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Abstract. We consider the unrelated machine scheduling game in which
players control subsets of jobs. Each player’s objective is to minimize the
weighted sum of completion time of her jobs, while the social cost is the
sum of players’ costs. The goal is to design simple processing policies in
the machines with small coordination ratio, i.e., the implied equilibria
are within a small factor of the optimal schedule. We work with a weaker
equilibrium concept that includes that of Nash. We first prove that if ma-
chines order jobs according to their processing time to weight ratio, a.k.a.
Smith-rule, then the coordination ratio is at most 4, moreover this is best
possible among nonpreemptive policies. Then we establish our main re-
sult. We design a preemptive policy, externality, that extends Smith-rule
by adding extra delays on the jobs accounting for the negative exter-
nality they impose on other players. For this policy we prove that the
coordination ratio is 1+ φ ≈ 2.618, and complement this result by prov-
ing that this ratio is best possible even if we allow for randomization or
full information. Finally, we establish that this externality policy induces
a potential game and that an ε-equilibrium can be found in polynomial
time. An interesting consequence of our results is that an ε−local optima
of R| |∑wjCj for the jump (a.k.a. move) neighborhood can be found in
polynomial time and are within a factor of 2.618 of the optimal solution.
The latter constitutes the first direct application of purely game-theoretic
ideas to the analysis of a well studied local search heuristic.

1 Introduction

Machine scheduling originates in the optimization of manufacturing systems and
their formal mathematical treatment dates back to at least the pioneering work of
Smith [38]. In general, scheduling problems can be described as follows. Consider
a set J of n jobs that have to be processed on a set M of m parallel machines.
If processed on machine i, job j requires a certain processing time pij to be
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completed. Job j also has a weight wj and, in addition, it may have other
characteristics such as release dates, time windows, delays when switching a
task from one machine to another, or precedence constraints. The goal is to find
an assignment of jobs to machines, and an ordering within each machine so that
a certain objective functions is minimized. Denoting, for any such assignment
and ordering, the completion time Cj of job j the time at which job j completes,
we may write the two most widely studied objectives as Cmax = maxj∈J Cj (the
makespan) and

∑
j∈J wjCj (the sum of weighted completion times). In terms

of the machine environment the most basic model is that of identical machines,
where the processing times of jobs are the same on all machines. In the related
machines environment each machine has a speed, and the processing time of a job
on a machine is inversely proportional to the speed of that machine. Finally in
unrelated machine scheduling the processing times are arbitrary, thus capturing
all the above models as special cases. This latter machine environment, with
the sum of weighted completion times objective, denoted by R| |∑wjCj , is the
focus of our paper.

Since the early work of Smith for the
∑

wjCj objective, a lot of work has
been put in designing centralized algorithms providing reasonably close to op-
timal solutions with limited computational effort for these NP-hard problems
[5,15,18,21,23,24,32,33,34,35,36,37]. The underlying assumption is that all infor-
mation is gathered by a single entity which can enforce a particular schedule.
However, as distributed environments emerge, understanding scheduling prob-
lems where jobs are managed by different selfish agents (players), who are inter-
ested in their own completion time, becomes a central question.

Coordination Mechanisms. In recent times there has been quite some effort
to understand these scheduling games in the special case in which agents control
a single job in the system, which we call single-job games. In this context, there is
a vast amount of work studying existence, uniqueness, the price of anarchy [26],
and other characteristics of equilibrium when, given some processing rules, each
agent seeks to minimize her own completion time. In the scheduling game each
job is a fully informed player wanting to minimize its individual completion time,
and its set of strategies correspond to the set of machines. Job j’s completion
time on a machine depends on the strategies chosen by other players, and on the
policy (or processing rule) of the chosen machine. While the cost of a job is its
weighted completion time, wjCj . A coordination mechanism is then a set of local
policies, one per machine, specifying how the jobs assigned to that machine are
scheduled. In a local policy the schedule on a machine depends on the full vector
(p1j , p2j , . . . , pmj) and weights wj of jobs assigned to that machine. In contrast,
in a strongly local policy the schedule on machine i must be a function only of the
processing times pij and weights wj of the jobs assigned to i. In evaluating the
efficiency of these policies, one needs a benchmark to compare this social cost
against. The definition of the price of anarchy of the induced game considers a
social optimum with respect to the costs specified by the chosen machine policies.
However, to measure the quality of a coordination mechanism we consider the
worst case ratio of the social cost at an equilibrium to the optimal social cost



Optimal Coordination Mechanisms for Multi-job Scheduling Games 15

that could be achieved by the centralized optimization approach. We refer to
this as the coordination ratio of a mechanism.

In this paper we take a step forward and study multi-job games, in which
there is a set of agents A who control arbitrary sets of jobs. Specifically the set
of jobs controlled by player α ∈ A is denoted by J(α) ⊂ J and its cost given
a particular schedule is the sum of weighted completion times of its own jobs∑

j∈J(α) wjCj . As in single-job games, we concentrate on designing coordination
mechanisms leading to small coordination ratios, when the social cost is the sum
of weighted completion times of all jobs (or equivalently of all agents).

Machine Policies. Throughout we assume that policies are prompt: they do
not introduce deliberate idle time. In other words, if jobs j1, . . . , jk are assigned
to machine i, then by time

∑k
�=1 pij� all jobs have been completed and released.

Besides distinguishing between local and strongly local policies we distinguish
between nonpreemptive, preemptive, and randomized policies. In nonpreemptive
policies jobs are processed in some fixed deterministic order that may depend
arbitrarily on the set of jobs assigned to the machine (processing time, weight,
and ID), and once a job is completed it is released. On the other hand, preemp-
tive policies may suspend a job before it completes in order to execute another
job and the suspended job is resumed later. Interestingly, such policies can be
considered as nonpreemptive policies, but where jobs may be held back after
completion [11,12]. Finally, randomized policies have the additional power that
they can schedule jobs at random according to some distribution depending on
the assigned jobs’ characteristics. Another usual distinction is between policies
that are anonymous and non-anonymous. In the former jobs with the same char-
acteristics (except for IDs) must be treated equally and thus assigned the same
completion time. In the latter, jobs may be distinguished using their IDs.

For instance consider the widely used policy known as Smith-rule (��), which
sorts jobs in nondecreasing order of their processing time to weight ratios. For-
mally �� processes jobs in nondecreasing order of ρij = pij/wj , and breaks
ties using the job’s IDs. This policy is strongly local, nonpreemptive, and non-
anonymous.

Equilibrium Concepts. For the single-job scheduling game the underlying
concept of equilibrium is, quite naturally, that of Nash (NE)[28]. However, once
we allow players to control many jobs and endow them with the weighted com-
pletion time cost, already computing a best response to a given situation may
be NP-complete. Therefore, it is rather unlikely that such an equilibrium will be
attained. To overcome this difficulty we consider a weaker equilibrium concept,
which we call weak equilibrium (WE), namely, a schedule of all jobs is a WE if
no player α ∈ A can find a job j ∈ J(α) such that moving j to a different ma-
chine will strictly decrease her cost

∑
j∈J(α) wjCj . We extend the WE concept

to mixed (randomized) strategies by allowing player α to keep the distribution
of all but one job j ∈ J (α) and move job j to any machine. Observe that in the
single-job game NE and WE coincide. Throughout, we provide bounds on the
coordination ratio of policies for the weak equilibrium, and since NE are also
WE our bounds hold for NE as well.
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As the reader may have noticed, there is a close connection between WE and
local optima of the jump (also called move) neighborhood (e.g. [39]). In a locally
optimal solution of R| |∑wjCj for the jump neighborhood, no single job j ∈ J
may be moved to a different machine while decreasing the overall cost. Such
solution is exactly a WE when a single player in the scheduling game controls
all jobs and the machines use ��.

To illustrate the concept of weak equilibrium and the difference between the
single-job and the multi-job games consider the following example on 4 machines,
m1, . . . ,m4, with the �� policy. There are 4 unit-weight jobs called a, b, c, d such
that pm1,a = 1 + ε, pm1,b = 1, pm2,b = 1.5, pm2,c = 2, pm3,c = 3, pm3,d = 2,
pm4,d = 2, and all other pij = +∞. In this situation an equilibrium for the
single-job game is that jobs a and b go to m1, job c goes to m2, and job d goes
to m3, leading to a total cost of 7+ε. Consider now the multi-job game in which
one player controls a, b and another player controls c, d. A NE is obtained when
a goes to m1, b goes to m2, c goes to m3, and d goes to m4, and this has total
cost 7.5 + ε. A WE is obtained from instance when a goes to m1, b goes to m2,
c goes to m2, and d goes to m3, having a total cost of 8 + ε.

Related Literature. The study of coordination mechanisms for single-job
scheduling games, taking the makespan as social cost, was initiated by
Christodoulou et al. [9]. However the implied bounds on the price of anarchy
are constant only for simple environments such as when machines are identi-
cal. Indeed, Azar et al. [2], and Fleischer and Svitkina [19] show that, even for
a restricted uniform machines environment “almost” no deterministic machine
policies can achieve a constant price of anarchy. The result was finally established
by Abed and Huang [1], who proved that no symmetric coordination mechanism
satisfying the so-called “independence of irrelevant alternatives” property, even if
preemption is allowed, can achieve a constant price of anarchy for the makespan
objective. The existence of a randomized machine policy with such a desirable
property is unknown. It is worth mentioning that there is a vast amount of
related work considering the makespan social cost [6,8,14,16,25,27].

The situation changes quite dramatically for the sum of weighted completion
times objective. In this case Correa and Queyranne show that, for restricted re-
lated machines, smith rule induces a game with price of anarchy at most 4 [13],
improving results implied by Farzad et al. [17] and Caragiannis et al [8] obtained
in different contexts. Cole et al., extend this result to unrelated machines, and
also design an improved preemptive policy, proportional sharing, achieving an
approximation bound of 2.618 and an even better randomized policy [11,12].
Further recent works include extensions and improvements by Bhattacharya
et al. [3], Cohen et al. [10] and by Rahn and Schäfer [30], Hoeksma and Uetz [22].

Finally, performance guarantee results for the
∑

wjCj objective using natural
local search heuristics are scarse, despite the vast amount of computational work
[7,29]. We are only aware of the results of Brueggemann et al. [4] who proved
that for identical machines local optima for the jump neighborhood are within
a factor of 3/2 of the optimal schedule.
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Our Results. We start by considering deterministic policies and prove that the
coordination ratio of �� under WE is exactly 4. This generalizes the result for
single-job games [12] and therefore it is the best possible coordination ratio that
can be achieved nonpreemptively. We prove the upper bound of 4 for �� with
mixed WE. This is relevant since a pure strategy NE may not exist in this setting
[13]. Moreover, it is unclear whether the smoothness framework of Roughgarden
[31] can be applied here: On the one hand our results hold for the more general
framework of WE, while on the other hand having players that control multiple
jobs makes it more difficult to prove the (λ, μ)-smoothness.

Before designing improved policies we observe that no anonymous policy may
obtain a coordination ratio better than 4, and basically no policy, be it pre-
emptive or randomized, local or strongly local, can achieve a coordination ratio
better than 2.618. The latter is in sharp contrast with the case in which players
control just one job where better ratios can be achieved with randomized policies
[12]. Quite surprisingly we are able to design an “optimal” policy, which we call
externality (��), that guarantees a coordination ratio of 2.618 for WE. Under
this �� policy, jobs are processed according to Smith rule but are held back (and
not released) for some additional time after completion. This additional time ba-
sically equals the negative externality that this particular job imposes over other
players. Additionally, we prove that �� defines a potential game, so that pure
WE exists, and that the convergence time is polynomial. It is worth mentioning
that in the single-job game �� coincides with the proportional-sharing (��) pol-
icy [12], which in turn extends the EQUI policy of the unit-weight case [16]. On
the other side, when a single player controls all jobs, �� coincides with ��. The
idea of making jobs incorporate the externality they impose has also been used
by Heydenreich et al. [20]. However their goal is different; they incorporate the
externality in the form of payments to obtain truthful mechanisms rather than
to improve efficiency.

Interestingly, our result for �� in case just one player controls all jobs im-
plies a tight approximation guarantee of 2.618 for local optima under the jump
neighborhood forR| |∑wjCj . This tight guarantee also holds for the swap neigh-
borhood, in which one is additionally allowed to swap jobs between machines so
long as the objective function value decreases [39]. In addition, our fast conver-
gence result for �� implies another new result, namely, that local search with
the jump neighborhood, when only maximum gain steps are taken, converges
in polynomial time. These facts appear to be quite surprising since, despite the
very large amount of work on local search heuristics for scheduling problems
[7,29], performance guarantees, or polynomial time convergence results are are
only known for identical machines [4].

Methodologically our work is based on the inner product framework of [12],
but more is needed to deal with the multi-job environment. Our main contribu-
tion is however conceptual: On the one hand, we demonstrate that the natural
economic idea of externalities leads to approximately optimal, and in a way best
possible, outcomes even in decentralized systems with only partial information
(in a full information and centralized setting one can easily design policies leading
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to optimal outcomes). On the other hand, we provide the first direct application
of purely game-theoretic ideas to the analysis of natural and well studied local
search heuristics that lead to the currently best known results.

Preliminaries. Recall that for a player α ∈ A, the set of job she controls is
denoted by J(α) ⊂ J . Moreover, α(j) denotes the player controlling job j, so
that J(α(j)) is the set of jobs controlled by who is controlling j.

A pure strategy profile is a matrix x ∈ {0, 1}M×J in which xij = 1 if job j is
assigned to machine i. By denoting xα the columns of x corresponding to jobs
controlled by player α we say that xα is a pure strategy for this player. A mixed
strategy for player α is a probability distribution over all xα ∈ {0, 1}M×J(α). A
set of mixed strategies for all players α ∈ A leads to a (mixed) strategy profile
x ∈ [0, 1]M×J where xij is the probability of job j assigned to machine i. Note
that the distributions of the different columns of x may not be independent. We
denote by x−k the matrix obtained by deleting the k−th column of x. Observe
that x−k results from the joint probability distribution of all jobs j′ �= k accord-
ing to x. More precisely x−k ∈ [0, 1]M×J\{k} can be equivalently seen as the
mixed strategy profile obtained when players different from α(k) continue using
the same strategy, while player α(k) forgets job k and if she was playing the pure
strategy xα(k) ∈ {0, 1}M×J(α) with probability q, she plays the pure strategy

for her jobs different from k, x
α(k)
−k ∈ {0, 1}M×J(α)\{k} with probability q (these

probabilities add up if she was playing with positive probability two strategies
that were equal except for job k). We define x−K analogously for a set of jobs
K ⊆ J .

Given a mechanism � ∈ {��,��} and a strategy profile x, E[C�

j (x)] is the
expected completion time of job j. The conditional expected completion time of
job j on machine i when job k is assigned to machine i is denoted E[C�

j (x−k, k →
i)]. The expected cost of the strategy profile x is E[C�(x)] =

∑
j∈J wjE[C

�

j (x)]
and the expected cost of a player α under x is E[C�

α (x)] =
∑

j∈J(α) wjE[C
�

j (x)].

For convenience we also define E[C�

α (x−k, k → i)] =
∑

j∈J(α) wjE[C
�

j (x−k, k →
i)]. Note that E[C�(x)] =

∑
α∈A E[C�

α (x)].
A Nash equilibrium (NE) is therefore a strategy profile x such that for all

player α ∈ A and all strategy profiles yα for player α we have that:

E[C�

α (x)] ≤ E[C�

α (y
α,x−J(α))].

Similarly, a weak equilibrium (WE) is a strategy profile x such that for all player
α ∈ A, all jobs k ∈ J(α), and all machines i ∈ M, we have that:

E[C�

α (x)] ≤ E[C�

α (x−k, k → i)].

The optimal assignement is the assignment in which the jobs are processed
non-preemptively on the machines so that the cost is minimized. Throughout the
paper, x∗ denotes the optimal assignment (thus x∗ is a pure strategy), and we
define X∗

i as the set of jobs assigned to machine i under the optimal assignment.
Given the assignment of jobs to machines, it is well-known that Smith Rule
minimizes the total cost of jobs. Therefore C��(x∗) is the optimal cost.
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2 Nonpreemptive Mechanisms

We now study nonpreemptive mechanisms (jobs have IDs, needed to break ties
between identically looking jobs) and prove that �� has a coordination ratio of 4
for mixed WE. We work with mixed strategies since �� does not guarantee that
existence of pure WE. As mentioned earlier, our result is best possible among
nonpreemptive mechanisms [12].

Recall that under ��, each machine i schedules nonpreemptively its assigned
jobs j in nondecreasing order of ρij = pij/wj , and ties are broken using the IDs.
To simplify the presentation, we say that ρik < ρij if k comes earlier than j in the
�� order of machine i. Thus, given a strategy profile x we have E[C��

j (x−j , j →
i)] = pij +

∑
k:ρik<ρij

xikpik so that,

E [C��(x)] =
∑

j∈J
wj

∑

i∈M
xijE[C

��

j (x−j , j → i)] (1)

=
∑

i∈M

∑

j∈J
xijwj(pij +

∑

k:ρik<ρij

xikpik).

Extending the inner product space technique of Cole et al. [12], we let ϕ : x →
L2([0,∞])M, which maps every strategy profile x to a vector of functions (one for
each machine) as follows. If f = ϕ(x), then for each i ∈ M, the i-th component of
f is the function fi(y) :=

∑
j∈J ,ρij≥y xijwj . Letting 〈fi, gi〉 =

∫∞
0 fi(y)gi(y)dy

be the standard inner product on L2 we get that 〈f ,g〉 = ∑
i∈M〈fi, gi〉. Addi-

tionally, we let ηi(x) =
∑

j∈J wjxijpij and η(x) =
∑

i∈M ηi(x).
The next lemma and expressions (2) and (3) follow easily from the derivations

of Cole et al. [12]. The only difference is that here we need to prove the results
for mixed strategies. We defer the proofs of this section to the full version.

Lemma 1. For a strategy profile x and the optimal assignment x∗, let f = ϕ(x)
and f∗ = ϕ(x∗). Then 〈fi, f∗

i 〉 =
∑

j∈X∗
i

∑
k∈J wjwkxik min{ρij , ρik}.

Similarly to Lemma 1, and using equation (1), we may evaluate

||ϕ(x)||2 ≤ 2E [C��(x)] . (2)

Additionally, when x is a pure strategy we have:

C��(x) =
1

2
||ϕ(x)||2 + 1

2
η(x). (3)

In what follows, let x denote a mixed weak equilibrium and x∗ the optimal
assignment. Let f = ϕ(x) and f ∗ = ϕ(x∗).

Lemma 2. Consider X∗
i (α) = X∗

i ∩ J(α), the jobs of player α assigned to
machine i in the optimal solution. Then for each j ∈ X∗

i (α) we have:

wjE
[
C��

j (x)
] ≤ wj(pij +

∑

k:ρik<ρij

xikpik) + pij
∑

k∈J(α)\{j},ρik>ρij

wkxik.

Lemma 3. For a machine i ∈ M,
∑

j∈X∗
i
wjE[C

��

j (x)] − ηi(x
∗) ≤ 〈fi, f∗

i 〉.
Theorem 1. E[C��(x)] ≤ 4C��(x∗).
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3 Preemptive Mechanisms

Finding policies that beat the coordination ratio of 4 for WE is impossible if
we restrict to nonpreemptive ones. This holds even for the single-job game [12],
where WE and NE coincide. Therefore we need to consider preemptive or ran-
domized policies. We first observe that even with preemption, if we restrict to
anonymous policies, beating the ratio of 4 is not possible. Furthermore, we prove
that the absolute limit for basically any policy, be it preemptive or randomized,
using even global information, and even if different machines use different poli-
cies, is 1 + φ ≈ 2.618, where φ is the golden ratio. The precise set of policies
for which this lower bound holds are those such that when machine i ∈ M is
assigned a single job, j ∈ J , then Cj = pij .

As the performance of �� coincides in the single-job and multi-job games one
may wonder whether natural preemptive policies, that work well in the single-
job game, also do in the multi-job game. Unfortunately this is not the case.
Indeed we prove that the champion preemptive policy for the single-job game,
Proportional-sharing [12,16], has a coordination ratio of at least 5.848 for WE
and at least 2.848 for NE. It is thus rather surprising that we can actually achieve
this ratio with a fairly natural policy, externality (��). A key ingredient of this
policy is that it heavily relies on the ownership of the jobs, a feature that policies
for the single-job game certainly do not share.

The results in this section are presented for pure strategy profiles. This is pri-
marily done for simplicity and also because, as we will show later, our preemptive
policy induces a potential game and therefore pure WE are guaranteed to exist.
Thus, given a pure strategy profile x, we may refer to x as an assignment, and
we may let Xi denote the set of jobs assigned to machine i under x, i.e., j ∈ Xi

if xij = 1. Let also Xi(α) = Xi ∩ J(α) be the set of jobs controlled by player α
on this machine i under x.

Recall that in the proportional sharing policy (��) [12], the machine processing
power is split among the assigned jobs proportionally to their weight. Given an
assignment x, if job j is assigned to machine i, it can be observed that:

C��

j (x) = pij +
∑

k∈Xi,ρik<ρij

pik + pij
∑

k∈Xi\{j},ρik>ρij

wk

wj
.

Proposition 1 ([12]). Given an assignment x, C��(x) = ||ϕ(x)||2.
In our externality policy, ��, given an assignment x, the machine processes

the jobs according to �� but once a job is completed, it is delayed for an amount
of time accounting for the negative externality it is imposing on other players.
Thus in �� the cost for the owner of job j due to this job will be

wjC
��

j (x) = wjpij + wj

∑

k∈Xi,ρik<ρij

pik + pij
∑

k∈Xi\J(α(j)),ρik>ρij

wk.

The completion time of j is then defined by the previous equation. Observe that
in the single-job game, �� reduces to ��, while if all jobs are controlled by a single
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player �� reduces to ��. Also, �� induces feasible schedules since no completion
time can be smaller than that given by Smith-rule. Policy �� can be seen as a
preemptive policy in which jobs are processed as in ��, except for an infinitesimal
piece that is processed at the time defined by previous equation. Moreover ��
is strongly local and nonanonymous. A consequence of the definitions of ��, ��,
and �� is that for a fixed assignment x their costs satisfy:

C��(x) = C��(x) +
∑

i∈M

∑

j∈Xi

pij
∑

k∈Xi\J(α(j)),ρik>ρij

wk (4)

= C��(x)−
∑

i∈M

∑

j∈Xi

pij
∑

k∈Xi(α(j)),ρik>ρij

wk.

In the following, let x∗ be an optimal assignment and x a WE. We also let
ϕ(x) = f and ϕ(x∗) = f ∗ be as in the previous section.

Lemma 4. Consider a job j ∈ X∗
i and assume j is on i′ under x. Then

wjC
��

j (x) ≤ wj(pij +
∑

k∈Xi,
ρik<ρij

pik) + pij
∑

k∈Xi,
ρik>ρij

wk − pi′j
∑

k∈X
i′ (α(j)),

ρ
i′k>ρ

i′j

wk.

Proof. The case i′ = i is immediate. For i′ �= i, consider the cost of jobs belonging
player α(j) on machines i or i′ under x, which is,

wjC
��

j (x) +
∑

k∈((Xi(α)∪Xi′ (α))\{j}
wkC

��

k (x). (5)

Suppose that she moves j from machine i′ to i, then the total cost of the same
set of jobs is

∑

k∈((Xi(α)∪Xi′ (α))\{j}
wkC

��

k (x)− pi′j
∑

k∈Xi′ (α(j)),ρi′k>ρi′j

wk +

wj(pij +
∑

k∈Xi,
ρik<ρij

pik) + pij
∑

k∈Xi\J(α(j)),
ρik>ρij

wk + pij
∑

k∈Xi(α(j)),
ρik>ρij

wk. (6)

Here the second term is the saving of the cost for those jobs k ∈ α(j) on machine
i′ that have larger ratios ρi′k than ρi′j ; the third and fourth terms are the cost
of job j on machine i; and the fifth term is the increase of the cost of those jobs
k ∈ α(j) on machine i that have larger ratios ρik than ρij . As x is a WE, the
term (5) is upper bounded by (6). �
Lemma 5. C��(x) ≤ η(x∗) + 〈f, f∗〉 −

∑

i∈M

∑

j∈Xi

pij
∑

k∈Xi(α(j)),ρik>ρij

wk.

Proof. By Lemma 4 and summing over all jobs in J , we have that the total cost
under ��,

∑
j∈J wjC

��

j (x) is upper bounded by

η(x∗) +
∑

i∈M
(
∑

j∈X∗
i

wj

∑

k∈Xi,
ρik<ρij

pik+
∑

j∈X∗
i

pij
∑

k∈Xi,
ρik>ρij

wk −
∑

j∈Xi

pij
∑

k∈Xi(α(j)),
ρik>ρij

wk). (7)
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By Lemma 1 and the fact that x is pure, we have

〈fi, f∗
i 〉 =

∑

j∈X∗
i

∑

k∈Xi

wjwk min{ρij , ρik} =
∑

j∈X∗
i

(wj

∑

k∈Xi,
ρik≤ρij

pik + pij
∑

k∈Xi,
ρik>ρij

wk).

Summing over i ∈ M and subtracting the latter from (7)

C��(x)− 〈f , f ∗〉 ≤ η(x∗)−
∑

i∈M

∑

j∈Xi

pij
∑

k∈Xi(α(j)),ρik>ρij

wk. �

Theorem 2. Let φ be the golden ratio. Then C��(x) ≤ (1 + φ)C��(x∗).

Proof. Lemma 5 and Cauchy-Schwartz inequality imply that for β > 1/4

C��(x) ≤ η(x∗) + β||f ∗||2 + 1

4β
||f ||2 −

∑

i∈M

∑

j∈Xi

pij
∑

k∈Xi(α(j)),ρik>ρij

wk

≤ η(x∗) + β||f ∗||2 + 1

4β
||f ||2 − 1

4β

∑

i∈M

∑

j∈Xi

pij
∑

k∈Xi(α(j)),ρik>ρij

wk

≤ η(x∗) + 2βC��(x∗)− βη(x∗) +
1

4β
C��(x)

≤ (β + 1)C��(x∗) +
1

4β
C��(x),

where the third inequality follows from equation (3), from Proposition 1 and

from equation (4). By letting β = 1+
√
5

4 the result follows. �
As mentioned earlier, it turns out that �� is best possible. The proof of this

fact is deferred to the full version.

Theorem 3. The coordination ratio for weak equilibrium of any prompt mech-
anism is at least 1 + φ.

4 Final Remarks

We have proved that �� is the best possible nonpreemptive policy, and to beat its
coordination ratio we have used ��, a policy that, as opposed to ��, importantly
relies on who owns which job. We conjecture that if we restrict to policies that
ignore the ownership of the jobs the ratio of 4 cannot be improved. This is indeed
the case for nonpreemptive policies, and also for fully preemptive policies. Also,
for natural policies with this property such as �� or the RAND policy [12] the
technique in this paper only lead to larger bounds.

Our lower bound on general prompt seems to be the natural limit. Non-
prompt policies that are allowed to use global information can certainly beat
this as they can simply introduce very large delays for jobs that are not assigned
to it in an optimal schedule. By doing this, such policies can easily achieve low
coordination ratio (say optimal if they have unlimited computational power or
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3/2 if they use the best known approximation algorithms. It would be interesting
to explore what happens with this non-prompt policies when they can only use
local information.

Another interesting question refers to the quality of the actual NE of this
game. Of course our upper bounds applies to that equilibrium concept, and
furthermore we know that the coordination ratio of �� for NE is exactly 2.618
as in the single job case it coincides with �� [12]. However it may be possible
that another deterministic policy has a better coordination ratio for NE.

Finally, we note that by mimicking the analysis in [12] we obtain a similar
2+ε approximation algorithm for R| |∑wjCj , independent of which jobs belong
to which players. It is possible that by carefully choosing the game structure this
can be beaten.
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