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Abstract
Imagine a wooden plate with a set of non-overlapping geometric objects painted on it. How
many of them can a carpenter cut out using a panel saw making guillotine cuts, i.e., only moving
forward through the material along a straight line until it is split into two pieces? Already fifteen
years ago, Pach and Tardos investigated whether one can always cut out a constant fraction if
all objects are axis-parallel rectangles. However, even for the case of axis-parallel squares this
question is still open. In this paper, we answer the latter affirmatively. Our result is constructive
and holds even in a more general setting where the squares have weights and the goal is to
save as much weight as possible. We further show that when solving the more general question
for rectangles affirmatively with only axis-parallel cuts, this would yield a combinatorial O(1)-
approximation algorithm for the Maximum Independent Set of Rectangles problem, and would
thus solve a long-standing open problem. In practical applications, like the mentioned carpentry
and many other settings, we can usually place the items freely that we want to cut out, which
gives rise to the two-dimensional guillotine knapsack problem: Given a collection of axis-parallel
rectangles without presumed coordinates, our goal is to place as many of them as possible in
a square-shaped knapsack respecting the constraint that the placed objects can be separated
by a sequence of guillotine cuts. Our main result for this problem is a quasi-PTAS, assuming
the input data to be quasi-polynomially bounded integers. This factor matches the best known
(quasi-polynomial time) result for (non-guillotine) two-dimensional knapsack.
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2 On Guillotine Cutting Sequences

1 Introduction

Two-dimensional cutting stock problems arise naturally in industrial manufacturing. The
goal is to cut out a given set of geometric objects from a large piece of parent material such as
wood, metal, or glass. Guillotine cutting sequences play an important role in such processes.
Starting from the large piece, in each step such a sequence takes one of the available pieces
and cuts it along a straight line into two smaller pieces. Eventually, each of the input objects
corresponds to one of the resulting pieces. Using guillotine cuts is often required by the
available technology since more complex cutting patterns are often not possible.

Guillotine cuts motivate interesting basic problems in combinatorics, computational
geometry, and combinatorial optimization. For instance, Urrutia [16] asked the following
simple and yet intricate question: Given a set of pairwise non-overlapping compact convex
geometric objects in the plane, can we always separate a constant fraction of them using a
guillotine cutting sequence? Since the answer would be trivially no if cutting through objects
is forbidden, such cuts are allowed at the expense of losing partial objects completely. This
is equivalent to asking how many of them we can cut out using only guillotine cuts, i.e., each
piece must not contain more than one complete object at the end. Pach and Tardos [15]
investigated this question and showed that already for straight line segments this cannot
always be achieved. They give a family of instances with straight line segments yielding an
upper bound of O(nlog 2/ log 3) for the number of line segments that can be cut out using only
guillotine cuts. On the other hand, they show that we can indeed cut out a constant fraction
of the input objects if – loosely speaking – all input objects have roughly the same size.1
In this paper, we investigate the natural related question when the objects to be cut are
rectangles2 as we describe in the sequel.

1.1 Guillotine cuts for squares and rectangles
Even though Urrutia’s general conjecture about convex objects was refuted, Pach and
Tardos [15] wrote that “it seems plausible” that the question can be answered in the
affirmative if the input objects are axis-parallel rectangles. They provided a cut sequence
that saves Ω(n/ logn) rectangles, and stated that they “were unable to verify [a bound of
Ω(n)] even for axis-parallel squares”.

In our first result in this paper, we answer the latter open question by giving a guillotine
cutting sequence that recovers an 1/81-fraction of any set of axis-parallel squares. We first
clean up the instance by placing a hierarchical grid with a random offset and delete some
of the squares according to it (a standard step, see e.g., [7]). Then, we show that in each
iteration of the cutting sequence we can find a cut that intersects at most O(1) of the
remaining squares while there is at least one surviving square on either side of the cut. By
viewing this sequence as a binary tree, we can elegantly charge the number of the intersected
squares to the number of surviving squares in the leaves.

Furthermore, we extend the previous result to the weighted case of the problem in which
each square i has a weight wi associated to it. As usual in combinatorial optimization,
the weight of each object is a measure for its importance and we are looking for a cutting
sequence that cuts out squares whose total weight is at least a constant fraction of the total
weight of the input squares. As our above techniques do not carry over to this case, we give

1 For a precise statement see Pach and Tardos [15].
2 In this paper all rectangles considered are axis-parallel and open: a line going through a boundary side

of such a rectangle does not destroy it.
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a new algorithm that is based on a suitable conflict graph with one vertex for each input
square. The graph has the important property that any independent set corresponds to
a set of squares that can be cut out completely without any further loss. Even more, we
show that we can color the vertices with at most 9 colors and thus there is an independent
set corresponding to a 1/9-fraction of the entire weight of the input squares. Furthermore,
our reasoning here directly extends to hypercubes in arbitrary dimensions. Thus, we can
recover a 4/729-fraction of the weight of the squares in the two-dimensional plane, and a
1/2O(d)-fraction in d dimensions.

I Theorem 1 (informal). For axis-parallel squares there is always a guillotine cutting sequence
that recovers a 1/81-fraction in the unweighted case, a 4/729-fraction in the weighted case,
and a 1/2O(d)-fraction in the weighted case in d dimensions.

An interesting aspect of our algorithms is that they only require axis-parallel cuts as
opposed to the original question posed by Urrutia [16] (and investigated by Pach and
Tardos [15]) where in principle also diagonal ones are allowed. Restricted to axis-parallel cuts
we prove that for unit squares there are instances in which any cutting sequence can recover
at most a 1/2-fraction of the squares (See Section 3 and Figure 3). Interestingly, although
this is the strongest negative result we can obtain, we can easily show an algorithm finding a
cutting sequence recovering 1/2-fraction of any set of unit squares, or more generally, for
rectangles of equal height or width (see Section 2.3).

1.2 Connection to Independent Set of Rectangles
Inspired by the previous comment, we formulate a conjecture which is slightly stronger than
the question investigated by Pach and Tardos [15].

I Conjecture 1.1. For any set of n non-overlapping axis-parallel rectangles there is a guillotine
cutting sequence with only axis-parallel cuts separating Ω(n) of them.

If the conjecture was true this would have exciting consequences for the notoriously hard
Maximum Independent Set of Rectangles (MISR) problem. Given a set of possibly overlapping
axis-parallel rectangles, we want to compute a non-overlapping subset of maximum size.
Finding a polynomial time O(1)-approximation algorithm for this problem is an important
open problem (see e.g, [1, 7, 4, 5] and references therein.) We show that there is a simple
dynamic program that computes the largest subset of the given rectangles that can be cut out
completely using only guillotine cuts. Now, the conjecture implies that an Ω(1)-fraction of
the optimal solution of a MISR-instance can be cut out using guillotine cuts. Assuming this,
we show that a simple dynamic programming (DP) algorithm yields an elegant combinatorial
O(1)-approximation for MISR (see Section 4).

I Theorem 2. If Conjecture 1.1 is true, then there is a O(1)-approximation algorithm for
MISR with running time O(n5).

1.3 Two-dimensional guillotine knapsack
The final contribution of this work concerns the two-dimensional guillotine knapsack problem.
In this problem we are given a set of rectangles and a square-shaped knapsack3, modeling a

3 While with our techniques we can also handle the case of a rectangular knapsack, in this extended
abstract for simplicity we assume the knapsack to be a square.
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4 On Guillotine Cutting Sequences

piece of parent material. We are interested in a placement of as many rectangles as possible
in the knapsack so that there is a guillotine cutting sequence extracting them.

The two-dimensional geometric knapsack problem, without taking into account the guillo-
tine cut constraint, is well-studied in the literature. For squares, a (5/4 + ε)-approximation is
presented by Harren [10], which was subsequently improved to a PTAS by Jansen and Solis-
Oba [12]. The best known polynomial time result for rectangles is a (2 + ε)-approximation
result due to Jansen and Zhang [14]. The same authors presented a faster and simpler
(2 + ε)-approximation for the unweighted case [13]. Recently, Adamaszek and Wiese pre-
sented a quasi-PTAS for rectangles that assumes the input data to be polynomially bounded
integers [2]. For rectangles, there are (1 + ε)-approximation algorithms known if we are
allowed to increase the size of the knapsack by a factor of 1 + ε in both dimensions [9], or
even only in one [11]. Also, there is a PTAS if the profit of each item equals its area [3].

It is worth noting that many of the known results for this problem can be easily adjusted
to take the guillotine cut constraint into account. However, this is not the case for the result
giving the best known approximation factor for the problem: the recent (1+ε)-approximation
with quasi-polynomial running time (QPTAS) [2]. The algorithm is based on partitioning the
placement area into (logn)O(1) rectangular boxes such that there is a near-optimal solution
in which – informally speaking – each box contains either only one big item, or high and
narrow items, or wide and thin items. Then, the objects are assigned to the boxes via linear
programming. This algorithm does not directly extend to the setting of guillotine cutting
sequences. First, the mentioned near-optimal solution might not allow a guillotine cutting
sequence (even if it is constructed based on such a solution) and second, the LP-rounding
procedure does not necessarily produce such solutions either. We overcome these problems
by showing that at additional (marginal) cost, we can construct a near-optimal solution in
which essentially the mentioned boxes can be cut out using guillotine cuts. Then, we replace
the LP-approach by a dynamic program. For this to work, we carefully round the items
such that after rounding there are only (logn)O(1) many different types of items and our DP
guesses the correct guillotine cuts step by step, together with the distribution of the items
on either side of the cut. In summary, our result is the following.

I Theorem 3. There is a quasi-PTAS for the unweighted two-dimensional guillotine knapsack
problem if all input data are quasi-polynomially bounded integers. This holds with and without
the possibility to rotate items by 90 degrees.

2 Guillotine cutting sequences for squares

In this section, we give guillotine cutting sequences recovering a constant fraction of a set of
non-overlapping axis-parallel squares 4 of arbitrary sizes. Our results generalize to higher
dimensions. First, we give some basic terminologies. In Section 2.1, we present a cutting
sequence for unweighted squares, and then in Section 2.2, we prove the result for the weighted
case.

Let P be a piece, i.e., a rectangle in the plane, and let H1 and H2 be the two open
disjoint half-planes bounded by a straight line `. Cutting P along ` gives us two sub-pieces
P1 = P ∩H1 and P2 = P ∩H2. A cutting strategy is represented by a binary tree T where
each non-leaf node v ∈ V (T ) is equipped with a piece Pv and a straight line `v such that
cutting Pv along the straight line `v gives us Pv1 and Pv2 , where v1, v2 are the children of v.

4 In this section, we henceforth implicitly assume all squares to be axis-parallel.
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Let O be a set of objects. We say that the cutting strategy T separates O if the following
statements hold

The piece Pr associated with the root node r is a rectangle containing all objects in O.
For each non-leaf node v, the straight line `v intersects no object inside Pv.
For each leaf node v, the piece Pv contains only one object in O.

We also say that O is guillotine separable if there is a cutting strategy T separating O. In
the rest of this section, we focus on the case when our input objects are squares of arbitrary
sizes. Let R denote the input set of squares.

Grid Lemma. One of the components in our proof is a collection of (multi-level) grid lines
drawn on the plane in a “nice” way. These grid lines will be used to suggest our cut sequence,
i.e., most of the straight lines in the strategy coincides with one of these grid lines. 5 We
draw grid lines of various granularities and remove squares from R according to the grid lines,
so that the remaining squares admit a guillotine cutting sequence. We say that a square
R ∈ R is at level-i if its side length is in the interval (N/2i+1, N/2i], where N ∈ N is used
for normalization so that level-0 contains the largest squares.

In a first step, we independently pick two random numbers x, y ∈ [0, N) defining a random
shift to draw the grid. For each i (i.e. level), the vertical grid lines at level-i are drawn at
x, x+N/2i, x+2 ·N/2i, . . . (wrapping up appropriately); similarly, the horizontal grid lines at
level-i are drawn at y, y+N/2i, y+2 ·N/2i . . .. Grid cells bounded by consecutive grid lines at
level i− 1 are said to be at level-i, so level-i grid cells are squares of size (2N/2i)-by-(2N/2i).
Note that the higher the level the more fine grained the grid is. A square R ∈ R is removed
from this step if it intersects with grid lines at levels below it, i.e. if R is in level-i, then it is
removed if it intersects a line at levels i− 1, . . . , 0. Let R1 be the set of squares that are not
removed from this step.
I Claim 2.1. A level-i square R ∈ R of side length `R ∈ (N/2i+1, N/2i] remains in R1 with
probability (1− µR)2 ≥ 1/4, where µR = `R2i−1/N .

Proof. The probability that a horizontal grid line at level i−1 intersects R is µR = `R2i−1/N

(because of the random shift). Notice that µR is between 1/4 and 1/2. Now, since the
shifts x, y are chosen independently, the probability that the square R survives in R1 is
(1− µR)2 ≥ 1/4. J

In a second step, we further sample R1 to obtain R2, where each square is sampled
with relatively large probability. Now we consider each grid cell C at level-i that contains a
subset of squares RC1 at level-i. Cell C may contain up to 9 squares, so if we are not careful,
we might end up paying an extra factor of 9 (giving 1/36 marginal only). So, we define a
distribution on RC1 where exactly one square R in RC1 is kept, and R is kept with probability

1
(1− µR)2 ·MC

, for MC =
∑
S∈RC1

1
(1− µS)2 .

Let R2 be the set of squares remaining after this process. We analyze the probability that a
level-i square R remains in R2. This can be broken down into:

Pr [R ∈ R1] ·Pr [R ∈ R2 | R ∈ R1] = (1− µR)2 ·
(

1
(1− µR)2MC

)
= 1/MC .

5 We may deviate from this strategy when considering subsets with a constant number of squares.

APPROX/RANDOM’15



6 On Guillotine Cutting Sequences

I Claim 2.2. MC ≤ 81/4.

Proof. Each square R ∈ RC1 satisfies µR ∈ (1/4, 1/2], and has side length `R strictly larger
than 1/4 of the side length of C. This implies |RC1 | ≤ 9. Furthermore, R consumes a
µ2
R-fraction of the area of C, and

∑
R∈RC1

µ2
R ≤ 1 must be satisfied. We argue below thatMC

is maximized when |RC1 | = 9 and µR = 1/3 for each square R ∈ RC1 , i.e., when RC1 is a set of
9 equal squares of area 1/9 of that of C. This gives MC ≤ 9 · (1− 1/3)−2 = 9 · (9/4) = 81/4.

We ignore the geometry of the squares and focus only on the values of µR that satisfy
the following:

max
∑
R∈RC1

1
(1− µR)2

s.t.
∑
R∈RC1

µ2
R ≤ 1, |RC1 | ≤ 9, µR ∈ (1/4, 1/2].

Let q be an integer in {1, . . . , 9}. Notice that for a fixed choice of |RC1 | = q, the objective
function is maximized when the values of µR are “balanced”: One can check that if there
are two values µR 6= µR′ , then we could have averaged these values to µ′R = µ′R′ =√

(µ2
R + µ2

R′)/2; the new choices of µ′R and µ′R′ still satisfy all constraints while increasing the
objective. Because 1/4 < µR ≤ 1/2, the objective values cannot exceed q

(1−1/2)2 ≤ 20 < 81/4
for q ≤ 5. Moreover, for a fixed q ∈ {6, . . . , 9}, the objective is optimized by setting µR such
that q · µ2

R = 1, i.e., µR = 1/√q. An enumeration of the corresponding objective values
reveals the maximum of 81/4 for q = 9, which proves the claim. J

Notice that in the random subset R2 ⊆ R, each square at level-i is not intersected by
grid lines at levels i − 1, . . . , 0, and each level-i grid cell has at most one square in level-i.
Then, using claims 2.1 and 2.2, we can state the main result of this section:

I Lemma 4. There exists a distribution D : 2R → [0, 1] such that each subset R′ in its
support admits a grid drawing, with some shift, satisfying the following properties:

Each square at level-i is not intersected by grid lines at levels i− 1, . . . , 0.
Each level-i grid cell has at most one square in level-i.

Moreover, each square R ∈ R appears in a randomly drawn subset with probability at least
ε1 = 4/81, i.e., PrR′∼D [R ∈ R′] ≥ ε1.

2.1 Unweighted case
Before we treat the more general weighted case, we first show how to save a linear number of
squares using guillotine cuts. The approach of this section is not subsumed by the one from
Section 2.2, as it yields a better constant than applying the latter with uniform weights. The
high-level idea comes from the observation that the number of leaves in a proper binary tree
is at least half the number of nodes. Thus, bounding the number of squares that are cut in
each node yields a lower bound on the number of square that are saved.

I Definition 5. We call a line a k-good separator, if it intersects at most k squares and each
side contains at least one square completely. We call a binary tree of a cutting strategy
k-good, if each internal node has a k-good separator.

I Lemma 6. If an instance admits a k-good tree, then there is a guillotine sequence such
that n/(k + 1) squares survive.
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S10

S9

S7 S8
S6

S5

S4

S3

S2
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`1

`2 `3 `4 `5

h

Figure 1 Arising cases in the proof of Lemma 7.

Proof. Observe that the number of surviving squares is equal to the number of leaves, say
s, in the k-good tree. Let t be the number of nodes in this tree. The instance contains
one square for each leaf and at most k squares for each internal node. Thus, we obtain
n ≤ s+ k · (t− s) = s+ k · (s− 1) ≤ (k+ 1) · s, since t = 2s− 1 for a proper binary tree. J

I Lemma 7. There is a guillotine sequence with a 3-good tree for any subset in the support
of a distribution according to Lemma 4.

Proof. We iteratively define the cut sequence that gives us a 3-good tree. Starting from
the piece P0 that contains every square, we show that, given a piece P ′, a 3-good separator
for P ′ exists. Now we describe the existence proof of the separator. There are two cases to
consider. First, if P ′ contains at least 10 squares, consider the squares in P ′ as a sequence
S1, S2, . . . ordered by non-increasing side lengths. Let i be the level of S10. We consider the
grid cell of level i containing S10. Observe (see left of Figure 1 for an illustration) that the
edges of that cell can be covered by at most eight squares because these squares must be
at lower levels than i and the distance between two adjacent corners of the cell, which is
2N/2i, is not wide enough to contain two squares of lower levels, which have side lengths of
at least N/2i, in its interior. Thus, one of the four grid lines defining the cell separates S10
from some other square while intersecting at most three. Since we choose a separator by the
grid line at the level of S10, this line cannot intersect any square in {S11, S12, . . .}.

Let us now consider the other case when P ′ contains at most 9 squares. In this case, we
would choose a separator that does not necessarily correspond to a grid line. We order the
squares S1, . . . , S9 by non-increasing y-coordinates of the bottom boundaries. Consider a
horizontal line `1 that coincides with the bottom boundary of S5, so `1 cannot “stab” any
square in {S1, . . . , S5}. If `1 stabs at most 3 squares in {S6, S7, S8, S9}, we would be done,
`1 is our separator. Otherwise, `1 must stab all four squares and shares the border with S5.

There are (at least) 4 combinatorially different vertical lines that separate squares in
{S5, . . . , S9} without intersecting them. By “combinatorially different” we mean that they
do not separate the squares in the exact same way. Denote by L a set of four such vertical
lines. If there is a vertical line `′ ∈ L that intersects at most 3 squares in {S1, . . . , S4}, we

APPROX/RANDOM’15



8 On Guillotine Cutting Sequences

would be done, as we can use `′ as our separator. Otherwise, each of these four lines stabs
four squares in {S1, . . . , S4}, and in this case, we can use the horizontal line h that coincides
with the bottom boundary of S1 as our separator; this line cannot overlap with any square in
{S1, . . . , S4}, and it can only overlaps with at most two of the squares in {S5, . . . , S9}. J

I Theorem 8. There is always a cutting strategy for a 1
81 -fraction of squares.

Proof. We first apply the construction of Lemma 4. This guarantees the existence of a
3-good tree due to Lemma 7. This implies with Lemma 6 that a fraction of 4

81 ·
1
4 = 1

81 of
the given squares can be separated by guillotine cuts. J

2.2 Weighted case
In this setting, we are additionally given a weight function w : O → R≥0, and we want a
cutting strategy separating a subset with the largest possible weight. We restate this question
in an equivalent form with the following notion. An ε-guillotine sampling for objects O is
a distribution D : 2O → [0, 1] such that any object r ∈ O is sampled by D with probability
at least ε, i.e., PrO′∼D [r ∈ O′] ≥ ε, and each subset O′ in the support of D is guillotine
separable.

I Lemma 9. For any set of objects O, the following are equivalent: (i) there is an ε-guillotine
sampling for O and (ii) for any weight function w : O → R≥0, there is a subset O′ ⊆ O that
is guillotine separable and w(O′) ≥ ε · w(O).

Proof. The forward implication is easy to see. Suppose we have an ε-guillotine sampling D
for O. Let w : O → R≥0 be a weight function. We pick a random set O′ according to the
distribution D. Then, we have

E [w(O′)] =
∑
r∈O

w(r) ·Pr [r ∈ O′] ≥ ε · w(O).

This shows the existence of such a subset. For the backward implication, the proof is by LP
duality. Let FO be the set of all guillotine separable subsets of O. We write the following
linear program that reflects the best ε guillotine sampling:

(LP) max γ

s.t. γ ≤
∑

O′∈FO:r∈O′

pO′ for all object r ∈ O,

∑
O′∈FO

pO′ = 1,

pO′ ≥ 0 for all O′.

The dual of the above LP can be written as:

(LP’) min β

s.t. β ≥
∑
r∈O′

wr for all O′ ∈ FO,∑
r∈O

wr = 1,

wr ≥ 0 for all object r ∈ O.

Now, suppose that we can find a guillotine separable subset for any weight function w. This
means that (LP’) cannot be feasible for any (w, β) if β < ε, so the optimal value of (LP’) is at
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least ε. By duality, the optimal solution for (LP) gives us the distribution that is ε-guillotine
sampling for O. J

Lemma 9 allows us to focus on finding ε-guillotine samplings instead (this is an unweighted
question). In what follows, we present such a sampling for any input set R of squares. We
start by invoking Lemma 4 to find a distribution D′ for R. Consider each subset R′ in the
support of D′ together with its grid drawing G′. We will show that each such subset R′
can be further partitioned into 9 guillotine separable subsets, which will imply the following
theorem:

I Theorem 10. Any set of squares R is ε-guillotine samplable for ε = 4/729.

For each square R at level-i, let cell(R) be the level-i cell containing R. We say that two
squares R and S are conflicting if either R overlaps the boundary of cell(S) or S overlaps the
boundary of cell(R). Observe that any pair of conflicting squares belong to different levels
and if R overlaps the boundary of cell(S), then the level of R is smaller than that of S.

We define a conflict graph that encodes the conflict structures between squares. Let H
be the graph such that the vertex set V (H) corresponds to the squares in R′, and there is
an edge between squares R and S if and only if R and S are conflicting. The following two
lemmas complete the proof.

I Lemma 11. The graph H is 9-colorable.

Proof. We prove this by induction on the number of vertices. The base case when |V (H)| = 1
is obvious. Now, consider any graph H with at least two vertices, and any square R ∈ V (H)
whose size is minimum among the squares in V (H). Let ` be the side length of cell(R).
Consider the set NH(R) ⊂ V (H) of the squares S defining an edge with R. It can only
be that each square S in NH(R) is at the level below of that of R; so the lengths of these
squares are strictly greater than `/2. We claim that |NH(R)| ≤ 8: There can be at most 4
squares in NH(R) that contain some corner of cell(R), and for each side of cell(R), there can
be at most one square in NH(R) overlapping it and without containing a corner of cell(R).
By the induction hypothesis, the graph obtained from H by removing the vertex R can be
colored with 9 colors. Since the degree of R is at most 8, we can always assign a color to R,
distinct from the colors of its neighbors NH(R). J

I Lemma 12. Let I ⊆ V (H) be an independent set. The squares {R}R∈I are guillotine
separable.

Proof. We prove this by iteratively defining the cutting strategy. Our cut sequence always
cuts along grid lines, and any piece P produced in this process satisfies the following property:
P contains at most one square, or, otherwise, let RP be the set of squares inside P and `
the level of the second largest square in RP . Then, the sides of P are aligned with grid lines
of levels at most `.

Initially, let P0 be the single piece that contains all squares, so the above properties are
satisfied: One can assume that P0 is bounded by four grid lines at level-0. Now, if every
piece contains at most one square, then we are done. Otherwise, consider a piece P ′ with
more than one square in RP ′ . Let R and R′ be the largest and second largest squares in
RP ′ , respectively.

There are two cases. See Figure 2 for reference. First, if R and R′ belong to the same
level `, then we simply cut along any level-(`− 1) line L that separates the grid cells cell(R)
and cell(R′). Line L cannot intersect any square in RP ′ : By Lemma 4, these squares are
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L

R

R′ L

R

R′

Q

Figure 2 An illustration of the proof of Lemma 12. The figure on the left shows the case when
the levels of R and R′ are the same, and the right figure shows the other case when their levels are
different.

at level at least `, and cannot be intersected by level-(`− 1) grid lines. Otherwise, suppose
R and R′ belong to different levels ` < `′, respectively. Let Q be the union of level-`′ grid
cells that overlap with square R. Notice that Q is a rectangle, and R′ cannot be inside
Q; otherwise, R would have intersected the boundaries of cell(R′), contradicting the fact
that they are not conflicting. This implies that Q and cell(R′) are disjoint. Let L be any
level-(`′ − 1) grid line that goes through a side of Q and separates Q from cell(R′). Again,
L cannot intersect any square in RP ′ (since squares in RP ′ are only at levels `′, `′ + 1, . . .),
and it separates R from R′ in a way that maintains the properties. J

2.3 A cutting strategy for rectangles of the same width/height
Let R be a set of weighted rectangles of the same width or height . In this section, we prove
the following lemma:

I Lemma 13. There is a polynomial time algorithm to find a guillotine strategy that separates
a set of rectangles of R with at least 1/2-fraction of its weight.

Proof. Without loss of generality, we can assume that the rectangles in R have unit width.
For every x ∈ [0, 1], consider the set Lx of vertical lines at coordinates {x+2k : k ∈ {0, . . . , N}.
Let Rx be the set of rectangles in R obtained by removing all rectangles intersecting a line
in Lx, and all rectangles whose right side is contained in a line of Lx.

It is easy to see that Rx is guillotine separable. Indeed, we can first cut through all the
lines in Lx to obtain a collection of vertical slabs of width 2 (In fact, we do not need to cut
through all the O(N) lines, since this could be non-polynomial in the number of rectangles.
Precisely, we do not cut through the lines separating slabs without rectangles in Rx). The
rectangles in Rx of each vertical slab can then be separated using horizontal cuts. This is
always possible, since the width of the slab does not allow two unit width rectangles side by
side (recall that we remove the ones whose right side is aligned with a line in Lx).

Observe that if we choose x uniformly at random from [0, 1], then every given rectangle
R ∈ R belongs to Rx with probability 1/2. This means that there is a value x for which Rx
contains at least 1/2 of the total weight of R. In fact, this value can be found deterministically
by standard techniques (the number of values of x with different sets Rx is linear in the
number of rectangles). This concludes the proof of the lemma. J
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2.4 Guillotine Cuts for d-Dimensional Boxes
By extending the ideas of this section, we can to get a 1/2O(d)-guillotine sampling for any
set of d-dimensional cubes of arbitrary sizes. We first need to generalize the notion of
guillotine cuts to higher dimensions. We say that a hyperplane is a canonical hyperplane if it
is orthogonal to a vector in the standard basis, i.e. those hyperplanes illustrated by xi = a

for i ∈ {1, . . . , d} and a ∈ R would be canonical. When we say a piece P ⊆ Rd, we mean
the region that are bounded by 2d canonical hyperplanes, i.e. P can be represented by the
intersection of 2d halfspaces and corresponds to

⋂d
i=1 {x : (ai ≤ xi ≤ bi)}.

Cutting a piece P along a canonical hyperplane h gives us two sub-pieces. A cutting
strategy is represented by a binary tree T where each non-leaf node v ∈ V (T ) is equipped
with a piece Pv and a hyperplane hv such that cutting Pv along hv gives us Pv1 and Pv2

where v1 and v2 are the children of v. We say that a set of objects O is guillotine separable
if there is a cutting strategy T for O such that:

The piece Pr associated with the root node contains all objects in O.
For each non-leaf node v, the canonical hyperplane hv intersects no object inside Pv.
For each leaf node v, the piece Pv contains only one object in O.

To handle the weighted case, we can define a similar concept of guillotine sampling for
objects. We prove the following theorem:

I Theorem 14. There is an ε-guillotine sampling for any set of cubes of arbitrary sizes, for
ε = 1/2O(d).

The rest of this section is spent on proving this theorem. The proof follows the same line
of ideas used in the case of two dimensions. There are two steps. In the first step, we define
the “high-dimensional grid” that will be used to suggest how the hyperplane will be selected.
In the second step, we define the conflict graph that is shown to be 2O(d) colorable.

Let R be a set of input cubes of arbitrary sizes. We say that a cube r ∈ R is at level-i if
its edge length is in (N/2i+1, N/2i]. We define special hyperplanes of various granularities.
For each integer i, for each axis xj , the special hyperplanes of type-j are drawn so that
consecutive hyperplanes are N/2i apart in distance (i.e. one can think of special hyperplanes
of type-j as those corresponding to xj = kN/2i for all integers k). The level-i grid cells are
those regions that are bounded by consecutive special hyperplanes from level-(i− 1). The
following lemma encapsulates the first step:

I Lemma 15. There exists a distribution D : 2R → [0, 1] such that each subset R′ in its
support admits a drawing of special hyperplanes with the following properties:

Each cube at level-i is not intersected by hyperplanes at levels i− 1, . . . , 0.
Each level-i grid cell has at most one cube in level-i.

Moreover, each cube r ∈ R appears in a randomly drawn subset with probability at least
ε1 = 1/23d.

Proof. For each dimension j, we pick a random shift sj and draw level-i special hyperplanes
at sj +N/2i, sj + 2×N/2i, and so on. The probability that each level-i cube r ∈ R of edge
length `r is intersected by special hyperplanes of type-(i−1) is exactly (1−`r2i−1/N)d ≥ 1/2d
since `r ≤ N/2i. This is the probability that each cube remains after placing the special
hyperplanes.

Now, inside each cell, there can be more than one cube, and in such a case, we randomly
select one of them to keep. This ensures that each cube that survives the first phase remains
with probability at least 1/22d because there can be at most 22d cubes inside each cell (just
because of the volume). This implies the lemma. J

APPROX/RANDOM’15
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Next, we consider a subset R′ in the support of the distribution given by the above
lemma. For each level-i cube r ∈ R, we define cell(r) as the level-i grid cell that contains r.
We say that two cubes r and r′ are conflicting if either r overlaps the boundary of cell(r′) or
r′ overlaps the boundary of cell(r).

We define the conflict graph H such that the vertex set V (H) corresponds to the cubes
in R′, and there is an edge between r and r′ if and only if r and r′ are conflicting. The
following two lemmas finish the proof.

I Lemma 16. The graph H is 2O(d) colorable.

Proof. We prove this by induction on the number of vertices. The base case, when |V (H)| = 1,
is obvious. Now consider any graph H with at least two vertices, and a cube r ∈ V (H) whose
size is minimum among the cubes in V (H). Notice that cell(r) has 2d bounding hyperplanes.

Now, consider the neighborhood NH(r) ⊂ V (H) of r. There can be at most 2d elements
of NH(r) that contain some corner of cell(r). We then count those that do not contain any
corner. Each cube r′ ∈ NH(r) must be at the level below of that of r, so the overlapping
volume of the intersection between r′ and the bounding hyperplane of cell(r) must be at
least 1/4d fraction of the total surface volume of such bounding hyperplane. Then, each such
hyperplane supports at most 4d cubes in NH(r), and since there are 2d bounding hyperplanes
in total, we have 2d4d cubes that do not intersect any corner of cell(r).

This implies that |NH(r)| ≤ 2d4d + 2d ≤ 2d23d = 2O(d). By induction hypothesis, we are
done: We can inductively color the graph resulting from removing the vertex r from H, and
since there are only 2O(d) neighbors of r, we can assign a distinct color to r. J

Finally, the following lemma can be proved similarly to the 2-dimensional case.

I Lemma 17. Let I be an independent set of H. Then I is guillotine separable.

Proof. We argue that we can iteratively define a sequence of cuts that separate all cubes.
Let P ′ be a piece that currently contains at least 2 cubes. Let R and R′ be the largest
and second largest cubes contained in P ′, respectively. If they are from the same level, we
would be done: Pick any special hyperplane that separates the two cells cell(R) and cell(R′).
Otherwise, if R and R′ are from levels ` < `′, respectively, we define Q as the union of
level-`′ cells that overlap with R. Notice that R′ cannot be inside Q; otherwise, this would
have contradicted the fact that they are independent in H. Now, we can pick any special
hyperplane that separates Q from R′. J

3 Negative result for unit squares

In this section, we give a sequence of instances Wn for which no guillotine strategy separates
more than a fraction of 1

2 + o(1). All these instances are formed by unit squares.
Given positive integers a, and b, the brick wall W (a, b) = {S(i, j) : 1 ≤ i ≤ a, 1 ≤ j ≤

b} is the set of unit squares such that the lower left corner of S(i, j) is at coordinates
i · (1, δ) + j · (−δ, 1) = (i− jδ, j + iδ), where δ is an arbitrarily small positive constant (say,
smaller than 1/(ab)). For example, Figure 3 shows W (5, 4). Let Wn = W (n, n).

I Lemma 18. The number of squares of Wn that can be separated by a guillotine strategy is
at most

⌈
n2+2n−2

2

⌉
≤ n2

2 + n.

In fact, we prove a more general version of Lemma 18. Define a subwall of a brick wall
W (a, b) as the subset of squares of W (a, b) contained inside a given rectangle. For example,
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S(1, 1)

S(1, 2)

S(1, 3)

S(1, 4)

S(2, 1)

S(2, 2)

S(2, 3)

S(2, 4)

S(3, 1)

S(3, 2)

S(3, 3)

S(3, 4)

S(4, 1)

S(4, 2)

S(4, 3)

S(4, 4)

S(5, 1)

S(5, 2)

S(5, 3)

S(5, 4)

Figure 3 The grid wall W (5, 4).

S(1, 1)

S(1, 2)

S(1, 3)

S(1, 4)

S(2, 1)

S(2, 2)

S(2, 3)

S(2, 4)

S(3, 1)

S(3, 2)

S(3, 3)

S(3, 4)

S(4, 1)

S(4, 2)

S(4, 3)

S(4, 4)

S′(1, 1)

S′(1, 2)

S′(1, 3)

S′(1, 4)

S′(2, 1)

S′(2, 2)

S′(2, 3)

S′(2, 4)

S′(3, 1)

S′(3, 2)

S′(3, 3)

S′(3, 4)

S′(4, 1)

S′(4, 2)

S′(4, 3)

S′(4, 4)

Figure 4 A subwall q of W (4, 4). On the right, the corresponding squares of q in the standard
unit grid. The region has an area of 7 and a perimeter of 14.

in Figure 4 (left) the set {S(2, 1), S(3, 1), S(1, 2), S(2, 2), S(3, 2), S(4, 2), S(2, 3)} is a subwall
of W (4, 4). It is easier to note the subwall in the “standard” square grid, as shown in Figure 4
(right). Define the area A(q) of a subwall q as the number of squares it contains, and the
perimeter P (q) as the number of edges (i.e. sides of squares) such that only one of its incident
squares is in q. The previous concepts coincide with the actual geometric area and perimeter
of the union of the corresponding squares in a standard square grid. Let also S(q) denote
the maximum number of squares that can be separated using a guillotine cutting sequence.

I Lemma 19. For any subwall q,

S(q) ≤
⌈

2A(q) + P (q)− 4
4

⌉
.

Proof. The proof is by induction on A(q). When A(q) = 1, S(q) = 1 and d 2A(q)+P (q)−4
4 e =

d 2+4−4
4 e = 1, so assume that A(q) ≥ 2. Consider the first guillotine cut of an optimal cutting

sequence for q (the one achieving S(q)). Without loss of generality, assume it is an horizontal
cut. This cut divides q into two subwalls q1 and q2, both with at least one complete square
inside. Let r be the number of squares cut in this first iteration. See Figure 5 for reference,
where the cut squares are shown in black. It is easy to see that:

A(q) = A(q1) +A(q2) + r,

and

P (q1) + P (q2)− 2(r + 1) ≤ P (q) ≤ P (q1) + P (q2)− 2r.
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Figure 5 An horizontal guillotine cut.

Note that P (q) attains the lower bound if the horizontal cut goes exactly through a
square edge (like in Figure 5). Otherwise, an extra square is destroyed and P (q) attains the
upper bound. Using the previous observation we have that

S(q) = S(q1) + S(q2) (by optimality)

≤
⌈

2A(q1) + P (q1)− 4
4

⌉
+
⌈

2A(q1) + P (q1)− 4
4

⌉
(inductive step)

≤
⌈

(2A(q1) + 2A(q2)) + (P (q1) + P (q2))− 6
4

⌉
(?)

≤
⌈

(2A(q)− 2r) + (P (q) + 2r + 2)− 6
4

⌉
=
⌈

2A(q) + P (q)− 4
4

⌉
.

To conclude the proof we need to check the validity of inequality (?). Note first that the
perimeter of any subwall is always even (because it can be computed as the length of a closed
path on the integer grid). Using this we only need to prove, for every pair of even integers x
and y, that

dx/4e+ dy/4e ≤ d(x+ y + 2)/4e,

or equivalently, for every pair of integers a and b, that

da/2e+ db/2e ≤ d(a+ b+ 1)/2e.

This is direct: if both a and b are even, then the left hand side (LHS) is (a+ b)/2 and the
right hand side (RHS) is (a+ b)/2 + 1. If only one of them is even, then both the LHS and
the RHS are equal to (a+ b+ 1)/2. If both numbers are odd, then both the LHS and RHS
are equal to (a+ b+ 2)/2. J

Lemma 18 follows immediately from Lemma 19.

4 Proof of Theorem 2

We assume that Conjecture 1.1 is true, and present an O(1)-approximation algorithm for
MISR. In our reasoning here, we assume that the given rectangles are open sets. Suppose we
are given a set of axis-parallel rectangles R. Since we consider the cardinality case in MISR,
we can assume w.l.o.g. that the input does not contain any two rectangles R,R′ such that
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R ⊆ R′. The algorithm is essentially the algorithm GEO-DP from [1], when parametrized
by k = 4. First, we can assume w.l.o.g. that all rectangles in R have integer coordinates in
the range {0, ..., 2n}. This can be achieved easily by suitable stretching of the instance. Our
algorithm is a dynamic program (DP) with a cell for every open rectangle P ⊆ [0, 2n]× [0, 2n]
whose corners have integer coordinates. Note that there are O(n4) many of them. Each of
these cells represents the problem of selecting the optimal Independent Set that consists only
of rectangles that lie completely within P , i.e., rectangles R with R ⊆ P . Intuitively, the DP
stores a near-optimal solution to this subproblem in the respective cell.

When computing the entry for such a cell, representing a rectangle P , the DP does
the following procedure. In the case where the rectangle P does not (completely) contain
any input rectangle, we define the empty set to be the solution corresponding to the cell.
Also, in the case where P coincides with an input rectangle R, i.e. P = R, then from our
assumption above we know that there is no rectangle R′ with R 6= R′ such that R′ ⊆ P and
therefore, we define {R} to be the solution corresponding to the cell. Otherwise, it tries all
possibilities of dividing P into two smaller pieces using a horizontal or vertical guillotine cut
such that the horizontal/vertical coordinate of this cut is an integer (since the rectangles
have integral coordinates we can safely restrict ourselves to those). Consider one such cut
and let P1 6= ∅ 6= P2 denote the resulting pieces. The DP looks up the solutions for the cells
representing P1 and P2 and combines them to a solution for P . It selects the cut yielding the
optimal total profit from the resulting two subproblems. Since there are O(n) possible cuts
for each rectangle P , it takes O(n) time to compute the solution for a given cell. Finally,
we output the solution that the DP computes for the cell corresponding to the rectangle
[0, 2n]× [0, 2n]. Since there are O(n4) cells in total, we obtain a total running time of O(n5).

To analyze this algorithm, we first show that it finds the largest subset of the input
rectangles that is guillotine separable. This can be easily shown by induction over the cells,
i.e., for each cell the algorithm computes a solution that is at least as profitable as the
best guillotine separable solution consisting only of rectangles completely contained in the
rectangle that the cell represents.

I Lemma 20. Let R′ ⊆ R be a largest subset of R that is guillotine separable. Then, the
DP finds a set of size |R′|.

If now Conjecture 1.1 holds, then |R′| ≥ Ω(|OPT |), where OPT denotes the optimal
solution to the given MISR instance. Hence, the DP finds a solution with at least Ω(|OPT |)
rectangles and it is hence a O(1)-approximation algorithm for MISR. This completes the
proof of Theorem 2.

We would like to note that the resulting algorithm is purely combinatorial and that it is
faster than solving the natural LP-relaxation of the problem (which is a natural candidate
for obtaining an O(1)-approximation algorithm for MISR).

5 QPTAS for two-dimensional geometric knapsack

In this section, we present a QPTAS for the unweighted two-dimensional guillotine knapsack
problem. It builds on the recent QPTAS for the problem without the guillotine constraint
[2] but requires substantial new ideas to handle this constraint. Like the latter QPTAS we
require all input data to be quasi-polynomially bounded integers.

Let ε > 0 and suppose that the knapsack has a capacity of N × N with N ∈ N. For
each item i denote by hi and wi its height and width, respectively. By standard shifting
arguments we can assume that there are values µ, δ > 0 such that for each item i we have
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that hi ∈ [0, µ ·N ] ∪ [δ ·N,N ] and wi ∈ [0, µ ·N) ∪ [δ ·N,N ], while losing only factor 1 + ε

in the approximation ratio. The values µ, δ can be chosen such that 1 ≥ δ > µ ≥ ( ε
logn )Oε(1)

and µ = (δ · ε
logn )Oε(1) (see Lemma 1 in [2]). Moreover, since we study the unweighted case

of the problem and allow quasi-polynomial running time, it is sufficient to compute a solution
with a set of items I ′ such that |I ′| ≥ (1 − ε)|OPT | − ( logn

ε )Oε(1) (see Proposition 2.1 in
[2]). We will call such solutions near-optimal solutions in the sequel. Using this property,
we assume from now on that there are no items i with hi ≥ δ · N and wi ≥ δ · N since
there can be only 1/δ2 = Oε(logn)Oε(1) of them in the optimal solution OPT . We partition
the remaining items into horizontal, vertical, and tiny items, given by sets H, V , and T ,
respectively. An item i is horizontal if wi ≥ δ ·N and hi ≤ µ ·N , vertical if wi ≤ µ ·N and
hi ≥ δ ·N , and tiny if wi ≤ µ ·N and hi ≤ µ ·N .

Box partition. The key ingredient in the QPTAS in [2] is a partition of the knapsack into
boxes which intuitively describe the topology of the optimal solution. More precisely, it is
shown that if OPT ∩ T = ∅ then there exists a partition of the knapsack into a set B of at
most ( logn

ε )Oε(1) axis-parallel rectangular boxes and a near-optimal solution OPT ′ such that
each box B ∈ B either contains only items from OPT ′∩H or only items from OPT ′∩V (the
tiny items are added later into the remaining empty space). By being more careful in the
construction, we can prove the following stronger statement which also takes our guillotine
cutting constraint into account. Note that the following lemma is non-constructive, so our
algorithm has to guess the partition given by it.

I Lemma 21. There is a partition of the N×N knapsack into at most ( logn
ε )Oε(1) rectangular

boxes B with integral coordinates and a near-optimal solution OPT ′ ⊆ OPT with the following
properties:

each item in OPT ′ is fully contained in some box B ∈ B,
each box B ∈ B is either a horizontal box which contains only items in OPT ′ ∩ (H ∪ T )
or a vertical box which contains only items in OPT ′ ∩ (V ∪ T ),
OPT ′ is constructed by removing some items from OPT and moving the remaining items
within the knapsack so that no horizontal item is moved to the left or right and no vertical
items is moved up or down,
for each box B ∈ B there exists a guillotine cutting sequence which cuts all items of OPT ′
that are contained in B.

Proof. We start with the solution OPT that is the optimal solution satisfying the guillotine
cut constraint. We use the same construction as in the proof of Lemma 2 in [2]. The proof of
the lemma follows. Note that the last property is satisfied since OPT satisfies the guillotine
cuts constraint by assumption, and after the modifications in the proof of Lemma 2 in [2]
the property is still true for each box B ∈ B. J

Guillotine cutting sequence. Using Lemma 21 we construct a guillotine cutting sequence
which intersects the items of OPT ′ in a very controlled way, as given by the following lemma.

I Lemma 22. There exists a guillotine cutting sequence with at most ( logn
ε )Oε(1) cuts, cutting

the knapsack into a set B′ of rectangular pieces, such that the following properties hold:
for each piece B′ ∈ B′ there is a box B ∈ B such that B′ ⊆ B,
at most ( logn

ε )Oε(1) items from OPT ′ ∩ (H ∪ V ) are intersected,
the intersected items from OPT ′ ∩ T have a total area of ≤ ( ε

logn )Oε(1) ·N2.
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The intersected items from OPT ′ ∩ (H ∪ V ) will be lost which is justified since we are
only interested in a near-optimal solution. For the intersected tiny items, we will argue that
we can free up some space in the boxes in B′ at only marginal cost to accommodate them.

We construct our guillotine cutting sequence now. Consider the first cut of the cutting
sequence of OPT (which does not intersect any item of OPT !) and assume w.l.o.g. that it is
a horizontal cut given by the line segment [0, N ]× {h}. By Lemma 21 we can show that if
we used exactly the same cut in OPT ′ then we would not intersect any item in OPT ′ ∩ V .
Denote by h1 the smallest integer such that h1 ≥ h and either [0, N ]×{h1 + 1} split an item
in OPT ′ ∩ V , or there is a box B ∈ B such that [0, N ] × {h1} cuts along the top edge of
B. Similarly, denote by h2 the largest integer such that h2 ≤ h and either [0, N ]× {h2 − 1}
split an item in OPT ′ ∩ V , or there is a box B′ ∈ B such that [0, N ]× {h2} cuts along the
bottom edge of B′. Our first two cuts are [0, N ]× {h1} and [0, N ]× {h2}. We then cut the
resulting piece between the two cuts by vertical cuts, such that we obtain smaller pieces
having non-empty intersection with at most one box in B. We continue iteratively on the
other resulting pieces. Consider the piece B1 := [0, N ]× [0, h1]. Observe that it is contained
in the piece B0 := [0, N ]× [0, h] which is the first piece that the optimal cutting sequence
obtains. For cutting B1 further, we consider the next cut on B0 of the optimal cutting
sequence which also cuts B1 (i.e., we ignore cuts of the form [0, N ]× {h̄} with h1 < h̄ < h).
Suppose that it is a vertical cut {h′} × [0, h]. Similarly as before, we denote by h′1 the
smallest integer such that h′1 ≥ h′ and either {h′1 + 1} × [0, h1] split an item in OPT ′ ∩H,
or there is a box B ∈ B such that {h′1} × [0, h1] cuts along the right edge of B. We define h′2
accordingly. Our next two cuts for B1 are {h′1} × [0, h1] and {h′2} × [0, h1]. We continue in
the same manner till we end up with the set B′.

For each box in B ∈ B we bound the number of cuts that go through B. There are two
types of these cuts. Cuts of the first type contains the corner of some box in B. Thus, the
number of these cuts is at most ( logn

ε )Oε(1). For the other type of cuts we can give a charging
scheme such that each box pays for at most O(1/δ) of them. Thus, the number of boxes in
B′ is bounded by O(1/δ) · ( logn

ε )Oε(1) · |B| ≤ ( logn
ε )Oε(1). Therefore, the total number of cuts

is bounded by the same value. Each cut intersects at most 1/δ = ( logn
ε )Oε(1) horizontal or

vertical items and tiny items with a total area of at most N · µN ≤ ( ε
logn )Oε(1) ·N2.

Adding back tiny items. In the above process, we intersected some tiny items (with small
total area). We do not want to lose them so we add them back now. To this end, we drop
some of the remaining items and create an empty space in each box B′ ∈ B′. Suppose that B′
contains only items from OPT ′∩ (H ∪T ) and has height hB′ . Denote by OPT ′B′ the items of
OPT ′ inside B′. We identify a horizontal slice of height ε ·hB′ inside B′ such that there are at
most O(ε) · |OPT ′B′ |+O( 1

δ ) items in OPT ′B′ that intersect this slice. We drop all these items.
By doing this with each box B′ ∈ B′ we can show that this creates enough empty space to
put back almost all tiny items that were intersected by our cutting sequence above. Even
more, by assigning them into the empty space by the Next-Fit-Decreasing-Height (NFDH)
algorithm [6] we can ensure that also a guillotine cutting sequence for them exists. Overall,
we obtain the property that for the items in each box B′ ∈ B′ there exists a guillotine cutting
sequence.

Details of this operation are the following: Observe that the number of guillotine cuts
that separate the boxes in B′ is exactly |B′| − 1. Every cut intersects tiny items with total
area at most µN2. The total area of the tiny items intersected in all cuts is µN2|B′| which
we can upper-bound by ε3N2 by choosing µ and δ such that µ|B′| ≤ ε3. We call a box
B′ ∈ B′ a good box if h(B′) ≥ µN

ε2 and w(B′) ≥ µN
ε2 . Otherwise the box is called a bad box.
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The total area of bad boxes is at most (µNε2 )N |B′|. Recall that µ|B′| ≤ ε3. This implies that
the total area of bad boxes is at most εN2. This means that the total area of good boxes is
at least (1− ε)N2. In good boxes, we create empty space to accommodate the tiny items
whose total area is at least (ε− ε2)N2. Since we use the NFDH algorithm to accommodate
the tiny items, we only lose a constant fraction of the area [6]. Note that by definition any
tiny item fits into the created empty space of a good box. This implies that we are able to
accommodate all tiny items. We note that using the NFDH algorithm we can ensure that a
guillotine cutting sequence for the tiny items exist.

Rounding of item sizes. As the last step of the non-constructive part, we round the sizes
of the items such that at the end we have only ( logn

ε )Oε(1) many items types. We say that
two items i, i′ are of the same type if hi = hi′ and wi = wi′ . We round the item sizes in
each box in B′ separately. Like above, we create empty space of height ε · hB′ inside each
horizontal box B′ ∈ B′ while dropping only few items, at most ε|OPT ′|+ ( logn

ε )Oε(1) many
(and we do a similar adjustment for the vertical boxes). We use this empty space to round
up the height of each item to the next larger power of 1 + ε, yielding Oε(logn)O(1) many
height classes (we use here that the input data are quasi-polynomially bounded integers).
Using harmonic grouping like in De La Vega and Lueker [8] we round the widths of the
items such that among each height class there are only Oε(1) many widths arising, yielding
Oε(logn)O(1) different items types in total.

Algorithm. The algorithm first guesses the cutting sequence according to Lemma 22 for
which there are only n( logn

ε )Oε(1) many options. Then, it guesses the item types that arise
after the previous rounding. Note here that the height and width of each item type is either
a power of 1 + ε or coincides with the height or width of an input item, and thus we have
to choose ( logn

ε )Oε(1) types from nO(1) possible ones. So there are only n( logn
ε )Oε(1) many

options for this in total. For each item type we guess how many items there are in the
solution that we constructed above. Then we verify that our input items are consistent with
this guess which can be done by finding a perfect bipartite matching. In this matching we
have a node for every input item, and a set of nodes for each item type. For each item type
the number of nodes equals the guessed number of items of this type in the searched-for
solution. An edge between a node for an input item and a node for a guessed item of a type
is added if the input item can be drawn inside the guessed item. In this case finding a perfect
matching means that the guess is consistent with the input items, otherwise the guess is
rejected. For each box B′ ∈ B′ we guess how many items of each type we have to assign in
the box such that for them there is a guillotine cutting sequence. It remains to verify for each
box B′ ∈ B′ that the items we guessed to be assigned to it actually fit into B′. To this end,
we use a dynamic program. It guesses the first cut of the (existent) cutting sequence of the
items and then guesses how we have to partition the items to the two sides of the cut. Then
we recurse on both sides. Each arising subproblem is specified by a remaining rectangular
piece and a set of items that is to be assigned to it. Since for both quantities together there
are only n( logn

ε )Oε(1) many options, also this dynamic program runs in quasi-polynomial time.
For the version of the problem where we are allowed to rotate items by 90 degrees the above
methods can be adjusted easily. This completes the proof of Theorem 3.
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