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ABSTRACT

In online combinatorial auctions𝑚 indivisible items are to be allo-

cated to 𝑛 agents who arrive online. Agents have random valuations

for the different subsets of items and the goal is to allocate the items

on the fly so as to maximize the total value of the assignment. A

prophet inequality in this setting refers to the existence of an online

algorithm guaranteed to obtain, in expectation, a certain fraction

of the expected value obtained by an optimal solution in hindsight.

The study of prophet inequalities for online combinatorial auctions

has been an intensive area of research in recent years, and constant

factor prophet inequalities are known when the agents’ valuation

functions are submodular or fractionally subadditive. Despite many

efforts, for the more general case of subadditive valuations, the

best known prophet inequality has an approximation guarantee of

𝑂 (log log𝑚). In this paper, we prove the existence of a constant fac-

tor prophet inequality for the subadditive case, resolving a central

open problem in the area.

Our prophet inequality is achieved by a novel, but elementary,

sampling idea which we call the Mirror Lemma. This lemma is

essentially concerned with understanding online algorithms for

which the set of items that are allocated and those that are not,

distribute equally. The other main ingredient is a nonstandard

application of Kakutani’s fixed point theorem. Finally, we note that

our prophet inequality works against an almighty adversary and

even can be implemented in an incentive compatible way.
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1 INTRODUCTION

Efficiently distributing a set of valuable items to a set of agents is

an old economic question dating back at least to the work of Leon

Walras over a century ago. From an economics perspective a major

difficulty is that the agents’ valuations for the items is unknown.

Therefore designing mechanisms, or combinatorial auctions, in

which the agents have incentives to reveal their true preferences

becomes central. In this space, pricing mechanisms have dominated

the scene and understanding their effectiveness has been an active

area of research in recent years [1, 2, 4, 5, 9, 10, 16, 23].

While the issue that agents’ valuations for the items may be

private information is an important difficulty, it is far from being the

only. First, even if valuations are public information, the allocation

problem is computationally hard. Second, in many situations agents

arrive online and the set to be allocated has to be decided on the fly.

The latter setting is known as that of online combinatorial auctions

and constitutes the main topic of this paper.

Specifically, in online combinatorial auctions (or online combi-

natorial allocations) we are given a set of𝑚 items𝑀 and a set of 𝑛

agents, denoted by 𝑁 . Each agent 𝑖 ∈ 𝑁 has a valuation function

𝑣𝑖 : 2
𝑀 → R+, which is randomly and independently chosen ac-

cording to a given distribution F𝑖 (defined over a set of possible

valuation functions). As it is standard, we assume that each possible

realization of each 𝑣𝑖 is monotone, i.e., for all sets of items𝐴, 𝐵 ⊂ 𝑀

such that 𝐴 ⊆ 𝐵 we have that 𝑣𝑖 (𝐴) ≤ 𝑣𝑖 (𝐵). Agents arrive sequen-
tially, and upon arrival their valuation function is realized. At the

time agent 𝑖 arrives, the online algorithm has to decide which set

of items 𝐴𝑖 , among those that are still available (𝑀 \ ∪𝑖−1

𝑗=1
𝐴 𝑗 ), to

allocate to the agent. This decision is irrevocable and the goal of the

online algorithm is to maximize the social welfare of the allocation,

i.e., the sum of the agents’ valuations

∑
𝑖∈𝑁 𝑣𝑖 (𝐴𝑖 ).

A prophet inequality in the online combinatorial allocations prob-

lem establishes the existence of an online algorithm, say 𝐴𝐿𝐺 , such

that the expected welfare of the resulting allocation is at least a

certain fraction 𝛼 of that of the optimal allocation in the hindsight.
1

That is, if we denote by 𝐴𝐿𝐺𝑖 and 𝑂𝑃𝑇𝑖 the (random) sets assigned

to agent 𝑖 by the algorithm and by the optimal allocation, a prophet

1
The allocation maximizing the social welfare once all valuation functions have been

revealed.
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inequality is an inequality of the form:

E

(∑︁
𝑖∈𝑁

𝑣𝑖 (𝐴𝐿𝐺𝑖 )
)
≥ 𝛼 · E

(∑︁
𝑖∈𝑁

𝑣𝑖 (𝑂𝑃𝑇𝑖 )
)
.

When there is a single item (𝑚 = 1), we land in the terrain of the

classic prophet inequality of Krengel and Sucheston (and Garling)

[21, 22], who proved that the largest possible 𝛼 is 1/2. Various

extensions of the single item prophet inequality to special cases of

this general setting have been studied recently. These, for instance,

model combinatorial constraints such as matching in a bipartite (or

general) graph, hyper-graph matching, matroid constraints, among

many others [7, 12, 14, 19, 20, 24].

A central and interesting research direction has focused on find-

ing prophet inequalities for increasingly general classes of valuation

functions. These classes not only model several combinatorial con-

straints, but also allow to express agnts’ preferences in richer ways.

The most prominent classes, in increasing order of generality, are:

Submodular. A valuation 𝑣 is submodular if for all𝐴, 𝐵 ⊆ 𝑀 ,

𝑣 (𝐴 ∪ 𝐵) ≤ 𝑣 (𝐴) + 𝑣 (𝐵) − 𝑣 (𝐴 ∩ 𝐵).
Fractionally Subadditive or XOS. A valuation 𝑣 is XOS if

for every 𝐴 ⊆ 𝑀 and every fractional covering {𝜆𝑖 ,𝑇𝑖 }𝑘𝑖=1
of

𝐴, i.e., such that 𝜆𝑖 > 0, 𝑇𝑖 ⊆ 𝑀 , and

∑
𝑖:𝑗∈𝑇𝑖 𝜆𝑖 ≥ 1 for all

𝑗 ∈ 𝐴, we have that 𝑣 (𝐴) ≤ ∑𝑘
𝑖=1

𝜆𝑖𝑣 (𝑇𝑖 ).
Subadditive. A valuation 𝑣 is subadditive if for all 𝐴, 𝐵 ⊆ 𝑀 ,

𝑣 (𝐴 ∪ 𝐵) ≤ 𝑣 (𝐴) + 𝑣 (𝐵).

The interest in these classes lies primarily because they model

complement-free valuations. Interestingly, even in the offline setting,

where the valuation functions are deterministic and the goal is to

find an allocation of items to agents so as to maximize the sum

of the valuations, the problem is 𝑁𝑃−hard and the best known

approximation guarantees are 1/2 for subadditive valuations [18],

and 1 − 1/𝑒 if the valuations are XOS [8, 18].
In the online setting, Feldman, Gravin, and Lucier [17] obtain

the best possible prophet inequality when valuations are XOS, and,

consequently, also for submodular since 1/2 is the best possible

factor even in the single item prophet inequality (see also [12]).

The optimal factor improves to 1 − 1/𝑒 if the arrival order of the
agents is random rather than arbitrary [13]. Despite these efforts,

the existence of a constant factor prophet inequality for general

subadditive valuations has remained unknown. In this context,

Feldman et al. [17] obtained a prophet inequality of factor log(𝑚)
which was slightly improved by Zhang [26]. Very recently a major

improvement, to a factor 𝑂 (log log(𝑚)), was obtained by Dütting,

Kesselheim, and Lucier [11].

1.1 Our Results

In this paper we obtain a constant factor prophet inequality for

online combinatorial auctions (or more precisely online combinato-

rial allocations). That is, we prove that there is an online algorithm

such that

6 · E
(∑︁
𝑖∈𝑁

𝑣𝑖 (𝐴𝐿𝐺𝑖 )
)
≥ E

(∑︁
𝑖∈𝑁

𝑣𝑖 (𝑂𝑃𝑇𝑖 )
)
.

This resolves an open problem posed by Feldman et al. [17], which

Dütting et al. [11] consider a vexing open problem in the area.

Similarly to several results in the area of prophet inequalities,

we show that our approach works against an almighty adversary.

This adversary can choose the arrival order adaptively, observing

all past realizations of the valuations and the random choices of

the algorithm in advance.

Our approach, unfortunately, is nonconstructive, so while we

prove a 1/6 prophet inequality for subadditive valuations, we do

not know how to implement the underlying online algorithm. Fur-

thermore, our algorithm cannot be implemented with posted prices.

This is in sharp contrast with the price based algorithms of Cai

and Zhao [6] or that of Dütting et al. [11]. On the other hand, our

algorithm critically needs access to the valuation of each agent

upon their arrival, which is standard in the prophet inequality liter-

ature but not in the combinatorial auctions literature. However, we

note that this is not really needed and the existence of a prophet

inequality for the online combinatorial allocation problem easily im-

plies the existence of a prophet inequality for online combinatorial

auctions, i.e., with an incentive compatible mechanism. Therefore

access to the valuation of each agent is not really needed. We expect

that closing the gap of what can be achieved by price based mecha-

nisms in the subadditive case will be of much interest in the future,

as our result opens the way for the existence of such a mechanism

with a constant factor welfare guarantee.

1.2 Main Technical Ingredients

To prove the main result we consider in Section 2 a family of algo-

rithms that make use of random score generators. A Random Score

Generator (RSG) is just a function that maps a valuation function 𝑣

to a distribution over R𝑀+ of real numbers for each item. Given 𝑛

RSGs, one for each agent, the algorithm is completely determined.

First we sample one valuation function for each buyer 𝑣 ′
𝑖
and pass

them through the RSGs to obtain scores 𝑏′
𝑖 𝑗
for each item and each

agent. Then, when agent 𝑖 arrives, and her valuation 𝑣𝑖 is real-

ized, we again pass it through its corresponding RSG to obtain

scores 𝑏𝑖, 𝑗 . Then we assign to agent 𝑖 all remaining items for which

𝑏𝑖, 𝑗 > 𝑝′
𝑗
= max𝑘∈𝑁 𝑏′

𝑘 𝑗
. The idea of this algorithm is inspired in

the work of Azar, Kleinberg, and Weinberg [3] and that of Rubin-

stein, Wang, and Weinberg [25] who, for the single item prophet

inequality use the maximum of samples from each distribution as a

threshold for stopping the sequence.

To establish that this algorithm performs well for some appropri-

ate selection of RSGs, we first prove the Mirror Lemma in Section 3.

This lemma considers three copies of each agent with independent

valuations 𝑣𝑖 , 𝑣
′
𝑖
, 𝑣 ′′
𝑖
, pass them through the RSG and defines the

sets𝑊𝑖 = { 𝑗 ∈ 𝑀 : 𝑏𝑖, 𝑗 > max𝑝′
𝑗
, 𝑝′′

𝑗
}. Then it asserts that

E(𝐴𝐿𝐺) := E

(∑︁
𝑖∈𝑁

𝑣𝑖 (𝐴𝐿𝐺𝑖 )
)
≥ 1

2

E

(∑︁
𝑖∈𝑁

𝑣𝑖 (𝑊𝑖 )
)
.

The key observation to prove the Mirror Lemma is to note that

the set of items that the algorithm allocates and those that the

algorithm does not allocate, have essentially the same distribution.

Noting that the Mirror Lemma holds for any collection of RSGs, the
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remaining task is to find suitable RSGs for which E (∑𝑖∈𝑁 𝑣𝑖 (𝑊𝑖 ))
is close to the optimal allocation’s welfare.

As a warm-up, in Section 4 we show how a very simple family of

RSGs is enough to give a constant factor prophet inequality for XOS

valuations. Of course, this is not a new result and moreover the

resulting constant is sub-optimal.
2
However we present it here to

illustarate our approachmore clearly. These RSGs are as follows: For

a valuation 𝑣𝑖 for agent 𝑖 , sample the valuations of all other agents

and compute 𝑂𝑃𝑇𝑖 the set assigned to 𝑖 in an optimal allocation.

Then𝑏𝑖, 𝑗 is just zero if 𝑗 ∉ 𝑂𝑃𝑇𝑖 and a uniform [0,1] random variable

otherwise.

Our main result is then presented in Section 5. The proof borrows

inspiration from a result by Feldman, Fu, Gravin, and Lucier [15,

Lemma 1] where our RSGs can take the form of agents’ bids in

a combinatorial auction
3
. This first step takes the form of a basic

inequality that we prove has a nonempty set of solutions. Then, this

inequality is put into the context of a certain Kakutani map defined

from the space of RSGs into itself. For this mapping we can establish

the existence of a fixed point. Finally, it is relatively easy to prove

that the RSGs corresponding to such fixed point lead to an algorithm

for which (6 + 𝜀) · E (∑𝑖∈𝑁 𝑣𝑖 (𝐴𝐿𝐺𝑖 )) ≥ E (
∑
𝑖∈𝑁 𝑣𝑖 (𝑂𝑃𝑇𝑖 )) . The

application of Kakutani fixed point theorem in Section 5 requires the

technical assumption that the set of possible valuation functions is

finite. In Section 6 we relax this assumption by loosing an additional

𝜀 in the approximation factor.

In Section 7 we describe the optimal online solution using dy-

namic programming. As a corollary of our main result, we have that

the optimal online algorithm attains a factor 6 prophet inequality.

We also explain how the optimal DP can be transformed into an

incentive compatible mechanism using dynamic bundle prices.

Finally, Section 8 presents a number of extensions. First, we

discuss how our algorithm is robust to stronger adversaries. In

particular we note that our prophet inequality holds against an

almighty adversary as it is also the case in the standard prophet

inequality. Second, we dive into the issue of incentive compatibility

and the algorithm’s access to the valuation of agent 𝑖 upon her

arrival. We show an incentive compatible implementation of our

algorithm (and thus not needing to access the actual valuations)

by using some form of all-pay auction. This connects our result

with the work of Feldman et al. [15] who establish that parallel per-

item first-price auctions guarantee a constant Price of Anarchy for

offline combinatorial auctions. Finally, we note that the existence

of a factor 2 prophet inequality for deterministic valuations using

subadditive prices follows from existing results by Feldman, Gravin,

and Lucier [16].

2 MODEL, ALGORITHM AND MAIN RESULT

Model. We are given a set of 𝑚 items 𝑀 and a set of 𝑛 agents

𝑁 . Each buyer 𝑖 ∈ 𝑁 has a valuation function 𝑣𝑖 : 2
𝑀 → R+,

which is randomly and independently chosen according to a given

distribution F𝑖 defined over a set of possible valuation functions𝑉𝑖 .

2
The optimal constant, due to Feldamn et al. [17], is 1/2

3
For the reader familiarized with the work of Feldman et al. our Lemma 4 is similar to

their Lemma 1 but replacing their First price auction by an All-pay auction.

As it is standard, we assume that each possible realization 𝑣 ∈ 𝑉𝑖 is

monotone (i.e., 𝐴 ⊆ 𝐵 ⇒ 𝑣 (𝐴) ≤ 𝑣 (𝐵)), and that for all 𝐴 ⊆ 𝑀 and

all 𝑖 ∈ 𝑁 , E(𝑣𝑖 (𝐴)) < ∞.

The agents arrive sequentially one by one, in a fixed order 𝜎 :

[𝑛] → 𝑁 .
4
When an agent 𝑖 arrives, we get to observe her valuation

𝑣𝑖 ∼ F𝑖 . After observing 𝑣𝑖 , we must decide which items we will

be allocating to 𝑖 . We denote the set allocated to 𝑖 by 𝐴𝐿𝐺𝑖 . The

expected welfare of the resulting allocation is then

E(𝐴𝐿𝐺) := E

(∑︁
𝑖∈𝑁

𝑣𝑖 (𝐴𝐿𝐺𝑖 )
)
=

∑︁
𝑖∈𝑁
E(𝑣𝑖 (𝐴𝐿𝐺𝑖 )).

The prophet sees the realizations of all valuation functions in ad-

vance and therefore assigns the items optimally. Denoting by 𝑂𝑃𝑇𝑖
the random set assigned to agent 𝑖 by the prophet, the expected

welfare of this optimal allocation is:
5

E(𝑂𝑃𝑇 ) := E
©­­« max

𝑋1,...,𝑋𝑛

partition of𝑀

∑︁
𝑖∈𝑁

𝑣𝑖 (𝑋𝑖 )
ª®®¬ = E

(∑︁
𝑖∈𝑁

𝑣𝑖 (𝑂𝑃𝑇𝑖 )
)
.

Note that we are not allowed to give an item to more than one

agent, so for every 𝑡 ∈ [𝑛], the assignment of the algorithm must

satisfy

𝐴𝐿𝐺𝜎 (𝑡 ) ⊆ 𝑀 \ ∪𝜏<𝑡𝐴𝐿𝐺𝜎 (𝜏 ) .

For the agent 𝑖 = 𝜎 (𝑡), we call the latter set the remaining items

when 𝑖 arrives and we denote it by 𝑅𝑖 . More precisely, for 𝑖 ∈ 𝑁 we

denote

𝑅𝑖 = 𝑀 \ ∪𝜏<𝜎−1 (𝑖 )𝐴𝐿𝐺𝜎 (𝜏 ) .

Random Score Generators (RSG). A random score generator for an

agent 𝑖 ∈ 𝑁 is a function 𝐷𝑖 : 𝑉𝑖 → Δ(R𝑀+ ) that takes a valuation
function 𝑣 ∈ 𝑉𝑖 and outputs a distribution 𝐷𝑖 (𝑣) over R𝑀+ . A sample

𝑏𝑖 ∼ 𝐷𝑖 (𝑣) from this distribution gives a number 𝑏𝑖, 𝑗 for each item

𝑗 ∈ 𝑀 which we call scores. Intuitively, these scores have the role
of providing a (random) per-item representation of the valuation 𝑣 .

Algorithms. We consider a class of algorithms, where we draw a

set imaginary agents and their scores —an independent sample of all

valuations and corresponding scores—, and whenever a new (real)

agent comes, we give her the available items for which her score is

strictly larger than the score of each of the imaginary agents.

More precisely ALG works as follows. Given RSGs (𝐷𝑖 )𝑖∈𝑁 ,

(1) Sample independent valuations 𝑣 ′
𝑖
∼ F𝑖 and scores 𝑏′

𝑖
=

(𝑏′
𝑖, 𝑗
) 𝑗∈𝑀 ∼ 𝐷𝑖 (𝑣 ′𝑖 ) for each agent 𝑖 ∈ 𝑁 . Define for each

item 𝑗 ∈ 𝑀 the value 𝑝′
𝑗
= max𝑖∈𝑁 𝑏′

𝑖, 𝑗
.

(2) When agent 𝑖 arrives, observe 𝑣𝑖 and draw𝑏𝑖 ∼ 𝐷𝑖 (𝑣𝑖 ). Define
𝑆𝑖 = { 𝑗 : 𝑏𝑖, 𝑗 > 𝑝′

𝑗
}.

(3) Give agent 𝑖 the set𝐴𝐿𝐺𝑖 = 𝑅𝑖∩𝑆𝑖 and go back to the previous
step with the next buyer.

4
For easy of notation and without loss of generality we often assume that the arrival

order is just 1, . . . , 𝑛.
5
Note that the assumption that for all𝐴 ⊂ 𝑀 and all 𝑖 ∈ 𝑁 , E(𝑣𝑖 (𝐴) ) < ∞, holds if

and only if E(𝑂𝑃𝑇 ) < ∞. If this is not the case, and there is a set and an agent such

that E(𝑣𝑖 (𝐴) ) = ∞, then E(𝑂𝑃𝑇 ) = ∞, but then the trivial online algorithm that

simply assigns𝐴 to 𝑖 also recovers infinite expected welfare.
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Main Result. Our main result establishes the existence of a con-

stant factor prophet inequality for online combinatorial auctions

with subadditive valuations.

Theorem 1. For every 𝜀 > 0, if all valuations are subadditive, there
are RSGs such that

(6 + 𝜀) · E(𝐴𝐿𝐺) ≥ E(𝑂𝑃𝑇 ) .

3 THE MIRROR LEMMA

For the valuations 𝑣𝑖 ∼ F𝑖 , sample 𝑏𝑖 ∼ 𝐷𝑖 (𝑣𝑖 ) for each agent 𝑖 ∈ 𝑁 ,

independently. Additionally, sample two independent copies of

these variables, 𝑣 ′
𝑖
, 𝑣 ′′
𝑖
∼ F𝑖 and 𝑏′𝑖 ∼ 𝐷𝑖 (𝑣 ′𝑖 ), 𝑏

′′
𝑖
∼ 𝐷𝑖 (𝑣 ′′𝑖 ), for each

agent 𝑖 ∈ 𝑁 . Define 𝑝 𝑗 = max𝑖∈𝑁 𝑏𝑖, 𝑗 and 𝑝′
𝑗
, 𝑝′′

𝑗
analogously, for

each item 𝑗 ∈ 𝑀 . Furthermore, define for each agent 𝑖 ∈ 𝑁 the set

𝑊𝑖 =

{
𝑗 : 𝑏𝑖, 𝑗 > max{𝑝′

𝑗
, 𝑝′′

𝑗
}
}
. We have the following result that

holds for any RSGs (𝐷𝑖 )𝑖∈𝑁 .

Lemma 1 (Mirror Lemma). If the valuations are subadditive, then

E(𝐴𝐿𝐺) ≥ 1

2

∑︁
𝑖∈𝑁
E(𝑣𝑖 (𝑊𝑖 )) .

Proof. Recall that for an agent 𝑖 ∈ 𝑁 , 𝑅𝑖 was defined as the set of

remaining items when 𝑖 arrives and 𝑆𝑖 = { 𝑗 : 𝑏𝑖, 𝑗 > 𝑝′
𝑗
}. Therefore,

we have that

E(𝐴𝐿𝐺) =
∑︁
𝑖∈𝑁
E(𝑣𝑖 (𝑅𝑖 ∩ 𝑆𝑖 )) .

Define 𝑆 ′′
𝑖
= { 𝑗 : 𝑏′′

𝑖, 𝑗
> 𝑝′

𝑗
}, and notice that 𝑅𝑖 does not depend on

𝑣𝑖 , nor on 𝑏𝑖 . Therefore, since the distributions of the pairs (𝑣𝑖 , 𝑏𝑖 )
and (𝑣 ′′

𝑖
, 𝑏′′

𝑖
) are identical,

E(𝑣𝑖 (𝑅𝑖 ∩ 𝑆𝑖 )) = E(𝑣 ′′𝑖 (𝑅𝑖 ∩ 𝑆 ′′𝑖 )) .

Define now𝑅 = { 𝑗 : 𝑝′
𝑗
≥ 𝑝 𝑗 }, which is the set of remaining items at

the very end of the sequence of agents. Notice that 𝑅 ⊆ 𝑅𝑖 . Define

also 𝑊 ′′
𝑖

=

{
𝑗 : 𝑏′′

𝑖, 𝑗
> max{𝑝′

𝑗
, 𝑝 𝑗 }

}
, and notice that 𝑊 ′′

𝑖
⊆ 𝑆 ′′

𝑖
.

With this, and the fact that the valuations are monotone, we obtain

that

E(𝑣𝑖 (𝑅𝑖 ∩ 𝑆𝑖 )) = E(𝑣 ′′𝑖 (𝑅𝑖 ∩ 𝑆 ′′𝑖 ))
≥ E

(
𝑣 ′′𝑖

(
𝑅 ∩𝑊 ′′

𝑖

) )
.

Finally, notice that (𝑝 𝑗 ) 𝑗∈𝑀 and (𝑝′
𝑗
) 𝑗∈𝑀 are independent and iden-

tically distributed, so we can interchange them inside the expecta-

tion. So if we define �̃� = { 𝑗 : 𝑝 𝑗 ≥ 𝑝′
𝑗
}, we have that

E
(
𝑣 ′′𝑖

(
𝑅 ∩𝑊 ′′

𝑖

) )
= E

(
𝑣 ′′𝑖

(
�̃� ∩𝑊 ′′

𝑖

))
.

Therefore, by the fact that 𝑅 ∪ �̃� = 𝑀 and by the subadditivity of

𝑣𝑖 , we conclude that

E(𝑣𝑖 (𝑅𝑖 ∩ 𝑆𝑖 )) ≥
1

2

(
E

(
𝑣 ′′𝑖

(
𝑅 ∩𝑊 ′′

𝑖

) )
+ E

(
𝑣 ′′𝑖

(
�̃� ∩𝑊 ′′

𝑖

)))
≥ 1

2

E
(
𝑣 ′′𝑖 (𝑊 ′′

𝑖 )
)
.

Summing over agents and switching the roles of (𝑣, 𝑏), (𝑣 ′, 𝑏′) and
(𝑣 ′′, 𝑏′′) we obtain the statement of the lemma. □

4 CONSTANT APPROXIMATION FOR XOS
VALUATIONS

We show here how to use the Mirror Lemma to obtain a constant

approximation for XOS valuations. We construct an RSG as fol-

lows: given 𝑣𝑖 for an agent 𝑖 ∈ 𝑁 , sample independent valuations

𝑣
(𝑖 )
𝑖′ ∼ F𝑖′ for each 𝑖′ ≠ 𝑖 , calculate the optimal allocation under

the valuations (𝑣𝑖 , 𝑣 (𝑖 )−𝑖 ), and let 𝑂𝑃𝑇
(𝑖 )
𝑖

be the set of item that 𝑖

receives. Sample independent Uniform[0, 1] variables𝑈𝑖, 𝑗 for each

item 𝑗 ∈ 𝑀 , and let

𝑏𝑖, 𝑗 =

{
𝑈𝑖, 𝑗 if 𝑗 ∈ 𝑂𝑃𝑇

(𝑖 )
𝑖

0 otherwise.

(1)

In the next lemma we prove that if we use this RSG, each item

in 𝑂𝑃𝑇
(𝑖 )
𝑖

is also in𝑊𝑖 with constant probability. Essentially, this

is because any item 𝑗 is in expectation in at most one of the sets

(𝑂𝑃𝑇 (𝑖 )
𝑖

)𝑖∈𝑁 , so 𝑝′
𝑗
and 𝑝′′

𝑗
cannot be much larger than uniform

variables.

Lemma 2. If we use the RSGs defined in Equation (1), then, for all
𝑖 ∈ 𝑁 and 𝐴 ⊆ 𝑀 ,

P
(
𝑗 ∈𝑊𝑖

���𝑂𝑃𝑇 (𝑖 )
𝑖

= 𝐴

)
≥ 1/12, ∀𝑗 ∈ 𝐴.

Proof. Fix the set 𝐴 ⊆ 𝑀 and an item 𝑗 ∈ 𝐴. For each 𝑖 ∈ 𝑁 , de-

note by𝑂𝑃𝑇
′(𝑖 )
𝑖

and𝑂𝑃𝑇
′′(𝑖 )
𝑖

the sets corresponding to (𝑣 ′, 𝑏′) and
(𝑣 ′′, 𝑏′′), respectively, as in Equation (1). Now define the random

variables

𝑋 𝑗 =

���{𝑖 : 𝑗 ∈ 𝑂𝑃𝑇 ′
𝑖
(𝑖 )

}��� , and 𝑌𝑗 = ���{𝑖 : 𝑗 ∈ 𝑂𝑃𝑇 ′′
𝑖

(𝑖 )
}��� .

Since 𝑂𝑃𝑇 allocates each item to only one agent, they satisfy

E(𝑋 𝑗 ) = E(𝑌𝑗 ) = 1. By Markov’s inequality, we have that

P(𝑋 𝑗 ≤ 1) = P(𝑌𝑗 ≤ 1) ≥ 1/2.

Therefore, since 𝑂𝑃𝑇
(𝑖 )
𝑖

is independent of 𝑋 𝑗 and 𝑌𝑗 , we have that

P
(
𝑗 ∈𝑊𝑖

���𝑂𝑃𝑇 (𝑖 )
𝑖

= 𝐴

)
≥ P

(
𝑗 ∈𝑊𝑖

���𝑂𝑃𝑇 (𝑖 )
𝑖

= 𝐴,𝑋 𝑗 ≤ 1, 𝑌𝑗 ≤ 1

)
· P(𝑋 𝑗 ≤ 1, 𝑌𝑗 ≤ 1)

≥ 1

4

· P
(
𝑗 ∈𝑊𝑖

���𝑂𝑃𝑇 (𝑖 )
𝑖

= 𝐴,𝑋 𝑗 ≤ 1, 𝑌𝑗 ≤ 1

)
.

Finally, recall that 𝑗 ∈𝑊𝑖 if and only if 𝑏𝑖, 𝑗 > max{𝑝′
𝑗
, 𝑝′′

𝑗
}. Notice

that, conditional on 𝑂𝑃𝑇
(𝑖 )
𝑖

= 𝐴,𝑋 𝑗 ≤ 1 and 𝑌𝑗 ≤ 1, we have that

𝑏𝑖, 𝑗 ∼Uniform[0, 1], and also that 𝑝′
𝑗
and 𝑝′′

𝑗
are both dominated

by independent Uniform[0, 1] random variables. Therefore, con-

ditional on the mentioned event, 𝑗 ∈𝑊𝑖 with probability at least

1/3. □

Lemma 2 implies immediately a 24-approximation for XOS valu-

ations. In fact, notice that conditional on 𝑂𝑃𝑇
(𝑖 )
𝑖

= 𝐴, the set𝑊𝑖 is
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independent of 𝑣𝑖 . Thus,

E(𝑣𝑖 (𝑊𝑖 ))

=
∑︁
𝐴⊆𝑀

∑︁
𝐵⊆𝑀

E(𝑣𝑖 (𝐵) |𝑊𝑖 = 𝐵,𝑂𝑃𝑇
(𝑖 )
𝑖

= 𝐴)

· P(𝑊𝑖 = 𝐵 |𝑂𝑃𝑇 (𝑖 )
𝑖

= 𝐴) · P(𝑂𝑃𝑇 (𝑖 )
𝑖

= 𝐴)

=
∑︁
𝐴⊆𝑀

∑︁
𝐵⊆𝑀

E(𝑣𝑖 (𝐵) |𝑂𝑃𝑇 (𝑖 )
𝑖

= 𝐴)

· P(𝑊𝑖 = 𝐵 |𝑂𝑃𝑇 (𝑖 )
𝑖

= 𝐴) · P(𝑂𝑃𝑇 (𝑖 )
𝑖

= 𝐴)

=
∑︁
𝐴⊆𝑀

E

( ∑︁
𝐵⊆𝑀

𝑣𝑖 (𝐵) · P(𝑊𝑖 = 𝐵 |𝑂𝑃𝑇 (𝑖 )
𝑖

= 𝐴)
�����𝑂𝑃𝑇 (𝑖 )

𝑖
= 𝐴

)
· P(𝑂𝑃𝑇 (𝑖 )

𝑖
= 𝐴)

≥
∑︁
𝐴⊆𝑀

1

12

· E(𝑣𝑖 (𝐴) |𝑂𝑃𝑇 (𝑖 )
𝑖

= 𝐴) · P(𝑂𝑃𝑇 (𝑖 )
𝑖

= 𝐴)

=
1

12

· E(𝑣𝑖 (𝑂𝑃𝑇𝑖 )).

For the inequality we applied the property that defines XOS val-

uations, together with the fact that Lemma 2 guarantees that the

collection {(𝐵, 12 · P(𝑊𝑖 = 𝐵 |𝑂𝑃𝑇 (𝑖 )
𝑖

= 𝐴))}𝐵⊆𝑀 is a fractional

covering of 𝐴.

The constant in Lemma 2 can be tightened to be 1/3, yielding

together with Lemma 1 a 6-approximation for XOS valuations.

However, the per-item guarantee the lemma provides is insufficient

to prove a constant approximation for general subadditive valua-

tions. In the next section, we push this beyond the XOS case and

use the Mirror Lemma with more sophisticated RSGs to obtain a

6-approximation for the general subadditive case.

5 PROOF OF THE MAIN RESULT: A FIXED
POINT APPROACH

In this section we prove our main result for general subadditive

valuations. Throughout the section we assume that, for all 𝑖 ∈ 𝑁 ,

𝑉𝑖 is a finite set. In Section 6 we discuss how to relax this condition.

Theorem 1. For every 𝜀 > 0, if all valuations are subadditive, there
are RSGs such that

(6 + 𝜀) · E(𝐴𝐿𝐺) ≥ E(𝑂𝑃𝑇 ) .

The main ingredient for the proof of the theorem, besides the

Mirror Lemma, is the following existence result, whose proof relies

on a fixed-point argument. For ease of notation, for a vector 𝑓 ∈ R𝑀
and a set 𝑆 ⊆ 𝑀 , we write 𝑓 (𝑆) = ∑

𝑗∈𝑆 𝑓𝑗 .

Lemma 3. For every 𝜀 > 0 there are RSGs that guarantee that, almost
surely,

E
(
𝑣𝑖 (𝑊𝑖 ) − 𝑏𝑖 (𝑀)

��� 𝑣𝑖 )
≥ max

𝑋 ⊆𝑀

{
1

3

𝑣𝑖 (𝑋 ) − E
(
𝑝′ (𝑋 )

)
− 𝜀 · |𝑋 |

}
. (2)

Before proving this lemma, we show first how it implies Theo-

rem 1.

Proof of Theorem 1. We take the distributions guaranteed to

exist by Lemma 3, using some 𝜀′ > 0 that we will set later. Let𝑂𝑃𝑇𝑖
be the set of items that agent 𝑖 gets in the optimal allocation, under

valuations (𝑣𝑖 )𝑖∈𝑁 . By Lemma 1,

E(𝐴𝐿𝐺)

≥ 1

2

∑︁
𝑖∈𝑁
E(𝑣𝑖 (𝑊𝑖 ))

=
1

2

∑︁
𝑖∈𝑁
E(𝑣𝑖 (𝑊𝑖 ) − 𝑏𝑖 (𝑀)) +

∑︁
𝑖∈𝑁
E(𝑏𝑖 (𝑀))

=
1

2

∑︁
𝑖∈𝑁
E
(
E
(
𝑣𝑖 (𝑊𝑖 ) − 𝑏𝑖 (𝑀)

�� 𝑣𝑖 ) ) + ∑︁
𝑖∈𝑁
E(𝑏𝑖 (𝑀))

≥ 1

2

∑︁
𝑖∈𝑁
E

(
1

3

𝑣𝑖 (𝑂𝑃𝑇𝑖 ) − 𝑝′ (𝑂𝑃𝑇𝑖 ) − 𝜀′ · |𝑂𝑃𝑇𝑖 |
)
+

∑︁
𝑖∈𝑁
E(𝑏𝑖 (𝑀)),

where in the last line we used Lemma 3 taking 𝑋 = 𝑂𝑃𝑇𝑖 . Now,

since 𝑂𝑃𝑇𝑖 is a partition of𝑀 , we have that

E(𝐴𝐿𝐺) ≥ 1

6

· E(𝑂𝑃𝑇 ) − 𝜀′ · |𝑀 | − E(𝑝′ (𝑀)) + E
(∑︁
𝑖∈𝑁

𝑏𝑖 (𝑀)
)

≥ 1

6

· E(𝑂𝑃𝑇 ) − 𝜀′ · |𝑀 |,

where we used the fact that E(𝑝′
𝑗
) = E(𝑝 𝑗 ) = E(max𝑖∈𝑁 𝑏𝑖, 𝑗 ) ≤

E(∑𝑖∈𝑁 𝑏𝑖, 𝑗 ). Finally, we can take 𝜀′ to be as small as we want. In

particular, we can set it to be 𝜀′ ≤ 𝜀 ·E(𝑂𝑃𝑇 )
6· (6+𝜀 ) · |𝑀 | , which concludes the

proof of the theorem. □

As mentioned earlier, to prove Lemma 3 we use a fixed-point

approach. We will define a mapping whose fixed points are exactly

the RSGs that satisfy the condition of the lemma. Before diving

into that, let us define a discretized space for the scores and prove a

simpler existence result. Let 𝑣max = max𝑣∈𝑉𝑖 ,𝑖∈𝑁 𝑣 (𝑀). For a given
𝜀 > 0, let 𝐵𝜀 = {𝑠 · 𝜀 : 𝑠 ∈ N and 𝑠 · 𝜀 ≤ 𝑣max}𝑀 .

Lemma 4. For every subadditive and monotone valuation function
𝑣 : 2

𝑀 → R+ with 𝑣 (𝑀) ≤ 𝑣max, and every 𝜀 > 0; if 𝑝′ and 𝑝′′ are
random i.i.d. vectors in R𝑀+ , there exists a vector 𝑓 ∈ 𝐵𝜀 such that

E
(
𝑣

({
𝑗 : 𝑓𝑗 > max{𝑝′𝑗 , 𝑝

′′
𝑗 }

}) )
− 𝑓 (𝑀)

≥ 1

3

𝑣 (𝑋 ) − E
(
𝑝′ (𝑋 )

)
− 𝜀 · |𝑋 |, ∀𝑋 ⊆ 𝑀. (3)

Proof. Note that only the right-hand side of Equation (3) de-

pends on 𝑋 , so it is enough to find an 𝑓 ∈ 𝐵𝜀 that satisfies Equa-

tion (3) for the set 𝑋 ∗
that maximizes its right-hand side. Let 𝑝′′′

be an i.i.d. copy of 𝑝′. We define first a random vector
ˆ𝑓 as follows:

ˆ𝑓𝑗 =

{
⌊𝑝′′′

𝑗
/𝜀⌋ · 𝜀 + 𝜀 if 𝑗 ∈ 𝑋 ∗

0 otherwise.

With this definition,
ˆ𝑓𝑗 > 𝑝′′′

𝑗
for all 𝑗 ∈ 𝑋 ∗

, so by the monotonicity

of 𝑣 ,

E
(
𝑣

({
𝑗 :

ˆ𝑓𝑗 > max{𝑝′𝑗 , 𝑝
′′
𝑗 }

}) )
≥ E

(
𝑣

({
𝑗 : 𝑝′′′𝑗 ≥ max{𝑝′𝑗 , 𝑝

′′
𝑗 }

}
∩ 𝑋 ∗

) )
.
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Since 𝑝′, 𝑝′′, 𝑝′′′ are i.i.d., we can interchange them inside the ex-

pectation, i.e.,

E
(
𝑣

({
𝑗 : 𝑝′′′𝑗 ≥ max{𝑝′𝑗 , 𝑝

′′
𝑗 }

}
∩ 𝑋 ∗

) )
= E

(
𝑣

({
𝑗 : 𝑝′′𝑗 ≥ max{𝑝′𝑗 , 𝑝

′′′
𝑗 }

}
∩ 𝑋 ∗

) )
= E

(
𝑣

({
𝑗 : 𝑝′𝑗 ≥ max{𝑝′′′𝑗 , 𝑝′′𝑗 }

}
∩ 𝑋 ∗

) )
.

Also, note that

𝑀 =

{
𝑗 : 𝑝′′′𝑗 ≥ max{𝑝′𝑗 , 𝑝

′′
𝑗 } or 𝑝

′′
𝑗 ≥ max{𝑝′𝑗 , 𝑝

′′′
𝑗 }

or 𝑝′𝑗 ≥ max{𝑝′′′𝑗 , 𝑝′′𝑗 }
}
,

so by the subadditivity of 𝑣 , we obtain that

E
(
𝑣

({
𝑗 :

ˆ𝑓𝑗 > max{𝑝′𝑗 , 𝑝
′′
𝑗 }

}) )
≥ 1

3

𝑣 (𝑋 ∗).

Because
ˆ𝑓𝑗 ≤ 𝑝′′′

𝑗
+ 𝜀 for all 𝑗 ∈ 𝑋 ∗

, we conclude that

E
(
𝑣

({
𝑗 :

ˆ𝑓𝑗 > max{𝑝′𝑗 , 𝑝
′′
𝑗 }

})
− ˆ𝑓 (𝑀)

)
≥ 1

3

𝑣 (𝑋 ∗) − E
(
𝑝′ (𝑋 ∗)

)
− 𝜀 · |𝑋 ∗ |. (4)

To finish the proof of the lemma we have to make sure
ˆ𝑓 ∈ 𝐵𝜀 , so

we need to control the event that
ˆ𝑓𝑗 > 𝑣max for some 𝑗 ∈ 𝑀 . But if

this happens, notice that 𝑣 (𝑀) − ˆ𝑓 (𝑀) < 0. Thus, if we replace
ˆ𝑓

with the vector 0 in this event, we only increase the expectation on

the left-hand side of Equation (4). Finally, since a random vector

in 𝐵𝜀 satisfies the inequality in expectation, there must exist a

deterministic vector in 𝐵𝜀 that also satisfies it. □

Definition of the Mapping. Denote by L =
>

𝑖∈𝑁 Δ(𝐵𝜀 )𝑉𝑖
the space of the RSGs with scores in 𝐵𝜀 . We define the set-valued

function 𝜓 : L → 2
L
in the following way. Given an RSG 𝐷 =

(𝐷𝑖 )𝑖∈𝑁 ∈ L, we sample for each 𝑖 ∈ 𝑁 , 𝑣 ′
𝑖
, 𝑣 ′′
𝑖
∼ F𝑖 independently,

𝑏′
𝑖
∼ 𝐷𝑖 (𝑣 ′𝑖 ), and 𝑏

′′
𝑖
∼ 𝐷𝑖 (𝑣 ′′𝑖 ), also independently, and we denote

𝑝′
𝑗
= max𝑖∈𝑁 𝑏′

𝑖, 𝑗
, and 𝑝′′

𝑗
= max𝑖∈𝑁 𝑏′′

𝑖, 𝑗
. We define 𝜓 (𝐷) ⊆ L as

the set of RSGs 𝐺 = (𝐺𝑖 )𝑖∈𝑁 ∈ L that satisfy that: for all 𝑖 ∈ 𝑁 ,

and for all 𝑣 ∈ 𝑉𝑖 , if 𝑓 ∼ 𝐺𝑖 (𝑣) and is independent of 𝑝′ and 𝑝′′,
then

E
(
𝑣

({
𝑗 : 𝑓𝑗 > max{𝑝′𝑗 , 𝑝

′′
𝑗 }

})
− 𝑓 (𝑀)

)
≥ max

𝑋 ⊆𝑀

{
1

3

𝑣 (𝑋 ) − E
(
𝑝′ (𝑋 )

)
− 𝜀 · |𝑋 |

}
. (5)

Lemma 5. L is a non-empty, convex, and compact subset of a eu-
clidean space; for every 𝐷 ∈ L, the set 𝜓 (𝐷) is non-empty, closed,
and convex; and the function𝜓 has a closed graph.

Proof. First, we establish that L is non-empty, convex, and

compact. To this end note that the set 𝐵𝜀 is finite and has size

|𝐵𝜀 | = ⌊𝑣max/𝜀⌋ |𝑀 |
. Therefore, we can represent L as a subset of

[0, 1]ℓ , with ℓ = ⌊𝑣max/𝜀⌋ |𝑀 | · ∑𝑖∈𝑁 |𝑉𝑖 | as

L =

{
𝑥 = (𝑥𝑏,𝑖,𝑣)𝑏∈𝐵𝜀 ,𝑖∈𝑁,𝑣∈𝑉𝑖 ∈ [0, 1]ℓ :

∑︁
𝑏∈𝐵𝜀

𝑥𝑏,𝑖,𝑣 = 1, ∀𝑖 ∈ 𝑁, 𝑣 ∈ 𝑉𝑖

}
,

where 𝑥𝑏,𝑖,𝑣 is the probability that the scores of an agent 𝑖 ∈ 𝑁 are

𝑏 ∈ 𝐵𝜀 when her valuation is 𝑣 ∈ 𝑉𝑖 . It is immediate from this that

L is a non-empty, convex and compact subset of Rℓ . Throughout
the rest of this proof we will use this representation of L.

Second, note that𝜓 (𝐷) is non-empty. In fact, this is immediate

from Lemma 4.

Third, we show that𝜓 (𝐷) is closed and convex. For 𝑖 ∈ 𝑁, 𝑣 ∈ 𝑉𝑖 ,

let 𝑞𝑖,𝑣 ∈ [0, 1] denote the probability that 𝑣𝑖 = 𝑣 . For a given 𝑥 ∈ L,

we denote by 𝜋 (𝑥) ∈ Δ(𝐵𝜀 ) the resulting distribution of 𝑝′ (and of

𝑝′′), i.e., for 𝑓 ∈ 𝐵𝜀 ,

𝜋𝑓 (𝑥) =∑︁
(𝑣𝑖 )𝑖∈𝑁 ∈>𝑖∈𝑁 𝑉𝑖

(∏
𝑖∈𝑁

𝑞𝑖,𝑣𝑖

) ∑︁
(𝑏𝑖 )𝑖∈𝑁 ∈𝐵𝑁

𝜀 :max𝑖∈𝑁 𝑏𝑖,𝑗=𝑓𝑗

(∏
𝑖∈𝑁

𝑥𝑏𝑖 ,𝑖,𝑣𝑖

)
.

Now, using this notation, for a pair 𝑥,𝑦 ∈ L, we have that 𝑦 ∈ 𝜓 (𝑥)
if and only if, for all 𝑖 ∈ 𝑁, 𝑣 ∈ 𝑉𝑖 , 𝑋 ⊆ 𝑀 ,∑︁

𝑓 ∈𝐵𝜀

∑︁
𝑝′∈𝐵𝜀 ,𝑝

′′∈𝐵𝜀

𝑦𝑓 ,𝑖,𝑣 · 𝜋𝑝′ (𝑥) · 𝜋𝑝′′ (𝑥)

·
(
𝑣

({
𝑗 : 𝑓𝑗 > max{𝑝′𝑗 , 𝑝

′′
𝑗 }

})
− 𝑓 (𝑀)

)
≥ 1

3

𝑣 (𝑋 ) −
∑︁

𝑝′∈𝐵𝜀

𝜋𝑝′ (𝑥) · 𝑝′ (𝑋 ) − 𝜀 · |𝑋 |. (6)

For fixed 𝑥 , these are finitely many linear constraints on 𝑦, so𝜓 (𝑥)
is a convex and compact set.

Finally, we prove 𝜓 has a closed graph, i.e, that the set {(𝑥,𝑦) :

𝑥 ∈ L, 𝑦 ∈ 𝜓 (𝑥)} is closed. This follows immediately from the

continuity of Equation (6) in 𝑥 and 𝑦. Indeed, let (𝑥 (𝑘 ) , 𝑦 (𝑘 ) )𝑘∈N
be a convergent sequence in the graph of 𝜓 that converges to

(𝑥 (∞) , 𝑦 (∞) ). Since the sequence is in the graph of 𝜓 , we have

that 𝑦 (𝑘 ) ∈ 𝜓 (𝑥 (𝑘 ) ) for all 𝑘 ∈ N. Also, since 𝜋𝑓 (𝑥) is a continuous
function for every 𝑓 ∈ 𝐵𝜀 , both the left-hand side and the right-hand

side of Equation (6) are continuous functions of 𝑥 and 𝑦. Thus, the

pair (𝑥 (∞) , 𝑦 (∞) ) satisfies Equation (6) for all 𝑖 ∈ 𝑁, 𝑣 ∈ 𝑉𝑖 , 𝑋 ⊆ 𝑀 ,

and then 𝑦 (∞) ∈ 𝜓 (𝑥 (∞) ). This means that (𝑥 (∞) , 𝑦 (∞) ) is in the

graph of𝜓 , and therefore,𝜓 has a closed graph. □

Proof of Lemma 3. Recall that Kakutani’s fixed-point theorem

states that if L is a non-empty, compact, and convex subset of

a euclidean space, and 𝜓 : L → 2
L
has non-empty and convex

values, and a closed graph, then𝜓 has a fixed point. Lemma 5 gives

exactly these conditions, and therefore, there exists an RSG,𝐷 , such

that 𝐷 ∈ 𝜓 (𝐷), which is exactly what we want. □
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6 GENERAL VALUATIONS

So far we assumed that the supports of the distributions of the

valuation functions are finite. By losing an additional 𝜀 we can

remove this assumption and actually prove our main result for

general valuations so long as their expectation is finite.

First, if the supports are not finite but the valuations are uniformly

bounded by a constant 𝑣max, we can discretize them and obtain finite

supports. In fact, we only need the assumption of finite support for

the existence result in Lemma 3, so let’s apply it for the discretized

valuations defined for each 𝑖 ∈ 𝑁,𝑋 ⊆ 𝑀 , as

𝑣𝑖 (𝑋 ) = ⌊𝑣𝑖 (𝑋 )/𝜀⌋ · 𝜀.

Applying Lemma 3 we obtain RSGs such that, almost surely,

E
(
𝑣𝑖 (𝑊𝑖 ) − 𝑏𝑖 (𝑀)

��� 𝑣𝑖 ) ≥ E
(
𝑣𝑖 (𝑊𝑖 ) − 𝑏𝑖 (𝑀)

��� 𝑣𝑖 )
= E

(
𝑣𝑖 (𝑊𝑖 ) − 𝑏𝑖 (𝑀)

��� 𝑣𝑖 )
≥ max

𝑋 ⊆𝑀

{
1

3

𝑣𝑖 (𝑋 ) − E
(
𝑝′ (𝑋 )

)
− 𝜀 · |𝑋 |

}
≥ max

𝑋 ⊆𝑀

{
1

3

𝑣𝑖 (𝑋 ) − E
(
𝑝′ (𝑋 )

)
− 2𝜀 · |𝑋 |

}
.

We thus obtain an algorithm such that (6 + 𝑂 (𝜀)) · E(𝐴𝐿𝐺) ≥
E(𝑂𝑃𝑇 ).
Second, we can assume valuations are uniformly bounded by a

sufficiently large constant 𝑣max by truncating them. In fact, since

E(𝑂𝑃𝑇 ) < ∞, we know that

lim

𝑡→∞
E
(
𝑂𝑃𝑇 · 1{𝑂𝑃𝑇>𝑡 } )

)
= 0.

Thus, there exists a constant 𝑣max such that

E
(
𝑂𝑃𝑇 · 1{𝑂𝑃𝑇 ≤𝑣max }

)
≥ (1 − 𝜀) · E(𝑂𝑃𝑇 ) .

We already know that there must exist RSGs that guarantee a 6 +
𝑂 (𝜀)-approximation for the truncated valuations 𝑣𝑖 ∼ 𝑣𝑖 |𝑣𝑖 (𝑀) ≤
𝑣max for each 𝑖 ∈ 𝑁 . Then, if we apply this algorithm to the original

valuations, in the case 𝑣𝑖 (𝑀) > 𝑣max for some 𝑖 ∈ 𝑁 , necessarily

𝑂𝑃𝑇 > 𝑣max, so the expected welfare must be at least

1

6 +𝑂 (𝜀) E
(
𝑂𝑃𝑇 · 1{𝑂𝑃𝑇 ≤𝑣max }

)
≥ 1

6 +𝑂 (𝜀)E(𝑂𝑃𝑇 ) .

7 THE OPTIMAL DYNAMIC PROGRAM AND
ITS DSIC IMPLEMENTATION

If the arrival order of the buyers is fixed and given, the optimal

allocation in each step can be obtained by dynamic programming.

Assume the agents arrive in the order 1, . . . , 𝑛 and denote by 𝑉𝑖 (𝑋 )
the expected welfare that the algorithm recovers from agents 𝑖 or

larger, when the leftover set of items is 𝑋 ⊂ 𝑀 . By the principle of

dynamic programming we have that

𝑉𝑛 (𝑋 ) = E(𝑣𝑛 (𝑋 )) for all 𝑋 ⊂ 𝑀,

𝑉𝑖 (𝑋 ) = E
(
max

𝑌 ⊆𝑋
𝑣𝑖 (𝑌 ) +𝑉𝑖+1 (𝑋 \ 𝑌 )

)
for all 𝑋 ⊂ 𝑀.

𝑉1 (𝑀) is then the maximum expected social welfare attainable if

decisions are made online. Therefore, for any online algorithm𝐴𝐿𝐺

we have that 𝑉1 (𝑀) ≥ E(𝐴𝐿𝐺). Applying Theorem 1 and taking

𝜀 → 0 we obtain the following result.

Corollary 1. If the arrival order of the agents is fixed and given,
there is an online algorithm 𝐴𝐿𝐺 such that

6 · E(𝐴𝐿𝐺) ≥ E(𝑂𝑃𝑇 ) .

Implementation Using Dynamic Bundle Pricing. In our result we

assume we can observe not only the distributions of the valuations,

but also the valuations themselves (when the corresponding agent

arrives), and therefore our prophet inequality establishes a bound

for the performance of an online algorithm with respect to the op-

timal allocation. However, our result also implies the existence of a

prophet inequality where the online algorithm does not have access

to the realizations of the valuations and, moreover, by a dominant

strategies incentive compatible (DSIC) mechanism. Indeed, we can

implement the optimal online solution given by the dynamic pro-

gram by offering each buyer personalized prices for each bundle of

items.

Consider the prices 𝑝𝑖,𝑅 (𝑋 ), which is the price of set 𝑋 , offered

to agent 𝑖 , if the remaining set upon her arrival is 𝑅.

𝑝𝑖,𝑅 (𝑋 ) = 𝑉𝑖+1 (𝑅) −𝑉𝑖+1 (𝑅 \ 𝑋 ) for all 𝑋 ⊂ 𝑅 ⊂ 𝑀.

These prices represent the externality caused by agent 𝑖 if she

buys set 𝑋 . Defining 𝑉𝑛+1 (𝑅) = 0 for all 𝑅 ⊂ 𝑀 , the prices are

nonnegative (since 𝑉𝑖 (·) is 𝑝𝑖,𝑅 (𝜙) = 0.

Proposition 1. If the agents sequentially select their preferred set
when faced to prices 𝑝𝑖,𝑅 (𝑋 ), the expected welfare of the resulting
allocation equals 𝑉1 (𝑀).

Proof. By backwards induction assume that if the set of remain-

ing items is 𝑋 and 𝑖 + 1 arrives, the expected welfare of the pricing

mechanism from agents {𝑖 + 1, . . . , 𝑛} is 𝑉𝑖+1 (𝑋 ).
Then, when agent 𝑖 arrives and set 𝑅 are the remaining items she

solves:

max

𝑋 ⊂𝑅

{
𝑣𝑖 (𝑋 ) − 𝑝𝑖,𝑅 (𝑋 )

}
=max

𝑋 ⊂𝑅
{𝑣𝑖 (𝑋 ) −𝑉𝑖+1 (𝑅) +𝑉𝑖+1 (𝑅 \ 𝑋 )}

= −𝑉𝑖+1 (𝑅) + max

𝑋 ⊂𝑅
{𝑣𝑖 (𝑋 ) +𝑉𝑖+1 (𝑅 \ 𝑋 )} .

Thus, 𝑖 buys the set 𝑋 ∗ = arg max𝑋 ⊂𝑅 𝑣𝑖 (𝑋 ) +𝑉𝑖+1 (𝑅 \ 𝑋 ). This is
the same set that the optimal online algorithm allocates to agent

𝑖 , given the set of remaining items 𝑅. Therefore, what the pricing

mechanism obtains from agents {𝑖, . . . , 𝑛} isE(𝑣𝑖 (𝑋 ∗)+𝑉𝑖+1 (𝑅\𝑋 ∗))
which equals 𝑉𝑖 (𝑅). □

8 CONCLUDING REMARKS

The Almighty Adversary. Like in the classical Prophet Inequality

setting, throughout the paper we assumed the agents come in an

adversarial fixed order. Recent works have investigated which (or

to what extent) approximation results can be extended to more

powerful adversaries. The most powerful adversary, the almighty
adversary can choose the arrival order adaptively, observing all real-

izations of the valuations and the random choices of the algorithm

in advance. Our result can be extended to work against the almighty
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adversary. This requires to slightly adapt the Mirror Lemma. In

fact, notice that if the order can depend on the realizations of the

valuations, then the set 𝑅𝑖 is no longer independent of 𝑣𝑖 , so we

cannot just replace 𝑣𝑖 with 𝑣 ′′
𝑖
in the proof without modifying 𝑅𝑖 .

However, if we define

𝑅 (−𝑖 ) =
{
𝑗 : 𝑝′𝑗 ≥ 𝑏𝑖′, 𝑗 , ∀𝑖′ ≠ 𝑖

}
,

we get that 𝑅 ⊆ 𝑅 (−𝑖 ) ⊆ 𝑅𝑖 . And since 𝑅 (−𝑖 )
is independent of 𝑣𝑖 ,

we can add an intermediate step where we replace 𝑅𝑖 with 𝑅 (−𝑖 )
,

then we can replace 𝑣𝑖 with 𝑣 ′′
𝑖
and then replace 𝑅 (−𝑖 )

with 𝑅 and

continue with the next steps of the proof. Note that E(𝑣𝑖 (𝑊𝑖 ))
does not depend on the arrival order, so once the Mirror Lemma is

established, the rest of the proof of Theorem 1 carries over.

Computational Complexity. Our result is purely existential: we

prove there exists an algorithm that achieves the constant factor

Prophet Inequality. An obvious question is whether such policy

can be computed. Since we must find a probability distribution,

it is not even immediately obvious whether we can compute it

in finite time when the supports of the valuations are finite. We

can answer this affirmatively by further discretizing the space of

RSGs L. Let
ˆL ⊆ L be the set of RSGs whose probabilities are

multiples of a very small 𝜀′ > 0. Since there exist RSGs in L that

satisfy the condition of Lemma 3, and both sides of the inequality

are continuous in the RSG, there must exist one in
ˆL that satisfies

the constraint approximately. We can make 𝜀′ sufficiently small

so we only lose an extra 𝜀 in the approximation factor. Searching

over all possible options gives an algorithm that terminates in finite

time. An open question is whether we can compute efficiently this

policy, or any policy that yields a constant approximation factor.

Incentive Compatible Implementation and PoA for Simultaneous
Auctions. Our result and the discussion in Section 7 establish the

existence of a factor 6 prophet inequality which is implementable

using a DSIC mechanism. However we do this by analyzing the

optimal online algorithm and we do not have a reduction that

transforms an online algorithm into a DSIC mechanism. Thus,

even if we could efficiently find the RSGs that attain the 1/(6 + 𝜀)-
approximation, we do not immediately obtain from that an incentive

compatible mechanism.

We explain here how to modify our algorithm to obtain an in-

centive compatible mechanism. The analysis of this mechanism

is related to the result of Feldman et al. [15], where we replace

the first-price auction with a modified all-pay auction, that we call

undisputed-winner all-pay auctions with hidden reserve prices. This
auction has a Price of Anarchy of (6 + 𝜀), and thanks to the Mirror

Lemma, can be implemented online.

An undisputed-winner all-pay auction with hidden reserve prices

is a simultaneous auction where we set a random reserve price 𝑝′
𝑗

for each item 𝑗 ∈ 𝑀 . Then, each agent 𝑖 ∈ 𝑁 chooses a bid 𝑏𝑖, 𝑗 for

each item 𝑗 ∈ 𝑀 (without observing the realized prices). An agent

𝑖 ∈ 𝑁 gets each item 𝑗 ∈ 𝑀 for which she is the undisputed winner,

i.e., 𝑏𝑖, 𝑗 > 𝑝′
𝑗
≥ 𝑏𝑖′, 𝑗 for all 𝑖

′ ≠ 𝑖 . All agents pay all their bids, i.e.,

each agent 𝑖 ∈ 𝑁 pays 𝑏𝑖 (𝑀) = ∑
𝑗∈𝑀 𝑏𝑖, 𝑗 . Colloquially, we burn

every item for which no agent bids more than the reserve price,

and also every item for which two or more agents bid more than

the reserve price. We can modify the Mirror Lemma and Lemma 3

to show that if (i) the supports of the valuations are finite, and (ii)

we restrict the space of possible bids to be multiples of a given

𝜀 > 0, then there are (random) reserve prices for which there is

a Bayesian Nash Equilibrium, and the expected welfare is at least

1/(6 +𝑂 (𝜀)) times the expected optimal welfare. The purpose of

defining this rather esoteric class of auctions is that we can emulate

them on the fly in our Online Combinatorial Auction setting. When

an agent 𝑖 ∈ 𝑁 arrives we can —without disclosing what is the

set of remaining items— ask her a vector of bids, simulate the bids

of the agents that have not arrived yet, and give 𝑖 the items for

which she is the undisputed winner. Notice that because of the

undisputed-winner condition, we never attempt to allocate an item

to more than one agent. Therefore, from an agent’s point of view,

this procedure is equivalent to the simultaneous auction, so the

distributions of the set of items she gets and her bids are the same

as in the simultaneous auction. Thus, by linearity of expectation,

the expected welfare is the same as in the simultaneous auction.

We defer the details of this construction to the appendix.

Posted Prices. A natural class of mechanisms is that of per-item

posted prices, where we simply set a price 𝑝 𝑗 for each item 𝑗 ∈ 𝑀 ,

and then allow each agent to buy her most preferred subset of

the remaining items. The 2-approximation for XOS valuations [17]

and the 𝑂 (log log |𝑀 |)-approximation for subadditive valuations

[11] from previous work are in this class. Even though the scores

in our algorithm have a certain flavor of prices, we do not know

whether it can be transformed into a posted-prices mechanism.

When designing a posted-prices mechanism for the Online Combi-

natorial Auction setting there are two main challenges. The first is

the coordination of the agents: since each agent just takes her most

preferred set, we might sell too early items that we should reserve

for an agent with a high valuation later in the sequence. The second

is the uncertainty in the valuations: we do not know which agents

will have a high valuation, and which subsets of items will be the

more valuable ones. The first challenge appears even if we try to use

a posted-prices mechanism for deterministic valuations. However, a

result by Feldman et al. [16, Theorem 3.2] nicely resolves this issue

by using posted prices per bundles. For completeness,
6
we present

here a slight adaptation of their result attaining a 2-approximation

of the optimal welfare for deterministic subadditive valuations. For

each subset 𝑋 ⊆ 𝑀 , post the price

𝑝 (𝑋 ) = 1

2

∑︁
𝑖∈𝑁

𝑣𝑖 (𝑂𝑃𝑇𝑖 ∩ 𝑋 ) .

Let 𝑆 be the set of sold items. By the subadditivity we have that the

revenue is at least

Revenue =
∑︁
𝑖∈𝑁

𝑝 (𝐴𝐿𝐺𝑖 )

=
1

2

∑︁
𝑖∈𝑁

∑︁
𝑖′∈𝑁

𝑣𝑖′ (𝐴𝐿𝐺𝑖 ∩𝑂𝑃𝑇𝑖′ )

≥ 1

2

∑︁
𝑖′∈𝑁

𝑣𝑖′ (𝑆 ∩𝑂𝑃𝑇𝑖′ ) .

6
What we present is actually a special case of the result by Feldman et al. [16], which

works for fully general monotone valuations keeping the same 2-approximation.
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Now, let 𝑅 = 𝑀 \ 𝑆 be the set of remaining items. All items in 𝑅

are available when each of the agents arrives, so we have that the

sum of utilities of the agents is at least

Utility ≥
∑︁
𝑖∈𝑁

max

𝑋 ⊆𝑅
{𝑣𝑖 (𝑋 ) − 𝑝 (𝑋 )}

≥
∑︁
𝑖∈𝑁

(
𝑣𝑖 (𝑂𝑃𝑇𝑖 ∩ 𝑅) − 𝑝 (𝑂𝑃𝑇𝑖 ∩ 𝑅)

)
=

∑︁
𝑖∈𝑁

(
𝑣𝑖 (𝑂𝑃𝑇𝑖 ∩ 𝑅) − 1

2

∑︁
𝑖′∈𝑁

𝑣𝑖′ (𝑂𝑃𝑇𝑖 ∩𝑂𝑃𝑇𝑖′ ∩ 𝑅)
)

=
∑︁
𝑖∈𝑁

(
𝑣𝑖 (𝑂𝑃𝑇𝑖 ∩ 𝑅) − 1

2

𝑣𝑖 (𝑂𝑃𝑇𝑖 ∩ 𝑅)
)

=
1

2

∑︁
𝑖∈𝑁

𝑣𝑖 (𝑂𝑃𝑇𝑖 ∩ 𝑅) .

The fourth line follows from the fact that (𝑂𝑃𝑇𝑖 )𝑖∈𝑁 is a partition

of𝑀 . Adding the revenue and the utility, since the valuations are

subadditive and 𝑆 ∪ 𝑅 = 𝑀 , we get that the welfare is at least

1

2

∑
𝑖∈𝑁 𝑣𝑖 (𝑂𝑃𝑇𝑖 ).

We believe this evidence, together with our main result, suggests

there should exist a posted-prices mechanism for our setting.
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A INCENTIVE COMPATIBLE
IMPLEMENTATION

We describe here how to implement our result if the valuations are

private information and agents behave selfishly. For that we first

introduce a certain class of simultaneous auctions.

Undisputed-winner all-pay auctions with hidden reserve prices.
In this class of auctions we set a reserve price 𝑝′

𝑗
for each item

𝑗 ∈ 𝑀 . These prices are possibly random, in which case only the

distribution is known to the agents. For a prespecified set B ⊆ R𝑀+ ,

each agent 𝑖 ∈ 𝑁 submits item-bids 𝑏𝑖 = (𝑏𝑖, 𝑗 ) 𝑗∈𝑀 ∈ B. Each agent

𝑖 ∈ 𝑁 gets those items 𝑗 ∈ 𝑀 such that 𝑏𝑖, 𝑗 > 𝑝′
𝑗
≥ 𝑏𝑖′, 𝑗 for all

𝑖′ ≠ 𝑖 . For such an item, we say 𝑖 is the undisputed winner of item

𝑗 . Each agent 𝑖 ∈ 𝑁 pays the sum of all her bids, i.e., agent 𝑖 pays

𝑏𝑖 (𝑀) = ∑
𝑗∈𝑀 𝑏𝑖, 𝑗 (regardless of which items she gets).

For each agent 𝑖 ∈ 𝑁 and a vector 𝑓𝑖 ∈ B, let 𝐴𝑖 (𝑓𝑖 ) denote the
set of items she gets if she bids 𝑓𝑖 , given the other agents’ bids,

i.e., 𝐴𝑖 (𝑓𝑖 ) = { 𝑗 ∈ 𝑀 : 𝑓𝑖, 𝑗 > 𝑝′
𝑗
≥ 𝑏𝑖′, 𝑗 , ∀𝑖′ ≠ 𝑖}. We assume 𝑖

chooses 𝑓𝑖 ∈ B so as to maximize her expected utility 𝐸 (𝑣𝑖 (𝐴𝑖 (𝑓𝑖 ))−

𝑓𝑖 (𝑀) |𝑣𝑖 ). For a given 𝜀 > 0, we take B = 𝐵𝜀 = {𝑠 · 𝜀 : 𝑠 ∈
N and 𝑠 · 𝜀 ≤ 𝑣max}𝑀 . As in Section 5 we define L as the space of

RSGs with scores in 𝐵𝜀 .

Theorem 2. There are random reserve prices 𝑝′ and a Bayesian
Nash Equilibrium such that the welfare of the resulting allocation
satisfies

(6 + 𝜀) ·
∑︁
𝑖∈𝑁
E(𝐴𝑖 (𝑏𝑖 )) ≥ E(𝑂𝑃𝑇 ).

Online Implementation. Given (a distribution of) prices 𝑝′ and a

corresponding Bayesian Nash Equilibrium, we can implement the

allocation on the fly. Notice that the distributions of the bids in the

equilibrium are RSGs. Denote them by (𝐷𝑖 )𝑖∈𝑁 . For ease of notation

let’s identify the set of agents 𝑁 with [𝑛] and assume they arrive

in the corresponding order. We proceed as follows: when agent 𝑖

arrives, without disclosing what are the prices and the remaining

items, we ask her a vector of bids 𝑏𝑖 ∈ B. For each agent 𝑖′ > 𝑖 (the

ones that have not arrived yet), we simulate (draw a fresh sample

of) her valuation 𝑣
(𝑖 )
𝑖′ ∼ F𝑖′ and the corresponding equilibrium bids

𝑏
(𝑖 )
𝑖′ ∼ 𝐷𝑖′ (𝑣 (𝑖 )𝑖′ ). Note that at this point we already know the true

bids 𝑏𝑖′ of previous agents 𝑖
′ < 𝑖 . We give agent 𝑖 the set

𝐴𝐿𝐺𝑖 =

{
𝑗 ∈ 𝑀 : 𝑏𝑖, 𝑗 > 𝑝′𝑗 ≥ max

{
max

𝑖′<𝑖
𝑏𝑖′, 𝑗 ,max

𝑖′>𝑖
𝑏
(𝑖 )
𝑖′, 𝑗

}}
.

Notice that this is feasible because, by definition, the sets 𝐴𝐿𝐺𝑖

are disjoint. We can prove inductively that for every agent 𝑖 ∈ 𝑁 ,

submitting bids 𝑏𝑖 ∼ 𝐷𝑖 (𝑣𝑖 ) is an equilibrium, i.e., if all the other

agents follow these strategies, these bids maximize each agent’s

utility. In fact, take an agent 𝑖 ∈ 𝑁 and assume all previous agents

𝑖′ < 𝑖 submit bids 𝑏𝑖′ ∼ 𝐷𝑖′ (𝑣𝑖′ ). From the perspective of agent 𝑖

the distribution of the set she will get as a function of her bid is

exactly the same as in the equilibrium of the simultaneous auction,

and therefore, it is optimal to play the same strategy as in the

simultaneous auction, i.e., 𝑏𝑖 ∼ 𝐷𝑖 (𝑣𝑖 ). Therefore, the equilibrium
bids for the simultaneous auction are also an equilibrium for the

online implementation. Finally, notice that this implies that the

distribution of the utility and the payment of each agent 𝑖 ∈ 𝑁 is

the same as in the equilibrium of the simultaneous auction, and

therefore, by linearity of expectation, the resulting welfare is the

same as in the equilibrium of the simultaneous auction.
7

We now prove there are prices 𝑝′ and a corresponding equilib-

rium for the simultaneous auction whose expected welfare is at

least 1/(6 + 𝜀) of the expected optimal welfare. We start by proving

there are random prices that distribute exactly as the maximum bids

of the resulting equilibrium. This is an application of Kakutani’s

Fixed-Point Theorem, similar to Lemma 3.

Lemma 6. There are RSGs (𝐷𝑖 )𝑖∈𝑁 in L such that if we sample
for each 𝑖 ∈ 𝑁 independently 𝑣 ′

𝑖
∼ F𝑖 and 𝑏′

𝑖
∼ 𝐷𝑖 (𝑣 ′𝑖 ), and take

as reserve prices 𝑝′
𝑗
= max𝑖∈𝑁 𝑏′

𝑖, 𝑗
, then there is a Bayesian Nash

7
The reader might have noticed that the distribution of the resulting allocation as a

whole will not necessarily be the same as in the simultaneous auction, as we might

“burn" items because they are claimed by the current agent and one of the “simu-

lated copies" of the future agents, but not by the real future agents. However, by the

linearity-of-expectation argument, this does not affect the expected welfare of the

allocation. Separately, the contribution of each agent has the same distribution in both

the simultaneous auction and in the online implementation.
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Equilibrium of the simultaneous auction where each agent 𝑖 ∈ 𝑁

submits bids 𝑏𝑖 ∼ 𝐷𝑖 (𝑣𝑖 ).

Proof. We define a similar mapping as for Lemma 3. We take

the same space L =
>

𝑖∈𝑁 Δ(𝐵𝜀 )𝑉𝑖 which is the space of the RSGs

with scores in 𝐵𝜀 . We define the set-valued function
ˆ𝜓 : L →

2
L

in the following way. Given an RSG 𝐷 = (𝐷𝑖 )𝑖∈𝑁 ∈ L, we

sample for each 𝑖 ∈ 𝑁 , 𝑣 ′
𝑖
, 𝑣 ′′
𝑖
∼ F𝑖 independently, 𝑏′𝑖 ∼ 𝐷𝑖 (𝑣 ′𝑖 ), and

𝑏′′
𝑖
∼ 𝐷𝑖 (𝑣 ′′𝑖 ), also independently, and we denote 𝑝′

𝑗
= max𝑖∈𝑁 𝑏′

𝑖, 𝑗
,

and 𝑝′′
𝑗

= max𝑖∈𝑁 𝑏′′
𝑖, 𝑗
. We define 𝜓 (𝐷) ⊆ L as the set of RSGs

𝐺 = (𝐺𝑖 )𝑖∈𝑁 ∈ L that satisfy that: for all 𝑖 ∈ 𝑁 , and for all 𝑣 ∈ 𝑉𝑖 ,

a random vector 𝑓 ∼ 𝐺𝑖 (𝑣) satisfies

E
(
𝑣

({
𝑗 : 𝑓𝑗 > max{𝑝′𝑗 , 𝑝

′′
𝑗 }

})
− 𝑓 (𝑀)

)
≥ max

𝑔∈𝐵𝜀

E
(
𝑣

({
𝑗 : 𝑔 𝑗 > max{𝑝′𝑗 , 𝑝

′′
𝑗 }

})
− 𝑔 (𝑀)

)
. (7)

We show this mapping has a fixed point (which is are by definition

the RSGs we are looking for) using Kakutani’s Theorem. To use the

theorem, we require that L is a non-empty, convex and compact

subset of an euclidean space, that
ˆ𝜓 (𝐷) is non-empty, convex and

closed, and that
ˆ𝜓 is upper-hemicontinuous.

First, we prove L is a non-empty, convex and compact subset of

an euclidean space. As in the proof of Lemma 5, this is immediate

of considering the representation of L as

L =

{
𝑥 = (𝑥𝑏,𝑖,𝑣)𝑏∈𝐵𝜀 ,𝑖∈𝑁,𝑣∈𝑉𝑖 ∈ [0, 1]ℓ :

∑︁
𝑏∈𝐵𝜀

𝑥𝑏,𝑖,𝑣 = 1, ∀𝑖 ∈ 𝑁, 𝑣 ∈ 𝑉𝑖

}
,

where 𝑥𝑏,𝑖,𝑣 is the probability that the scores of an agent 𝑖 ∈ 𝑁 are

𝑏 ∈ 𝐵𝜀 when her valuation is 𝑣 ∈ 𝑉𝑖 .

Second,
ˆ𝜓 (𝐷) by definition non-empty: we can just take 𝑓 to

be deterministically equal to the vector 𝑔 ∈ 𝐵𝜀 that attains the

maximum of the right-hand side of Equation (7) (recall that 𝐵𝜀 is a

finite set).

Third, we show that
ˆ𝜓 (𝐷) is closed and convex. Just as in Lemma 5,

for 𝑖 ∈ 𝑁, 𝑣 ∈ 𝑉𝑖 , let 𝑞𝑖,𝑣 ∈ [0, 1] denote the probability that 𝑣𝑖 = 𝑣 .

For a given 𝑥 ∈ L, we denote by 𝜋 (𝑥) ∈ Δ(𝐵𝜀 ) the resulting distri-

bution of 𝑝′ (and of 𝑝′′), i.e., for 𝑓 ∈ 𝐵𝜀 ,

𝜋𝑓 (𝑥) =∑︁
(𝑣𝑖 )𝑖∈𝑁 ∈>𝑖∈𝑁 𝑉𝑖

(∏
𝑖∈𝑁

𝑞𝑖,𝑣𝑖

) ∑︁
(𝑏𝑖 )𝑖∈𝑁 ∈𝐵𝑁

𝜀 :max𝑖∈𝑁 𝑏𝑖,𝑗=𝑓𝑗

(∏
𝑖∈𝑁

𝑥𝑏𝑖 ,𝑖,𝑣𝑖

)
.

Now, using this notation, for a pair 𝑥,𝑦 ∈ L, we have that 𝑦 ∈ 𝜓 (𝑥)
if and only if, for all 𝑖 ∈ 𝑁, 𝑣 ∈ 𝑉𝑖 , 𝑔 ∈ 𝐵𝜀 ,∑︁

𝑓 ∈𝐵𝜀

∑︁
𝑝′∈𝐵𝜀 ,𝑝

′′∈𝐵𝜀

𝑦𝑓 ,𝑖,𝑣 · 𝜋𝑝′ (𝑥) · 𝜋𝑝′′ (𝑥)

·
(
𝑣

({
𝑗 : 𝑓𝑗 > max{𝑝′𝑗 , 𝑝

′′
𝑗 }

})
− 𝑓 (𝑀)

)
≥

∑︁
𝑝′∈𝐵𝜀 ,𝑝

′′∈𝐵𝜀

𝜋𝑝′ (𝑥) · 𝜋𝑝′′ (𝑥) (8)

·
(
𝑣

({
𝑗 : 𝑔 𝑗 > max{𝑝′𝑗 , 𝑝

′′
𝑗 }

})
− 𝑔 (𝑀)

)
. (9)

For fixed 𝑥 , these are finitely many linear constraints on 𝑦, so ˆ𝜓 (𝑥)
is a convex and compact set.

Finally, again analogously to the proof of Lemma 5, the upper-

hemicontinuity of
ˆ𝜓 follows because 𝜋𝑓 (𝑥) is continuous on 𝑥 , and

therefore, both sides of Equation (9) are continuous functions of 𝑥

and 𝑦. □

The RSGs provided by Lemma 6 are exactly those we use for

Theorem 2. To prove the approximation result we require two more

lemmas. The first is the analogue of Lemma 1 (the Mirror Lemma).

Lemma 7. Let (𝐷𝑖 )𝑖∈𝑁 be the RSGs from Lemma 6 and 𝑝′ the
corresponding reserve prices. Let 𝑝′′ be an i.i.d. copy of 𝑝′. For each
𝑖 ∈ 𝑁 , let 𝑏𝑖 ∼ 𝐷𝑖 (𝑣𝑖 ) be the equilibrium bids. We have that for all
𝑖 ∈ 𝑁 , all 𝑣 ∈ 𝑉𝑖 , and all 𝑓𝑖 ∈ B,

E(𝑣 (𝐴𝑖 (𝑓𝑖 ))) ≥
1

2

· E(𝑣 ({ 𝑗 ∈ 𝑀 : 𝑓𝑖, 𝑗 > max{𝑝′𝑗 , 𝑝
′′
𝑗 }})) .

Proof. For each 𝑖 ∈ 𝑁 sample independent valuations 𝑣 ′′
𝑖
∼ F𝑖 ,

and sample 𝑏′′
𝑖
∼ 𝐷𝑖 (𝑣 ′′𝑖 ). Define for each 𝑗 ∈ 𝑀 𝑝′′

𝑗
= max𝑖∈𝑁 𝑏′′

𝑖, 𝑗
.

We have that

𝐸 (𝑣 (𝐴𝑖 (𝑓𝑖 ))) = E
(
𝑣

({
𝑗 ∈ 𝑀 : 𝑓𝑖, 𝑗 > 𝑝′𝑗 ≥ 𝑏𝑖′, 𝑗 , ∀𝑖′ ≠ 𝑖

}))
= E

(
𝑣

({
𝑗 ∈ 𝑀 : 𝑓𝑖, 𝑗 > 𝑝′𝑗 ≥ 𝑏′′𝑖′, 𝑗 , ∀𝑖

′ ≠ 𝑖

}))
≥ E

(
𝑣

({
𝑗 ∈ 𝑀 : 𝑓𝑖, 𝑗 > 𝑝′𝑗 ≥ 𝑝′′𝑗

}))
,

where the last inequality follows from the monotonicity of 𝑣 . Now,

since 𝑝′ and 𝑝′′ are i.i.d.,

E
(
𝑣

({
𝑗 ∈ 𝑀 : 𝑓𝑖, 𝑗 > 𝑝′𝑗 ≥ 𝑝′′𝑗

}))
= E

(
𝑣

({
𝑗 ∈ 𝑀 : 𝑓𝑖, 𝑗 > 𝑝′′𝑗 ≥ 𝑝′𝑗

}))
=

1

2

· E
(
𝑣

({
𝑗 ∈ 𝑀 : 𝑓𝑖, 𝑗 > 𝑝′𝑗 ≥ 𝑝′′𝑗

})
+ 𝑣

({
𝑗 ∈ 𝑀 : 𝑓𝑖, 𝑗 > 𝑝′′𝑗 ≥ 𝑝′𝑗

}) )
≥ 1

2

· E
(
𝑣

({
𝑗 ∈ 𝑀 : 𝑓𝑖, 𝑗 > max{𝑝′𝑗 , 𝑝

′′
𝑗 }

}) )
,

where the last inequality follows from the subadditivity of 𝑣 . □

The second lemma is the analogue of Lemma 4. Together with

Lemma 7, it provides a lower bound on the utility of an agent in

the equilibrium.
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Lemma 8. For a given 𝜀 > 0, let 𝑝′ and 𝑝′′ be a pair of i.i.d. vectors
in 𝐵𝜀 . For every monotone valuation function 𝑣 : 2

𝑀 → R+ with
𝑣 (𝑀) ≤ 𝑣max, there exists a vector 𝑓 ∈ 𝐵𝜀 such that, for all 𝑋 ⊆ 𝑀 ,

1

2

E(𝑣 ({ 𝑗 : 𝑓𝑗 > max{𝑝′𝑗 , 𝑝
′′
𝑗 }}))−𝑓 (𝑀) ≥ 1

6

𝑣 (𝑋 )−E(𝑝′ (𝑋 ))−𝜀·|𝑋 |.

Proof. Let 𝑝′′′ be an i.i.d. copy of 𝑝′ (and also independent of

𝑝′′). Let 𝑋 ∗
be the set that maximizes the right-hand side of the

inequality of the lemma. We can take a random vector
ˆ𝑓 defined as

ˆ𝑓𝑗 =

{
𝑝′′′
𝑗

+ 𝜀 if 𝑗 ∈ 𝑋 ∗

0 otherwise,

for each 𝑗 ∈ 𝑀 . We have that

E

(
1

2

𝑣

({
𝑗 :

ˆ𝑓𝑗 > max{𝑝′𝑗 , 𝑝
′′
𝑗 }

})
− ˆ𝑓 (𝑀)

)
≥ E

(
1

2

𝑣

(
𝑋 ∗ ∩

{
𝑗 : 𝑝′′′𝑗 ≥ max{𝑝′𝑗 , 𝑝

′′
𝑗 }

})
− 𝑝′′′ (𝑋 ∗) − 𝜀 · |𝑋 ∗ |

)
.

Since 𝑝′, 𝑝′′ and 𝑝′′′ are i.i.d., we can interchange them inside the

expectation. Because of this and by the subadditivity of 𝑣 ,

E
(
𝑣

(
𝑋 ∗ ∩

{
𝑗 : 𝑝′′′𝑗 ≥ max{𝑝′𝑗 , 𝑝

′′
𝑗 }

}))
≥ 1

3

· 𝑣 (𝑋 ∗).

Therefore, we have that

E

(
1

2

𝑣

({
𝑗 :

ˆ𝑓𝑗 > max{𝑝′𝑗 , 𝑝
′′
𝑗 }

})
− ˆ𝑓 (𝑀)

)
≥ 1

6

· 𝑣
(
𝑋 ∗) − E(𝑝′′′ (𝑋 ∗)) − 𝜀 · |𝑋 ∗ |

= max

𝑋 ⊆𝑀

{
1

6

· 𝑣 (𝑋 ) − E(𝑝′ (𝑋 )) − 𝜀 · |𝑋 |
}
.

Finally, the existence of a random vector
ˆ𝑓 ∈ 𝐵𝜀 +𝜀 that satisfies the

inequality in expectation indicates that there is a vector 𝑓 ∈ 𝐵𝜀 + 𝜀

that also satisfies it. Now, imagine that 𝑓𝑗 > 𝑣max for some 𝑗 ∈ 𝑀 . If

this is the case, the left-hand side is negative, which contradicts the

fact that the right-hand side is at least 0, by taking𝑋 = ∅. Therefore,
𝑓 ∈ 𝐵𝜀 . □

Proof of Theorem 2. As mentioned earlier, we take the RSGs

(𝐷𝑖 )𝑖∈𝑁 provided by Lemma 6. If we sample for each 𝑖 ∈ 𝑁 inde-

pendent valuations 𝑣 ′
𝑖
∼ F𝑖 and bids 𝑏′

𝑖
∼ 𝐷𝑖 (𝑣 ′𝑖 ), and set reserve

prices 𝑝′
𝑗
= max𝑖∈𝑁 𝑏′

𝑖, 𝑗
, the lemma states there is a Bayesian Nash

Equilibrium where agents bid 𝑏𝑖 ∼ 𝐷𝑖 (𝑣𝑖 ). In this equilibrium the

expected welfare is∑︁
𝑖∈𝑁
E(𝑣𝑖 (𝐴𝑖 (𝑏𝑖 )))

=
∑︁
𝑖∈𝑁
E(𝑣𝑖 (𝐴𝑖 (𝑏𝑖 )) − 𝑏𝑖 (𝑀)) +

∑︁
𝑖∈𝑁
E(𝑏𝑖 (𝑀))

=
∑︁
𝑖∈𝑁
E (E (𝑣𝑖 (𝐴𝑖 (𝑏𝑖 )) − 𝑏𝑖 (𝑀) | 𝑣𝑖 )) +

∑︁
𝑖∈𝑁
E(𝑏𝑖 (𝑀)) .

Now, notice that

E (𝑣𝑖 (𝐴𝑖 (𝑏𝑖 )) − 𝑏𝑖 (𝑀) | 𝑣𝑖 )

is the expected utility of agent 𝑖 , when her valuation is 𝑣𝑖 . Since

this is an equilibrium, 𝑏𝑖 maximizes this expression, given 𝑣𝑖 . Let

𝑝′′ be an i.i.d. copy of 𝑝′, and let 𝑓𝑖 be the vector guaranteed by

Lemma 8. We have that

E (𝑣𝑖 (𝐴𝑖 (𝑏𝑖 )) − 𝑏𝑖 (𝑀) | 𝑣𝑖 )
≥ E (𝑣𝑖 (𝐴𝑖 (𝑓𝑖 )) − 𝑓𝑖 (𝑀) | 𝑣𝑖 )

≥ E
(

1

2

𝑣𝑖 ({ 𝑗 : 𝑓𝑖, 𝑗 > max{𝑝′𝑗 , 𝑝
′′
𝑗 }}) − 𝑓𝑖 (𝑀)

���� 𝑣𝑖 )
≥ max

𝑋 ⊆𝑀

{
1

6

· 𝑣𝑖 (𝑋 ) − E(𝑝′ (𝑋 )) − 𝜀 · |𝑋 |
}
.

In the second line we applied Lemma 7 and in the third line Lemma 8.

Thus, we have that the expected welfare is at least∑︁
𝑖∈𝑁
E

(
max

𝑋 ⊆𝑀

{
1

6

· 𝑣𝑖 (𝑋 ) − E(𝑝′ (𝑋 )) − 𝜀 · |𝑋 |
})

+
∑︁
𝑖∈𝑁
E(𝑏𝑖 (𝑀))

≥
∑︁
𝑖∈𝑁
E

(
1

6

· 𝑣𝑖 (𝑂𝑃𝑇𝑖 ) − 𝑝′ (𝑂𝑃𝑇𝑖 ) − 𝜀 · |𝑂𝑃𝑇𝑖 |
)
+

∑︁
𝑖∈𝑁
E(𝑏𝑖 (𝑀))

=
1

6

· E(𝑂𝑃𝑇 ) − 𝜀 · |𝑀 | − E(𝑝′ (𝑀)) + E
(∑︁
𝑖∈𝑁

𝑏𝑖 (𝑀)
)
,

where in the second line we just replaced 𝑋 with 𝑂𝑃𝑇𝑖 , and in

the third line we used linearity of expectation and the fact that

(𝑂𝑃𝑇𝑖 )𝑖∈𝑁 is a partition of 𝑀 . We conclude by noticing that for

every 𝑗 ∈ 𝑀 ,

E(𝑝′𝑗 ) = E(max

𝑖∈𝑀
𝑏′𝑖, 𝑗 ) ≤ E(

∑︁
𝑖∈𝑁

𝑏′𝑖, 𝑗 ) = E(
∑︁
𝑖∈𝑁

𝑏𝑖, 𝑗 ),

and taking a sufficiently small 𝜀 > 0. □

REFERENCES
[1] S. Assadi, T. Kesselheim, S. Singla. Improved truthful mechanisms for subadditive

combinatorial auctions: Breaking the logarithmic barrier. SODA 2021.

[2] S. Assadi and S. Singla. Improved truthful mechanisms for combinatorial auctions

with submodular bidders. FOCS 2019.

[3] P. Azar, R. Kleinberg, S.M. Weinberg. Prophet inequalities with limited informa-

tion. SODA 2014.

[4] M. Babaioff, B. Lucier, N. Nisan, R. Paes Leme. On the efficiency of the walrasian

mechanism. EC 2014.

[5] E. Baldwin, P. Klemperer. Understanding preferences:“demand types”, and the

existence of equilibrium with indivisibilities. Econometrica 87(3):867–932, 2019.
[6] Y. Cai, M. Zhao. Simple mechanisms for subadditive buyers via duality. STOC

2017.

[7] J. Correa, A. Cristi, A. Fielbaum, T. Pollner, S.M. Weinberg. Optimal item pricing

in online combinatorial auctions. IPCO 2022.

[8] S. Dobzinski, M. Schapira. An improved approximation algorithm for combinato-

rial auctions with submodular bidders. SODA 2006.

[9] S. Dobzinski, N. Nisan, and M. Schapira. Approximation algorithms for combina-

torial auctions with complement-free bidders. STOC 2005.

[10] S. Dobzinski. Breaking the logarithmic barrier for truthful combinatorial auctions

with submodular bidders. STOC 2016.

[11] P. Dütting, T. Kesselheim, B. Lucier. An O(log log m) Prophet Inequality for Sub-

additive Combinatorial Auctions. SIAM J. on Computing, to appear (Preliminary

version in FOCS 2020).

[12] P. Dutting, M. Feldman, T. Kesselheim, B. Lucier. Prophet inequalities made easy:

Stochastic optimization by pricing nonstochastic inputs. SIAM J. on Computing,
49(3):540–582, 2020.

[13] S. Ehsani, M. Hajiaghayi, T. Kesselheim, S. Singla Prophet secretary for combina-

torial auctions and matroids. SODA 2018.

[14] T. Ezra, M. Feldman, N. Gravin, Z. Tang. Online stochastic max-weight matching:

prophet inequality for vertex and edge arrival models. EC 2020.

[15] M. Feldman, H. Fu, N. Gravin, B. Lucier. Simultaneous Auctions are (almost)

Efficient. STOC 2013.

[16] M. Feldman, N. Gravin, B. Lucier. Combinatorial walrasian equilibrium. SIAM J.
on Computing, 45(1):29–48, 2016.

696



STOC ’23, June 20–23, 2023, Orlando, FL, USA José Correa and Andrés Cristi

[17] M. Feldman, N. Gravin, B. Lucier. Combinatorial Auctions via Posted Prices.

SODA 2014.

[18] U. Feige. On maximizing welfare when utility functions are subadditive. STOC

2006.

[19] N. Gravin, H. Wang. Prophet inequality for bipartite matching: merits of being

simple and non adaptive. EC 2019.

[20] R. Kleinberg, S.M. Weinberg. Matroid prophet inequalities. STOC 2012.

[21] U. Krengel, L. Sucheston. Semiamarts and finite values. Bull. Amer. Math. Soc.
83:745–747, 1977.

[22] U. Krengel, L. Sucheston. On semiamarts, amarts, and processes with finite value.

Adv. in Probability 4:197–266, 1978.

[23] R. Paes Leme, S. Wong. Computing Walrasian equilibria: Fast algorithms and

structural properties. Mathematical Programming 179(1):343–384 2020
[24] A. Rubinstein, S. Singla. Combinatorial prophet inequalities. SODA 2017.

[25] A. Rubinstein, J.Z. Wang, S.M. Weinberg. Optimal Single-choice prophet inequal-

ities from samples. ITCS 2020.

[26] H. Zhang. Improved prophet inequalities for combinatorial welfare maximization

with (approximately) subadditive agents. Journal of Computer and System Sciences
123:143–146, 2022 (Preliminary version in ESA 2020).

Received 2022-11-07; accepted 2023-02-06

697


	Abstract
	1 Introduction
	1.1 Our Results
	1.2 Main Technical Ingredients

	2 Model, algorithm and main result
	3 The Mirror Lemma
	4 Constant approximation for XOS valuations
	5 Proof of the main result: A fixed point approach
	6 General valuations
	7 The Optimal Dynamic Program and its DSIC Implementation
	8 Concluding remarks
	Acknowledgments
	A Incentive compatible implementation
	References

