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Abstract. We consider a fundamental pricing problem in combinatorial
auctions. We are given a set of indivisible items and a set of buyers with
randomly drawn monotone valuations over subsets of items. A decision
maker sets item prices and then the buyers make sequential purchas-
ing decisions, taking their favorite set among the remaining items. We
parametrize an instance by d, the size of the largest set a buyer may want.
Our main result asserts that there exist prices such that the expected
(over the random valuations) welfare of the allocation they induce is at
least a factor 1/(d + 1) times the expected optimal welfare in hindsight.
Moreover we prove that this bound is tight. Thus, our result not only
improves upon the 1/(4d − 2) bound of Dütting et al., but also settles
the approximation that can be achieved by using item prices. We fur-
ther show how to compute our prices in polynomial time. We provide
additional results for the special case when buyers’ valuations are known
(but a posted-price mechanism is still desired).

Keywords: Combinatorial Auctions · Online allocations

1 Introduction

In combinatorial auctions, a set of valuable items is to be allocated among a set
of interested agents. Who should get which items in order to maximize the social
welfare? This is a fundamental economic question, and a ubiquitous allocation
mechanism is to simply set a price for each item and let the agents buy their
preferred subset of items under those prices. The study of these mechanisms
dates back to the investigations of Leon Walras over a century ago, and is closely
related to the notion of Walrasrian equilibrium. Understanding the existence
and approximation of Walrasrian equilibrium and related notions under pricing
mechanisms has been an active area of research in recent years [3,4,13,14,20].

In this paper, we follow the approach of online combinatorial auctions and
study the welfare achieved by posted-price mechanisms in a very general setup.
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Specifically, our mechanisms post a price pi on each item i. Then, buyers with
randomly-drawn monotone valuations over the subsets of items arrive in arbi-
trary order, and upon arrival pick their preferred subset among those items that
are left (at the posted prices). Of course, in this generality little can be said
about the social welfare induced by posted-price mechanisms, so it is common
to parametrize the instances by d, the largest size of a set a buyer might be inter-
ested in.1 This parametrization is interesting from a combinatorial perspective:
finding a socially optimal allocation is NP-hard already when d ≥ 3.2 Moreover,
if we restrict the buyers’ valuations to be deterministic and single-minded,3 we
recover the classic hypergraph matching problem.

Our main result in this paper is to determine the tight approximation guar-
antee of item pricing as a function of d. Specifically, we prove that there always
exist a posted-price mechanism such that the expected welfare of the result-
ing allocation, when buyers arrive in adversarial order and iteratively purchase
their preferred set, is at least a 1/(d + 1) fraction of the expected welfare of
an optimal allocation (Theorem 1). Furthermore, we prove this bound is tight
(Proposition 1).

Interestingly, our result generalizes and/or improves upon several results in
the literature, which we now provide context for.

1.1 Context and Related Work

Posted-Price Mechanisms. Posted-price mechanisms are ubiquitous within
the economics and computation literature due to their simplicity. They are com-
monly used as subroutines in truthful mechanisms that approximately maximize
welfare [1,2,8,9,19]. They are also used as subroutines in simple mechanisms to
approximately maximize revenue in Bayesian settings [5–7,18]. Our work con-
siders the same model (welfare maximization in Bayesian settings) initiated by
Feldman et al. [13]. Other works consider restrictions on the valuations such
as subadditive [11], while others consider the unrestricted case [10]. Our paper
contributes to this line of work by nailing the tight approximation guarantee
of posted-price mechanisms in this model for unrestricted valuations over sets
of size at most d. In particular, our results improve the bound of 1/(4d − 2) of
Dütting et al. [10], to 1/(d + 1), which is tight.

Prophet Inequalities. When there is a single item (and thus d = 1) our prob-
lem is equivalent to the single-item prophet inequality and thus our result takes
the same form as the classic result of Samuel-Cahn [21], who proved that the
optimal prophet inequality (whose factor is 1/2) can be achieved with a single
threshold. A special case of our problem when buyers are single-minded cor-
responds to various multiple-choice prophet inequality settings, and our results
improve upon the state-of-the-art. In particular, all prophet inequalities deduced
from our main result are non-adaptive: for each element e, a threshold Te is set
1 That is, for all sets A with |A| > d, v(A) := maxB⊂A,|B|≤d{v(B)}.
2 And quite hard to approximate [22].
3 That is, each buyer has a fixed set T , and values all sets S at v(S) := I(T ⊆ S)·v(T ).
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at the beginning of the algorithm. Element e is accepted if and only if we ≥ Te

(and it is feasible to accept e).
When d = 2 and buyers are single-minded, our problem translates into the

matching prophet inequality problem. Our results when d = 2 therefore extend
the 1/3-approximation of Gravin and Wang [16] from bipartite to general graphs.
Note that recent work of Ezra et al. [12] provides a .337-approximation in this
case, although it sets thresholds adaptively. In the full version, we further con-
tribute to the d = 2 case by proving that no prophet inequality (adaptive or not)
can guarantee better than a 3/7-approximation for the bipartite graph prophet
inequality.

For arbitrary d when buyers are single-minded, our problem translates into
the d-dimensional hypergraph prophet inequality, which generalizes the prophet
inequality problem over the intersection of d partition matroids. Here, a 1/(4d−
2)-approximation was first given by Kleinberg and Weinberg [18], and improved
to 1/(e(d + 1)) by Feldman et al. [15]. A corollary of our main result improves
this to 1/(d+1), and with non-adaptive thresholds. A lower bound of Kleinberg
and Weinberg [18] proves that it is not possible to achieve an ω(1/

√
d) approxi-

mation even for this special case, but it remains an open problem to determine
the tight ratio for prophet inequalities for the intersection of d partition matroids
(and for the d-dimensional hypergraph prophet inequality).

1.2 A Technical Highlight and Additional Results

The proof of our main result breaks down the expected welfare into the “revenue”
and “utility” achieved by setting prices, and searches for properly “balanced
thresholds” as in [10,13,16,18]. In particular, we target prices that are “low
enough” so that a buyer with high value for some set will choose to purchase
it, yet also “high enough” so that the revenue gained when a bidder purchases
items they should not receive in the optimal allocation compensates for the lost
welfare. In comparison to prior work using a similar approach, the conditions
that guarantee such prices are more involved, and we prove their existence using
Brouwer’s fixed point theorem.

As our proof makes use of Brouwer’s fixed point theorem, it is inherently
non-constructive; however, in the full version, we show that the prices can be
efficiently computed by making use of an LP relaxation to cope with the APX-
hardness of optimizing welfare, and we further provide a convex optimization
formulation to find our fixed point.

In Sect. 4, we consider the special case that arises when valuations are deter-
ministic and buyers are single-minded. In this situation the welfare optimization
problem corresponds to matching in a hypergraph with edges of size at most d.
So the problem of finding item prices boils down to finding a set of thresholds,
one for each vertex, such that the value of the solution in which hyperedges arrive
sequentially (for any order) and greedily included in the solution so long as their
weight is higher than the sum of the corresponding vertex thresholds, is as close
as possible to the optimal solution. For the case of standard matching (d = 2) we
prove that there exist prices guaranteeing a factor of 1/2 of the optimal solution
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and that there do not exist prices guaranteeing a factor better than 2/3. The
tight factor is left as an open problem. More generally, we prove that there are
prices obtaining a fraction 1/d of the optimal solution (thus slightly improving
our general 1/(d + 1)), and that it is not possible to do better than Ω(1/

√
d).

2 Model

In our basic model, we have a (multi)set of items M in which there are kj ≥ 1
copies of each item j ∈ M .4 The set of buyers, denoted by N , arrive sequentially
(in arbitrary order) and buy some of those items. Each buyer i ∈ N has a
valuation function vi : 2M → R+, which is randomly chosen according to a
given distribution Fi (defined over a set of possible valuation functions). As is
standard, we assume that each possible realization of each vi is monotone (i.e.,
A ⊆ B ⇒ vi(A) ≤ vi(B)). We parametrize an instance of the problem by d, the
size of the largest set a buyer might be interested in. Thus we assume that if
A ⊆ M is such that |A| > d, then

v(A) = max
B⊆A,|B|=d

v(B). (1)

Note that while there are ki ≥ 1 copies of each item i ∈ M , no single buyer can
purchase more than one copy of an item.

In this paper, we are interested in exploring the limits of using item prices as
the mechanism to assign items to buyers. In a pricing mechanism, we set item
prices p ∈ R

M
+ and then consider an arbitrary arrival order of the buyers.5 Thus,

buyer i buys the set of remaining items that optimizes

max
A⊆Ri

vi(A) −
∑

j∈A

pj , (2)

where Ri stands for the remaining items for which there exists at least one
unsold copy when i arrives. Note that (2) might be solved by A = ∅, i.e., buyer
i might opt not to buy anything. When there is a tie between different sets, the
buyer can choose arbitrarily, meaning that our results need to be valid even for
the worst case.6

More precisely, if σ is the arrival order of the buyers, so that buyer i comes
at time σ(i), then buyer i gets the set Bi(σ) = arg maxA⊆Ri(σ) vi(A)−∑

j∈A pj ,
where Ri(σ) = {j ∈ M : kj > |{� ∈ N : σ(�) < σ(i) and j ∈ B�(σ)}|}. With
this, given an instance of the problem (determined by M , kj for all j ∈ M ,
N , and Fi for all i ∈ N), the quality measure of a price vector p ∈ R

M
+ is the

worst case (over the arrival orders) expected (over the valuations) welfare of the
allocation it induces. Denoting this quantity as ALG(p) we have that

4 Throughout the paper M is actually a set and refers to the set of different items.
5 Note that different copies of the same item need to get the same price.
6 In some of the constructions in Sect. 4 we break ties conveniently but all the results

hold by slightly tweaking the instances.



130 J. Correa et al.

ALG(p) := min
σ

E

(
∑

i∈N

vi(Bi(σ))

)
.

On the other hand, the benchmark we compare to throughout the paper is the
welfare maximizing allocation, OPT , which is defined as

OPT := E

(
max

Ai, i∈N

{
∑

i∈N

vi(Ai) : s.t. |{i ∈ N : j ∈ Ai}| ≤ kj , for all j ∈M

})
.

We denote by OPTi the random set that buyer i gets in an optimal allocation.
In Sect. 4 we consider the special case of our problem in which

(i) valuations are deterministic,
(ii) there is a single copy of each item (kj = 1 for all j ∈ M), and
(iii) buyers are single-minded, i.e., each buyer i has a set Ai, with |Ai| ≤ d, such

that Ai 
⊆ B ⇒ vi(B) = 0, Ai ⊆ B ⇒ vi(B) = vi(Ai).

Interestingly, already in this particular setup, the problem of maximizing the
welfare of an allocation corresponds to the classic combinatorial optimization
problem of hypergraph matching with hyperedges of size at most d. Indeed, in
an optimal allocation buyer i either gets Ai or ∅, implying that maximizing the
(now deterministic) welfare of the allocation is equivalent to finding a subset of
pairwise disjoint Ai’s of maximum total valuation.

3 Random Valuations

In this section we prove there exists a vector of item prices such that the resulting
allocation yields in expectation at least a 1/(d+1) fraction of the optimal social
welfare. Additionally, we show that this bound is tight.

Theorem 1. There exists a vector of prices p ∈ R
M
+ such that

(d + 1) · ALG(p) ≥ OPT.

To prove the theorem we will make use of the following function. For each
A ⊆ M and i ∈ N , we define

zi,A(p) =

⎡

⎣E(1OPTi=A · vi(A)) − P(OPTi = A)
∑

j∈A

pj

⎤

⎦

+

,

where [·]+ denotes the positive part. We assume without loss of generality that
|OPTi| ≤ d for all i ∈ N , so zi,A(p) = 0 if |A| > d. We start by showing a lower
bound for ALG(p) in terms of the functions zi,A(p).

Lemma 1. For any vector of prices p ∈ R
M
+ ,

ALG(p) ≥ min
C⊆M

⎧
⎨

⎩
∑

j /∈C

kj · pj +
∑

i∈N

∑

A⊆C

zi,A(p)

⎫
⎬

⎭ .
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Proof. In this proof we assume the arrival order σ is arbitrary, and for simplicity
we drop the dependency of Bi(σ) and Ri(σ) on σ and simply denote them by
Bi and Ri. We separate the welfare of the resulting allocation into revenue and
utility, i.e., we separate

∑
i∈N vi(Bi) into

Revenue =
∑

i∈N

∑

j∈Bi

pj and Utility =
∑

i∈N

⎛

⎝vi(Bi) −
∑

j∈Bi

pj

⎞

⎠ .

Recall that Ri is the set of items such that there are remaining copies when i
arrives. Similarly, denote by R the set of items that have remaining copies by
the end of the process. We have that

E(Revenue) ≥ E

⎛

⎝
∑

j /∈R

kj · pj

⎞

⎠ .

For the utility, for any i ∈ N , by the definition of Bi, it holds that

vi(Bi) −
∑

j∈Bi

pj = max
A⊆Ri

⎛

⎝vi(A) −
∑

j∈A

pj

⎞

⎠

Note now that vi and Ri are independent. Thus, let (ṽi)i∈N be independent
realizations of the valuations, and ÕPT i the corresponding optimal solution.
With this we can rewrite the expected utility of agent i as

E

(
max
A⊆Ri

vi(A) −
∑
j∈A

pj

)
= E

(
max
A⊆Ri

ṽi(A) −
∑
j∈A

pj

)
≥ E

(
max
A⊆R

ṽi(A) −
∑
j∈A

pj

)
.

We replace the maximization over subsets of R with a particular choice, ÕPT i,
whenever it is contained by R and gives positive utility (otherwise we take ∅),
to obtain the following lower bound.

E

⎛

⎜⎝1{ ˜OPT i⊆R} ·
⎡

⎣ṽi(ÕPT i) −
∑

j∈ ˜OPT i

pj

⎤

⎦

+

⎞

⎟⎠

= E

⎛

⎝
∑

A⊆R

1{ ˜OPT i=A} ·
⎡

⎣ṽi(A) −
∑

j∈A

pj

⎤

⎦

+

⎞

⎠

= E

⎛

⎝
∑

A⊆R

E

⎛

⎝

⎡

⎣1{ ˜OPT i=A}

⎛

⎝ṽi(A) −
∑

j∈A

pj

⎞

⎠

⎤

⎦

+

⎞

⎠

⎞

⎠ ≥ E

⎛

⎝
∑

A⊆R

zi,A(p)

⎞

⎠ .

The last inequality comes from Jensen’s inequality, noting that [·]+ is a convex
function. Summing over all agents, we get that

E(Utility) ≥ E

⎛

⎝
∑

i∈N

∑

A⊆R

zi,A(p)

⎞

⎠ .
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Therefore, adding the revenue and the utility we get that

ALG(p) ≥ E

⎛

⎝
∑

j /∈R

kj · pj +
∑

i∈N

∑

A⊆R

zi,A(p)

⎞

⎠ .

Replacing the expectation over R with a minimization over subsets of M we
obtain the bound of the lemma. ��
Lemma 2. For any vector of prices p ∈ R

M
+ ,

OPT ≤
∑

j∈M

kj · pj +
∑

i∈N

∑

A⊆M

zi,A(p).

Proof. We have that OPT equals

∑

i∈N

E(vi(OPTi)) = E

⎛

⎝
∑

i∈N

∑

j∈OPTi

pj

⎞

⎠ +
∑

i∈N

E

⎛

⎝vi(OPTi) −
∑

j∈OPTi

pj

⎞

⎠ .

Now we upper bound these two terms separately. Note that in the first term
each item j ∈ M appears at most kj times, so

E

⎛

⎝
∑

i∈N

∑

j∈OPTi

pj

⎞

⎠ ≤
∑

j∈M

kj · pj .

For the second part we upper bound with the positive part of the difference, and
sum over all possible values of OPTi.

∑

i∈N

E

⎛

⎝vi(OPTi) −
∑

j∈OPTi

pj

⎞

⎠

≤
∑

i∈N

∑

A⊆M

E

⎛

⎝1{OPTi=A}

⎛

⎝vi(OPTi) −
∑

j∈OPTi

pj

⎞

⎠

⎞

⎠

≤
∑

i∈N

∑

A⊆M

zi,A(p).

Putting together the two upper bounds we obtain the bound on OPT . ��
Lemma 3. There exists a vector of prices p ∈ R

M
+ that satisfies the equation

pj =
1
kj

∑

i∈N

∑

A⊆M :j∈A

zi,A(p).



Optimal Item Pricing in Online Combinatorial Auctions 133

Proof. Denote the set K = [0, OPT ]M ⊆ R
M
+ . We define the function ψ : K → K

as follows. For an element p ∈ K and j ∈ M , the j-th coordinate of ψ is

ψj(p) =
1
kj

∑

i∈N

∑

A⊆M :j∈A

zi,A(p).

We prove now that ψ is a well defined continuous function, from the compact
set K into itself, and therefore it has a fixed point by Brouwer’s theorem. Note
that a fixed point of ψ is exactly the vector of prices we are looking for.

Recall that zi,A(p) = [E(1OPTi=A · vi(A)) − P(OPTi = A)
∑

j∈A pj ]+, which
is a decreasing function of pj , for all j ∈ M . Moreover, note that since [·]+
is a convex function, zi,A is also a convex function of pj for all j ∈ M . The
monotonicity of zi,A implies that for all p ∈ K and j ∈ M , ψj(p) ≤ ψj(0) ≤
1
kj

E(OPT ), and therefore ψ(p) ∈ K for all p ∈ K. The convexity of zi,A implies
it is also continuous, so ψ is a continuous function. ��
Proof (of Theorem 1). Using the vector of prices from Lemma 3 in the bound of
Lemma 1 results in

ALG(p) ≥
∑

i∈N

∑

A⊆M

zi,A(p).

To compare to OPT , we use the upper bound of Lemma 2, which shows

OPT ≤
∑

j∈M

∑

i∈N

∑

A⊆M :j∈A

zi,A(p) +
∑

i∈N

∑

A⊆M

zi,A(p)

=
∑

i∈N

∑

A⊆M

(|A| + 1) · zi,A(p)

≤ (d + 1)
∑

i∈N

∑

A⊆M

zi,A(p).

Comparing the two bounds we get that (d + 1)ALG(p) ≥ OPT . ��
To wrap up the section, we establish that the bound of Theorem 1 is best

possible, by modifying a simple example of Dütting et al. [10].

Proposition 1. For all d, and all δ > 0, there exists an instance on |N | = 2
bidders and |M | = d items such that for all p, ALG(p) = 1, yet OPT (p) =
d + 1 − δ.

Proof. Consider a set M of exactly d items with a single copy of each, and a
very small ε > 0. There are two buyers. The first buyer values any nonempty
subset of the items at 1. The second buyer only assigns value to getting all d
items, and this value is d−ε with probability 1−ε and it is 1/ε with probability
ε. Now we consider setting prices pj for all j ∈ M . If we set the prices so that∑

j∈M pj ≤ d−ε then there exists an item with price at most 1−ε/d. Therefore,
the first buyer will get this item and thus the total welfare will be 1. If, on the
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contrary, buyer one does not purchase an item, then we must have
∑

j∈M pj ≥ d,
and the second buyer will only purchase items with probability ε. In this case,
the expected total welfare is also 1. This establishes that ALG(p) = 1 for all p.
Finally, it is clear that in this instance the optimal welfare is achieved by always
assigning all items to the second buyer, which results in an expected welfare of
(d − ε) · (1 − ε) + ε · (1/ε) ≥ d + 1 − (d + 1)ε. Setting ε = δ/(d + 1) completes the
proof. ��

Efficient Computation. Our above proof is nonconstructive as it requires a fixed
point computation. However, in the full version of the paper, we show that
despite this challenge and others, there exists a polynomial-time algorithm to
compute the prices using only demand queries.

4 Single-Minded Valuations

In this section, we consider the special case where there is a single copy of each
item (ki = 1 for all i ∈ M), buyers’ valuations are deterministic, and buyers
are single-minded. The latter means each buyer i has a set Ai, with |Ai| ≤ d,
such that Ai 
⊆ B ⇒ vi(B) = 0 and Ai ⊆ B ⇒ vi(B) = vi(Ai). The problem
of maximizing the welfare of an allocation in this context can be seen as the
classic combinatorial problem of hypergraph matching with hyperedges of size
at most d, where the buyers correspond to the hyperedges and the items are
the vertices. Indeed, in an optimal allocation for this setting buyer i either gets
Ai or ∅, implying that maximizing the welfare of the allocation is equivalent to
finding a subset of pairwise disjoint Ai’s of maximum total valuation. As this is
a traditional problem, in the rest of this section we will refer to hypergraphs,
hyperedges and vertices, rather than buyers and items, using the usual notation
G = (V,E) and denoting by w(e) the valuation (or weight) of the hyperedge e.

4.1 Matching in Graphs: d = 2

We first focus on the traditional matching problem, showing that using prices has
limits even for this scenario. As argued in Lemmas 4 and 6, there are instances in
which no pricing scheme can guarantee recovering more than 2/3 of the optimal
solution. This is true even if the graph is bipartite or if there is a unique optimal
matching; on the other hand, if both conditions are fulfilled—i.e., the graph is
bipartite and there is a unique optimal matching, we show that using the dual
prices leads precisely to such optimal solution.

Lemma 4. Prices cannot guarantee obtaining more than 2/3 of the optimal
matching, even if the graph is bipartite.

Proof. Consider the graph depicted in Fig. 1, in which all edges have unit weight.
There are two optimal solutions, given by the black and the red perfect match-
ings. Assume we have prices that are able to build an optimal solution (i.e.,
include three edges) regardless of the order in which the edges arrive. This implies
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L1

L2

L3

R1

R2

R3

Fig. 1. Example of a bipartite graph in which, when all edges have the same weight, no
pricing scheme can guarantee obtaining more than 2/3 of the optimal solution. (Color
figure online)

that for at least one of the optimal solutions, all the edges will be included if
their vertices are available when they arrive. Without loss assume this is the
case for the black matching, i.e. for i = 1, 2, 3, we have pLi

+ pRi
≤ 1.

On the other hand, we need to prevent the red edges to be included if they
appear: to see why this is necessary, consider for instance the case in which the
edge (L1, R2) is not discarded when appearing first; then, if the edge (L3, R3)
appears second, no more edges could be added. To preclude this, we need to
impose that for i = 1, 2, 3, pLi

+ pR(i mod 3)+1 > 1. A contradiction follows by
adding these as well as the previous three inequalities. ��

In the case of bipartite graphs, it is natural to consider the usual linear
programming formulation, since it has integral optimal solutions. The following
lemma shows that when we require the additional hypothesis that there is a
unique optimal matching, the prices given by the optimal solution of the dual
problem lead to the optimal assignment.

Lemma 5. If the graph G = (V,E) is bipartite and has a unique optimal match-
ing, then such a matching is obtained using the dual prices.

Proof. Because the graph is bipartite, the problem reduces to solving the linear
program max{∑e∈E xew(e) :

∑
e∈δ(v) xe ≤ 1 for all v ∈ V, x ≥ 0}, which has an

integral optimal solution. Because there is only one optimal matching, the LP has
a unique optimal solution (x∗

e)e∈E . Consider the prices (p∗
u)u∈V corresponding

to an optimal dual solution, satisfying strict complementary slackness.
Consider an edge e = (u, v) that is not part of the optimal matching. Hence,

the corresponding primal variable takes the value x∗
e = 0. By complementary

slackness, the corresponding dual constraint is not tight, i.e. p∗
u + p∗

v > w(e).
This last condition implies that buyer e will not buy the edge upon arrival.
On the other hand, if e is part of the optimal solution, the corresponding dual
constraint must be tight (again due to strict complementary slackness), so that
those buyers will choose to buy. ��

The assumption of a unique solution is crucial for the dual prices to be
useful. Indeed, when there is more than one solution, using the dual prices can
be arbitrarily inefficient. Indeed, consider the same example depicted in Fig. 1,
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A

B

C D

E

F

Fig. 2. Example of a graph in which, when all edges have the same weight, there is
a unique optimal matching but no pricing scheme can guarantee obtaining more than
2/3 of its weight.

but modify the weight of the edges f = (L1, R1) and g = (L2, R3) to be ε, so
that that the optimal solution has value 2 + ε. On the other hand, consider an
edge e = (u, v) and the resulting dual prices pu, pv: complementary slackness
now states that we have pu + pv = w(e) iff e is part of any optimal solution.
Edge f is part of the black optimal solution, and edge g is part of the red, hence
those edges will be bought if the corresponding vertices are available when they
appear. In particular, if they are the first two edges to appear, then they will
both be in the final solution, and no other edge can be added, leading to a final
weight of 2ε.

However, in general graphs, even the uniqueness assumption is not enough.
Indeed we have the following result.

Lemma 6. Prices cannot guarantee obtaining more than 2/3 of the optimal
matching in a general graph, even if there is only one optimal matching.

Proof. Consider the graph depicted in Fig. 2, where every edge has unit weight.
The optimal matching is given by the three black edges with total value of 3.
On the other hand, if any red edge enters the solution, the resulting total weight
will be at most 2. We now show that any pricing scheme in which every black
edge is willing to buy will also include at least one red edge if it comes first.
Let (pi)i=A,...,F prices such that for every black edge, the sum of the involved
vertices is lower than 1. In particular, we have that pC +pD ≤ 1, so without loss
of generality we assume that pC ≤ 1/2. If pB ≤ 1/2 as well, then the red edge
(B,C) will want to buy and the proof is complete. Otherwise, i.e. if pB > 1/2,
it implies that pA ≤ 1/2 because the black edge (A,B) wants to buy. But this
implies that the red edge (A,C) will buy if appearing first.

Finally, if all vertex prices are 1/2, then it is straightforward to see that at
least two edges will be added regardless of the order in which they appear. ��
In general, there are item prices that guarantee obtaining at least half of the
optimal welfare. This is achieved by splitting the weight of the edges of an
optimal matching uniformly between the two corresponding vertices. We present
this result in Lemma 8 for general d.
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4.2 Hypergraph Matching: d > 2

We begin this section by proving two negative results. First we show an upper
bound of ∼ √

1/d on the fraction of the optimal solution that can be guaranteed
with prices. We then show a specific bound for the case d = 3, in which we
cannot guarantee obtaining more than 1/2 of the optimal welfare. Finally, we
provide a pricing scheme that always obtains at least 1/d of the optimal welfare.

Lemma 7. Prices cannot guarantee welfare more than an ∼ √
1/d fraction of

the optimal welfare, even if the arrival order is known.

Proof. Our example is based on constructions for finite projective planes; namely,
we will use the fact that if q − 1 is a prime power there exists a hypergraph on
q2 − q + 1 vertices with q2 − q + 1 hyperedges that are q-regular, q-uniform and
intersecting, i.e. every pair of hyperedges has at least one shared vertex (see,
e.g., [17, Chapter 12] for a reference).

To build our example, we will assume that for each hyperedge there exists a
corresponding buyer interested in exclusively that subset of items with a total
valuation of q. We will also add one buyer whose only subset of interest is the
entire set of items, with a valuation of d = q2 − q + 1. Note that clearly the
optimal welfare attainable is q2 − q + 1.

It hence suffices to show that prices cannot achieve welfare greater than q.
Assume the buyer interested in the entire set of items arrives last. Note that if
there is any edge e such that the sum of the prices of the vertices in e is at most
than q, we are guaranteed welfare at most q. However, if every the sum of the
prices of the vertices in every hyperedge is more than q, because our graph is q-
uniform that means the sum of the prices of all vertices is more than q2 − q + 1,
meaning the final buyer would not select anything and the welfare attained is
zero. Hence, the total welfare attainable by prices is at most a

q

q2 − q + 1
∼ 1√

q2 − q + 1

fraction of the optimum.
Finally, if d cannot be written as q2 − q + 1, we replicate the same construc-

tion for the largest d′ < d that can, and the result holds. ��
When d = 3 the upper bound given by Lemma 7 is 2/3. We briefly note

that this bound can be tightened to 1/2. Our instance consists of a hypergraph
G = (V,E) with V = {1, 2, 3, 4, 5, 6} and hyperedges {1, 2, 3}, {4, 5, 6}, {1, 2, 4},
{1, 3, 5}, {2, 5, 6}, {3, 4, 6} all with unit weight; the short proof that this attains
an upper bound of 1/2 is deferred to the full version.

We conclude with our positive result. Consider a hypergraph G = (V,E),
with weights (w(e))e∈E . To define the prices, take an optimal matching given by
the hyperedges OPT1, . . . , OPT�. For each a ∈ OPTj , define pa = w(OPTj)/d.
The prices of the items not covered by the optimal solution are set to ∞. The
following simple result shows that these prices obtain at least a fraction 1/d of
the optimal welfare.
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Lemma 8. Consider prices defined as above, and hyperedges arriving in an arbi-
trary order. Let Q denote the set of edges that are bought. Then

∑

e∈Q

w(e) ≥ 1
d

�∑

j=1

w(OPTj)

Proof. First note that for each e ∈ Q, it must hold that

w(e) ≥
∑

i∈e

pi (3)

as otherwise the buyer associated to e would have decided not to buy. Therefore
∑

e∈Q

w(e) ≥
∑

e∈Q

∑

i∈e

pi (4)

On the other hand, for each OPTj in the optimal solution, there must be at
least one vertex, with its corresponding price w(OPTj)/d that is covered by the
edges in Q. To see this, note that there are two possible cases: either OPTj ∈ Q
and all its vertices are covered, or OPTj /∈ Q, meaning that when OPTj arrived,
at least one of its vertices was not available, i.e., it was covered by an edge
previously bought. The result follows directly, noting that in the RHS of (4), we
are summing at least once w(OPTj)/d for each j = 1 . . . , �. ��
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