points with coordinates belonging to the set:

C =

{

K
∑

i=1

λiαi : λi ∈ ZZ+ and 0 ≤
K
∑

i=1

λiαi ≤ 1

}

.

Indeed, given a general placement of the cubes in the
bin, fix a dimension l = 1, . . . , d and sort the cubes
by their leftmost point in their l−th coordinate. Now
push the cubes one-by-one, starting from the cubes with
smaller l−th coordinate, a little bit to the left until the

vertices’ l−th coordinates belong to C. By doing this
for all coordinates we obtain the claimed result.

Now let C denote the cardinality of the set C. Since
αi ≥ δ any point

∑K
i=1 λiαi in C will satisfy λi ≤ 1/δ

for all i = 1, . . . ,K. Hence, C ≤ (1/δ)K which is a
(huge) constant. This implies that in a bin type all
cubes will be placed with their vertices in Cd. Then,

there is at most
(

Cd

M

)

MK possible bin types, which is
again a constant. Moreover, we can check in constant
time if a given vector (x1, . . . , xK) is a bin type or not.

Therefore, both M and R are constants and clearly
OPT(L) ≤ n. Hence, we can try all possible packings
in polynomial time, in fact no more than

(

n+R
R

)

such
packings can exist.

Lemma 2.4. If ai ≥ δ for all i = 1, . . . , n then there is
a (1 + δ) approximation algorithm for d-CP.

Proof. Let L denote the given instance list. Sort the
n cubes in nonincreasing order of sizes and partition
them in K = 1/δd+1 groups, each containing at most
Q = n/K cubes. We construct two instances J (resp.
J ′) by rounding up (resp. down) all items in each group
to the largest (resp. smallest) cube in the group. Clearly

OPT(J ′) ≤ OPT(L) ≤ OPT(J).

Moreover, the argument of Fernandez de la Vega and
Lueker applies here as well, then,

OPT(J) ≤ OPT(J ′) +Q

≤ OPT(L) +Q

≤ (1 + δ) OPT(L).

The last inequality follows directly from OPT(L) ≥ nδd

together with Q ≤ nδd+1.
Therefore, the algorithm is to first round the in-

stance and then apply the previous lemma to solve the
rounded instance optimally.

2.4 The General Case in Two Dimensions. In
this section we prove Theorem 1.1 in the case cubes of
any size are allowed to be part of the input list that
we now denote by I. Although we already know how
to construct almost optimal packings of only big and
only small cubes separately, we can not directly apply
the algorithms in the previous sections to construct a
packing in the general case. One extra step will be
required to allow the combination of the previously seen
algorithms.

For the sake of simplicity in the notation we work
in this section only in the two dimensional case. The
extension to higher dimensions is straightforward and
discussed at the end of the section.

The general asymptotic polynomial time approxi-
mation scheme for square packing is as follows:

(1) Let I be the input list and ε > 0 fixed. Consider

the sequence ε, ε3, . . . , ε2
i−1, . . . and let Mi = {j :

aj ∈ [ε2
i+1−1, ε2

i−1)}.

(2) Take M := Mi for some index i satisfying
vol(Mi) ≤ ε OPT(I). Define the set of large items

as L = {j : aj > ε2
i−1} and the set of small items

as S = {j : aj ≤ ε2
i+1−1}.

(3) Find an almost optimal packing of L as in Lemma
2.4.

(4) Use NFDH to pack as many squares in S as possible
using only the remaining space in the already
opened bins (possibly a set S ′ ⊂ S was not packed).

(5) Use NFDH using only new bins to pack M ∪ S ′.

From now on, we call this algorithm as algorithm A.
We analyze its running time and prove that satisfies the
bound in Theorem 1.1.

Analysis of the Running Time. It is clear that steps
(3)-(5) take polynomial time for fixed d and ε. We then
only need to see that in step (1)-(2) we can find the set
Mi such that vol(Mi) ≤ ε OPT(L) in polynomial time.
Indeed, since:

∑

i≤d1/εe

vol(Mi) ≤ OPT(I)

and there are d1/εe terms (a constant amount) in the
sum. We can find an index i with the desired property
by exhaustive search. Hence, algorithm A runs in
polynomial time.

Analysis of the Algorithm. To prove that algorithm
A satisfies the result in Theorem 1.1, we need to
distinguish two cases depending on what the set S ′ was
after step (4). In both cases the bound in the theorem
holds.

(i) After step (4), S′ is empty. In this case, after step
(4) the number of bins algorithm A has opened is
bounded by

(1 + ε2
i−1) OPT(L ∪ S) ≤ (1 + ε) OPT(I).

And it only remains to pack the squares in M . For
that purpose algorithm A needs at most

(1 + ε2
i−1)ε OPT(I) + 1 ≤ 2ε OPT(I) + 1

new bins. It follows that the total number of bins
used by A was no more than

(1 + 3ε) OPT(I) + 1.

(ii) After step (4), S′ is nonempty. In this case we
derive a volume argument for the bins opened to
pack L. Consider a bin containing a subset L′

of squares in L, clearly |L′| ≤ 1/ε(2
i−1)2. From

Lemma 2.1 [0, 1]2 \ L′ can be decomposed into no

more than 3/ε(2
i−1)2 rectangles, these are filled

in step (4) of the algorithm (by NFDH) with
squares from the set S. Lemma 2.2 tells us that
for each rectangle in the partition we will cover
everything but a volume of at most 2ε2

i+1−1 (since
each rectangle in the partition has sides length
no more than 1). Adding over all rectangles, the

total wasted space can be bounded by 2ε2
i+1−1 ×

3/ε(2
i−1)2 ≤ 6ε. This last bound implies that for

each bin containing squares in L, at least a fraction
(1 − 6ε) of its volume is filled with squares from
L ∪ S.
To finish the proof note thatA(I) is exactly the sum
of the number of bins used up to step (4) and the
number of bins used in step (5). The first quantity
was bounded in the last paragraph while the second
can be bounded by Lemma 2.2. Thus,

A(I) ≤ vol(L ∪ (S \ S′))
1− 6ε

+(1 + 2ε)vol(S′ ∪M) + 1

≤ (1 + 12ε)vol(I) + 1

≤ (1 + 12ε) OPT(I) + 1,

proving Theorem 1.1 in the two dimensional case.

The Higher Dimensional Analysis. The asymp-
totic approximation scheme in the d dimensional case
is almost the same as the one described above. The
only difference lies in the sequence in step (1) and the
consequent definition of L,M and S. In d dimensions
steps (1) and (2) should be replaced by:

(1’) Let I be the input list and ε > 0. Consider the
sequence

αi = ε
d
2(i+1)−1

d2−1 for i ≥ 0,

and let Mi = {j : aj ∈ [αi+1, αi)}.

(2’) Take M := Mi for some i such that vol(M) ≤
ε OPT(I). Define the set of large items as L = {j :
aj > αi and the set of small items as S = {j : aj ≤
αi+1}.

Clearly, the running time of the algorithm is again
polynomial in the input size if d and ε are fixed constant.

Finally, the analysis of the algorithm is exactly the
same in case (i) and very similar in case (ii). The only
difference is that we will need to use the bounds from
the all small and all large items in the d−dimensional
setting. Therefore, the actual numbers we obtain will
depend on d, which is a fixed constant.

3 Packing Rectangles

The approach taken above could also be attempted for
rectangle packing. Unfortunately we run into trouble
when rounding the large rectangles. Instead, our ap-
proach here consists in relaxing the constraints by al-
lowing to enlarge the bins slightly. Here is the algorithm
used to prove Theorem 1.2.

3.1 The Algorithm.
Input. Denote the input list by I. Assume that

the ith rectangle has width ai and height bi, with
0 ≤ ai, bi ≤ 1. Denote also by Sf(I) =

∑n
i=1 aibi, the

total surface of the input.
Partitioning the Input. For j ∈ {1, 2, . . . , 2/ε},

let Mj denote those rectangles such that ai ∈
(ε2j+1, ε2(j+1)+1] or bi ∈ (ε2j+1, ε2(j+1)+1]. Let i0 be
such that the total surface area of the rectangles of Mi0

is minimum. Let ε′ = ε2i0+1, and define the partition
I = Mi0 ∪ L ∪H ∪ V ∪ S, where:

• L = {i : ai > ε′ and bi > ε′}

• S = {i : ai < ε′ε2 and bi < ε′ε2}

• H = {i : ai > ε′ and bi < ε′ε2}

• V = {i : ai < ε′ε2 and bi > ε′}

Rounding the Input. We now round every
coordinate greater than ε′ up to the nearest multiple
of ε′ε. Denote by I ′ the rounded instance.

Let C denote the number of distinct rectangles in
L: thus L contains `i rectangles of type i, for 1 ≤ i ≤ C.

Rounding and Partitioning the Output. We
define bin types by decomposing (1+ε)×(1+ε) squares
as follows:

• We consider all possible packings of (large) rectan-
gles of type i, 1 ≤ i ≤ C, into a (1 + ε) × (1 + ε)
square, such that the corners of the rectangles have
coordinates which are integer multiples of ε′ε.

• For each possible packing into a (1 + ε) × (1 + ε)
square, we consider the area of the bin which is
still uncovered as a union of small square cells of
side length ε′ε (where each square is positioned at

integer multiples of ε′ε), and label each cell either
H or V.

Together with this labeling of the uncovered area, this
packing of large rectangles defines a bin type. Let K be
the total number of bin types.

Main Loop. For each (n1, . . . , nK) such that
∑

j nj ≤ n, we attempt to construct a packing of I ′

using nj bins of type j, such that the rectangles from
L are packed in the spaces reserved for them in the bin
type, the cells labeled H are only used for rectangles
from H ∪ S and the cells labeled V are only used for
rectangles from V ∪ S. This is done as follows.

1. To decide whether the rectangles from L can be
placed, we check that for every rectangle type i,
1 ≤ i ≤ C, the number `i of type i rectangles in I ′

is less than or equal to the total space available for
them:

`i ≤
∑

1≤j≤K

nj ·
(

number of type i rectangles
positioned in type j bins

)

.

2. We use the following algorithm for packing the
rectangles from H.

(a) For each bin type j, consider the union U of
the cells labeled H. Drawing horizontal lines
at y-coordinates integer multiples of ε′ε, we
can interpret U as a union of horizontal strips
of height ε′ε and width multiple of ε′ε. For

each integer multiple ` of ε′ε, let h
(j)
` denote

the sum of the heights of the strips of width `
in a type j bin. Let h` denote the total height
of the strips of width ` in the packing which
we are currently constructing,

h` =
∑

1≤j≤K

njh
(j)
` .

(b) To pack rectangles from H, we will solve
the following fractional strip-packing prob-
lem. Consider all configurations (w1, w2, . . .)
of widths which are multiples of ε′ε and sum
to at most 1+ ε. Let q be the number of such
configurations. Let Air denote the number of
occurrences of the width iε′ε in configuration
r. Let Bi denote the sum of all heights of the
rectangles of H whose width equals iε′ε. We

define one variable x
(`)
r for each strip width `

and for each configuration r whose widths sum
to at most `. We find, in polynomial time, a
basic feasible solution to the following system

of linear constraints, if it exists.

(∀i) Bi ≤ ∑

`,r x
(`)
r Air

(∀`) ∑

r,` x
(`)
r ≤ h`

(∀r, `) x
(`)
r ≥ 0

(c) We place rectangles from H in the configu-
rations thus defined, proceeding in a greedy
fashion.

(d) We cut back into strips of height ε′ε and place
them back into the bins.

Let M denote the set of rectangles which:
either did not fit in the fractional packing after
(c) or are cut in the process (d). Now, we now
set aside M . This defines a packing of the
rectangles of H \M into the parts of the bins
labeled H.

3. Similarly, we pack the rectangles of V \M ′ into the
parts of the bins labeled V .

4. We pack the rectangles of S into the ε′ε × ε′ε cells
which have available space, using the Next Fit
Decreasing Height (NFDH) algorithm.

5. We expand each bin by adding a thin vertical
1 × O(ε) horizontal strip and a this O(ε) × 1
vertical strip and use them to pack the rectangles
from Mi0 ∪M ∪M ′ using an O(1)-approximation
algorithm such as NFDH in the horizontal strips
and FFDW (Width) in the vertical strips.

Output. We output the best packing among all
feasible packings of L thus constructed.

3.2 Analysis of the Running Time. The running
time is relatively easy to analyze. i0 ≤ 2/ε, thus
ε′ ≥ ε4/ε = Ω(1). The number C of large rectangle types
is at most (1/ε′ε)2 = O(1). A bin type can be defined
by labeling each ε′ × ε cell by H,V , or i ≤ C, thus the
number K of bin types is at most (C+2)1/(ε

′ε)2 = O(1),
and so the number of iterations through the main loop
is at most nK which is polynomial in n.

The number of strip widths is at most 1/ε′ε = O(1).
The number of configurations is at most 22/(ε′ε) =
O(1). Multiplying, the number of variables in the linear
program is O(1). The number of constraints is at most
2/(ε′ε) = O(1). The coefficients Ai,r are bounded by
O(1) and Bi are written on at most O(log n) bits, hence
the linear program can be solved efficiently.

The First Fit Decreasing Height and First Fit
Decreasing Width algorithms are polynomial time.

Overall, the algorithm thus runs in polynomial time.

3.3 Analysis of Correctness.

Lemma 3.1.

Sf(Mi0) ≤ εSf(I).

Proof. Each rectangle of I belongs to at most two
sets Mj , thus

∑

1≤j≤2/ε Sf(Mj) ≤ 2Sf(I). The mini-
mum surface is less than the average surface, which is
bounded by εSf(I).

Lemma 3.2. Let I ′ denote the rounded input. If I can
be packed into OPT unit size bins, then I ′ can be packed
into OPT (1+2ε)×(1+2ε) bins in such a way that any
rectangle with a′i ≥ ε′ is positioned at an x-coordinate
which is an integer multiple of ε′ε, and any rectangle
with b′i ≥ ε′ is positioned at a y-coordinate which is an
integer multiple of ε′ε.

Proof. Consider the optimal packing of I. Define a
partial order ≺H on rectangles as the transitive closure
of the relation: i is in relation with i′ if rectangle i, when
translated horizontally to the right by 2ε′ε, intersects
i′. Note that any chain in ≺H contains at most 1/ε′

rectangles with ai ≥ ε′.
Take a total order ≤ which extends ≺H . We take

the rectangles one by one in that order and deal with i
as follows: we extend i horizontally to the right so that
its width becomes a′i, we translate it horizontally to the
right to that it is positioned at an integer multiple of ε′ε;
then, for each i′ ≥ i in increasing order, if i′ intersects
some rectangle i′′ ≤ i′ then we translate i′ to the right
by 2ε′ε.

It is easy to check that this constructs a feasible
packing.

Since the chains in ≺H contain at most 1/ε′ rect-
angles of width ai ≥ ε′, each rectangle is translated at
most 1/ε′ times, hence in total by at most (2ε′ε)/ε′ = 2ε.
Thus the final packing fits in (1 + 2ε)× 1 bins.

We then proceed similarly for rounding the bis into
b′i.

Lemma 3.3. Consider a packing of I ′ into (1 + 2ε) ×
(1 + 2ε) bins, satisfying the condition of Lemma 3.2.
Consider any cell C = [mε′ε, (m+1)ε′ε]×[pε′ε, (p+1)ε′ε]
in any bin. Then either H ∩ C = ∅ or V ∩ C = ∅.

Proof. Assume, for a contradiction, that i ∈ H ∩ C 6= ∅
and i′ ∈ V ∩C 6= ∅. Since i has width and starting point
integer multiples of ε′ε, it must be that i spans the whole
width of C. Similarly, i′ must span the whole height of
C, But then i and i′ must intersect, a contradiction.

Lemma 3.4.

Sf(M) = O(ε)Sf(I)

and

Sf(M ′) = O(ε)Sf(I).

Proof. Let us only prove the first equation, the second
is analogous. Consider the sets Mc and Md denoting
the rectangles the were discarded in steps (c) and (d)
respectively. Then Mc ∪Md = M . We prove that both
Sf(Mc) = O(ε)Sf(I) and Sf(Md) = O(ε)Sf(I).

To see the first equality, we recall the strip packing
analysis by Kenyon and Remila [7]. Consider a frac-
tional strip packing (i.e. a solution the to linear program

in step (2)(b)) x
(`)
r for all r and `. Clearly such solution

has at most (2/ε′ε) nonzero coordinates. Fix ` and let

x
(`)
1 , . . . , x

(`)
k be the nonzero variables corresponding to

that `. To constrict an integer strip packing we proceed

as follows: Let x
(`)
j > 0 be the variable corresponding

to the current configuration. This configuration will be

used between levels l`j = (x
(`)
1 +ε′ε2)+ · · ·+(x

(`)
j−1+ε′ε2)

and l`j+1 = l`j + x
(`)
j + ε′ε2. For each i such that Aij 6= 0

we draw Aij columns of width iε′ε going from level l`j to

level l`j+1. After this is done for all ` and all configura-
tions, we take all columns of width iε′ε and start filling
them up with the corresponding rectangles of the same
width in a greedy manner. It is not difficult to show
that all rectangles in fit. Now, we take all rectangles
whose top end belongs to the interval (l`j − ε′ε2, l`j], for
any ` and j, and set them aside (they are put in Mc).
The total surface of the removed rectangles is clearly no
more than

2 · (number of constraints) · (max item height)

= 2 · 2

ε′ε
· ε′ε2 = 4ε.

This proves that a fractional strip packing where strips
of width ` are of height h` (the linear program in step
(2)(b)), can be turned into an integer strip packing
of almost all rectangles where strips of width ` are of
height no more than h`.

Therefore, the total surface of rectangles in H that
may not fit after step (2)(c) is bounded by 2(2/ε′ε)ε′ε2 =
4ε. In other words Sf(Mc) = O(ε)Sf(I).

On the other hand, to see that Sf(Md) = O(ε)Sf(I).
Notice that the rectangles inH have height smaller than
ε′ε2 and the cut strips of step (2)(d) are of height ε′ε,
the surface of the rectangles put aside in step (2)(d) is
no more than a fraction ε of the surface of H.

Hence, he total surface of M is no more than a
fraction O(ε) of the total surface of the instance.

Lemma 3.5. The rectangles in Mi0 ∪M ∪M ′ fit into
the thin strips added along the bins in step (5).

Proof. Clearly the whole surface of Mi0 ∪ M ∪ M ′ is
no more than O(ε)Sf(I). Moreover, we can partition
Mi0 ∪M ∪M ′ into two sets A and B such that:

• A contains only rectangles with ai < ε′ε2 < ε2 and
Sf(A) = O(ε) OPT(I) (A contains M ′ and part of
Mi0).

• B contains only rectangles with bi < ε′ε2 < ε2 and
Sf(B) = O(ε) OPT(I) (B contains M and part of
Mi0).

Now, FFDW packs A into the OPT(I) added strips
of size O(ε) × 1 while NFDH does the work for the
rectangles in B.

Lemma 3.6. Consider the two-dimensional NFDH
heuristic applied to rectangles in S. When NFDH can
not place any other rectangle in a bin of size a× b then
the total unused space in that bin is no more than:

O(ε′ε2)(a+ b)

Proof. The result is very similar to Lemma 2.2 and to
a result in [2].

We are now ready to give the overall analysis of the
algorithm.

Proof of Theorem 1.2. Consider an input list I and
let I ′ be the rounded input. From Lemma 3.2 we know
that there is a packing of I ′ into no more than OPT(I)
bins of size (1 + O(ε)) × (1 + O(ε)). Consider then
the optimal packing in such bins for I ′ satisfying the
conditions of Lemma 3.2. By Lemma 3.3 we know that
in such packing all cells as in Lemma 3.3 intersect either
an rectangle in L, H or V but not two of them. In
other words in an optimal packing of I ′ satisfying the
conditions of Lemma 3.2 each cell is labeled either V ,
H, or i for i = 1, . . . , C (where C was the number of
distinct large rectangles); or will have no label at all.

Clearly, our algorithm will eventually guess a la-
beling of the cells such that labeled cell in the optimal
packing have the same label. At that point the algo-
rithm will find a feasible packing of all rectangles in L
and almost all rectangles in H and V . By Lemmas 3.4
and 3.5 the unpacked rectangles Mi0 , M and M ′ are of
small surface and they can be packed in the extra space
added in step (5) of the algorithm.

It only remains to see that the small rectangles S
will be successfully packed by NFDH. We prove that
is not possible that in step (4) a new bin is opened if
already OPT(I) (1+O(ε))× (1+O(ε)) bins have been
used. We do this by a surface argument. Suppose, by
contradiction, that such new bin is opened in step (4).

At this step we distinguish four types of ε′ε × ε′ε cells:
the ones completely filled with a rectangle in L, the
ones filled with only rectangles in S, the ones filled only
with rectangles in H or V , and the ones partly filled
with rectangles in H or V and partly with rectangles
in S. By the arguments in Lemmas 3.4 and 3.6 all
cells are almost filled Namely a fraction (1 − O(ε)) of
their surface is filled. Overall this implies that a fraction
(1 − O(ε)) of the first OPT(I) bins is filled, and then
the total surface that has been filled in the first OPT(I)
(1 +O(ε))× (1 +O(ε)) squares is at least

(1−O(ε)) OPT(I)(1 +O(ε))2 > OPT(I).

Where the inequality follows by choosing the right
constants.

4 Concluding Remarks and Related Problems

Our algorithms are also related to the optimization
version of the following interesting question posed by
Moser [12]:

Determine the smallest number x such that any system
of squares with total area 1 may be parallely packed

into a rectangle of area x.

Bounds for this problems have been obtained by Kleit-
man and Krieger [8] and by Novotny [11]. Note that,
although we do not obtain bounds for this problem. Our
algorithm can easily be adapted to obtain a PTAS for
the following very related optimization problem. This
problem has many applications in computer science, for
example in VLSI design:

Given a system of n rectangles with total area 1,
determine the smallest number x such that all n

rectangles may be parallely packed into a rectangle R of
area x.

Let us I denote the instance. For each rectangle, let
ai ∈ (0, 1] denote its width and bi ∈ (0, 1] its height;
the total surface of the instance, denoted by Sf(I),
equals 1. To solve this problem note first that the
techniques in the paper can be easily adapted to solve
the underlying decision problem: Given n rectangles
with sides ai, bi ∈ (0, 1], given a rectangle R of size a×b
and given δ > 0, determine if all n rectangles can be
packed in a rectangle of size [(1+δ)a+δ]× [(1+δ)b+δ]
or they cannot be packed in R.

Consider a given ε > 0, and denote by α =
min{maxi=1,...,n ai,maxi=1,...,n bi}. We distinguish two
cases:

(i) α > ε. In this case, we ensure that the sides of the
minimum area rectangle in which all n items can be

packed are at least ε. It is then enough to solve the
decision problem, taking δ = ε2, for all rectangles
R such that:

– Their lower-left corner is (0, 0) and their
upper-right corner is on or below the curve
xy = 4Sf(I) = 4 (since the NFDH shelf pack-
ing heuristic can always pack I in a square of
area 4Sf(I)).

– The coordinates of their upper-right corner
are at least ε.

– Their sides length are integer multiples of ε2.

The number of such rectangles can be evaluated as:

Sf(I)/ε
∫

ε

4Sf(I)

x
dx · 1

ε4
=

4Sf(I)

ε4
ln

(

Sf(I)

ε2

)

=
4

ε4
ln

(

1

ε2

)

<
8

ε4
ln

(

1

ε

)

.

Which is constant. Therefore by solving the deci-
sion problem for a constant number of rectangles,
we can choose the one with minimum area. Since
in this case a and b are guaranteed to be large,
[(1+δ)a+δ] ≤ (1+2ε)a and [(1+δ)b+δ] ≤ (1+2ε)b.
Therefore the best rectangle is guaranteed to have
area within a factor of (1+O(ε)) that of the optimal
one.

(ii) α ≤ ε. In this case either all rectangles are flat or all
are narrow. Without loss of generality assume they
are all narrow. We will pack all rectangles using the
FFDH heuristic for strip packing in a strip of width√
ε. A slight adaptation of the following theorem –

shown in [2] – proves that all items can be placed
in a rectangle of area roughly equal to Sf(I).

Theorem 4.1. In all rectangles in have width less
than or equal to δ, then the height FFDH(I)
achieved by the FFDH heuristic (on a strip of width
1) satisfies:

FFDH(I) ≤ (1 + δ)Sf(I) + 1.

In our case the width of the strip is
√
ε and then

FFDH finds a packing in a rectangle of size:

√
ε×

[

(1 +
√
ε)
Sf(I)√

ε
+ 1

]

.

The volume of such rectangle is then

(1 +
√
ε)Sf(I) +

√
ε = (1 + 2

√
ε).

Again the result follows in this case.

An interesting open question is to generalize Theo-
rem 1.2 to higher dimensional rectangle packing. This
does not seems to be a trivial task since a higher di-
mensional version of strip packing will be needed (and
the hardness result in [1] implies that there is no AP-
TAS for three-dimensional strip packing). Another open
problem is to determine the approximability of finding
a packing of a set of rectangles with min(ai, bi) > 1/3
and max(ai, bi) > 1/2, that uses the minimum number
of unit squares. In this case our rounding techniques do
not work. The following example illustrates this fact.
Suppose we are given 4n rectangles: 2n of them with
height a little larger than 1/2 and width a little smaller
than 1/2, and 2n with width a little larger than 1/2 and
height a little smaller than 1/2. Can we decide in poly-
nomial time if they all fit in n unit squares? Even more,
Can we decide if they fit in, say, 1.1n unit squares? This
second question is related to finding hardness of approx-
imation results for rectangle packing. As mentioned
before, Bansal and Sviridenko [1] showed that unless
P = NP there is no APTAS for the classic two dimen-
sional bin packing problem. Their work partially solves
this question and gives good evidence that stronger in-
approximability results can be obtained.

Acknowledgments. The authors would like to thank
David Johnson for many useful comments and sugges-
tions regarding the presentation of the paper and for
pointing out some minor errors.

References

[1] N. Bansal and M. Sviridenko (2004). New approxima-
bility and inapproximability results for 2-dimensional
bin packing. These Proceedings.

[2] E.G. Coffman, Jr., M. R. Garey, D. S. Johnson, and
R. E. Tarjan (1980). Performance bounds for level-
oriented two-dimensional packing algorithms. SIAM
Journal on Computing 9, 808-826.

[3] A. Caprara (2002). Packing 2-Dimensional Bins in Har-
mony, In Proceeding of the 43rd Annual IEEE Sympo-
sium on Foundations of Computer Science (FOCS’02).

[4] A. Caprara, A. Lodi, and M. Monaci (2003). Fast
Approximation Schemes for the Two-Stage, Two-
Dimensional Bin Packing Problem. Research Report
OR/03/6 DEIS.

[5] W. Fernandez de la Vega and G.S. Lueker (1981). Bin
packing can be solved within 1+ ε in polynomial time,
Combinatorica 1, 349-355.

[6] C.E. Ferreira, F.K. Miyazawa, and Y. Wakabayashi
(1999). Packing squares into squares. Pesquisa Opera-
cional 19, 349-355.

[7] C. Kenyon and E. Remila (2000). A near optimal
solution to a two-dimensional cutting stock problem.
Mathematics of Operations Research 25, 645-656.

[8] D.J. Kleitman and M. Krieger (1975). An optimal
bound for two dimensional packing. In Proceeding of
the 16th Annual IEEE Symposium on Foundations of
Computer Science (FOCS’75).

[9] Y. Kohayakawa, F.K. Miyazawa, P. Raghavan, and Y.
Wakabayashi (2001). Multidimensional Cube Packing,
In Proceedings of the Brazilian Symposium on Graphs,
Algorithms and Combinatorics (GRACO 2001).

[10] J. Y-T. Leung, T.W. Tam, C.S. Wong, G.H. Young,
and F.Y.L. Chin (1990). Packing squares into a square.
Journal of Parallel and Distributed Computing 10, 271-
275

[11] P. Novotny (1996). On packing of squares into a
rectangle. Archivum Mathematicum 32, 75-83.

[12] L. Moser (1965). Poorly formulated unsolved problems
is combinatorial geometry. Mimeographed.

[13] S.S. Seiden and R. van Stee (2003). New Bounds for
Multidimensional Packing, Algorithmica 36, 261-293.

[14] V. Vazirani (2001). Approximation Algorithms,
Springer-Verlag, Berlin.

