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We study the competition complexity of dynamic pricing relative to the optimal auction in the fundamental

single-item setting. In prophet inequality terminology, we compare the expected reward 𝐴𝑚 (𝐹 ) achievable by
the optimal online policy on𝑚 i.i.d. random variables drawn from 𝐹 to the expected maximum𝑀𝑛 (𝐹 ) of 𝑛
i.i.d. draws from the same distribution. We ask how big does𝑚 have to be to ensure that (1+𝜀)𝐴𝑚 (𝐹 ) ≥ 𝑀𝑛 (𝐹 )
for all 𝐹 .

We resolve this question and exhibit a stark phase transition: When 𝜀 = 0 the competition complexity is

unbounded. That is, for any 𝑛 and any𝑚 there is a distribution 𝐹 such that 𝐴𝑚 (𝐹 ) < 𝑀𝑛 (𝐹 ). In contrast,

for any 𝜀 > 0, it is sufficient and necessary to have𝑚 = 𝜙 (𝜀)𝑛 where 𝜙 (𝜀) = Θ(log log 1/𝜀). Therefore, the
competition complexity not only drops from being unbounded to being linear, it is actually linear with a very

small constant.

The technical core of our analysis is a loss-less reduction to an infinite dimensional and non-linear opti-

mization problem that we solve optimally. A corollary of this reduction, which may be of independent interest,

is a novel proof of the factor ≈ 0.745 i.i.d. prophet inequality, which simultaneously establishes matching

upper and lower bounds.
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1 INTRODUCTION
An important line of work at the intersection of Economics and Computation concerns the compe-
tition complexity of auctions [3, 4, 14, 15]. The basic idea is to examine how many bidders need

to be added to a simple, suboptimal auction mechanism so that its performance is guaranteed to

match that of the optimal but more complicated auction mechanism.

This competition complexity approach originates in a seminal paper of Bulow and Klemperer

[4], who asked this question for the revenue achievable by the simple but suboptimal second-price

auction and Myerson’s optimal auction. They showed that for i.i.d. bidders whose valuations are

drawn from a regular distribution 𝐹 , the second-price auction with 𝑛 + 1 bidders is guaranteed to

achieve at least the expected revenue of the optimal auction with 𝑛 bidders. They concluded that

rather than going for the more complicated auction mechanism, one could simply attract one more

buyer to the simpler auction mechanism.
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Subsequent work has extended this basic result to a variety of more complex auction settings

[3, 14, 28], and also introduced the idea of approximate competition complexity where instead of

shooting for optimality one aims at 99% or 99.9% of optimal [15].

1.1 OurQuestion
In this work, we initiate the study of the competition complexity of posted pricing. We focus on

the fundamental single-item case and compare optimal dynamic pricing versus optimal auction.

We study the social welfare case, but all our results translate to revenue (under the usual regularity

assumptions).

Since we are focusing on social welfare, the simplest way to state our question is in prophet

inequality terminology. Our goal is to compare the expected reward 𝐴𝑚 (𝐹 ) achievable by the

optimal policy found by backward induction on𝑚 ≥ 𝑛 i.i.d. draws from a distribution 𝐹 , to the

expected maximum𝑀𝑛 (𝐹 ) of 𝑛 i.i.d. draws from 𝐹 . For fixed 𝜀 ≥ 0 and fixed 𝑛, we want to find the

smallest𝑚 ≥ 𝑛 such that for every 𝐹 we have

(1 + 𝜀) · 𝐴𝑚 (𝐹 ) ≥ 𝑀𝑛 (𝐹 ).

We refer to the functional depedence of𝑚 on 𝑛 and 𝜀 as the competition complexity of dynamic
pricing. We sometimes refer to the case 𝜀 = 0 as exact competition complexity, and to the case 𝜀 > 0

as the approximate version.

1.2 Warm-Up: The Uniform Case
As a warm-up, consider the case where 𝐹 = 𝑈 [0, 1] is a uniform distribution over [0, 1], and
convince ourselves that in this case 𝐴2𝑚 ≥ 𝑀𝑛 for all 𝑛, so the exact competition complexity is

linear. We have that𝑀𝑛 is just the maximum of 𝑛 i.i.d. draws from a uniform distribution over [0, 1],
and therefore𝑀𝑛 = 𝑛/(𝑛 + 1). On the other hand, we can compute 𝐴𝑛 through the usual backward

induction. The recursion is 𝐴𝑛+1 = E(max{𝑋,𝐴𝑛}) for 𝑛 ≥ 1 and 𝐴1 = E(𝑋 ) where 𝑋 ∼ 𝑈 [0, 1]. In
other words, 𝐴𝑛+1 = 1/2 +𝐴2

𝑛/2 for 𝑛 ≥ 1 and 𝐴1 = 1/2.
Solving this recursion explicitly seems difficult. What we use instead, is that it leads to the

following formula for the difference between two consecutive terms. Namely,𝐴𝑛+1−𝐴𝑛 = (1−𝐴𝑛)2/2
for 𝑛 ≥ 1. We proceed by induction. It is easy to verify that the claim holds for 𝑛 = 1. So we

assume 𝐴2𝑛 ≥ 𝑀𝑛 , and we want to show 𝐴2𝑛+2 ≥ 𝑀𝑛+1. Note that if 𝐴2𝑛+1 ≥ 𝑀𝑛+1 then also

𝐴2𝑛+2 ≥ 𝐴2𝑛+1 ≥ 𝑀𝑛+1, and there we are done, so we consider the case 𝐴2𝑛+1 < 𝑀𝑛+1. We have

𝐴2𝑛+2 = 𝐴2𝑛 + (𝐴2𝑛+2 −𝐴2𝑛+1) + (𝐴2𝑛+1 −𝐴2𝑛)

= 𝐴2𝑛 + 1

2

(1 −𝐴2𝑛+1)2 +
1

2

(1 −𝐴2𝑛)2.

Since the function 𝑓 (𝑥) = 𝑥 + 1

2
(1 − 𝑥)2 is increasing in R+, and given that 𝐴2𝑛 ≥ 𝑀𝑛 , we obtain a

lower bound that together with 𝐴2𝑛+1 < (𝑛 + 1)/(𝑛 + 2) yields

𝐴2𝑛+2 ≥ 𝑀𝑛 + 1

2

((
1

𝑛 + 1

)
2

+
(

1

𝑛 + 2

)
2

)
.

The argument is completed by observing that what we add to 𝑀𝑛 on the right-hand side is at

least𝑀𝑛+1 −𝑀𝑛 = 1/((𝑛 + 1) (𝑛 + 2)). We conclude that for the uniform distribution it suffices to

choose𝑚 ≥ 2𝑛. A closer examination of the asymptotic behavior of 𝐴𝑚 and 𝑀𝑛 shows that this

analysis is in fact tight. Indeed for large𝑚 and 𝑛, 𝐴𝑚 ≈ 1 − 2/(𝑚 + log(𝑚) + 1.76799) [17, 29] while
𝑀𝑛 ≈ 1 − 1/𝑛 which roughly shows that we need𝑚 = 2𝑛 + 𝑜 (𝑛).
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Fig. 1. Plot of 𝜙 (𝜀) as a function of 𝜀 on the left, and as a function of 1/𝜀 on the right. Plotting 𝜙 (𝜀) as a
function of 1/𝜀 serves to illustrate the very slow growth of 𝜙 (𝜀) as Θ(log log 1/𝜀) when 𝜀 → 0. The dashed
blue line in the left plot is at 𝜀 = 𝜙−1 (1) ≈ 0.342 which implies the optimal factor 1/(1 + 𝜙−1 (1)) ≈ 0.745 for
the i.i.d. prophet inequality. In the other plot the two blue dashed lines are at 1/𝜀 = 100 and 1/𝜀 = 1000 which
correspond to approximation ratios of 99.9% and 99.99%. The value of 𝜙 (𝜀) at these points is the constant
required to obtain these approximation ratios.

1.3 Our Contribution
The above analysis of the uniform case already rules out a “plus constant” result as in Bulow and

Klemperer [4]. It leaves some hope that the exact competition complexity of dynamic pricing may

be linear or, if not, then at least polynomial with a small polynomial.

Our first main result shows that this hope is unfounded. Indeed, the exact competition complexity

is not only “large,” it is in fact unbounded.

Main Result 1 (exact competition complexity): Consider 𝜀 = 0 and any 𝑛. Then, for any𝑚 ≥ 𝑛

there exist a distribution 𝐹 such that 𝐴𝑚 (𝐹 ) < 𝑀𝑛 (𝐹 ).
In light of this strong impossibility, a natural question is whether this impossibility persists if we

relax our goals and aim for 99% or 99.99% of optimal. It turns out that things change, and quite

drastically so. This is formalized by our second main result, which nails down the approximate

competition complexity in terms of function 𝜙 : R+ → R+ given by

𝜙 (𝜀) =
∫

1

0

1

𝑦 (1 − log(𝑦)) + 𝜀
d𝑦.

Main Result 2 (approximate competition complexity): Consider 𝜀 > 0 and any 𝑛. Then, we

have (1 + 𝜀)𝐴𝑚 (𝐹 ) ≥ 𝑀𝑛 (𝐹 ) for every 𝐹 if𝑚 ≥ 𝜙 (𝜀)𝑛, and for large 𝑛 this is tight.

This establishes a remarkable phase transition: While our first main result showed that the exact

competition complexity of dynamic pricing is unbounded, our second main result shows that if

we aim for approximate optimality, then the competition complexity not only drops from being

unbounded to being linear, it is actually linear with a very small constant.
We illustrate this in Figure 1. In the technical part of the paper, we show that the function 𝜙 (𝜖)

grows as Θ(log log 1/𝜀) as 𝜀 → 0, with very small constants hidden in the big-O notation. For

example, to obtain 99% of optimal it is sufficient to have 𝑚 ≥ 2.30 · 𝑛, and to obtain 99.99% of

optimal it is sufficient to have𝑚 ≥ 2.53 · 𝑛.
An interesting implication of our analysis is that it yields the factor 0.745 i.i.d. prophet inequality

[8, 25, 27, 30] and its tightness [21] as a special case. Here is how: Rather than fixing 𝜀 and
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finding 𝑚(𝑛, 𝜀), we may fix 𝑚(𝑛, 𝜀) = 𝑛 and find 𝜀. The equality 𝑚(𝑛, 𝜀) = 𝜙 (𝜀)𝑛 corresponds

to solving 𝜙 (𝜀) = 1. This yields 𝜀 = 𝜙−1 (1) and corresponds to an approximation guarantee of

1/(1 + 𝜙−1 (1)) ≈ 0.745.

1.4 Our Techniques
Our argument for the uniform distribution 𝐹 = 𝑈 [0, 1] that we presented above relied on a

formula for the differences between two consecutive terms 𝐴𝑛+1 and 𝐴𝑛 , and at its core compared

𝐴2(𝑛+1) −𝐴2𝑛 to𝑀𝑛+1 −𝑀𝑛 . Intuitively, we explored properties of the rate of growth and curvature

of the two sequences 𝐴1, 𝐴2, . . . , 𝐴𝑚 and𝑀1, 𝑀2, . . . , 𝑀𝑛 .

Our general argument builds on this intuition. Our first key observation characterizes the

sequences 𝐴1, 𝐴2, . . . , 𝐴𝑚 that can arise. Namely, we show that for any distribution 𝐹 , the corre-

sponding infinite sequence (𝐴𝑖 (𝐹 ))𝑖∈N satisfies the following three properties. Moreover, for any

infinite sequence (𝐴𝑖 )𝑖∈N satisfying these properties there is a distribution 𝐹 that leads to this

sequence. The three properties are:

(1) The sequence (𝐴𝑖 )𝑖∈N is non-decreasing,

(2) The sequence (𝐴𝑖+1 −𝐴𝑖 )𝑖∈N is non-increasing, and

(3) The sequence ((𝐴𝑖+2 −𝐴𝑖+1)/(𝐴𝑖+1 −𝐴𝑖 ))𝑖∈N is non-decreasing.

Our second key observation is that given a fixed infinite sequence (𝐴𝑖 )𝑖∈N with these properties,

we can identify the compatible distribution 𝐹 that maximizes 𝑀𝑛 . This worst-case distribution

is a simple piece-wise constant distribution, and allows us to express the largest possible 𝑀𝑛 as

a function of the (𝐴𝑖 )𝑖∈N. We thus reduce the problem of checking whether for a fixed 𝑛 and

𝑚, (1 + 𝜀)𝐴𝑚 (𝐹 ) − 𝑀𝑛 (𝐹 ) ≥ 0 for all 𝐹 , to an infinite dimensional optimization problem that

seeks to minimize (1 + 𝜀)𝐴𝑚 (𝐹 ) −𝑀𝑛 (𝐹 ) over all infinite sequences satisfying properties (1)–(3):
The inequality is satisfied by all 𝐹 if and only if the objective value of this infinite dimensional

optimization problem is non-negative. To show our two main results we then proceed to solve this

infinite dimensional optimization problem optimally. This reduces the problem to the analysis of a

recursion, which can be pointwise bounded by a differential equation which, by a careful analysis,

leads to the function 𝜙 (𝜀).

1.5 Other Gaps and Future Work
An additional set of questions that fits the wider theme of this paper concerns the competition

complexity of static pricing. Here—unlike in the case of dynamic pricing—there are two questions

we could ask. The first comparison is between static pricing 𝐴′
𝑚 and the optimal auction𝑀𝑛 , the

other is between static pricing 𝐴′
𝑚 and dynamic pricing 𝐴𝑛 .

For the first comparison between 𝐴′
𝑚 and𝑀𝑛 we observe the following. First, since 𝐴′

𝑚 ≤ 𝐴𝑚 for

all𝑚, our impossibility (Main Result 1) implies that the exact competition complexity of static pricing

is unbounded. Moreover, while the approximate competition complexity of static pricing may be

linear (similar to our Main Result 2 for dynamic pricing), the dependence on 𝜀 certainly has to be

worse. This follows from considering the uniform case where for𝑚 and 𝑛 large,𝐴′
𝑚 ≈ 1− log(𝑚)/𝑚

while 𝑀𝑛 ≈ 1 − 1/𝑛. This means that to ensure that (1 + 𝜀)𝐴′
𝑚 ≥ 𝑀𝑛 , we approximately need

that (1 + 𝜀) (1 − log(𝑚)/𝑚) ≥ 1 − 1/𝑛. Then, for 𝜀 small with respect to 𝑛, say 𝜀 = 1/𝑛2, we can
approximate by subtracting 𝜀 from the left hand side. We get 1− (1 + 𝜀) log(𝑚)/𝑚 ≥ 1− 1/𝑛, which
happens if and only if𝑚/log(𝑚) ≥ 𝑛(1 + 𝜀), which for 𝜀 of this order implies that we need at least

𝑚 = 𝑐𝑛 with 𝑐 = Ω(log(1/𝜀)).
For the other comparison between 𝐴′

𝑚 and 𝐴𝑛 , we observe that for the exact version we need

to have at least𝑚 = Ω(𝑛 log(𝑛)) even for the uniform distribution. This again follows from the

asymptotic formulas for 𝐴′
𝑚 ≈ 1 − log(𝑚)/𝑚 and 𝐴𝑛 ≈ 1 − 2/(𝑛 + log(𝑛) + 1.76799), which show
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that roughly what we need is that𝑚/log(𝑚) ≥ 𝑛/2 and therefore𝑚 = Ω(𝑛 log(𝑛)). We leave the

full resolution of these gaps, which will shine additional light on the relative power of static and

dynamic pricing, to future work.

1.6 Further Related Work
Ourwork examines the relative power of a simplemechanism (dynamic pricing) to that of an optimal

mechanism (the optimal auction) and thus fits under the broader umbrella of simple vs. optimal
mechanisms (e.g., [19, 20]).
At the technical core of our work, we rely on a connection between posted-price mechanisms

and prophet inequalities that was pioneered and explored in the last fifteen years [5, 6, 9, 18]. This

line of work motivated work on prophet inequalities more generally. Most relevant for us is the

work on the i.i.d. single-item prophet inequality [1, 7, 8, 25, 27, 30], but there is also exciting work

on combinatorial extensions such as [11, 13, 16, 26]. A closely related line of work has examined

the gap between various simple mechanisms including posted-price mechanisms and the optimal

mechanism on the same number of bidders [2, 12, 22–24].

2 FORMAL STATEMENT OF OUR RESULTS
For our analysis it will be convenient to consider N = {0, 1, 2, . . .}, the natural numbers including

zero. We consider distributions 𝐹 over the non-negative reals with finite expectation. For a distribu-

tion 𝐹 , we let 𝑀0 (𝐹 ) = 0 and for 𝑛 ≥ 1 we let 𝑀𝑛 (𝐹 ) = E(max{𝑋1, 𝑋2, . . . , 𝑋𝑛}), where 𝑋1, . . . , 𝑋𝑛

is an i.i.d. sample distributed according to 𝐹 . We denote by 𝐴𝑛 (𝐹 ) the value of the optimal policy

and the sequence (𝐴𝑛 (𝐹 ))𝑛∈N satisfies the following recurrence: 𝐴0 (𝐹 ) = 0, 𝐴1 (𝐹 ) = E(𝑋 ) and
𝐴𝑛+1 (𝐹 ) = E(max{𝑋,𝐴𝑛 (𝐹 )}), where 𝑋 is a random variable distributed according to 𝐹 . We now

formally state our main results.

Theorem 2.1. For every positive integer 𝑛 > 1, and every positive integer𝑚 ≥ 𝑛, there exists a
distribution 𝐹 such that 𝐴𝑚 (𝐹 ) < 𝑀𝑛 (𝐹 ).

Theorem 2.2. Let 𝜀 > 0 and let𝑛 be a positive integer. Then, for every𝑚 ≥ 𝜙 (𝜀)𝑛 = Θ(log log 1/𝜀)𝑛,
and every distribution 𝐹 we have (1 + 𝜀)𝐴𝑚 (𝐹 ) ≥ 𝑀𝑛 (𝐹 ). Conversely, for any 𝛿 > 0, there exists a
distribution𝐺 such that for 𝑛 sufficiently large and𝑚 < (𝜙 (𝜀) −𝛿)𝑛, we have (1+ 𝜀)𝐴𝑚 (𝐺) < 𝑀𝑛 (𝐺).

While Theorem 2.1 shows that the exact competition complexity of dynamic pricing is unbounded,

Theorem 2.2 shows that the approximate competition complexity not only drops from being

unbounded to being linear, it is actually linear with a very small constant (see Figure 1).

3 AN EQUIVALENT OPTIMIZATION PROBLEM
In this section we develop the main building block of our analysis. The key result of this section,

Theorem 3.1, shows that the question of whether for a given 𝜀 ≥ 0, 𝑛 ≥ 1, and𝑚 ≥ 1 it holds that

(1 + 𝜀)𝐴𝑚 (𝐹 ) ≥ 𝑀𝑛 (𝐹 ) for all 𝐹 reduces to showing whether the following infinite-dimensional,

non-linear optimization problem has a non-negative objective.

minimize (1 + 𝜀)
𝑚−1∑︁
𝑖=0

𝛿𝑖 −
∞∑︁
𝑖=0

(
1 −

(
𝛿𝑖+1
𝛿𝑖

)𝑛)
𝛿𝑖 (1)

subject to 𝛿 𝑗+1 ≤ 𝛿 𝑗 for every integer 𝑗 ≥ 0, (2)

𝛿2𝑗 ≤ 𝛿 𝑗−1𝛿 𝑗+1 for every integer 𝑗 ≥ 1, (3)

𝛿0 = 1 and 𝛿 𝑗 > 0 for every integer 𝑗 ≥ 1. (4)
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Theorem 3.1. Let 𝜀 ≥ 0, and let 𝑛 and𝑚 be two positive integers. Then, we have (1 + 𝜀)𝐴𝑚 (𝐹 ) ≥
𝑀𝑛 (𝐹 ) for every distribution 𝐹 if and only if the optimal value of the optimization problem (1)-(4) is
non-negative.

We prove this theorem by characterizing the sequences (𝐴 𝑗 (𝐹 )) 𝑗 ∈N that can result from dis-

tributions 𝐹 , and by relating the value of 𝑀𝑛 (𝐹 ) to the values of the sequence (𝐴 𝑗 (𝐹 )) 𝑗 ∈N. The
characterization uncovers the properties of the sequences that can arise. Given a sequence of

non-negative real values (𝑆𝑛)𝑛∈N, we denote by (𝜕𝑆𝑛)𝑛∈N the sequence such that 𝜕𝑆𝑛 = 𝑆𝑛+1 − 𝑆𝑛
for every non-negative integer 𝑛. Consider the following properties:

(a) The sequence (𝑆𝑛)𝑛∈N is strictly increasing.

(b) The sequence (𝜕𝑆𝑛)𝑛∈N is non-increasing.

(c) The sequence (𝜕𝑆𝑛+1/𝜕𝑆𝑛)𝑛∈N is non-decreasing.

Observe that the properties (b)-(c) imply that the sequence (𝜕𝑆𝑛+1/𝜕𝑆𝑛)𝑛∈N is not only non-

decreasing, but also bounded with 𝜕𝑆𝑛+1/𝜕𝑆𝑛 ≤ 1 for every 𝑛 ∈ N, and therefore it is convergent to a
limit value of at most one. In what follows, given a distribution 𝐹 , let𝜔0 (𝐹 ) = inf{𝑦 ∈ R : 𝐹 (𝑦) > 0}
and 𝜔1 (𝐹 ) = sup{𝑦 ∈ R : 𝐹 (𝑦) < 1} be the left and right end points of the support of 𝐹 .

We need a few lemmas to prove Theorem 3.1. We also use the following proposition about the

optimal policy. The proof of this proposition can be found in the full version of the article.

Proposition 3.2. For every distribution 𝐹 the following holds:
(i) 𝐴𝑛+1 (𝐹 ) = 𝐴𝑛 (𝐹 ) +

∫ ∞
𝐴𝑛 (𝐹 )

(1 − 𝐹 (𝑦))d𝑦 for every 𝑛 ∈ N.

(ii) 𝐴𝑛+2 (𝐹 ) = 𝐴𝑛+1 (𝐹 ) +
∫ 𝐴𝑛+1 (𝐹 )
𝐴𝑛 (𝐹 )

𝐹 (𝑦)d𝑦 for every 𝑛 ∈ N.
(iii) lim𝑛→∞𝐴𝑛 (𝐹 ) = 𝜔1 (𝐹 ).
(iv) If 𝜔0 (𝐹 ) < 𝜔1 (𝐹 ) and 𝐹 has finite expectation, then 𝐴𝑛 (𝐹 ) < 𝐴𝑛+1 (𝐹 ) for every 𝑛 ∈ N.

An important implication of Proposition 3.2(iv) is that the sequence (𝐴 𝑗 (𝐹 )) 𝑗 ∈N is strictly in-

creasing, unless 𝐹 is a distribution that puts probability 1 on a single value. For these distributions

𝐹 , however, 𝐴𝑚 (𝐹 ) = 𝑀𝑛 (𝐹 ) for all𝑚,𝑛 ≥ 1, so they trivially satisfy (1 + 𝜀)𝐴𝑚 (𝐹 ) ≥ 𝑀𝑛 (𝐹 ).
In the remainder, we will consider distributions 𝐹 with 𝜔0 (𝐹 ) < 𝜔1 (𝐹 ). We begin by showing

that for such distributions 𝐹 the sequence (𝐴 𝑗 (𝐹 )) 𝑗 ∈N satisfies properties (a)-(c).

Lemma 3.3. For every distribution 𝐹 with 𝜔0 (𝐹 ) < 𝜔1 (𝐹 ), the sequence (𝐴𝑛 (𝐹 ))𝑛∈N satisfies
properties (a)-(c).

Proof. Consider a distribution 𝐹 with𝜔0 (𝐹 ) < 𝜔1 (𝐹 ) and a non-negative integer 𝑛. Observe that
property (a) holds directly for the sequence (𝐴𝑛 (𝐹 ))𝑛∈N from Proposition 3.2(iv). By Proposition

3.2(ii), it holds that

𝐴𝑛+2 (𝐹 ) −𝐴𝑛+1 (𝐹 ) =
∫ 𝐴𝑛+1 (𝐹 )

𝐴𝑛 (𝐹 )
𝐹 (𝑦)d𝑦 ≤ 𝐴𝑛+1 (𝐹 ) −𝐴𝑛 (𝐹 ),

where the inequality holds since 𝐹 (𝑦) ≤ 1 for every 𝑦 ∈ R. Therefore, property (b) holds. Observe

that thanks to Proposition 3.2(ii) again, we have

𝐴𝑛+2 (𝐹 ) −𝐴𝑛+1 (𝐹 )
𝐴𝑛+1 (𝐹 ) −𝐴𝑛 (𝐹 )

=
1

𝐴𝑛+1(𝐹 ) −𝐴𝑛 (𝐹 )

∫ 𝐴𝑛+1 (𝐹 )

𝐴𝑛 (𝐹 )
𝐹 (𝑦)d𝑦,

and since 𝐹 is monotone non-decreasing we therefore have

𝐹 (𝐴𝑛 (𝐹 )) ≤
𝐴𝑛+2 (𝐹 ) −𝐴𝑛+1 (𝐹 )
𝐴𝑛+1 (𝐹 ) −𝐴𝑛 (𝐹 )

≤ 𝐹 (𝐴𝑛+1 (𝐹 )),

from where we conclude that that (𝐴𝑛 (𝐹 ))𝑛∈N satisfies property (c). □
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Next we show that for the type for distributions we are interested in, it is possible to prove an

upper bound on the value of𝑀𝑛 (𝐹 ) in terms of the values of the sequence (𝐴 𝑗 (𝐹 )) 𝑗 ∈N.

Lemma 3.4. For every distribution 𝐹 with 𝜔0 (𝐹 ) < 𝜔1 (𝐹 ), we have

𝑀𝑛 (𝐹 ) ≤
∞∑︁
𝑗=0

(
1 −

(
𝜕𝐴 𝑗+1(𝐹 )
𝜕𝐴 𝑗 (𝐹 )

)𝑛)
𝜕𝐴 𝑗 (𝐹 ).

Proof. Consider the concave function 𝜑 : R → R given by 𝜑 (𝑥) = 1 − 𝑥𝑛 , and for every

non-negative integer 𝑗 let 𝜇 𝑗 (𝑦) = 1/𝜕𝐴 𝑗 (𝐹 ) for every 𝑦 ∈ [𝐴 𝑗 (𝐹 ), 𝐴 𝑗+1(𝐹 )) and zero elsewhere. In

particular, 𝜇 𝑗 is a probability density function over [𝐴 𝑗 (𝐹 ), 𝐴 𝑗+1 (𝐹 )). Then, by Jensen’s inequality,

we have

1

𝜕𝐴 𝑗 (𝐹 )

∫ 𝐴 𝑗+1 (𝐹 )

𝐴 𝑗 (𝐹 )
(1 − 𝐹 (𝑦)𝑛)d𝑦 =

∫
R
𝜑 (𝐹 (𝑦))𝜇 𝑗 (𝑦)d𝑦

≤ 𝜑

(∫
R
𝐹 (𝑦)𝜇 𝑗 (𝑦)d𝑦

)
= 1 −

(
1

𝜕𝐴 𝑗 (𝐹 )

∫ 𝐴 𝑗+1 (𝐹 )

𝐴 𝑗 (𝐹 )
𝐹 (𝑦)d𝑦

)𝑛
= 1 −

(
𝜕𝐴 𝑗+1 (𝐹 )
𝜕𝐴 𝑗 (𝐹 )

)𝑛
,

where the last equality holds by Proposition 3.2(ii). In particular, for every non-negative integer 𝑗

we have ∫ 𝐴 𝑗+1 (𝐹 )

𝐴 𝑗 (𝐹 )
(1 − 𝐹 (𝑦)𝑛)d𝑦 ≤

(
1 −

(
𝜕𝐴 𝑗+1(𝐹 )
𝜕𝐴 𝑗 (𝐹 )

)𝑛)
𝜕𝐴 𝑗 (𝐹 ). (5)

Therefore, we have

𝑀𝑛 (𝐹 ) =
∫ ∞

0

(1 − 𝐹 (𝑦)𝑛)d𝑦 =

∞∑︁
𝑗=0

∫ 𝐴 𝑗+1 (𝐹 )

𝐴 𝑗 (𝐹 )
(1 − 𝐹 (𝑦)𝑛)d𝑦

≤
∞∑︁
𝑗=0

(
1 −

(
𝜕𝐴 𝑗+1 (𝐹 )
𝜕𝐴 𝑗 (𝐹 )

)𝑛)
𝜕𝐴 𝑗 (𝐹 ),

where the second equality holds by Proposition 3.2(iii) and the inequality comes from (5). □

Our final ingredient is a reverse to the previous two lemmas. It shows that for any sequence

satisfying properties (a)-(c) we can construct a distribution 𝐺 for which (𝐴 𝑗 (𝐺)) 𝑗 ∈N matches the

values of the sequence and𝑀𝑛 (𝐺) matches the upper bound on𝑀𝑛 (𝐺) in terms of the values of

the sequence.

Lemma 3.5. For every (𝐵𝑛)𝑛∈N with 𝐵0 = 0, and satisfying (a)-(c), there exists a distribution𝐺 such
that 𝐴𝑛 (𝐺) = 𝐵𝑛 for every non-negative integer 𝑛. Furthermore, we have

𝑀𝑛 (𝐺) =
∞∑︁
𝑗=0

(
1 −

(
𝜕𝐵 𝑗+1
𝜕𝐵 𝑗

)𝑛)
𝜕𝐵 𝑗 .

Proof. We construct explicitly the distribution𝐺 satisfying the statement of the lemma. Recall

that since (𝐵𝑛)𝑛∈N satisfies properties (b)-(c) the sequence (𝜕𝐵𝑛+1/𝜕𝐵𝑛)𝑛∈N converges to a value

𝜌 ∈ (0, 1]. We prove the following claim.

Claim 1. Suppose that 𝜌 < 1. Then, there exists a value B > 0 such that lim𝑛→∞ 𝐵𝑛 = B.
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Since the sequence (𝐵𝑛)𝑛∈N satisfies property (c), we have that 𝜕𝐵𝑛 ≤ 𝜌𝜕𝐵𝑛−1, and therefore

𝜕𝐵𝑛 ≤ 𝜌𝑛𝜕𝐵0 = 𝜌𝑛𝐵1 for every 𝑛 ∈ N. On the other hand, we have

𝐵𝑛 =

𝑛−1∑︁
𝑗=0

(𝐵 𝑗+1 − 𝐵 𝑗 ) =
𝑛−1∑︁
𝑗=0

𝜕𝐵 𝑗 ≤ 𝐵1

𝑛−1∑︁
𝑗=0

𝜌𝑛 ≤ 𝐵1

1 − 𝜌
,

which implies that the sequence (𝐵𝑛)𝑛∈N is upper bounded. Since by property (a) the sequence

(𝐵𝑛)𝑛∈N is strictly increasing, we conclude that (𝐵𝑛)𝑛∈N is a convergent sequence and we call B
the value of this limit.

We now construct the distribution 𝐺 satisfying the conditions of the statement. Consider 𝐺 :

R→ R defined as follows: 𝐺 (𝑥) = 0 for every 𝑥 ∈ (−∞, 0), for every non-negative integer 𝑗 and

every 𝑥 ∈ [𝐵 𝑗 , 𝐵 𝑗+1) we have 𝐺 (𝑥) = 𝜕𝐵 𝑗+1/𝜕𝐵 𝑗 , and let 𝐺 (𝑥) = 1 for every 𝑥 ≥ lim𝑛→∞ 𝐵𝑛 . Since

the sequence (𝐵𝑛)𝑛∈N satisfies property (a), the function𝐺 is well defined for every non-negative

integer 𝑛. Furthermore, since the sequence (𝐵𝑛)𝑛∈N satisfies (c), we have that𝐺 is non-decreasing,

and property (b) implies that𝐺 (𝑥) ≤ 1 for every 𝑥 ∈ R+. If 𝜌 = 1 then lim𝑥→∞𝐺 (𝑥) = 1. Otherwise,

if 𝜌 < 1, by Claim 1 there exists a value B > 0 such that lim𝑛→∞ 𝐵𝑛 = B, and therefore 𝐺 (𝑥) = 1

for every 𝑥 ≥ B. Therefore, we conclude that 𝐺 is a distribution.

In what follows we show that 𝐴𝑛 (𝐺) = 𝐵𝑛 for every non-negative integer 𝑛. We proceed

by induction. By construction we have 𝐴0 (𝐺) = 0 = 𝐵0. Suppose that 𝐵𝑖 = 𝐴𝑖 (𝐺) for every
𝑖 ∈ {0, 1, . . . , 𝑛}. By Proposition 3.2, for every positive integer 𝑛 it holds that∫ 𝐴𝑛 (𝐺)

𝐴𝑛−1 (𝐺)
𝐺 (𝑦)d𝑦 =

∫ ∞

𝐴𝑛 (𝐺)
(1 −𝐺 (𝑦))d𝑦 = 𝐴𝑛+1 (𝐺) −𝐴𝑛 (𝐺),

and therefore the inductive step implies that∫ 𝐵𝑛

𝐵𝑛−1

𝐺 (𝑦)d𝑦 = 𝐴𝑛+1 (𝐺) − 𝐵𝑛 . (6)

On the other hand, by construction of 𝐺 it holds that∫ 𝐵𝑛

𝐵𝑛−1

𝐺 (𝑦)d𝑦 =
𝐵𝑛+1 − 𝐵𝑛

𝐵𝑛 − 𝐵𝑛−1
· (𝐵𝑛 − 𝐵𝑛−1) = 𝐵𝑛+1 − 𝐵𝑛 = 𝜕𝐵𝑛,

and therefore together with (6) we conclude that 𝐴𝑛+1 (𝐺) = 𝐵𝑛+1. Finally, we have

𝑀𝑛 (𝐺) =
∫ ∞

0

(1 −𝐺 (𝑦)𝑛)d𝑦 =

∞∑︁
𝑗=0

∫ 𝐴 𝑗+1 (𝐺)

𝐴 𝑗 (𝐺)
(1 −𝐺 (𝑦)𝑛)d𝑦 =

∞∑︁
𝑗=0

(
1 −

(
𝜕𝐵 𝑗+1
𝜕𝐵 𝑗

)𝑛)
𝜕𝐵 𝑗 ,

where the second equality holds since lim

𝑗→∞
𝐴 𝑗 (𝐺) = 𝜔1 (𝐺), by Proposition 3.2(iii). □

We are now ready to prove Theorem 3.1.

Proof of Theorem 3.1. We start by showing that if for some 𝜀 ≥ 0, 𝑛 ≥ 1, and𝑚 ≥ 1 there

exists a distribution 𝐹 such that (1 + 𝜀)𝐴𝑚 (𝐹 ) < 𝑀𝑛 (𝐹 ) then the objective value of the optimization

problem (1)-(4) must be negative. Note that for this distribution 𝐹 it must hold that 𝜔0 (𝐹 ) < 𝜔1 (𝐹 )
because otherwise 𝐴𝑚 (𝐹 ) = 𝑀𝑛 (𝐹 ), and so we must have 𝐴 𝑗+1 (𝐹 ) > 𝐴 𝑗 (𝐹 ) for all 𝑗 ∈ N by

Proposition 3.2(iv).

We construct a solution (𝛿 𝑗 ) 𝑗 ∈N for the optimization problem as follows. For every non-negative

integer 𝑗 , let 𝛿 𝑗 (𝐹 ) = 𝜕𝐴 𝑗 (𝐹 )/𝜕𝐴0 (𝐹 ). We begin by showing that the sequence (𝛿 𝑗 ) 𝑗 ∈N satisfies

(2)-(4). By construction we have 𝛿0 (𝐹 ) = 𝜕𝐴0 (𝐹 )/𝜕𝐴0 (𝐹 ) = 1, that is, (4) holds. By Lemma 3.3,

the sequence (𝐴 𝑗 (𝐹 )) 𝑗 ∈N satisfies properties (a)-(c). In particular, the sequence (𝜕𝐴 𝑗 (𝐹 )) 𝑗 ∈N is

non-increasing and therefore 𝛿 𝑗+1 (𝐹 ) ≤ 𝛿 𝑗 (𝐹 ) for every integer 𝑗 ≥ 0, that is, (2) is satisfied. The
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sequence (𝜕𝐴 𝑗+1 (𝐹 )/𝜕𝐴 𝑗 (𝐹 )) 𝑗 ∈N is non-decreasing, and therefore 𝛿 𝑗+1 (𝐹 )/𝛿 𝑗 (𝐹 ) ≥ 𝛿 𝑗 (𝐹 )/𝛿 𝑗−1 (𝐹 )
for every integer 𝑗 ≥ 1, that is, 𝛿 𝑗 (𝐹 )2 ≤ 𝛿 𝑗−1 (𝐹 )𝛿 𝑗+1 (𝐹 ), and therefore (3) is satisfied. Finally,

observe that

0 >
1

𝜕𝐴0 (𝐹 )

(
(1 + 𝜀)𝐴𝑚 (𝐹 ) −𝑀𝑛 (𝐹 )

)
= (1 + 𝜀)

𝑚−1∑︁
𝑖=0

𝛿𝑖 (𝐹 ) −
𝑀𝑛 (𝐹 )
𝜕𝐴0 (𝐹 )

≥ (1 + 𝜀)
𝑚−1∑︁
𝑖=0

𝛿𝑖 (𝐹 ) −
∞∑︁
𝑗=0

(
1 −

(
𝜕𝐴 𝑗+1 (𝐹 )
𝜕𝐴 𝑗 (𝐹 )

)𝑛)
𝜕𝐴 𝑗 (𝐹 )
𝜕𝐴0 (𝐹 )

= (1 + 𝜀)
𝑚−1∑︁
𝑖=0

𝛿𝑖 (𝐹 ) −
∞∑︁
𝑗=0

(
1 −

(
𝛿 𝑗+1 (𝐹 )
𝛿 𝑗 (𝐹 )

)𝑛)
𝛿 𝑗 (𝐹 ),

where the first inequality holds by assumption and the second inequality comes from Lemma 3.4.

So in particular, the last expression of the above chain which coincides with the objective in (1)

must be negative.

Conversely, suppose that the value of the optimization problem (1)-(4) is negative. That is, there

exists a sequence (𝛿★𝑗 ) 𝑗 ∈N satisfying (2)-(4) such that

(1 + 𝜀)
𝑚−1∑︁
𝑖=0

𝛿★𝑖 −
∞∑︁
𝑖=0

(
1 −

(
𝛿★𝑖+1
𝛿★
𝑖

)𝑛)
𝛿★𝑖 < 0. (7)

Consider the sequence (𝐵 𝑗 ) 𝑗 ∈N defined as follows: 𝐵0 = 0 and 𝐵 𝑗 =
∑𝑗−1

𝑖=0
𝛿★𝑖 for every 𝑗 ≥ 1. In

particular, we have

𝐵 𝑗+1 =
𝑗∑︁

𝑖=0

𝛿★𝑖 >

𝑗−1∑︁
𝑖=0

𝛿★𝑖 = 𝐵 𝑗

for every integer 𝑗 ≥ 1, and therefore the sequence (𝐵 𝑗 ) 𝑗 ∈N satisfies (a). Since the sequence (𝛿★𝑗 ) 𝑗 ∈N
satisfies (2)-(3), by construction it holds directly that (𝐵 𝑗 ) 𝑗 ∈N satisfies (b)-(c), and therefore by

Lemma 3.5 there exists a distribution𝐺 such that 𝐴 𝑗 (𝐺) = 𝐵 𝑗 for every non-negative integer 𝑗 , and

we have

(1 + 𝜀)𝐴𝑚 (𝐺) = (1 + 𝜀)𝐵𝑚

= (1 + 𝜀)
𝑚−1∑︁
𝑖=0

𝛿★𝑖

<

∞∑︁
𝑖=0

(
1 −

(
𝛿★𝑖+1
𝛿★
𝑖

)𝑛)
𝛿★𝑖 =

∞∑︁
𝑖=0

(
1 −

(
𝜕𝐵𝑖+1
𝜕𝐵𝑖

)𝑛)
𝜕𝐵𝑖 = 𝑀𝑛 (𝐺),

where the last equality also holds by Lemma 3.3. This finishes the proof of the theorem. □

4 EXACT COMPETITION COMPLEXITY: PROOF OF THEOREM 2.1
We show next how to use Theorem 3.1 to prove the impossibility result in Theorem 2.1 about the

exact competition complexity.

Proof of Theorem 2.1. Letting 𝜀 = 0 in Theorem 3.1, it suffices to show that the value of the

optimization problem (1)-(4) is strictly negative. Consider the sequence (𝑏𝑖 )𝑖∈N defined as follows:

𝑏0 = 1, and 𝑏1 ∈ (0, 1) to be specified later. For every 𝑖 ∈ {1, . . . ,𝑚 − 1} let

𝑏𝑖+1 = 𝑏𝑖

( 𝑛

𝑛 − 1

) 1

𝑛

(
𝑏𝑖

𝑏𝑖−1

) 𝑛−1
𝑛

, (8)
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and for every 𝑖 ≥ 𝑚 let 𝑏𝑖+1 = 𝑏2𝑖 /𝑏𝑖−1. We first show that (𝑏𝑖 )𝑖∈N is feasible for the optimization

problem (1)-(4). By construction the sequence satisfies (4). We start with the monotonicity property

(2). Consider the function ℎ(𝑥) = (𝑛/(𝑛 − 1))1/𝑛𝑥 (𝑛−1)/𝑛
and let ℎ (𝑖)

be the function obtained from

the composition of ℎ with itself 𝑖 times. From (8), we get 𝑏𝑖+1/𝑏𝑖 = ℎ (𝑖) (𝑏1/𝑏0) = ℎ (𝑖) (𝑏1) for every
𝑖 ∈ {0, 1, . . . ,𝑚 − 1}. Observe that ℎ(𝑥) is monotone increasing and continuous on 𝑥 ∈ [0, 1], with
ℎ(0) = 0, and therefore ℎ (𝑖)

is also monotone increasing, continuous and ℎ (𝑖) (0) = 0, for every

𝑖 ∈ {0, 1, . . . ,𝑚 − 1}. Since we also know 𝑏 𝑗+1/𝑏 𝑗 = 𝑏𝑚/𝑏𝑚−1 for every 𝑗 ≥ 𝑚, it suffices to prove

𝑏𝑖/𝑏𝑖−1 ≤ 1 for every 𝑖 ∈ {1, . . . ,𝑚} in order to show that the sequence (𝑏𝑖 )𝑖∈N satisfies (2). To

this end, we make any choice of 𝑏1 in a way that max𝑖∈{0,1,...,𝑚−1} ℎ
(𝑖) (𝑏1) ≤ 1. This implies that

property (2) is satisfied.

Claim 2. For every 𝑥 ∈ [0, 1] we have
(

𝑛
𝑛−1

) 1

𝑛 𝑥
𝑛−1
𝑛 ≥ 𝑥 .

To prove the claim, consider the function 𝑔 : R → R given by 𝑔(𝑥) =
(

𝑛
𝑛−1

) 1

𝑛 𝑥
𝑛−1
𝑛 − 𝑥 . This

function is concave in the interval [0, 1] and therefore the minimum is attained in either zero or one.

Since 𝑔(0) = 0 and 𝑔(1) = (𝑛/(𝑛 − 1))1/𝑛 − 1 > 0, we conclude that 𝑔(𝑥) ≥ 0 for every 𝑥 ∈ [0, 1]. In
particular, for every 𝑖 ∈ {1, . . . ,𝑚 − 1} we have

𝑏𝑖+1
𝑏𝑖

=

( 𝑛

𝑛 − 1

) 1

𝑛

(
𝑏𝑖

𝑏𝑖−1

) 𝑛−1
𝑛

= 𝑔

(
𝑏𝑖

𝑏𝑖−1

)
+ 𝑏𝑖

𝑏𝑖−1
≥ 𝑏𝑖

𝑏𝑖−1
,

where we used the fact that 0 ≤ 𝑏𝑖/𝑏𝑖−1 ≤ 1 by the monotonicity property (2). Since 𝑏𝑖+1/𝑏𝑖 =
𝑏𝑚/𝑏𝑚−1 ≤ 1 for every 𝑖 ≥ 𝑚, we conclude that (3) is also satisfied, and therefore the sequence

(𝑏𝑖 )𝑖∈N is feasible for the optimization problem (1)-(4). We now show that the objective value of

the sequence (𝑏𝑖 )𝑖∈N is strictly negative. We first observe that the objective value is equal to

𝑚−1∑︁
𝑖=0

𝑏𝑖 −
𝑚−1∑︁
𝑖=0

(
1 −

(
𝑏𝑖+1
𝑏𝑖

)𝑛)
𝑏𝑖 −

∞∑︁
𝑖=𝑚

(
1 −

(
𝑏𝑖+1
𝑏𝑖

)𝑛)
𝑏𝑖

=

𝑚−1∑︁
𝑖=0

(
𝑏𝑖+1
𝑏𝑖

)𝑛
𝑏𝑖 −

∞∑︁
𝑖=𝑚

(
1 −

(
𝑏𝑖+1
𝑏𝑖

)𝑛)
𝑏𝑖

By construction of the sequence we have

𝑚−1∑︁
𝑖=0

𝑏𝑖

(
𝑏𝑖+1
𝑏𝑖

)𝑛
= 𝑏𝑛

1
+ 𝑛

𝑛 − 1

𝑚−1∑︁
𝑖=1

𝑏𝑖

(
𝑏𝑖

𝑏𝑖−1

)𝑛−1
= 𝑏𝑛

1
+ 𝑛

𝑛 − 1

𝑚−1∑︁
𝑖=1

𝑏𝑖−1

(
𝑏𝑖

𝑏𝑖−1

)𝑛
= 𝑏𝑛

1
+ 𝑛

𝑛 − 1

𝑚−2∑︁
𝑖=0

𝑏𝑖

(
𝑏𝑖+1
𝑏𝑖

)𝑛
,

and therefore

𝑏𝑛
1
=

𝑚−1∑︁
𝑖=0

𝑏𝑖

(
𝑏𝑖+1
𝑏𝑖

)𝑛
− 𝑛

𝑛 − 1

𝑚−2∑︁
𝑖=0

𝑏𝑖

(
𝑏𝑖+1
𝑏𝑖

)𝑛
= 𝑏𝑚−1

(
𝑏𝑚

𝑏𝑚−1

)𝑛
+

𝑚−2∑︁
𝑖=0

𝑏𝑖

(
𝑏𝑖+1
𝑏𝑖

)𝑛
− 𝑛

𝑛 − 1

𝑚−2∑︁
𝑖=0

𝑏𝑖

(
𝑏𝑖+1
𝑏𝑖

)𝑛
= 𝑏𝑚−1

(
𝑏𝑚

𝑏𝑚−1

)𝑛
− 1

𝑛 − 1

𝑚−2∑︁
𝑖=0

𝑏𝑖

(
𝑏𝑖+1
𝑏𝑖

)𝑛
.
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By rearranging terms we conclude that

𝑚−1∑︁
𝑖=0

𝑏𝑖

(
𝑏𝑖+1
𝑏𝑖

)𝑛
= 𝑏𝑚−1

(
𝑏𝑚

𝑏𝑚−1

)𝑛
+

𝑚−2∑︁
𝑖=0

𝑏𝑖

(
𝑏𝑖+1
𝑏𝑖

)𝑛
= 𝑏𝑚−1

(
𝑏𝑚

𝑏𝑚−1

)𝑛
+ (𝑛 − 1)

(
𝑏𝑚−1

(
𝑏𝑚

𝑏𝑚−1

)𝑛
− 𝑏𝑛

1

)
= 𝑛𝑏𝑚−1

(
𝑏𝑚

𝑏𝑚−1

)𝑛
− (𝑛 − 1)𝑏𝑛

1
.

Let 𝛾 = 𝑏𝑚/𝑏𝑚−1. We have 𝛾 < 1, 𝑏𝑚 = 𝛾𝑏𝑚−1 and inductively 𝑏𝑚+𝑖 = 𝛾𝑖+1𝑏𝑚−1 for every non-

negative 𝑖 . Therefore, overall, the objective value of the sequence is equal to

𝑚−1∑︁
𝑖=0

(
𝑏𝑖+1
𝑏𝑖

)𝑛
𝑏𝑖 −

∞∑︁
𝑖=𝑚

(
1 −

(
𝑏𝑖+1
𝑏𝑖

)𝑛)
𝑏𝑖

= 𝑛𝑏𝑚−1𝛾
𝑛 − (𝑛 − 1)𝑏𝑛

1
− (1 − 𝛾𝑛)

∞∑︁
𝑖=0

𝛾𝑖+1𝑏𝑚−1

= 𝑛𝑏𝑚−1𝛾
𝑛 − (𝑛 − 1)𝑏𝑛

1
− (1 − 𝛾𝑛)𝛾

1 − 𝛾
𝑏𝑚−1

= 𝑛𝑏𝑚−1𝛾
𝑛 − (𝑛 − 1)𝑏𝑛

1
− 𝑏𝑚−1

𝑛∑︁
𝑖=1

𝛾𝑖

= −(𝑛 − 1)𝑏𝑛
1
− 𝑏𝑚−1

(
𝑛∑︁
𝑖=1

𝛾𝑖 − 𝑛𝛾𝑛

)
< 0,

which concludes the proof. □

5 APPROXIMATE COMPETITION COMPLEXITY: PROOF OF THEOREM 2.2
In this section we show how to use Theorem 3.1 to derive Theorem 2.2 about the approximate

competition complexity. More specifically, in what follows we show how to optimally solve the

optimization problem (1)-(4). Given 𝜀 > 0 and positive integer 𝑛 ≥ 2, let (𝜌𝜀,𝑗 ) 𝑗 ∈N be the sequence

defined by the following recurrence:

𝜌𝜀,1 = 1, and

(𝑛 − 1)𝜌𝑛𝜀,𝑗−1 − 𝜀 = 𝑛𝜌𝑛−1𝜀,𝑗 for every 𝑗 ≥ 2 such that (𝑛 − 1)𝜌𝑛𝜀,𝑗−1 − 𝜀 > 0.

For fixed 𝜀 and 𝑛 we say that 𝜌𝜀,𝑗 is well defined if (𝑛 − 1)𝜌𝑛𝜀,𝑗−1 − 𝜀 > 0. Since 𝜌𝜀,𝑗 is decreasing

in 𝑗 , we know that if 𝜌𝜀,𝑚 is well defined, then so is 𝜌𝜀,𝑗 for 𝑗 ≤ 𝑚.

As a first step, we will show that the optimal value of (1)-(4) can be obtained in terms of the

sequence (𝜌𝜀,𝑗 ) 𝑗 ∈N. To prove this result we require a few propositions. Consider the function

Γ𝜀𝑛,𝑚 : R𝑚−1
+ → R defined by

Γ𝜀𝑛,𝑚 (𝑥) = 𝜀 + 𝑥𝑛
1
+

𝑚−2∑︁
𝑖=1

𝑥𝑖

(
𝜀 +

(
𝑥𝑖+1
𝑥𝑖

)𝑛)
− 𝑥𝑚−1 (𝑛 − 1 − 𝜀).
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Proposition 5.1. Let 𝜀 > 0, and let 𝑛 ≥ 2 and𝑚 ≥ 3 be two positive integers such that 𝜌𝜀,𝑚 is well
defined. Then, Γ𝜀𝑛,𝑚 is convex over R𝑚−1

+ and it has a unique minimizer 𝑌 in this region, given by

𝑌1 = 𝜌𝜀,𝑚 and 𝑌𝑗 =

𝑗−1∏
𝑘=0

𝜌𝜀,𝑚−𝑘 for every 𝑗 ∈ {2, . . . ,𝑚 − 1}. (9)

Furthermore, Γ𝜀𝑛,𝑚 (𝑌 ) = 𝜀 − (𝑛 − 1)𝜌𝑛𝜀,𝑚 .

Proof. We begin by proving (strict) convexity of Γ𝜀𝑛,𝑚 . We proceed by induction on𝑚. Observe

first that when 𝑚 = 3, we have that Γ𝜀
𝑛,3

(𝑥1, 𝑥2) = 𝜀 + 𝑥𝑛
1
+ 𝑝 (𝑥1, 𝑥2) − 𝑥2 (𝑛 − 1 − 𝜀), where

𝑝 (𝑦, 𝑧) = 𝑦 (𝜀 + (𝑧/𝑦)𝑛). The Hessian of 𝑝 is

∇2𝑝 (𝑦, 𝑧) = 𝑛(𝑛 − 1)𝑧𝑛−2𝑦1−𝑛
(
𝑧2/𝑦2 −𝑧/𝑦
−𝑧/𝑦 1

)
,

and this is a positive semidefinite matrix for every (𝑦, 𝑧) ∈ R2+, since one eigenvalue is equal to
zero, and the other is 𝑛(𝑛 − 1)𝑧𝑛−2𝑦1−𝑛 ((𝑧/𝑦)2 + 1) > 0. In particular, 𝑝 is convex over R2+. Since
the function 𝜀 + 𝑥𝑛

1
− 𝑥2 (𝑛 − 1 − 𝜀) is also convex over R2+, we conclude that Γ

𝜀
𝑛,3

is convex over R2+.
Now consider an integer value𝑚 > 3, and observe that

Γ𝜀𝑛,𝑚+1 (𝑥1, . . . , 𝑥𝑚) = 𝑝 (𝑥𝑚−1, 𝑥𝑚) − (𝑥𝑚 − 𝑥𝑚−1) (𝑛 − 1 − 𝜀) + Γ𝜀𝑛,𝑚 (𝑥1, . . . , 𝑥𝑚−1),

and therefore the convexity follows by the inductive step, that is, Γ𝜀𝑛,𝑚 convex over R𝑚−1
+ , together

with 𝑝 convex over R2+. Every minimizer 𝑦 of Γ𝜀𝑛,𝑚 over R𝑚−1
+ is a solution to the system given by

∇Γ𝜀𝑛,𝑚 = 0, that is,

(𝑛 − 1)
(
𝑦2

𝑦1

)𝑛
− 𝜀 = 𝑛𝑦𝑛−1

1
, (10)

(𝑛 − 1)
(
𝑦𝑖+1
𝑦𝑖

)𝑛
− 𝜀 = 𝑛

(
𝑦𝑖

𝑦𝑖−1

)𝑛−1
for every 𝑖 ∈ {2, . . . ,𝑚 − 2}, (11)

𝑛 − 1 − 𝜀 = 𝑛

(
𝑦𝑚−1
𝑦𝑚−2

)𝑛−1
, and 𝑦 ∈ R𝑚−1

+ . (12)

The above system has a unique solution and therefore this proves the first part.

To finish the proof, we show that 𝑌 defined in (9) is strictly positive, satisfies the system (10)-

(12), and Γ𝜀𝑛,𝑚 (𝑌 ) = 𝜀 − (𝑛 − 1)𝜌𝑛𝜀,𝑚 . Since 𝜌𝜀,𝑗 is well-defined for all 𝑗 ≤ 𝑚, we have 𝜌𝜀,𝑗 =

((𝑛 − 1)𝜌𝑛𝜀,𝑗−1 − 𝜀)1/(𝑛−1) > 0. This implies that 𝑌 ∈ R𝑚−1
+ . Next observe that 𝑌2 = 𝜌𝜀,𝑚𝜌𝜀,𝑚−1 and

therefore 𝑌2/𝑌1 = 𝜌𝜀,𝑚−1. Then, we have

(𝑛 − 1) (𝑌2/𝑌1)𝑛 − 𝜀 = (𝑛 − 1)𝜌𝑛𝜀,𝑚−1 − 𝜀 = 𝑛𝜌𝑛−1𝜀,𝑚 = 𝑛𝑌𝑛−1
1

,

and therefore (10) is satisfied. Similarly, for every 𝑗 ∈ {2, . . . ,𝑚 − 2}, we have 𝑌𝑗/𝑌𝑗−1 = 𝜌𝑚−𝑗+1 and
𝑌𝑗+1/𝑌𝑗 = 𝜌𝑚−𝑗 . Then, we have

(𝑛 − 1) (𝑌𝑗+1/𝑌𝑗 )𝑛 − 𝜀 = (𝑛 − 1)𝜌𝑛𝜀,𝑚−𝑗 − 𝜀 = 𝑛𝜌𝑛−1𝜀,𝑚−𝑗+1 = 𝑛(𝑌𝑗/𝑌𝑗−1)𝑛−1,

and therefore (11) is satisfied. Finally, since 𝑌𝑚−1/𝑌𝑚−2 = 𝜌𝜀,2, we have

𝑛 − 1 − 𝜀 = (𝑛 − 1)𝜌𝑛𝜀,1 − 𝜀 = 𝑛𝜌𝑛−1𝜀,2 = 𝑛(𝑌𝑚−1/𝑌𝑚−2)𝑛−1,
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and therefore (12) is satisfied.We now evaluate Γ𝜀𝑛,𝑚 (𝑌 ). The vector𝑌 satisfies (10)-(12) and therefore

(𝑛 − 1)
𝑚−2∑︁
𝑖=1

𝑌𝑖

(
𝑌𝑖+1
𝑌𝑖

)𝑛
+ (𝑛 − 1)𝑌𝑚−1 − 𝜀

𝑚−1∑︁
𝑖=1

𝑌𝑖 = 𝑛𝑌𝑛
1
+ 𝑛

𝑚−1∑︁
𝑖=2

𝑌𝑖

(
𝑌𝑖

𝑌𝑖−1

)𝑛−1
= 𝑛𝑌𝑛

1
+ 𝑛

𝑚−1∑︁
𝑖=2

𝑌𝑖−1

(
𝑌𝑖

𝑌𝑖−1

)𝑛
= 𝑛𝑌𝑛

1
+ 𝑛

𝑚−2∑︁
𝑖=1

𝑌𝑖

(
𝑌𝑖+1
𝑌𝑖

)𝑛
.

By subtracting the first term of the left hand side we get

𝑚−2∑︁
𝑖=1

𝑌𝑖

(
𝑌𝑖+1
𝑌𝑖

)𝑛
= (𝑛 − 1)𝑌𝑚−1 − 𝜀

𝑚−1∑︁
𝑖=1

𝑌𝑖 − 𝑛𝑌𝑛
1
,

and by rearranging terms we obtain that

𝑚−2∑︁
𝑖=1

𝑌𝑖

(
𝜀 +

(
𝑌𝑖+1
𝑌𝑖

)𝑛)
= (𝑛 − 1 − 𝜀)𝑌𝑚−1 − 𝑛𝑌𝑛

1
.

Therefore, the minimum of Γ𝜀𝑛,𝑚 over R𝑚−1
+ is equal to

𝜀 + 𝑌𝑛
1
+ (𝑛 − 1 − 𝜀)𝑌𝑚−1 − 𝑛𝑌𝑛

1
− (𝑛 − 1 − 𝜀)𝑌𝑚−1 = 𝜀 − (𝑛 − 1)𝑌𝑛

1
.

The proof follows since we have 𝑌1 = 𝜌𝜀,𝑚 . □

Proposition 5.2. Let 𝜀 > 0, let 𝑛 ≥ 2 and𝑚 ≥ 3 be two positive integers such that 𝜌𝜀,𝑚 is well
defined, and let 𝑌 be as defined in (9). Then, the following holds:
(a) For every 𝑗 ∈ {1, . . . ,𝑚 − 1} we have that 𝑌𝑗+1 ≤ 𝑌𝑗 .
(b) For every 𝑗 ∈ {2, . . . ,𝑚 − 1} we have that 𝑌 2

𝑗 ≤ 𝑌𝑗−1𝑌𝑗+1.

Proof. Observe that for every 𝑘 ∈ {1, . . . ,𝑚−1}, we have𝑌𝑚−𝑘+1/𝑌𝑚−𝑘 = 𝜌𝜀,𝑘 . For 𝑘 = 1 we have

𝑌𝑚/𝑌𝑚−1 = 𝜌𝜀 = 1. From the definition of the recurrence, we have (𝑛−1)𝜌𝑛
𝜀,𝑘−1 ≥ (𝑛−1)𝜌𝑛

𝜀,𝑘−1−𝜀 =
𝑛𝜌𝑛−1

𝜀,𝑘
for every𝑘 ∈ {2, . . . ,𝑚−1}. By induction, if 𝜌𝜀,𝑘−1 ≤ 1, we have 𝜌𝑛−1

𝜀,𝑘
≤ (𝑛−1)/𝑛 and therefore

𝜌𝜀,𝑘 ≤ 1. This concludes part (a). Since for every 𝑗 ∈ {1, . . . ,𝑚 − 1} we have 𝑌𝑗+1/𝑌𝑗 = 𝜌𝜀,𝑚−𝑗 , to
prove part (b) it suffices to show 𝜌𝜀,𝑘+1 ≤ 𝜌𝜀,𝑘 for every 𝑘 ∈ {1, . . . ,𝑚 − 2}. From the construction

of the recurrence, for every 𝑘 ∈ {1, . . . ,𝑚 − 2} it holds that

𝜌𝜀,𝑘 ≥
( 𝑛

𝑛 − 1

) 1

𝑛

𝜌
(𝑛−1)/𝑛
𝜀,𝑘+1 .

By (a) we have 𝜌𝜀,𝑘+1 ∈ [0, 1], which together with Claim 2 implies that( 𝑛

𝑛 − 1

) 1

𝑛

𝜌
(𝑛−1)/𝑛
𝜀,𝑘+1 ≥ 𝜌𝜀,𝑘+1 .

Therefore we conclude that 𝜌𝜀,𝑘+1 ≤ 𝜌𝜀,𝑘 . This proves part (b). □

Proposition 5.3. For every sequence (𝛿 𝑗 ) 𝑗 ∈N satisfying (2)-(4) for which 𝛿𝑚/𝛿𝑚−1 < 1, there exists
a sequence (𝛽 𝑗 ) 𝑗 ∈N satisfying (2)-(4), and such that the following holds:
(a) For every 𝑗 ∈ {0, 1, . . . ,𝑚 − 1} we have 𝛿 𝑗 = 𝛽 𝑗 , and 𝛽𝑚/𝛽𝑚−1 < 1.

(b)
∞∑︁

𝑖=𝑚−1

(
1 −

(
𝛿𝑖+1
𝛿𝑖

)𝑛)
𝛿𝑖 ≤ 𝛽𝑚−1

𝑛−1∑︁
𝑖=0

(
𝛽𝑚

𝛽𝑚−1

)𝑖
.
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Proof. Suppose we are given (𝛿 𝑗 ) 𝑗 ∈N satisfying (2)-(4) for which 𝛿𝑚/𝛿𝑚−1 < 1. We claim that

then there exists a sequence (𝛽 𝑗 ) 𝑗 ∈N satisfying (2)-(4) such that (a) holds and furthermore (i) 𝛽 𝑗 ≥ 𝛿 𝑗
for all 𝑗 ≥ 𝑚 and (ii) 𝛽 𝑗/𝛽 𝑗−1 = 𝛽𝑚/𝛽𝑚−1 for all 𝑗 ≥ 𝑚.

If (𝛿 𝑗 ) 𝑗 ∈N does not already satisfy these properties, then it must be because of (ii). In particular,

there must be a smallest index 𝑗 ≥ 𝑚 such that 𝛿 𝑗+1/𝛿 𝑗 > 𝛿𝑚/𝛿𝑚−1. We next describe a procedure

that maintains all properties, but extends (ii) so that it holds for one more index. Applying this

procedure iteratively, we obtain (𝛽 𝑗 ) 𝑗 ∈N.
Given (𝛿 𝑗 ) 𝑗 ∈N satisfying (2)-(4), let 𝑘 (𝛿) ≥ 𝑚 be the first value 𝑗 such that 𝛿 𝑗+1/𝛿 𝑗 > 𝛿𝑚/𝛿𝑚−1. In

particular, we have 𝛿 𝑗/𝛿 𝑗−1 = 𝛿𝑚/𝛿𝑚−1 for every 𝑗 ∈ {𝑚, . . . , 𝑘 (𝛿)}. Consider the sequence (𝐷 𝑗 ) 𝑗 ∈N
defined as follows: 𝐷 𝑗 = 𝛿 𝑗 for every 𝑗 ∈ {0, 1, . . . ,𝑚 − 1},

𝐷𝑚 = 𝛿𝑚−1

(
𝛿𝑘 (𝛿)+1
𝛿𝑚−1

) 1

𝑘 (𝛿 )−𝑚+2
,

𝐷 𝑗 = 𝐷𝑚 (𝐷𝑚/𝛿𝑚−1) 𝑗−𝑚 for every 𝑗 ∈ {𝑚+1, . . . , 𝑘 (𝛿)}, and𝐷 𝑗 = 𝛿 𝑗 for every 𝑗 ≥ 𝑘 (𝛿) +1. Observe
that from the construction it holds directly that𝐷 𝑗+1/𝐷 𝑗 = 𝐷𝑚/𝛿𝑚−1 for every 𝑗 ∈ {𝑚, . . . , 𝑘 (𝛿) −1}.
Furthermore, we have

𝛿𝑘 (𝛿)+1
𝐷𝑘 (𝛿)

= 𝐷𝑚

(
𝐷𝑚

𝛿𝑚−1

)𝑘 (𝛿)−𝑚+1
· 1

𝐷𝑚

(
𝛿𝑚−1
𝐷𝑚

)𝑘 (𝛿)−𝑚
=

𝐷𝑚

𝛿𝑚−1
,

and therefore, we have 𝐷 𝑗+1/𝐷 𝑗 = 𝐷𝑚/𝐷𝑚−1 for every 𝑗 ∈ {𝑚 − 1, . . . , 𝑘 (𝛿)}. By construction,

the sequence (𝐷 𝑗 ) 𝑗 ∈N satisfies (2)-(4) and 𝐷𝑚/𝐷𝑚−1 < 1. We show next that 𝐷 𝑗 ≥ 𝛿 𝑗 for every

𝑗 ∈ {𝑚, . . . , 𝑘 (𝛿)}. Since 𝛿 𝑗+1/𝛿 𝑗 ≥ 𝛿𝑚/𝛿𝑚−1 for every 𝑗 ∈ {𝑚, . . . , 𝑘 (𝛿)}, we have

(
𝛿𝑚

𝛿𝑚−1

)𝑘 (𝛿)−𝑚+1
≤

𝑘 (𝛿)∏
𝑗=𝑚

𝛿 𝑗+1
𝛿 𝑗

=
𝛿𝑘 (𝛿)+1
𝛿𝑚

,

which implies that 𝛿𝑚 ≤ 𝛿𝑚−1 (𝛿𝑘 (𝛿)+1/𝛿𝑚−1)
1

𝑘 (𝛿 )−𝑚+2 = 𝐷𝑚 . For 𝑗 ∈ {𝑚 + 1, . . . , 𝑘 (𝛿)} we proceed
by induction:

𝐷 𝑗 = 𝐷 𝑗−1
𝐷𝑚

𝛿𝑚−1
≥ 𝛿 𝑗−1

𝐷𝑚

𝛿𝑚−1
≥ 𝛿 𝑗−1

𝛿𝑚

𝛿𝑚−1
= 𝛿 𝑗 ·

𝛿 𝑗−1
𝛿 𝑗

· 𝛿𝑚

𝛿𝑚−1
= 𝛿 𝑗 ,

where the first equality holds by construction of the sequence, the first inequality holds by the

inductive hypothesis, the second inequality holds since 𝐷𝑚 ≥ 𝛿𝑚 , and the last equality follows

since 𝛿 𝑗/𝛿 𝑗−1 = 𝛿𝑚/𝛿𝑚−1 for every 𝑗 ∈ {𝑚, . . . , 𝑘 (𝛿)}.
In the remainder we will prove part (b) using the existence of a sequence (𝛽 𝑗 ) 𝑗 ∈N for which

(a) holds as well as (i) and (ii). To this end we need the following definition and claim. For every

sequence (𝛿 𝑗 ) 𝑗 ∈N let

R(𝛿) =
∞∑︁

𝑖=𝑚−1

(
1 −

(
𝛿𝑖+1
𝛿𝑖

)𝑛)
𝛿𝑖 .

Claim 3. R is non-decreasing in 𝛿𝑖 for every 𝑖 ≥ 𝑚.
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Before proving Claim 3, we show how together with the properties of the sequence (𝛽 𝑗 ) 𝑗 ∈N it

implies property (b). Namely,

∞∑︁
𝑖=𝑚−1

(
1 −

(
𝛿𝑖+1
𝛿𝑖

)𝑛)
𝛿𝑖 ≤

∞∑︁
𝑖=𝑚−1

(
1 −

(
𝛽𝑖+1
𝛽𝑖

)𝑛)
𝛽𝑖

=

(
1 −

(
𝛽𝑚

𝛽𝑚−1

)𝑛) ∞∑︁
𝑖=𝑚−1

𝛽𝑖

= 𝛽𝑚−1

(
1 −

(
𝛽𝑚

𝛽𝑚−1

)𝑛) ∞∑︁
𝑖=0

(
𝛽𝑚

𝛽𝑚−1

)𝑖
= 𝛽𝑚−1

𝑛−1∑︁
𝑖=0

(
𝛽𝑚

𝛽𝑚−1

)𝑖
,

where the inequality holds by Claim 3 and (i), the first equality holds by (ii), and the second equality

holds because (ii) implies 𝛽𝑖 = 𝛽𝑚−1 (𝛽𝑚/𝛽𝑚−1)𝑖−𝑚+1
for 𝑖 ≥ 𝑚 − 1. It remains to prove Claim 3.

Consider the function 𝜑 : R2+ → R+ such that 𝜑 (𝑥,𝑦) = (1 − (𝑦/𝑥)𝑛)𝑥 . In particular, the derivative

of R with respect to 𝛿𝑖 , with 𝑖 ≥ 𝑚, is equal to

𝜕𝜑

𝜕𝑦
(𝛿𝑖−1, 𝛿𝑖 ) +

𝜕𝜑

𝜕𝑥
(𝛿𝑖 , 𝛿𝑖+1) = −𝑛

(
𝛿𝑖

𝛿𝑖−1

)𝑛−1
+ 1 + (𝑛 − 1)

(
𝛿𝑖+1
𝛿𝑖

)𝑛
= 𝑛

(
𝛿𝑖+1
𝛿𝑖

)𝑛−1 (
1

𝑛

(
𝛿𝑖

𝛿𝑖+1

)𝑛−1
+

(
1 − 1

𝑛

)
𝛿𝑖+1
𝛿𝑖

−
(

𝛿2𝑖

𝛿𝑖+1𝛿𝑖−1

)𝑛−1)
≥ 𝑛

(
𝛿𝑖+1
𝛿𝑖

)𝑛−1 (
1 −

(
𝛿2𝑖

𝛿𝑖+1𝛿𝑖−1

)𝑛−1)
≥ 0,

The first inequality holds because for any 𝑝 ∈ [0, 1] we have that (1 − 1/𝑛)𝑝 + 1/(𝑛𝑝𝑛−1) ≥ 1, and

𝛿𝑖−1 ≤ 𝛿𝑖 ≤ 𝛿𝑖+1 for every 𝑖 ≥ 𝑚, and the second holds since (𝛿 𝑗 ) 𝑗 ∈N satisfies constraint (3). This

concludes the proof of the claim. □

The following lemma relates the optimal value of the optimization problem (1)-(4) with the

sequence (𝜌𝜀,𝑗 ) 𝑗 ∈N.

Lemma 5.4. Let 𝜀 > 0, and let 𝑛 ≥ 2 and𝑚 ≥ 3 be two positive integers such that 𝜌𝜀,𝑚 is well
defined. Then, the value of the optimization problem (1)-(4) is equal to 𝜀 − (𝑛 − 1)𝜌𝑛𝜀,𝑚 .

Proof. Consider 𝑌 ∈ R𝑚−1
+ as defined in (9). For every 𝛼 ∈ (0, 1), consider the sequence

(Y𝑗 (𝛼)) 𝑗 ∈N defined as follows: Y0 (𝛼) = 1, Y𝑗 (𝛼) = 𝑌𝑗 for every 𝑗 ∈ {1, . . . ,𝑚 − 1} and Y𝑗 (𝛼) =
𝛼𝑚−𝑗+1𝑌𝑚−1 for every 𝑗 ≥ 𝑚. Thanks to Proposition 5.1 and Proposition 5.2, for every 𝛼 ∈ (0, 1) the
sequence (Y𝑗 (𝛼)) 𝑗 ∈N satisfies (2)-(4). Furthermore, the objective value (1) of the sequence is equal
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to

(1 + 𝜀)
𝑚−1∑︁
𝑖=0

Y𝑖 (𝛼) −
∞∑︁
𝑖=0

(
1 −

(
Y𝑖+1 (𝛼)
Y𝑖 (𝛼)

)𝑛)
Y𝑖 (𝛼)

= 𝜀 + 𝑌𝑛
1
+ (1 + 𝜀)𝑌𝑚−1 +

𝑚−2∑︁
𝑖=1

(
𝜀 +

(
𝑌𝑖+1
𝑌𝑖

)𝑛)
𝑌𝑖 −

∞∑︁
𝑖=𝑚−1

(
1 −

(
Y𝑖+1 (𝛼)
Y𝑖 (𝛼)

)𝑛)
Y𝑖 (𝛼)

= 𝜀 + 𝑌𝑛
1
+ (1 + 𝜀)𝑌𝑚−1 +

𝑚−2∑︁
𝑖=1

(
𝜀 +

(
𝑌𝑖+1
𝑌𝑖

)𝑛)
𝑌𝑖 − (1 − 𝛼𝑛)

∞∑︁
𝑖=0

Y𝑚+𝑖−1 (𝛼)

= 𝜀 + 𝑌𝑛
1
+

𝑚−2∑︁
𝑖=1

(
𝜀 +

(
𝑌𝑖+1
𝑌𝑖

)𝑛)
𝑌𝑖 − 𝑌𝑚−1

((
(1 − 𝛼𝑛)

∞∑︁
𝑖=0

𝛼𝑖

)
− 1 − 𝜀

)
= Γ𝜀𝑛,𝑚 (𝑌 ) + 𝑌𝑚−1

(
𝑛 − (1 − 𝛼𝑛)

∞∑︁
𝑖=0

𝛼𝑖

)
= 𝜀 − (𝑛 − 1)𝜌𝑛𝜀,𝑚 + 𝑌𝑚−1

(
𝑛 − (1 − 𝛼𝑛)

∞∑︁
𝑖=0

𝛼𝑖

)
,

where the last equality holds by Proposition 5.1. In particular, the feasibility of (Y𝑗 (𝛼)) 𝑗 ∈N for every
𝛼 ∈ (0, 1) implies that the value of the optimization problem (1)-(4) is upper bounded by

𝜀 − (𝑛 − 1)𝜌𝑛𝜀,𝑚 + 𝑌𝑚−1 inf

𝛼 ∈(0,1)

{
𝑛 − (1 − 𝛼𝑛)

∞∑︁
𝑖=0

𝛼𝑖

}
= 𝜀 − (𝑛 − 1)𝜌𝑛𝜀,𝑚 . (13)

Let (𝛿 𝑗 ) 𝑗 ∈N be any sequence satisfying (2)-(4). We denote byV(𝛿) the objective value (1), which
by rearranging terms, is equal to

V(𝛿) = Γ𝜀𝑛,𝑚 (𝛿1, . . . , 𝛿𝑚−1) + 𝑛𝛿𝑚−1 −
∞∑︁

𝑖=𝑚−1

(
1 −

(
𝛿𝑖+1
𝛿𝑖

)𝑛)
𝛿𝑖 .

Now either 𝛿𝑖+1/𝛿𝑖 = 1 for all 𝑖 ≥ 𝑚 − 1 in which case V(𝛿) = Γ𝜀𝑛,𝑚 (𝛿1, . . . , 𝛿𝑚−1) + 𝑛𝛿𝑚−1 ≥
min𝑥 ∈R𝑛−1+

Γ𝜀𝑛,𝑚 (𝑥) = 𝜀 − (𝑛 − 1)𝜌𝑛𝜀,𝑚 , where the last inequality holds by Proposition 5.1. Otherwise,

by Proposition 5.3, there exists a sequence (𝛽 𝑗 ) 𝑗 ∈N satisfying (2)-(4) for which the following holds:

V(𝛿) = Γ𝜀𝑛,𝑚 (𝛿1, . . . , 𝛿𝑚−1) + 𝑛𝛿𝑚−1 −
∞∑︁

𝑖=𝑚−1

(
1 −

(
𝛿𝑖+1
𝛿𝑖

)𝑛)
𝛿𝑖

= Γ𝜀𝑛,𝑚 (𝛽1, . . . , 𝛽𝑚−1) + 𝑛𝛽𝑚−1 −
∞∑︁

𝑖=𝑚−1

(
1 −

(
𝛿𝑖+1
𝛿𝑖

)𝑛)
𝛿𝑖

≥ Γ𝜀𝑛,𝑚 (𝛽1, . . . , 𝛽𝑚−1) + 𝑛𝛽𝑚−1 − 𝛽𝑚−1

𝑛−1∑︁
𝑖=0

(
𝛽𝑚

𝛽𝑚−1

)𝑖
≥ min

𝑥 ∈R𝑚−1
+

Γ𝜀𝑛,𝑚 (𝑥) + 𝛽𝑚−1

(
𝑛 −

𝑛−1∑︁
𝑖=0

(
𝛽𝑚

𝛽𝑚−1

)𝑖 )
≥ 𝜀 − (𝑛 − 1)𝜌𝑛𝜀,𝑚 + 𝛽𝑚−1

(
𝑛 −

𝑛−1∑︁
𝑖=0

(
𝛽𝑚

𝛽𝑚−1

)𝑖 )
,

where the second equality holds by property (a) in Proposition 5.3, the first inequality holds by

property (b) in Proposition 5.3, and the last inequality again holds by Proposition 5.1. Observe
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that for every (𝛽 𝑗 ) 𝑗 ∈N, the last term of the above inequality can be lower bounded by zero, and

therefore, we get thatV(𝛿) ≥ 𝜀 − (𝑛 − 1)𝜌𝑛𝜀,𝑚 also in this case. This, together with the upper bound

in (13), concludes the proof of the lemma. □

As a second step, we study the recurrence (𝜌𝜀,𝑗 ) 𝑗 ∈N to find the point in which it becomes non-

positive. More specifically, by Theorem 3.1 and Lemma 5.4, our aim is to find the greatest index

𝑚 for which 𝜌𝜀,𝑚 is well defined, or equivalently the unique𝑚 for which (𝑛 − 1)𝜌𝑛𝜀,𝑚 − 𝜀 ≤ 0. To

understand this problem we consider a differential equation that will serve as an upper bound to

our recurrence relation. Recall the definition of 𝜙 (𝜀) =
∫
1

0
1/(𝑦 (1 − log(𝑦)) + 𝜀)d𝑦. Given a value

𝜀 > 0, consider the following ordinary differential equation:

𝑦 ′(𝑡) = 𝑦 (𝑡) (log(𝑦 (𝑡)) − 1) − 𝜀 for every 𝑡 ∈ (0, 𝜙 (𝜀)), (14)

𝑦 (0) = 1. (15)

We define 𝑦 (𝜙 (𝜀)) = lim𝑡↑𝜙 (𝜀) 𝑦 (𝑡) as the continuous extension of 𝑦 in 𝜙 (𝜀).
The following lemma, whose proof appears in the full version, summarizes our results for the

differential equation and 𝜙 (𝜀).
Lemma 5.5. For every 𝜀 > 0, the differential equation (14)-(15) has a unique solution𝑦𝜀 . Furthermore,

the following holds:
(a) For every 𝑡 ∈ [0, 𝜙 (𝜀)) we have 𝑦 ′

𝜀 (𝑡) < 0. In particular, 𝑦𝜀 is decreasing and invertible on
[0, 𝜙 (𝜀)) and 𝑦𝜀 (𝜙 (𝜀)) = 0.

(b) For every integer 𝑛 ≥ 2, and every 𝑗 ∈ N for which 𝜌𝜀,𝑗 is well-defined, we have

𝑛 − 1

𝑛
𝜌𝑛𝜀,𝑗 −

𝜀

𝑛
≤ 𝑦𝜀

(
𝑗

𝑛

)
.

(c) For every 𝛿 ∈ (0, 𝜙 (𝜀)), there exists 𝑛0 such that for every 𝑛 ≥ 𝑛0 we have (𝑛 − 1)𝜌𝑛
𝜀,𝑘

− 𝜀 > 0,
where 𝑘 = ⌊(𝜙 (𝜀) − 𝛿)𝑛⌋.

(d) We have 𝜙 (𝜀) = Θ(log log 1/𝜀).
We are now ready to prove Theorem 2.2.

Proof of Theorem 2.2. Fix 𝜀 > 0 and consider the non-trivial case where 𝑛 ≥ 2. We begin

with the first part of the theorem. By Lemma 5.4 it suffices to find the largest index 𝑗 for which

𝜌𝜀,𝑗 is well defined. Suppose for a contradiction that for some 𝑚 ≥ 𝜙 (𝜀)𝑛, 𝜌𝜀,𝑚 is well defined

but (𝑛 − 1)𝜌𝑛𝜀,𝑚 − 𝜀 > 0. Define 𝜀 ′ > 0 such that 𝑚/𝑛 = 𝜙 (𝜀 ′). Note that such an 𝜀 ′ exists and
𝜀 ′ ≤ 𝜀 because 𝜙 is monotone and continuous. Moreover, a simple inductive argument shows that

𝜌𝜀′, 𝑗 ≥ 𝜌𝜀,𝑗 for all 𝑗 , and that the former is well defined whenever the latter is well defined. Using

this,

𝑛 − 1

𝑛
𝜌𝑛𝜀,𝑚 − 𝜀

𝑛
≤ 𝑛 − 1

𝑛
𝜌𝑛𝜀′,𝑚 − 𝜀 ′

𝑛
≤ 𝑦𝜀′ (𝜙 (𝜀 ′)) = 0,

where the second inequality holds by Lemma 5.5(b) and the final equality holds by Lemma 5.5(a).

This yields a contradiction.

By Lemma 5.5 (d) we have 𝜙 (𝜀) = Θ(log log 1/𝜀). The second part of the theorem holds by Lemma

5.4 and Lemma 5.5(c). This finishes the proof of the theorem. □
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