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Dynamic network flows, or network flows over time, constitute an important model for real-world situations

where steady states are unusual, such as urban traffic and the Internet. These applications immediately raise

the issue of analyzing dynamic network flows from a game-theoretic perspective. In this paper we study

dynamic equilibria in the deterministic fluid queuing model in single-source single-sink networks, arguably

the most basic model for flows over time. In the last decade we have witnessed significant developments in

the theoretical understanding of the model. However, several fundamental questions remain open. One of the

most prominent ones concerns the Price of Anarchy, measured as the worst case ratio between the minimum

time required to route a given amount of flow from the source to the sink, and the time a dynamic equilibrium

takes to perform the same task. Our main result states that if we could reduce the inflow of the network in

a dynamic equilibrium, then the Price of Anarchy is exactly e/(e − 1) ≈ 1.582. This significantly extends a

result by Bhaskar, Fleischer, and Anshelevich (SODA 2011). Furthermore, our methods allow to determine that

the Price of Anarchy in parallel-link networks is exactly 4/3. Finally, we argue that if a certain very natural

monotonicity conjecture holds, the Price of Anarchy in the general case is exactly e/(e − 1).

CCS Concepts: • Theory of computation→Algorithmic game theory;Quality of equilibria;Network
games; Routing and network design problems; • Mathematics of computing → Network flows; • Networks
→ Network dynamics.
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1 INTRODUCTION
In the study of traffic in networks it is often crucial to take the underlying dynamical nature of

the problem into account. In some contexts steady states seem sufficient to deal with the most

important situations and therefore static models are enough. However, the situation is dramatically

different when dealing with networks where a steady state is rarely observed such as urban traffic

or Internet routing. In order to describe the temporal evolution of such systems one has to consider

the propagation of flow across the network by tracking the position of each particle along time.

Probably the most basic model for network flows over time is the so-called fluid queuing model.
Here, we are given a directed graph G = (V , E) and each edge e ∈ E is characterized by a non-

negative delay τe and a capacity per time unit νe . A continuous stream of particles is injected at a

source s ∈ V , at constant rate u0, and travels towards a sink t ∈ V . Flow propagates according to

the edge dynamics in which particles arriving to an edge e join a queue with (deterministic) service

rate νe and, after leaving the queue, move along the edge to reach its head after τe time units. The
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discrete version of the problem was initially studied from an optimization perspective. Indeed, Ford

and Fulkerson [10, 11] considered a fluid queuing model and designed an algorithm, based on time

expanded networks, to compute a flow over time carrying the maximum possible flow from the

source s to the sink t within a given timespan. Shortly after, Gale [12] showed the existence of a

flow pattern that achieves this optimum simultaneously for all time horizons. These results were

extended to continuous time by Anderson and Philpott [1] and Fleischer and Tardos [9]. We refer

to the survey by Skutella [28] for a detailed exposition of these developments.

When network flows suffer from a lack of coordination among the participating agents, it is

natural to consider them from a game-theoretic perspective. In this setting, each infinitesimal

inflow particle is interpreted as a player that seeks to complete its journey in the least possible

time, so that equilibrium occurs when each particle travels along a shortest s ,t-path. The travel
time for a particle entering the network at any given time must take into account the queuing

delays induced by other particles on the edges along its path. This requires particles to anticipate

the queue lengths by the time when an edge will be reached.

This dynamic equilibrium model was initially considered, in a very simple network, by Vickrey

[30], and shortly after in the transportation science community [31]. Since then it has attractedmuch

attention as a showcase model to understand the surprising behavior of dynamic routing games

[23, 24]. In the last decade there have been significant efforts in understanding the structure and

computational properties of dynamic equilibria in the fluid queuingmodel [3–8, 14, 16, 17, 19, 22, 25–

27]. Meunier and Wagner [22] proved, using functional analysis tools, that such dynamic equilibria

exist. Unfortunately, this result (and many similar ones) is purely existential and does not shed light

on the structure of such equilibria. Later, Koch and Skutella [19] gave an elegant characterization of

the derivatives (w.r.t. time) of a dynamic equilibrium and thus proposed an algorithm to construct a

dynamic equilibrium by concatenating static flows. Using this characterization, Cominetti, Correa

and Larré [7] gave a constructive proof of existence of equilibria and proved they are essentially

unique. Despite these efforts, many fundamental questions remain open, and several apparently

obvious properties turn out to be notoriously hard to prove. For instance, it is still unknown whether

a dynamic equilibrium can be computed in polynomial time, and furthermore, we do not even

know whether the evolution of the equilibrium has finitely many pieces. Indeed, until recently, it

was not even known whether the size of the queues remains bounded throughout the evolution of

the dynamic equilibrium. Along these lines, Cao et al. [5] established this property (on a slightly

different atomic model that does not influence the result) for series-parallel networks, while Correa

et al [8] established the result for general networks by proving that a steady state is always achieved

in finite time (naturally, as long asu0 is at most the capacity of the minimum cut). Quite surprisingly

however, the latter results apply only for constant inflow rate u0; if the inflow varies over time, say

it is u0 in all intervals of the form [2i, 2i + 1) and u0/2 in all intervals of the form [2i − 1, 2i) for
i ∈ N, then the boundedness of the queues is still open.

Another seemingly innocent question regarding the dynamic equilibrium is what we call the

monotonicity conjecture (cf. Conjecture 3). This states that given an instance of the problem, the

time it takes for an amount of flow to reach the sink t is a decreasing function of the inflow rate

u0. In other words, if we consider two identical instances, one with constant inflow rate u0 and
the other with constant inflow rate u0 − ε , then the time it takes for M flow units to arrive at t
in the latter instance is at least that in the former. As we show in this paper, this conjecture is

intimately connected to one of the most prominent open problems in the area, namely, the quality

of the equilibrium (measured as the time required to send a given amount of flow from s to t ) when
compared to the optimal solution. Our main result, which can be seen as an improvement upon a

result of Bhaskar, Fleischer and Anshelevich [3, 4], establishes that if the monotonicity conjecture



holds for the dynamic equilibrium, then the Price of Anarchy, defined as the worst case ratio of the

quality of an equilibrium to that of an optimal solution, is exactly e/(e − 1).

1.1 The Price of Anarchy
The usual way of quantifying the inefficiency of selfish behavior is the Price of Anarchy (PoA). It is

defined as the worst possible ratio between the quality of an optimal solution and the quality of an

equilibrium [20]. In the context of fluid queuing networks there are two natural and related goals

which induce two natural possible definitions for the PoA. On the one hand, we have the throughput
objective, under which we are given a time window and are asked to maximize the amount of flow

that can reach the sink t within that time. On the other hand, we have the makespan objective,

under which we are given an amount of flowM , that needs to be routed to t in the shortest possible

time.

The existence of an earliest arrival flow, established by Gale [12], implies that from an optimization

viewpoint, both goals are equivalent. Nevertheless, they induce different notions for the PoA. In

the former case the throughput-PoA is, as usual, defined as the supremum over all single s ,t-graphs,
all possible inflows, all possible capacities, all possible transit times, and all possible time windows,

of the ratio between the amount of flow the optimal solution can send and the amount of flow a

dynamic equilibrium sends. In the latter case the makespan-PoA is defined as the supremum over

all single s ,t-graphs, all possible inflows, all possible capacities, all possible transit times, and all

possible amounts of flowM , of the ratio between the time the optimal solution takes to routeM
units of flow towards t and the time it takes in a dynamic equilibrium.

The first to study the PoA in this context were Koch and Skutella [18, 19] who proved that the

throughput-PoA is unbounded. They also show that if the delays of all edges are zero, then the

dynamic equilibria are optimal, implying that both the throughput-PoA and the makespan-PoA

are 1. Interestingly, it has long been conjectured that the makespan-PoA is bounded by a small

constant [29]. The study of this makespan-PoA measure is the main focus of this paper, which from

now on we just call PoA for short.

Beyond the zero delay case, Bhaskar, Fleischer and Anshelevich [3, 4] studied this question

from a mechanism design perspective and found that there is a way of reducing the capacities

in the network so that the makespan of an equilibrium under the reduced capacities is within a

factor e/(e − 1) of the optimal solution with the original capacities. Naturally, as the following

example demonstrates, this capacity reduction can improve the behavior of a dynamic equilibrium

by blocking particles from taking bad routes.

However, the result still requires a subtle analysis since reducing the capacities too much may

also block good routes significantly, increasing the makespan of a dynamic equilibrium. More

precisely, Bhaskar et al. consider reducing the capacity of every edge e to be exactly the amount of

flow rate the optimal solution propagates through e . Our main result is to establish that the same

bound still holds by doing this only for the inflow, i.e., leaving all capacities unchanged but only

reducing the inflow.

Example 1. Consider the network in Fig. 1, where an edge e is labelled (νe , τe ), and let the total

flow M to be sent through the network be 2 and let u0 = 1. We claim that the optimal flow will

send
1

2
units of flow both along the path (s,u, t) and along the path (s,v, t) until time 2. Therefore,

the makespan of the optimal flow is 3. On the other hand, the equilibrium will first send 1 unit of

flow along the path (s,u,v, t) from time 0 until time 1. Then, from time 1 to 2, it will send
1

2
units

of flow both along the path (s,u,v, t) and along the path (s,v, t). Since a particle originating at s at
time 2 will encounter a queue time of 1 on edges (s,u) and (v, t), the makespan of the equilibrium
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Fig. 1. An illustration of the network of Example 1.

is 4, and hence, the PoA of this instance is
4

3
. Note that if we set νuv = 0 (as in [4]), the equilibrium

in the modified network will do exactly the same as the optimal flow, and the new PoA is 1.

Finally, Cominetti, Correa and Olver [8] prove the existence of a steady state and furthermore

establish that the derivative of this steady state flow is the solution of the static minimum cost

problem in which the cost of edge e is given by τe and the capacity by νe . This result readily implies

that the Price of Anarchy converges to 1 as the amount of flow to be routed grows to infinity.

1.2 Our results
As mentioned above, our main result is to improve upon the result of Bhaskar, Fleischer and

Anshelevich [3, 4] and show that the PoA is upper bounded by e/(e−1) under the milder assumption

that the inflow rate of the equilibrium is equal to the (initial) inflow rate of the optimum flow. This

is a theoretical improvement since it potentially makes further progress (e.g. on multi-commodity

settings) on this problem easier. Moreover, it can be of practical relevance because inflow-limiting

mechanisms are easier to implement and currently used in many places, such as metered ramps on

highways.

For a network G and a total amount of flowM , denote by TOPT the time the optimal flow takes

to route theM units from s to t . The simplest algorithm to compute this quantity is that of Ford

and Fulkerson [11] which we describe in Section 2.1. The basic idea is to guess T = TOPT and then

find a static flow f maximizing | f |T −
∑

e ∈E τe fe , where | f | denotes the size of the flow and is

constrained to be at most u0. We denote the inflow rate of the optimal flow by uOPT = | f |. As in
the dynamic equilibrium particles are selfish, its inflow rate uEQ always equals u0.
Similarly, letting TEQ be the time it takes for the equilibrium to route theM units of flow,

1
our

main result, which we prove in Section 3, can be stated in the following terms.

Theorem 2. If uEQ = uOPT , then TEQ ≤ e

e−1
·TOPT and this is tight.

Note that uEQ = u0 ≥ uOPT , therefore the missing case left by Theorem 2 is when uEQ > uOPT .

Intuitively, this case should be easier. Indeed, for the theorem to hold in general it is enough to prove

the monotonicity conjecture, which basically states that by decreasing the inflow, the makespan

TEQ increases. To formalize this conjecture, denote the makespan of the equilibrium with inflow

rate ui by T
i
EQ .

Conjecture 3 (Monotonicity conjecture). Consider a networkG and two fixed inflow rates u1 < u2
with their corresponding dynamic equilibria in G. Then T 1

EQ ≥ T 2

EQ .

For the special and simpler case of parallel-link networks, it turns out that the monotonicity

conjecture holds (cf. Lemma 16), immediately implying, by Theorem 2, that the PoA is bounded for

these networks. Furthermore, for parallel-link networks we are able to obtain an improved bound

1
In Section 2.2 we denote by

ˆθ = M/u0 the time this last particle enters s and by ℓt ( ˆθ ) the time at which it reaches t . Since
the dynamic equilibrium satisfies FIFO, it is clear that ℓt ( ˆθ ) = TEQ .



by refining the analysis. In fact, the argument can be extended to parallel-path networks. Indeed,

we prove the following result.

Theorem 4. In parallel-link networks, TEQ ≤ 4

3
·TOPT and this is tight.

The proofs proceed in three basic steps. First, we establish that the difference between the

makespans TEQ −TOPT is upper bounded by the overall sum of the queues at equilibrium divided

by its inflow. This follows from the linear program that computes the optimal solution, combined

with the equilibrium conditions stating that particles are routed through (currently) shortest paths.

Second, we establish a formula for computing this sum of the queues at equilibrium in terms of

the derivatives of the dynamic equilibrium (thin flows). Finally, in both the general case and the

parallel-link case, the formula can be used to upper bound the sum of the queues at equilibrium by

an appropriately small constant times uEQ ·TEQ .

1.3 Further related literature
We wrap up this section by mentioning some further related work and variants of the model.

Hoefer et al. [15] study a similar atomic model with multiple sources and sinks and different

policies (edge dynamics) and establish different existential and computational results for pure Nash

equilibria. Ismaili [16] considers a similar atomic model with the FIFO policy and establishes that

even deciding the existence of a pure Nash equilibrium is hard.

Although most work about dynamic equilibrium in the fluid queuing model, including ours,

applies to single-source single-sink networks, there has been some recent efforts to carry over the

results to more general multi-commodity networks. In particular, Garrido [13] was able to extend

some of the results for dynamic equilibria to the case of multiple sinks, while Sering and Skutella

[26] do it for the much more involved multi-source multi-sink case. However, we are still lacking a

good understanding of the general multi-commodity case.

As mentioned earlier, the issue of bounded queues was studied by Cao et al [5] who proved

that in the atomic model and series-parallel networks queues do remain bounded throughout the

evolution of the dynamic equilibria. For the precise model of this paper, Cominetti et al [8] establish

this result in general networks by proving the existence of a steady state that is achieved in finite

time. On a different line, Macko, Larson, and Steskal [21] study new types of Braess’s paradox

appearing in the dynamic equilibrium.

Some very recent work considers other aspects of the problem. In particular, Sering and Vargas

Koch [27] consider spillback effects, which is the study how an a priori bound on the amount of

flow that can be waiting on a queue affects the equilibrium behavior. Graf and Harks [14] consider

a related model in which flow particles are myopic in that they make local routing decisions based

on the current status of the network, without anticipating the whole future evolution. Finally,

Scarsini, Schröder, and Tomala [25] consider a discrete variant of the problem and look at the

simpler parallel-link networks, but add the complication that the inflow varies over time in a

periodic fashion.

To close these comments we note that a remarkable open problem concerns the polynomial time

computation of the dynamic equilibria. By the work of Koch and Skutella [19] and that of Cominetti

et al [7], this boils down to computing in polynomial time a normalized thin flow, a special type of
static flow with some complementary constraints (see Section 2.2). This problem can be solved in

polynomial time in some special cases [19] by parametric flow techniques, and in general it can

be written as a non-linear complementarity problem [6, 18]. Very recently, Kaiser [17] noted that

the problem is actually a linear complementarity problem and that it can be solved efficiently in

series-parallel networks.



2 THE MODEL
Let G = (V , E) be a directed graph, where each edge e ∈ E has a positive capacity νe and a non-

negative delay τe . Let s, t ∈ V be two vertices that we refer to as the source and the sink, respectively.

A total amount of flowM has to travel from s to t , where flow departs from s at a network inflow

rate denoted by u0.
2
The flow propagates through the network as described by the following edge

dynamics.

Let f +e : R≥0 → R≥0 be the function associated with an edge e ∈ E that maps a non-negative

time θ to the inflow rate into e at time θ . In case the inflow rate f +e (θ ) exceeds the edge capacity νe ,
a queue will grow at the tail of the edge at rate f +e (θ ) − νe . The queue mass at time θ is denoted

by ze (θ ), and if f +e (θ ) < νe , the queue will deplete at a rate equal to f +e (θ ) − νe , until the inflow
rate changes again or until ze = 0. Therefore, a particle that enters edge e at time θ will wait in the

queue ze (θ )/νe units of time and subsequently travel across the edge, taking time τe . Hence, this
particle has link exit time

Te (θ ) = θ +
ze (θ )

νe
+ τe .

This determines outflow rate functions f −e : R≥0 → R≥0 as follows.

f −e (θ + τe ) =

{
νe if ze (θ ) > 0 ,

min{ f +e (θ ),νe } if ze (θ ) = 0 .

Moreover, the evolution of the queues can be characterized by the following equation.

dze (θ )

dθ
=

{
f +e (θ ) − νe if ze (θ ) > 0 ,

max{ f +e (θ ) − νe , 0} if ze (θ ) = 0 ,
(1)

A flow over time is a collection of edge inflow rates (f +e )e ∈E that satisfy the following flow conser-

vation constraints for all vertices V \ {t} and for almost all θ ≥ 0.∑
e ∈δ+(v)

f +e (θ ) −
∑

e ∈δ−(v)

f −e (θ ) =

{
u0 if v = s ,

0 if v , s, t .
(2)

Finally, for a time θ we define F+e (θ ) =
∫ θ
0

f +e (ξ ) dξ and F−e (θ ) =
∫ θ
0

f −e (ξ ) dξ .

2.1 Optimal flows over time
In a directed graphG = (V , E) with edge capacities νe and source and sink s, t ∈ V , a static flow is a

function f : E → R≥0 of flow values fe that satisfies fe ≤ νe for all e ∈ E and the following flow

conservation constraints. ∑
e ∈δ+(v)

fe −
∑

e ∈δ−(v)

fe = 0 for all v , s, t .

The size of such a flow f is denoted | f | =
∑

e ∈δ+(s) fe . Since we have an inflow of u0 in our model,

we restrict the size of the flow to be at most this quantity, i.e., | f | ≤ u0.
3
If G is acyclic and P

denotes the set of all s ,t-paths, a static flow f can be decomposed into path flows (fp )p∈P such that

fe =
∑
p∈P:e ∈p fp [2].

2
We could also model this inflow as a capacity. Indeed, if we add an extra source where all the flow M resides and add an

edge from this extra source to s with capacity u0, the situation remains unchanged.

3
This makes the situation compatible when adding the extra source in the model.



In the maximum flow over time problem [10, 11] with throughput objective, a time horizon T is

given and the objective is to maximize the amount of flow that arrives at t by time T . An optimal

solution can be obtained by computing a static flow
ˆf that solves the following linear program [11].

max T | f | −
∑
e ∈E

τe fe

s.t. 0 ≤ fe ≤ νe , (3)

| f | ≤ u0.

This solution can be decomposed into a path decomposition P such that flow enters every path

p ∈ P at rate
ˆfp until time T − τp , where τp =

∑
e ∈p τe is the total travel time of the path without

queues. Such a flow pattern is called a temporally repeated flow and
ˆf is called its underlying static

flow. We define the flow rate or inflow of this temporally repeated flow as | ˆf |.
For the makespan objective we are given an amount of flowM , and a quickest flow is a flow over

time that minimizes the time at which all flow arrives to t . This can be found with a binary search.

First guess a time T and solve the previous linear program. Decrease T if the objective function

value exceedsM , otherwise increase it. The minimum value of T such that the maximum flow over

time with time horizon T routesM units of flow is thus the optimal solution which we denote by

TOPT . Hence, there is a quickest flow that is a temporally repeated flow. We will also refer to a

quickest flow as an optimal flow over time
ˆf . Finally, throughout the paper we will refer to the

inflow or flow rate of this quickest flow over time
ˆf as its size | ˆf | and we will denote it by uOPT .

Note in particular that uOPT ≤ u0.
An earliest arrival flow is a flow over time that maximizes the amount of flow that arrives at t by

time θ , for all θ ≤ T . An interesting fact is that such a flow always exists [12], which justifies the

binary search procedure above. Even though earliest arrival flows may not be temporally repeated

flows, there is always one that is a generalized temporally repeated flow. We refer the interested

reader to the survey by Skutella [28].

2.2 Equilibrium flows
In our definitions we follow the refined notion of dynamic equilibria from [7]. An equilibrium flow

is a flow over time such that no flow particle can choose another route and arrive earlier at t , given
the fixed flow pattern of all other flow particles. More formally, consider a particle departing from

s at time θ . We denote by ℓv (θ ) the earliest time at which this particle can arrive at node v . Hence,
ℓs (θ ) = θ and for all v , s we have

ℓv (θ ) = min

u :e=(u ,v)∈E
Te (ℓu (θ )) .

For any time θ , these labels induce a dynamic shortest path network Gθ with edge set

E ′
θ = {e = (u,v) ∈ E : ℓv (θ ) = Te (ℓu (θ ))} .

The edges in E ′
θ are called the active edges at time θ . We also define the set of edges that have a

queue at time θ as E∗θ = {e = (u,v) ∈ E : ze (ℓu (θ )) > 0}. Cominetti et al. [7] proved that we can

equivalently write

E ′
θ = {e = (u,v) ∈ E : ℓv (θ ) ≥ ℓu (θ ) + τe } , and

E∗θ = {e = (u,v) ∈ E : ℓv (θ ) > ℓu (θ ) + τe } ,

so it is immediate that E∗θ ⊆ E ′
θ .



A feasible flow over time is called a dynamic equilibrium if and only if for all e = (v,w) ∈ E and

almost all θ ∈ R≥0 we have f +e (ℓv (θ )) > 0 ⇒ e ∈ E ′
θ . In other words, in a dynamic equilibrium

flow is sent along shortest paths.

It turns out that an equivalent characterization of a dynamic equilibrium is given by the condition

that for each e = (v,w) ∈ E and all θ we have F+e (ℓv (θ )) = F−e (ℓw (θ )) [7]. It will be convenient to
define the cumulative flow induced by an equilibrium f on an edge e = (v,w) ∈ E at time θ ∈ R≥0

as

xe (θ ) = F+e (ℓv (θ )) = F−e (ℓw (θ )) .

Integrating the flow conservation constraints in Eq. (2) over the interval [0, ℓv (θ )] yields that the
cumulative flow x(θ ) is a static s ,t-flow of value u0θ for every θ ∈ R≥0. Now define

x ′
e (θ ) =

dxe (θ )

dθ
= f +e (ℓv (θ ))ℓ

′
v (θ ) ,

where

ℓ′v (θ ) =
dℓv (θ )

dθ
=

{
1 if v = s ,

min(u ,v)∈E T
′
uv (ℓu (θ ))ℓ

′
u (θ ) if v , s .

Observe that for almost all θ ∈ R≥0, x
′(θ ) = (x ′

e (θ ))e ∈E is a static s ,t-flow of value u0, where
x ′
e (θ ) = 0 for all e < E ′

θ . x
′(θ ) is called a normalized thin flow with resetting and the following

theorem states some important properties.

Theorem 5 ([7, 19]). Consider a dynamic equilibrium f and a time θ such that x ′
e (θ ) and ℓ

′
v (θ ) exist

for all e ∈ E and v ∈ V . Then the static flow x ′(θ ) satisfies:

ℓ′w (θ ) ≤ ℓ
′
v (θ ) ∀e = (v,w) ∈ E ′

θ \ E∗θ : x ′
vw (θ ) = 0 , (4)

ℓ′w (θ ) = max

{
ℓ′v ,

x ′
e (θ )

νe

}
∀e = (v,w) ∈ E ′

θ \ E∗θ : x ′
vw (θ ) > 0 , (5)

ℓ′w (θ ) =
x ′
e (θ )

νe
∀e = (v,w) ∈ E∗θ . (6)

Moreover, it turns out that for a given pair (E ′
θ , E

∗
θ ), there always exists a pair (ℓ

′, x ′) that satisfies

conditions (4), (5) and (6), and such that x ′ = (x ′
e (θ ))e ∈E is a static s ,t-flow of value u0 with support

in E ′
θ . Furthermore the ℓ′v labels are unique [7].

Therefore, the derivatives ℓ′ = (ℓ′v (θ ))v ∈V only change if the shortest path network changes,

or if the set of edges with positive queue changes. This can be used to prove that the shortest

path labels are unique throughout the evolution of the dynamic equilibrium [7].
4
The dynamic

equilibrium thus consists of a sequence of phases, where the edge inflow rates and the dynamic

shortest path network are constant during each phase. These phases last a positive amount of time,

and one can show that phase transitions only happen when new paths enter the dynamic shortest

path network or when queues deplete. The rate at which the lengths of the paths and the queues

change within one phase are completely determined by the ℓ′ labels, and therefore the length of

each phase can be computed, integrating the derivatives, with the α-extension algorithm of Koch

and Skutella [19].

To be more precise, fix a time θ and let (ℓ′, x ′) be a solution to the conditions (4), (5) and (6).

Then for the pair (E ′
θ , E

∗
θ ) there exists an α > 0 such that if one integrates the ℓ′ labels, all inactive

edges remain inactive and positive queues remain positive. In other words, for all ∆ ∈ [0,α],

ℓw (θ ) + ∆ℓ
′
w − ℓv (θ ) − ∆ℓ′v ≤ τe , for all e = (v,w) < E ′

θ ,

ℓw (θ ) + ∆ℓ
′
w − ℓv (θ ) − ∆ℓ′v ≥ τe , for all e = (v,w) ∈ E∗θ .

4
Assuming right-continuity of the ℓ′-labels of the dynamic equilibrium, or that there is no Zeno-type behavior.



Note that if (4) holds with strict inequality for an edge e = (v,w), integrating ℓ′ will make e inactive
immediately, i.e., if ℓw (θ ) − ℓv (θ ) = τe and ℓ

′
w − ℓ′v < 0, then ℓw (θ ) + ∆ℓ

′
w − ℓv (θ ) − ∆ℓ′v < τe for

any ∆ > 0. If this happens, (ℓ′, x ′) is still a solution at time θ + ∆ because there are no conditions

on inactive edges. Also, if ℓ′v < x ′
e/νe for an edge e in condition (5), a queue will start to grow

immediately after θ . This does not pose a problem either, since in this case ℓ′w = x ′
e/νe , so e also

satisfies condition (6). As a result, the derivatives in [0,α] are constant and equal to ℓ′, so the

equilibrium can be extended to [θ , θ + α] by integration.

Taking the maximum possible value of α , the current phase lasts until time θ + α and the same

procedure can be iterated. Therefore, assuming that the dynamic equilibrium does not exhibit

Zeno-type behavior —i.e., that the sequence defined by the α-extension algorithm does not have

accumulation points— we can enumerate all the phases as 0, 1, 2, . . . where each phase i lasts
from time θi to θi+1. Within the interval (θi , θi+1) the configuration (E ′

θ , E
∗
θ ), the ℓ

′
labels, and

the static flow x ′
, remain constant. For ease of exposition we make this assumption in this paper,

noting however that it is only used in the proof of Proposition 7, which in turn is used in Claim 11.

Nevertheless, our main results hold even without this non-Zeno-type behavior assumption. In the

full version of the paper we present a similar derivation (that implicitly includes a weaker version

of Claim 11) that does not use Proposition 7 and that is enough to establish our main theorems.

3 THE PRICE OF ANARCHY
In this section we present our main result. For a single-source single-sink network G with inflow

u0 and a total amount of flowM , denote by TOPT the time the quickest flow takes to route theM
units from s to t . Denote the inflow rate of the quickest flow over time by uOPT . For the dynamic

equilibrium with inflow rate uEQ = u0, denote by
ˆθ the first time at which M flow units have

departed from the source s , i.e., ˆθ = M/uEQ . Thus, since dynamic equilibria satisfy FIFO [19], the

time at whichM units of flow have arrived at the sink t is ℓt ( ˆθ ) = TEQ . Our result about the Price
of Anarchy is the following.

Theorem 2. If uEQ = uOPT , then TEQ ≤ e

e−1
·TOPT and this is tight.

To prove Theorem 2, we first establish the following three auxiliary propositions. Later, we build

upon these results to upper bound TEQ −TOPT in terms of the sum of the queues at equilibrium

and find a formula to evaluate this quantity. The first proposition states that if flow is sent along an

edge, the derivatives of the distance labels of both its vertices are positive.

Proposition 6. In the dynamic equilibrium, for all θ ≥ 0 and all e = (v,w) ∈ E ′
θ such that x ′

e (θ ) > 0,
we have that both ℓ′v (θ ) > 0 and ℓ′w (θ ) > 0.

Proof. Consider some θ ≥ 0 and an edge e = (v,w) ∈ E ′
θ with x ′

e (θ ) > 0. If E ∈ E∗θ , then

ℓ′w (θ ) = x ′
e/νe > 0 by thin flow condition (6). If e ∈ E ′

θ \ E∗θ , then ℓ
′
w (θ ) = max

{
ℓ′v (θ ), x

′
e/νe

}
≥

x ′
e/νe > 0 by thin flow condition (5). The claim is proved for vertexw . Now, if v = s then the result

follows immediately since ℓ′s (θ ) = 1. On the other hand if v , s , because x ′(θ ) satisfies the flow
conservation constraints, there must be an edge e ′ = (u,v) ∈ E ′

θ with x ′
e ′(θ ) > 0. Following the

same reasoning as before we conclude that ℓ′v (θ ) > 0. �

The second proposition states that if an edge has a queue, then it has strictly positive flow, and

hence, strictly positive derivatives of its distance labels.

Proposition 7. In the dynamic equilibrium, for all θ ≥ 0 such that e = (v,w) ∈ E∗θ , we have
x ′
e (θ ) > 0, and hence, both ℓ′v (θ ) > 0 and ℓ′w (θ ) > 0.



s x u w t

x ′(θi ) > 0

e ∈ E∗θi

x ′
e (θi ) = 0 x ′(θi ) = 0

Fig. 2. An illustration to clarify the proof of Proposition 7.

Proof. We prove the proposition by contradiction. We refer to Fig. 2 for an illustration of the

proof.

Consider the earliest phase i of the dynamic equilibrium such that there is an edge e satisfying
that for all times θ in phase i , e ∈ E∗θ but x ′

e (θ ) = 0.
5
Because of our assumption that i is the earliest

such phase, we can assume that x ′
e (θ

′) > 0 for θ ′ in phase i − 1. Indeed, otherwise x ′
e (θ

′) = 0 and

the queue in e did not increase, so e ∈ E∗θ ′ , contradicting the assumption that i is the earliest.
Let θi be the starting time of phase i . Since x ′

e (θ
′) > 0 for θ ′ in phase i − 1, there exists some

active
6 s ,t-path p containing e . Of course, p is still active by time θi .

Without loss of generality we can assume that e is the last edge (in the order induced by p) with
the property of having a queue but not carrying flow in phase i , i.e, e ∈ E∗θi and x ′

e (θi ) = 0. Let

u ∈ V be the head of e . Since x ′
e (θi ) = 0 and e ∈ E∗θi , thin flow condition (6) imposes that ℓ′u (θi ) = 0.

Moreover, all vertices v coming after u along p that do not receive any flow would still satisfy

ℓ′v (θi ) = 0. Thus considerw , the first vertex after e along p receiving some flow (possiblyw = t ).
Note that this vertex does not receive flow from p as e does not carry flow. The latter implies that

ℓ′w (θi ) = 0 by the thin flow conditions (4) or (6). On the other hand, asw receives flow from some

edge outside p, the thin flow conditions (5) or (6) imply that ℓ′w (θi ) > 0. A contradiction.

Therefore, x ′
e (θi ) > 0 and by Proposition 6, also ℓ′v (θi ) > 0 and ℓ′w (θi ) > 0. This extends to any θ

in phase i because the derivatives are constant in a phase. �

Finally, we will use the following proposition.

Proposition 8. log(x )
x ≤ 1

e
for all x > 0.

Proof. Consider the function f (x) = log(x)/x for x > 0. Then f ′(x) = (1 − log(x))/x2, and
clearly f ′(x) > 0 for x ∈ (0, e) and f ′(x) < 0 for x ∈ (e,+∞). So x = e is the global maximum of f
and the lemma follows since f (e) = 1/e. �

We are now ready to state the two main lemmata that together form the heart of the proof of

Theorem 2. The following lemma relates the completion time of the optimal flow and the equilibrium

flow. It assumes the inflow rate of the optimum flow and the equilibrium flow are equal.

Lemma 9. If uOPT = uEQ , the completion time of the optimal flow TOPT and of the equilibrium TEQ
are related as follows.

TEQ −TOPT ≤
1

uEQ

∑
e=(v ,w )∈E

ze (ℓv ( ˆθ )) . (7)

5
Note that x ′ is constant within a phase.

6
By active we mean that all edges in p are in E′

θ ′ .



Proof. Consider a path decomposition P of the optimal flow. From the linear program (3), it

follows that M = uOPTTOPT −
∑
p∈P

ˆfpτp , where τp =
∑

e ∈p τe . Moreover, from the equilibrium

flow we knowM = uEQ ˆθ . Therefore,

uOPTTOPT − uEQ ˆθ =
∑
p∈P

ˆfpτp . (8)

We will rewrite the right-hand side as follows. Note that for an edge e = (v,w) ∈ E, ℓw (θ ) ≤

ℓv (θ )+ ze (ℓv (θ ))/νe + τe and hence τe ≥ ℓw (θ ) − ℓv (θ ) − ze (ℓv (θ ))/νe . Consider a path p, summing

over all edges e ∈ p gives τp ≥ ℓt (θ ) − ℓs (θ ) −
∑

e ∈p ze (ℓv (θ ))/νe . Applying this inequality for θ = ˆθ

to Eq. (8) and using that ℓt ( ˆθ ) = TEQ yields

uOPTTOPT − uEQ ˆθ ≥
∑
p∈P

ˆfp
©«TEQ − ˆθ −

∑
e=(v ,w )∈p

ze (ℓv ( ˆθ ))

νe

ª®¬ . (9)

Because of our assumption,

∑
p
ˆfp = uOPT = uEQ . Taking this out of the sum for the first two terms,

we get

uOPTTOPT − uEQ ˆθ ≥ uEQTEQ − uEQ ˆθ −
∑
p∈P

ˆfp
∑
e ∈p

ze (ℓv ( ˆθ ))

νe
,

and hence,

uEQTEQ − uOPTTOPT ≤
∑
p∈P

ˆfp
∑
e ∈p

ze (ℓv ( ˆθ ))

νe

=
∑
e ∈E

ˆfe
ze (ℓv ( ˆθ ))

νe

≤
∑
e ∈E

ze (ℓv ( ˆθ )) .

The equality follows by summing over all edges instead of all paths, and the last inequality is

implied by
ˆfe ≤ νe . The result follows from our assumption that uOPT = uEQ . �

To complete the proof of Theorem 2, it remains to bound the sum in the right-hand side of Eq. (7).

The following lemma does exactly this and does not rely on any assumption.

Lemma 10. In the dynamic equilibrium, for all θ ≥ 0,∑
e=(v ,w )∈E

ze (ℓv (θ )) ≤
uEQ

e

(ℓt (θ ) − ℓt (0)) .

We prove this lemma using two more technical claims.

Claim 11. In the dynamic equilibrium, for all θ ≥ 0,∑
e=(v ,w )∈E

ze (ℓv (θ )) =

∫ θ

0

∑
e=(v ,w )∈E′

ξ

x ′
e (ξ )

(
1 −
ℓ′v (ξ )

ℓ′w (ξ )

)
dξ .

Proof of Claim 11. Unless indicated otherwise, by an edge e we mean an edge e = (v,w). We

begin by writing the queue length in terms of its derivative by using Eq. (1).∑
e=(v ,w )∈E

ze (ℓv (θ )) =
∑
e ∈E

∫ θ

0

dze (ℓv (ξ ))

dξ
1ze (ℓv (ξ ))>0 dξ =

∫ θ

0

∑
e ∈E∗

ξ

dze (ℓv (ξ ))

dξ
dξ . (10)



Denoting the flow underlying the dynamic equilibrium by f , for e ∈ E∗ξ we have z ′e (ξ ) = f +e (ξ ) −νe
and ℓ′w (ξ ) = x ′

e (ξ )/νe . Then, using Proposition 7, for edges e ∈ E∗ξ we can write

dze (ℓv (ξ ))

dξ
= z ′e (ℓv (ξ ))ℓ

′
v (ξ )

= f +e (ℓv (ξ ))ℓ
′
v (ξ ) − νeℓ

′
v (ξ )

= x ′
e (ξ ) − νeℓ

′
v (ξ )

= x ′
e (ξ )

(
1 −

νeℓ
′
v (ξ )

x ′
e (ξ )

)
= x ′

e (ξ )

(
1 −
ℓ′v (ξ )

ℓ′w (ξ )

)
.

Plugging the above expression into Eq. (10) yields∑
e ∈E

ze (ℓv (θ )) =

∫ θ

0

∑
e ∈E∗

ξ

x ′
e (ξ )

(
1 −
ℓ′v (ξ )

ℓ′w (ξ )

)
.

Note that for edges e = (v,w) ∈ E ′
ξ \E

∗
ξ , we have ℓw (ξ ) = ℓv (ξ )+ze (ℓv (θ ))/νe+τe , so ℓ

′
w (ξ ) = ℓ

′
v (ξ )+

z ′e (ℓv (θ ))ℓ
′
v (θ )/νe = ℓ

′
v (ξ )+0 almost everywhere. Using Proposition 6, this gives 1−ℓ′v (ξ )/ℓ

′
w (ξ ) = 0

almost everywhere, and hence∑
e ∈E

ze (ℓv (θ )) =

∫ θ

0

∑
e ∈E′

ξ

x ′
e (ξ )

(
1 −
ℓ′v (ξ )

ℓ′w (ξ )

)
dξ . �

The next claim bounds the integral on the right-hand side.

Claim 12. In the dynamic equilibrium, for almost all ξ ≥ 0,∑
e=(v ,w )∈E′

ξ

x ′
e (ξ )

(
1 −
ℓ′v (ξ )

ℓ′w (ξ )

)
≤ uEQ · log(ℓ′t (ξ )) ,

Proof of Claim 12. Consider a path decomposition P of the dynamic equilibrium f at time ξ .
Then we can rewrite the left-hand side as∑

e ∈E′
ξ

x ′
e (ξ )

(
1 −
ℓ′v (ξ )

ℓ′w (ξ )

)
=

∑
p∈P

x ′
p (ξ )

∑
e ∈p

(
1 −
ℓ′v (ξ )

ℓ′w (ξ )

)
.

Because of Proposition 6, we can apply the fact that 1 − x ≤ log(1/x) for x = ℓ′v (ξ )/ℓ
′
w (ξ ) > 0.

Therefore, ∑
p∈P

x ′
p (ξ )

∑
e ∈p

(
1 −
ℓ′v (ξ )

ℓ′w (ξ )

)
≤

∑
p∈P

x ′
p (ξ )

∑
e ∈p

log

(
ℓ′w (ξ )

ℓ′v (ξ )

)
.

Now rewrite log

(
ℓ′w (ξ )
ℓ′v (ξ )

)
as log(ℓ′w (ξ ))− log(ℓ

′
v (ξ )). This gives a telescopic sum for every path p ∈ P,

so

∑
e ∈p log

(
ℓ′w (ξ )
ℓ′v (ξ )

)
= log(ℓ′t (ξ )) − log(ℓ′s (ξ )). Using that ℓ′s (ξ ) = 1 and that x ′(ξ ) is a flow of size

uEQ , this yields ∑
p∈P

x ′
p (ξ )

∑
e ∈p

log

(
ℓ′w (ξ )

ℓ′v (ξ )

)
≤

∑
p∈P

x ′
p (ξ ) log(ℓ

′
t (ξ )) = uEQ log(ℓ′t (ξ )) . �

We now show how Lemma 10 follows from these claims.
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Fig. 3. An illustration of the tight instance.

Proof of Lemma 10. From Claim 11 and Claim 12 we see that∑
e=(v ,w )∈E

ze (ℓv (θ )) ≤ uEQ

∫ θ

0

log(ℓ′t (ξ )) dξ . (11)

Now substitute the monotonic function ξ = ℓ−1t (φ), giving dξ =
dφ

ℓ′t (l−1(φ))
. Then Eq. (11) becomes∑

e ∈E

ze (ℓv (θ )) ≤ uEQ

∫ ℓt (θ )

ℓt (0)

log

(
ℓ′t

(
ℓ−1t (φ)

) )
ℓ′t

(
ℓ−1t (φ)

) dφ .

We now apply Proposition 8 with x = ℓ′t
(
ℓ−1t (φ)

)
> 0 to see that∑

e ∈E

ze (ℓv (θ )) ≤ uEQ

∫ ℓt (θ )

ℓt (0)

1

e

dφ =
uEQ

e

(ℓt (θ ) − ℓt (0)) . �

Theorem 2 follows in a straightforward manner from the two main lemmata above.

Proof of Theorem 2. Applying Lemma 10 for θ = ˆθ to the bound of Lemma 9 yields

TEQ −TOPT ≤
1

e

(ℓt ( ˆθ ) − ℓt (0)) ≤
1

e

ℓt ( ˆθ ) .

The result follows by writing TEQ = ℓt ( ˆθ ) and rearranging this inequality to
TEQ
TOPT

≤ e

e−1
. The fact

that this is tight follows from Lemma 15 in the next subsection. �

3.1 Tightness
Consider the family of instances described in [18, Section 7.4], where it is proved that the Price of

Anarchy of these instances is at most
e

e−1
. We will prove that for a given choice of the edge capacities,

the Price of Anarchy of these instances tends to
e

e−1
in the limit, thereby proving tightness.

For completeness, we describe the family of instances here, and they are illustrated in Fig. 3.

Fix parametersm ∈ N and α > 0. Denote the capacity of edge ei and ei respectively by ui and

ui =
∑i

k=1 ui . Set the delay of ei and ei to τi = αum
(

1

uOPT
− 1

u i

)
and τ i = 0, respectively. The

equilibrium inflow rate is um .

We consider the instance where we set u1 = 1 and ui =
(m−1
m−2

) i−1
. Note that this is a feasible

choice as it is strictly increasing in i , and therefore ui > 0. We set the total amount of flow to send

through the network toM = αum .
The following lemmata show that the Price of Anarchy for this instance tends to

e

e−1
form → ∞.
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Fig. 4. The inflow rate into t of the optimum flow for the tight instance.

Lemma 13. The completion time of the equilibrium is TEQ = αum .

Proof. Since τ i = 0 for all i , the total delay of the straight path is 0. Therefore, in the first phase

of the equilibrium, all particles take the straight path and we get

x ′
e =

{
0 for ei i = 2, . . . ,m

um for ei i = 1, . . . ,m
, and ℓ′vi =

um

ui
for i = 1, . . . ,m .

This yields

ℓ′v1

− ℓ′vi =

(
um

u1
−
um

ui

)
=
τi
α

for all i ,

and therefore the first phase lasts until time θ = α , when all paths enter the dynamic shortest path

network. Since the equilibrium inflow rate is um , we have ˆθ = M
um = α . Therefore,

TEQ = ℓt ( ˆθ ) = ℓt (α) = α + τm = α + αum
(
1 −

1

um

)
= αum . �

Lemma 14. The completion time of the optimum flow is TOPT = τm .

Proof. See Fig. 4 for an illustration of f −t (θ ), the inflow rate into t of the optimum flow as a

function of θ . Note that sinceM equals the area under this curve,

M =
m−1∑
i=1

(τi+1 − τi )u
i + (TOPT − τm)u

m .

Now observe that for all i = 1, . . . ,m − 1,

(τi+1 − τi )u
i = αum

(
1

ui
−

1

ui+1

)
ui = αum

(
1 −

ui

ui+1

)
= αum

(
1 −

(
m − 1

m − 2

)−1)
=

αum

m − 1

.

We conclude that at time τm , a total amount of flow of (m − 1)αu
m

m−1
= αum has arrived at t . Since

M = αum , therefore TOPT = τm . �

Lemma 15. The Price of Anarchy of e

e−1
is tight.



Proof. From Lemma 13 and Lemma 14 we see that the Price of Anarchy of this instance equals

TEQ

TOPT
=

αum

αum
(
1 − 1

um
) = um

um − 1

=

(m−1
m−2

)m−1(m−1
m−2

)m−1
− 1

,

which tends to
e

e−1
form → ∞. �

4 DISCUSSION
In this section we strengthen our result for parallel-link networks, and we discuss the monotonicity

conjecture and related techniques to prove a universal bound on the PoA.

4.1 Parallel-link networks
In this section we strengthen our result for the class of parallel-link networks by proving Theorem 4.

First of all, we prove Conjecture 3 for the class of parallel-link networks.

Lemma 16. Consider a parallel-link network G and two fixed inflow rates u1 < u2 with their
corresponding dynamic equilibria in G. Then T 1

EQ ≥ T 2

EQ .

Proof. Denote the edges of G by e0, . . . , em and denote the capacity and delay of edge ej by νj
and τj . Without loss of generality, order the edges such that τ0 < . . . < τm (if two or more edges

have the same delay, merge them into one edge with the sum of their capacities). For brevity, denote

Ei =
{
ej : j ≤ i

}
and ν i =

∑
e ∈Ei νe =

∑i
j=0 νj .

First we describe the dynamic equilibrium in a parallel-link network with a generic inflow rate

u0. Active edges e = (v,w) ∈ E at time θ can be characterized by the inequality ℓw (θ ) − ℓv (θ ) ≥ τe .
Since every edge in a parallel-link network connects s to t , the set of active edges at any time has

the form Ei for some i . Moreover, edges will enter the set of active edges sequentially and grow a

queue, until the sum of their capacities surpasses the inflow rate. More precisely, if we denote the

sets of active edges respectively of edges with positive queue in phase i by E ′
i and E

∗
i , we see that

E ′
i = E∗i = Ei , for every phase i such that ν i < u0. Denote by k the first phase where νk ≥ u0. In

phase k , the queue lengths will remain constant, and in particular, no queue will accumulate at

edge ek . Consequently, E
′
k = Ek and E∗k = Ek−1 (ifM is sufficiently large to reach this phase).

For phase i , denote ρi = ℓ
′
t (θ ) and x

i
e = x ′

e (θ ) for any θ ∈ (θi , θi+1) and every e ∈ E ′
i . From thin

flow condition (6) we see that ℓ′t (θ ) = x ′
e (θ )/νe for e ∈ E∗θ . Therefore in phases i < k where E∗i = E ′

i ,

we obtain ρi = x ie/νe for all e ∈ E ′
i , and in particular ρi = u0/ν

i
. Since a phase i < k lasts until

ℓt (θ ) − ℓs (θ ) has grown to value τi+1, it lasts for (τi+1 − τi )ν
i/u0 units of time, and phase k lasts

until time
ˆθ .

Observe that flow sent in phase i < k , i.e., during the interval (θi , θi+1), arrives at t in the interval

(θi +τi , θi+1 +τi+1). As a result, the inflow rate at t in this period of time is ν i , which is independent

of u0. In phase k the inflow rate at t is u0 and arrives during (θk , ˆθ + τk ).
With this dynamic equilibrium structure at hand, we prove the lemma. Since the length of a

phase is inversely proportional to the inflow rate, phases last shorter with inflow rate u2 than with

u1. Moreover, the inflow rate into t is higher for subsequent phases. Hence, at every point in time

the inflow rate into t with inflow rate u2 is at least the inflow rate into t with inflow rate u1. Thus,
a total amount of flow of M arrives earlier at t with inflow rate u2 than with inflow rate u1, so
T 2

EQ ≤ T 1

EQ . �

This monotonicity result allows us to state the following universal bound on the Price of Anarchy

for parallel-link networks.

Lemma 17. In parallel-link networks, TEQ ≤ 4

3
·TOPT .



Proof. From Claim 11, we see that in the dynamic equilibrium for all θ ≥ 0,∑
e=(v ,w )∈E

ze (ℓv (θ )) =

∫ θ

0

∑
e=(v ,w )∈E′

ξ

x ′
e (ξ )

(
1 −
ℓ′v (ξ )

ℓ′w (ξ )

)
dξ .

Now note that in parallel-link networks, every path is just an edge from s to t . Hence,∑
e ∈E′

ξ

x ′
e (ξ )

(
1 −
ℓ′v (ξ )

ℓ′w (ξ )

)
= uEQ

(
1 −

1

ℓ′t (ξ )

)
.

Now observe that 1 − 1

x ≤ 1

4
x for any x > 0. To see this, denote f (x) = 1 − 1

x and д(x) = 1

4
x and

note that f (2) = д(2), while f ′(x) > д′(x) for 0 < x < 2 and vice versa for x > 2. Therefore,∑
e ∈E

ze (ℓv (θ )) ≤ uEQ

∫ θ

0

(
1

4

ℓ′t (ξ )

)
dξ =

uEQ

4

(ℓt (θ ) − ℓt (0)) .

Note that because of Lemma 16, the result of Lemma 9 holds in general without the assumption on

the inflow rates (cf. Lemma 19). Invoking Eq. (7), we obtain that ℓt ( ˆθ ) −TOPT ≤ 1

4
ℓt ( ˆθ ), and the

bound follows by rearranging the terms. �

The proof of Theorem 4 is completed by showing tightness of its bound.

Lemma 18. The Price of Anarchy of 4

3
for parallel-link networks is tight.

Proof. The fact that the bound from Lemma 17 is tight follows from the example depicted in

Fig. 5. The network consists of two edges with ν1 =
1

2
, τ1 = 0, ν2 =

1

2
and τ2 = 1. Taking uEQ = 1

andM = 1, the equilibrium will send all flow along the top edge and the last unit of flow will arrive

at time ℓt ( ˆθ ) = 2. On the other hand, the optimal flow will send
1

2
along the bottom edge until time

1

2
, and

1

2
along the top edge until timeTOPT =

3

2
. Therefore, the Price of Anarchy of this instance is

exactly
4

3
. �
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( 1
2
, 0)

( 1
2
, 1)

Fig. 5. An illustration of the tight instance for parallel-link networks.

We close this section by noting that the results in Lemmas 16, 17 and 18 also hold for parallel-

serial networks, i.e. networks consisting of parallel paths. The reason for this is that a path can

be contracted to a single link with capacity equal to the minimum capacity along the path and

with delay equals the sum of the delays of the edges in the path. The details of this contraction

argument are deferred to the full version of the paper.



4.2 Conjectures
We outline some techniques to prove a universal bound on the PoA. The most natural one would

be to prove the monotonicity conjecture as stated in Conjecture 3. This is an important basic

property of the fluid queuing model that seems intuitive yet appears to be notoriously hard to

prove. The following lemma demonstrates how the universal bound on the PoA would follow from

Conjecture 3 and Theorem 2.

Lemma 19. Suppose Conjecture 3 holds. Then in any instance, TEQ ≤ e

e−1
·TOPT .

Proof. Let a graphG and a total amount of flowM be given and consider a dynamic equilibrium

with inflow rate uEQ > uOPT . By Conjecture 3 we know that TEQ ≤ T ′
EQ , where T

′
EQ is the

makespan of the dynamic equilibrium in G with inflow rate u ′
EQ = uOPT . Since the network itself

does not change, neither does the makespan of the optimal flow. Then, using Theorem 2, we obtain

TEQ ≤ T ′
EQ ≤ e

e−1
·TOPT . �

Although we strongly believe that the monotonicity conjecture holds, this is not the only way to

establish the desired Price of Anarchy result. Specifically, it seems plausible to conjecture (but we

are unable to prove it) that for M > 0, the time it takes for a particle to travel from s to t in the

dynamic equilibrium (not accounting for the time spent at the source) is less than the makespan of

the optimal solution. In other words, ℓt (θ )−θ < TOPT for all 0 ≤ θ ≤ ˆθ . The next lemma establishes

that if this property holds, then the Price of Anarchy would also be
e

e−1
.

Lemma 20. Suppose that M > 0 and that for all 0 ≤ θ ≤ ˆθ we have that ℓt (θ ) − θ < TOPT , then
TEQ ≤ e

e−1
·TOPT .

Proof. Consider a networkG where uEQ > uOPT with makespanTOPT for the optimal flow and

TEQ for the dynamic equilibrium. Now consider a network G ′
which is obtained from G by adding

an edge e from s to t with νe = uEQ − uOPT and τe = TOPT − ε .
Since τe < TOPT , the optimum flow inG ′

will send a positive amount of flow along edge e , and it
will send flow along the same paths as inG at the same rate for a shorter period of time (provided

ε is small enough). This implies that u ′
OPT = uOPT + νe = uEQ , and moreover T ′

OPT < TOPT . On

the other hand, because of our assumption that ℓt (θ ) − θ < TOPT and the choice of τe , edge e will
never be active in the dynamic equilibrium (for sufficiently small ε). Therefore u ′

EQ = uEQ and

T ′
EQ = TEQ . Applying Theorem 2 to G ′

, we can write TEQ/TOPT ≤ T ′
EQ/T

′
OPT ≤ e/(e − 1). �

Finally, we present a third conjecture that would imply the universal bound on the PoA. Indeed,

suppose that for any instance, and
ˆθ > 0 we had that∑

e=(v ,w )∈E

ˆfe
ze (ℓv (θ ))

νe
< uEQ ˆθ . (12)

Then, we could follow the beginning of the proof of Lemma 9 and we can write the following

similar to Equation (9).

uOPTTOPT − uEQ ˆθ ≥
∑
p∈P

ˆfp

(
ℓt ( ˆθ ) − ˆθ −

∑
e ∈p

ze (ℓv ( ˆθ ))

νe

)
= uOPT ℓt ( ˆθ ) − uOPT ˆθ −

∑
e=(v ,w )∈E

ˆfe
ze (ℓv (θ ))

νe

> uOPT ℓt ( ˆθ ) − uOPT ˆθ − uEQ ˆθ .



Here, last inequality is obtained by assuming the conjecture given by Eq. (12). Then by cancelling

on both sides and dividing by uOPT we obtain that TOPT > ℓt ( ˆθ ) − ˆθ . Since the choice of ˆθ (or that

of M) is arbitrary, we obtain that the previous conjecture holds and therefore the result follows

form Lemma 20.

We finish by noting that it would actually be enough to show the weaker condition: ℓt (θ ) − θ ≤

TOPT for all 0 ≤ θ ≤ ˆθ (without strict inequality). Indeed, this is enough to establish Lemma 20,

although the proof requires a more careful and tedious limiting argument which we defer to the

full version of the paper.
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