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A common behavioral assumption in the
study of transportation and telecommunica-
tion networks is that travelers or packets,
respectively, choose routes that they perceive
as being the shortest under the prevailing
traffic conditions [1]. The situation resulting
from these individual decisions is one in
which drivers cannot reduce their journey
times by unilaterally choosing another route,
which prompted Knight [2] to call the result-
ing traffic pattern an equilibrium. Nowadays,
it is indeed known as the Wardrop (or user)
equilibrium [3], and it is effectively thought
of as a steady state evolving after a transient
phase in which travelers successively adjust
their route choices until a situation with
stable route travel costs and route flows has
been reached [4]. In a seminal contribution,
Wardrop [5, p. 345] stated two principles
that formalize this notion of equilibrium and
the alternative postulate of the minimization
of the total travel costs. His first principle
reads:

The journey times on all the routes actually
used are equal, and less than those which
would be experienced by a single vehicle on
any unused route.

Wardrop’s first principle of route choice,
which is identical to the notion postulated by
Kohl [1] and Knight [2], became accepted as
a sound and simple behavioral principle to
describe the spreading of trips over alternate
routes due to congested conditions [6].

Since its introduction in the context of
transportation networks in 1952 and its
mathematical formalization by Beckmann
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et al. [7], transportation planners have been
using Wardrop equilibrium models to predict
commuters decisions in real-life networks
[6,8]. These models have been and are still
used today to evaluate alternative future sce-
narios and decide a route of actions. Typical
examples include allocation of investment
for capacity expansion when building roads
and bridges, optimizing the value of tolls,
and making policy decisions. The work of
Korolis et al. [9] introduced these concepts
in telecommunication research, which have
become popular ever since [10].

THE BASIC MODEL

An instance of the traffic assignment
problem is given by the transportation
offer—represented by the network topology,
road geometry, road capacity, and arc link
travel cost functions—and the transporta-
tion demand—represented by the list of
origin–destination (OD) pairs and their
demand rates.

We consider a directed network G = (N,A),
and a set C ⊆ N × N of commodities rep-
resented by OD pairs. For each k ∈ C, a
flow of demand rate equal to dk must be
routed from the corresponding origin to its
destination. The basic model assumes that
demands are arbitrarily divisible; in fact, the
routing decision of a single individual has
only an infinitesimal impact on other users.
For k ∈ C, let Rk be the set of routes in G
connecting the corresponding origin and des-
tination, and let R := ⋃

k∈C Rk. A link flow
is a nonnegative vector f = (fa)a∈A describing
the traffic rate in each link. Furthermore, a
nonnegative, nondecreasing, and continuous
link travel cost function ta(·), with values in
R≥0 ∪ {∞}, maps the flow fa on arc a to the
time needed to traverse a. A route flow is
a nonnegative vector h = (hr)r∈R that meets
the demand, that is,

∑
r∈Rk

hr = dk for k ∈ C.
Given a route flow, the corresponding link
flow is easily computed as fa = ∑

r�a hr, for
each a ∈ A. For a flow f , the travel cost along
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a route r is cr(f ) := ∑
a∈r ta(fa). Let X be the

set of feasible flows (f , h) and Xf its projec-
tion into the space of arc flows. Note that this
set is a polytope given simply by the flow-
conservation constraints for each commodity
on every node (see Multicommodity Flows
and Ahuja et al. [11]).

Interpreting Wardrop’s first principle as
requiring that all flow travels along shortest
paths, a flow h is called a Wardrop equilib-
rium if and only if for all k ∈ C, we have that

cr(h) = min
q∈Rk

cq(h), (1)

for all r ∈ Rk such that hr > 0. Beckmann
et al. [7] proved that such a flow always
exists by considering the following min-cost
multicommodity flow problem with separable
objective function:

min

{∑
a∈A

∫ fa

0
ta(z) dz : f ∈ Xf

}
. (2)

The previous problem is convex because the
objective is the integral of a nondecreasing
function and, since its domain is a com-
pact set, attains its optimum (for some back-
ground on convex optimization. Actually, it
can be proved that its first-order optimality
conditions are

cr(h) ≤ cq(h), for all k ∈ C and all routes

r, q ∈ Rk such that hr > 0, (3)

which is equivalent to Equation (1).
If cost functions ta are strictly increasing,

f is unique (but there can be different
flow decompositions h). For the case of
nondecreasing costs, the vector of costs
(ta(fa))a∈A is unique under the possibly
nonunique equilibria. Computationally,
Equation (2) implies that an equilibrium
can be computed efficiently using general
convex optimization techniques (see the
section titled ‘‘Computation of Wardrop
Equilibria’’)1. A formulation similar to the
one presented here can be used to perform

1In the case of nonmonotone costs, the solutions
to Equation (2) are also equilibria. In this case,

a sensitivity analysis of Wardrop equilibria,
which can be useful when testing the
robustness of the model [12].

Yet another important characterization of
traffic equilibrium problems, due to Smith
[13], consists of reformulating Equation
(2) as a variational inequality problem,
see also Dafermos [14] and Variational
Inequalities. Accordingly, a flow f is a user
equilibrium if and only if
∑
a∈A

ta(fa)fa ≤
∑
a∈A

ta(fa)xa, for all flows x ∈Xf .

(4)

Note that this inequality is a direct con-
sequence of the fact that in equilibrium,
users travel on shortest paths with respect
to arc costs ta(fa). Another reformulation that
is useful to characterize equilibria in very
general settings is given by nonlinear com-
plementary problems [15] (see Complemen-
tarity Problems).

Charnes and Cooper [16] were the first to
notice that the concepts of Nash and Wardrop
equilibria are related. Haurie and Marcotte
[17] prove that a Nash equilibrium in a net-
work game with a finite number of players
converges to a Wardrop equilibrium when the
number of players increases (for some back-
ground on game theory, see the section titled
‘‘Noncooperative Strategic-Form Games’’ in
this encyclopedia). For this reason, although
the solution concepts are different, a Wardrop
equilibrium can be viewed as an instance of
a Nash equilibrium in a game with a large
number of players. De Palma and Nesterov
[18] look at generalizations and alternative
definitions of the basic model and established
conditions that guarantee the existence of
equilibria. For example, Wardrop equilibria
still exist if cost functions are only required
to be lower semicontinuous. Marcotte and
Patriksson [19] also discuss alternative def-
initions of equilibria in network games and
the relationships between them.

though, uniqueness is not guaranteed even as flow
on arcs because Equation (2) is not necessarily a
convex problem and hence, may admit multiple
local optima.
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To conclude, let us note that in practice
a transportation planner needs to find or
estimate all the elements that comprise the
model. The topology of the network is usually
digitized from maps, if it is not already avail-
able. Link travel cost functions are calibrated
from historical information using tabulated
functions that relate geometry of the road
to capacity [20,21]. One may need to also
add tolls or other generalized costs to the
arcs, which can be converted to the same
units by using the average value of time
for the population. The latter can usually
be estimated from socioeconomic information
coming from census data. Demand can be
measured directly or may come from histori-
cal OD matrices that can be calibrated using
up-to-date traffic counts [8].

MORE GENERAL MODELS

Many extensions of the model presented in
the previous section have been analyzed and
studied since the introduction of the Wardrop
equilibrium model in 1952. We now present
a selection of extensions we believe are par-
ticularly interesting.

An important generalization consists in
allowing link travel cost functions to depend
on the full vector of flows. In that case, the
function that represents congestion can be
encoded by the operator t(f ) : R

A
≥0 → R

A
≥0.

This is of practical relevance because the cost
in one arc usually depends on the load
in other arcs. Typical examples in the
area of transportation modeling include
representing intersections more accurately
when cross streets influence each other, and
two-way streets where traffic going one way
can impact the reverse lanes. Furthermore,
to consider different vehicle types interacting
in the same network, one can create one
copy of the network per vehicle type and
have congestion depend on the full load,
defined as the weighted sum across all
copies. An example in the area of wireless
telecommunications is interference, which
can make delays of nearby cells grow. In
the nonseparable case, it is convenient to
require that the operator t is monotone,
meaning that (t(f ) − t(f ′)) · (f − f ′) ≥ 0, for all

f , f ′ ∈ R
A
≥0, a generalization of monotonicity

in the separable case. We say that costs are
nonseparable, symmetric when for any two
arcs, the influence of traffic in one arc to
the congestion on the other is equal to the
reverse influence (with symbols, ∂ta(f )/∂fb =
∂tb(f )/∂fa, for all a, b ∈ A and all f ∈ R

A
≥0).

In that case, the integral in Equation (2)
can be replaced by

∫ f
0 t(z) dz, which is well

defined, and an equilibrium can still be
computed using convex optimization tech-
niques. An easy example of this case is when
t(f ) = �f + θ , with � a symmetric matrix
of dimension |A|. It is worth noting that
this symmetry condition is equivalent to the
requirement that the game is potential with a
continuum of agents [22] (for an introduction
to potential games, the reader is referred to
Monderer and Shapley [23]). In the general
asymmetric case, the equilibrium cannot
be formulated as a convex optimization
problem (but note that there are exceptions
and in some cases they can be formulated
as nondifferentiable optimization problems
[24]) and one has to resort to abstractions
such as variational inequalities and non-
linear complementarity problems. Indeed,
Equation (4) still holds and can be used to
prove existence and uniqueness results, as
well as a way to compute equilibria.

Another important extension to the basic
model that goes in a different direction is
referred to by elastic demands. A network
model normally represents a spectrum of
options that a user of the system has. In
reality, a user will normally have more
alternatives than those present in a model.
For example, in a car transportation model,
some users may decide to take a subway
when roads are too congested or cancel the
trip when the combination of travel time,
tolls, and gas exceeds the utility of the trip.
This can be captured by a model with a
demand of users that will participate only
when their willingness to pay is higher than
the cost of trips. In this case, the link travel
cost functions in the equilibrium model are
complemented by a demand function δk(·) :
R≥0 → R≥0 per OD pair k ∈ C. This function
specifies that when the cheapest route cost
for OD pair k is πk, its demand equals
δk(πk). Hence, an equilibrium jointly satisfies
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Equation (1) and dk = δk(minq∈Rk cq(h)).
Depending on the separability of the costs,
both the optimization and variational
inequality problems can be extended to solve
models with elastic demand.

Finally, several authors have looked at
other ways to relax some of the basic assump-
tions. We mention a few examples here.
A classical extension to the basic model incor-
porates capacity and other side-constraints
to the equilibrium model [25] as a way of
improving the solution quality and correcting
the link travel cost functions so as to bring the
flow pattern into agreement with the antici-
pated results. This can be handled by adding
the constraints to the formulations and rein-
terpreting their dual variables as queuing
delay caused by congestion. However, this
approach is controversial and several authors
have looked at alternative models that work
better in some situations [26]. Also, Gabriel
and Bernstein [27] studied the case of nonad-
ditive models where the cost of a path can be
given by more general expressions than just
the sum over all arcs in the path. Examples
of this include taking into account the
variability of travel times and risk-aversion
[28], tolls, and valuation of time.

COMPUTATION OF WARDROP EQUILIBRIA

In this section, we discuss some compu-
tational approaches to finding Wardrop
equilibria. Let us start by describing the
Frank–Wolfe method [29], which is a tra-
ditional algorithm that has been used to
compute equilibria. It is an iterative descent
method that works with the formulation
shown in Equation (2) and eventually
converges to the equilibrium. The algorithm
keeps a current solution, and solves a lin-
earized version of Equation (2) at every step
to determine a feasible descent direction.
Referring to the objective of that problem by
T(f ) and to the current solution by f i, the
linearized objective is T(f i) + ∇T(f i) · (f − f i).
The linearization enables the algorithm
to decompose the problem by OD pairs,
allowing it to find a shortest path in Rk
for each commodity k ∈ C independently of
each other. To identify the steepest descent

direction, it computes a shortest path with
respect to the prevailing traffic conditions.
In the subsequent line search, the original
nonlinear problem is solved restricted to the
segment defined by the feasible direction of
descent. The algorithm terminates when a
certain precision is achieved. To determine
when this is the case, the convexity of
the objective function is used to derive a
lower bound on the value of an optimal
solution. Alternatively, one can compute
the gap—defined as the deviation from
the shortest path—in the current solution
and terminate when it is smaller than a
threshold. It is well known that this algo-
rithm always converges to a global minimum
because Equation (2) is a convex program.

The standard Frank–Wolfe algorithm
sometimes shows poor convergence because
it tends to zigzag around the equilibrium
solution [8,30–32]. Because ‘‘. . . the
(Frank–Wolfe) algorithm is considered
sufficiently good for practical use’’ [30, p.
100], most of the commercial implementa-
tions use this procedure. Still, there are
many algorithms that were developed to
address the slow convergence times. Below,
we summarize a few of the main approaches.

LeBlanc et al. [33] introduced an improved
version of the previous algorithm called Par-
tan (parallel tangents), which was further
studied by Florian et al. [34] and Arezki and
Van Vliet [35], among others. This improve-
ment is based on a more intelligent line
search. It determines the descent direction
using the results of two consecutive itera-
tions, thereby diminishing the zigzagging
effect. These two methods belong to a class
called partial linearization algorithms in
which the objective function is simplified to
be able to find a search direction.

The structure of Equation (2) leads to
decomposition algorithms, which separate
the main problem into subproblems. The
Frank–Wolfe algorithm is an example of this
general method since it considers OD pairs
separately after fixing the prevailing flows in
one iteration. But the separation can be done
in other ways, and viewed as a block version
of the Gauss–Seidel and Jacobi algorithms.
For example, a common decomposition
separates flows by node of origin, whereby
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every iteration assigns all destinations for
each origin at the same time. A good example
of this approach is given by Bar-Gera’s algo-
rithm [36], which is one of the most efficient,
in existence, to compute Wardrop equilibria.

The class of column generation algorithms
deal with a path formulation of the model.
Since it is computationally challenging to
keep track of the flow along all routes as
opposed to maintaining a vector of flows per
arc, instead of having one variable per route
initially, a column generation algorithm
adds routes at the time they are needed.
After discovering new routes with the search
direction procedure, an algorithm of this
type forms a restricted master problem that
consists of a path formulation of Equation
(2) using only the routes discovered thus
far (see also Column Generation). These
methods are especially important when costs
along routes are not additive or when there
are constraints based on paths because an
arc formulation is not powerful enough to
represent the problem in that case. The class
of simplicial decomposition algorithms finds
the next iterate using the restricted master
problem. Since all the route information
previously computed is badly utilized by
algorithms that perform line search, this
class can solve problems more efficiently,
albeit doing more work per iteration.

The method of successive averages is a
commonly used heuristic method for comput-
ing Wardrop equilibria. This method starts
by computing the costs on all arcs for an arbi-
trary feasible flow. Iteratively, it computes a
new solution using an auxiliary linear pro-
gram that keeps costs fixed, and updates
the current solution by averaging it with
the new one using a factor that depends
on the iteration. This technique is specially
useful for more complicated models where
exact techniques are not readily available.
Some examples are the dynamic and stochas-
tic traffic assignments, see the section titled
‘‘More Advanced Models’’.

The case of elastic demands can be
incorporated in the previous discussion since
it involves adding another term to the convex
minimization problem. The case of nonsepa-
rable, symmetric cost functions can be han-
dled similarly to what was described earlier

since it admits a convex program formulation.
In contrast, the asymmetric case, requires
the machinery of variational inequalities
or nonlinear complementarity problems.
There exist standard algorithms to solve
these classes of problems and some of the
variants presented earlier for the separable
case can be extended to this setting. Notice
that since the nonseparable case does not
admit a convex programming formulation,
checking convergence must rely on regret
or other related measures.

The search for efficient algorithms to
compute Wardrop equilibria for the various
classes of models is a very active area
of research. Some of the latest efficient
approaches are due to Dial [37], Florian
et al. [38], Gentile [39], and Bar-Gera [40].
To conclude the discussion on computation,
we note that there are some test problems
available in the Transportation Network Test
Problems website [41] that are typically used
to study new algorithms.

There exist many commercial software
packages that implement some of the algo-
rithms described in this section. These and
some additional packages also implement
other variants of traffic assignment problems
such as dynamic models that explicitly
incorporate time [42–44], and simulation
models that consider finer behavioral details
that analytical models cannot handle [45].
A nonexhaustive list of software implemen-
tations is AIMSUN, CUBE, CONTRAM,
DYNAMIT, DYNASMART, EMME/2, PARA-
MICS, TRANSCAD, TRANSIMS, TSIS-COR-
SIM, SATURN, VISUM-VISSIM, VISTA,
and UROAD-UTPS.

EFFICIENCY OF WARDROP EQUILIBRIA

Since an equilibrium model considers that
users unilaterally choose their routes to
minimize their route cost, the solution is not
necessarily efficient. A natural question is
thus to quantify how inefficient a Wardrop
equilibrium may be, where efficiency is
measured as the flow’s total travel time
C( f ) := ∑

r∈R cr (h) hr = ∑
a∈A ta( fa) fa. Follo-

wing Wardrop’s second principle [5] that
states that users minimize the total travel
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time in the system, a system optimum
f ∗ is an optimal solution to the min-cost
multicommodity flow problem:

min
{
C(f ) : f ∈ Xf

}
. (5)

It is not hard to observe that, in general, the
total travel time incurred by an equilibrium
can be arbitrarily larger than that of a social
optimum. Consider, for instance, a two-node
two-link network with unit demand and cost
functions given by t1(f1) = 1 and t2(f2) = f n

2 ,
for some large value of n (Fig. 1). At equilib-
rium, all flow will use the second link, so that
the total travel time will be 1. On the other
hand in the system optimum a small fraction
of the flow will use the first link, so that its
total travel time will be close to 0, making
their ratio grow to infinity. Nevertheless, a
sequence of results initiated by Roughgar-
den and Tardos [46] and further developed in
papers [47–51] states that if we only allow
link travel cost functions belonging to a cer-
tain class, then the total travel time of an
equilibrium is at most a constant times that
of the system optimum.

Let us illustrate this group of results by
considering the case in which for all a ∈ A,
ta(·) is an affine function with nonnegative
coefficients. Consider an equilibrium flow f
and a system optimal flow f ∗, then we have
that

C(f ) ≤
∑
a∈A

ta(fa)f ∗
a =

∑
a∈A

ta
(
f ∗
a
)

f ∗
a

+
∑
a∈A

f ∗
a

(
ta(fa) − ta

(
f ∗
a
)) ≤

∑
a∈A

ta
(
f ∗
a
)

f ∗
a

1 1

t1(f1) = 1

t2(f2) = f n
2

Figure 1. Instance where the Wardrop equilib-
rium is unboundedly worse than the system
optimum.

+
∑

a∈A: fa > f∗
a

f ∗
a

(
ta(fa) − ta

(
f ∗
a
))

≤
∑
a∈A

ta
(
f ∗
a
)

f ∗
a + 1

4

∑
a∈A

ta(fa)fa,

implying that C(f ) ≤ (4/3) · C(f ∗). The first
inequality in the previous derivation holds
because of Equation (4), while the last
inequality follows since for affine functions
the shaded area in Fig. 2 is at most 25% of
the area of the big rectangle. This theorem
is due to Roughgarden and Tardos [46], and
the short proof presented here appeared
in Correa et al. [49]. The result implies
that, in the worst case among all possible
networks, the inefficiency introduced by the
self-minded behavior of an equilibrium is
never worse than 1/3.

The proof above easily extends to other
classes of link travel cost functions by
only changing the 25% with the corre-
sponding quantity for a given class of
functions. Probably the most interesting
aspect of this result is that the efficiency
loss depends on the allowable functions
rather than on the topology of the network.
Furthermore, the idea behind this proof
provides another interesting result first
derived in Roughgarden and Tardos [46].
Indeed, note that if ta(·) are arbitrary non-
decreasing functions, then

∑
a∈A xata(fa) ≤

0

ta(fa)

ta(f*a)

ba

f*a fa

ta(.)

Figure 2. Illustration of the proof of the 4/3 result.
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∑
a∈A max{fata(fa), xata(xa)} ≤ ∑

a∈A fata(fa) +∑
a∈A xata(xa), where the fa’s and xa’s are

any nonnegative numbers. Consider now an
equilibrium flow f of a given instance, and a
system optimal flow x of a similar instance
where demands rates d are doubled. From
Equation (4), and since x/2 ∈ Xf , we have

C(f ) = 2C(f ) − C(f ) ≤ 2
∑
a∈A

ta(fa) · (xa/2)

− C(f ) ≤
∑
a∈A

ta(fa) · xa − C(f ) ≤ C(x).

In other words, for arbitrary nondecreas-
ing link travel cost functions, the cost of a
Wardrop equilibrium is at most the cost of an
optimal solution with the demand doubled.
For a restricted set of cost functions, one can
provide improved results [49]. For example,
under affine costs one can prove that the same
statement holds with 25% more demand.

As general equilibria typically do not
minimize the social cost, Koutsoupias and
Papadimitriou [52] proposed to analyze the
inefficiency of equilibria from a worst-case
perspective; this led to the notion of ‘‘price
of anarchy’’ [53], which is the ratio of the
worst social cost of a Nash equilibrium to the
cost of an optimal solution. In the context
of our traffic model this quantity has been
analyzed in a series of papers for increasingly
more general classes of cost functions and
other model features. The result previously
described implies that this worst-case ratio
is 4/3. This was extended to more general
link travel cost functions by Roughgarden
[47] and by Correa et al. [48], who basically
proved that the efficiency loss in this setting
is independent of the topology of the network.
Chau and Sim [50] considered the case of
nonseparable, symmetric cost functions
with elastic demands. They proved that the
efficiency loss can be bounded in a similar
way as what is described here. Perakis
[51] considered general nonseparable cost
functions and proved upper bounds using
variational inequalities as well. Her bounds
depend on two parameters that measure
the asymmetry and the nonlinearity of the
cost functions considered. Farzad et al. [54]
provide results of a similar flavor in a closely
related model. In their setting the flow

(players) have a priority and thus, in any
given link a flow particle only experiences
a travel time ta(xa), where xa is the amount
of flow using link a, having higher priority.
Interestingly in this context a system
optimum is given by Equation (2).

MORE ADVANCED MODELS

This section discusses some extensions of the
basic Wardrop equilibrium model that con-
sider variations on the structure of offer and
demand in the network.

In most urban transportation networks,
commuters do not have to pay the cost they
impose to others by a particular route choice,
leading to the bad utilization of the avail-
able capacity alluded to in the section titled
‘‘Efficiency of Wardrop Equilibria’’. Since con-
gestion increases sharply with road utiliza-
tion, having relatively few drivers switch
to other routes may significantly improve
commute times. Starting with the seminal
idea of Vickrey [55,56], many transportation
economists have advocated the use of conges-
tion pricing to achieve this goal. The scheme
forces drivers to pay a toll when entering
congested areas. The underlying idea is to
charge drivers the externality they impose
to others because when commuters inter-
nalize these externalities, the corresponding
choices maximize the system welfare. Singa-
pore introduced congestion pricing in 1975,
London in 2003 [57,58], and Stockholm in
2007. Increasingly, many large cities have
been debating whether a congestion pricing
scheme should be adopted. Nevertheless, it
has been very hard to implement congestion
pricing because of technical, economical, and
political problems. There is a large body of
research on finding the set of tolls for a given
network that optimizes a given objective (e.g.,
social welfare, revenue, number of tollbooths)
under constraints (such as a budget balance,
maximum number of tollbooths, or restric-
tions on their location). For more details, see
the books [59,60].

Stochastic user equilibrium models date
back to the 1970s, when Dial [61] proposed a
model where the demand on each OD is dis-
tributed among routes (with random lengths)
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according to a logit distribution, in the case of
uncongested traffic networks. To reduce route
enumeration he considered that flow is dis-
tributed only among ‘‘efficient routes.’’ This
model has been widely studied and extended
[62,63]. Furthermore, Daganzo and Sheffi
[64] looked at the case of dependent route
costs, while Fisk [65] studied the model in
the context of congested networks, obtaining
an equivalent optimization problem. Meth-
ods avoiding route enumeration have been
proposed by Bell [66], Larsson et al. [67],
and Maher [68], also leading to equivalent
optimization problems in the spirit of Fisk’s.
Based on the work of Akamatsu [69], Baillon
and Cominetti [70] proposed a more general
concept called Markovian traffic equilibrium,
provided an equivalent optimization prob-
lem, and established the convergence of the
method of successive averages in that con-
text. There are complementary models that
consider that travel times themselves are
stochastic instead of considering that the per-
ception is stochastic. Some examples are the
papers [28,71–75].

Another important extension is modeling
public transportation systems. The time com-
muters need to wait until a bus arrives
to the stop adds a difficulty that was not
present in models of privately owned vehi-
cles. Indeed, in order to balance waiting and
travel time, users’ strategies may involve
selecting a subset of bus lines and boarding
the first available one. This idea was pio-
neered by Chiriqui and Robillard [76], who
considered a network with a single OD pair
and n bus lines serving it, each characterized
by a travel time and a frequency. They pro-
vided a simple efficient algorithm to solve the
problem. Spiess and Florian [77] generalized
that model to arbitrary networks introducing
the notion of general users’ strategies. This
was further put in graph theoretic terms
by Nguyen and Pallotino [78], who called
these strategies hyperpaths and incorporated
travel times dependent on congestion. How-
ever, besides increasing travel times, conges-
tion also increases waiting times because a
user may not be able to board a selected bus.
This is challenging and Wu et al. [79] and
Bouzaı̈ene-Ayari et al. [80] attempted to deal
with this problem. Cominetti and Correa [81]

considered the frequency of a bus line as a
function of the flow in the network and called
this function ‘effective frequency.’ They proved
that an equilibrium in this context exists via
an equivalent optimization problem. Cepeda
et al. [82] obtained a new characterization of
equilibria in the congested setting. This led to
an effective algorithm that is currently part
of EMME/2.

In some situations, such as logistics
networks, it is natural to consider that some
players control nonnegligible amounts of
flow that can be split among several routes,
as modeled by an atomic network game [83].
In this context, the equilibrium becomes
significantly more difficult to characterize
and compute because, even for the basic
assumptions, the game is generally not
potential. Although the existence of equi-
libria is still guaranteed [84], an instance
may possess multiple equilibria [85], and no
equivalent convex optimization problem is
known even for general separable instances.
Furthermore, surprisingly an equilibrium of
this game can be less efficient than that of
the corresponding nonatomic instance (as in
the section titled ‘‘The Basic Model’’), even in
simple networks with two OD pairs [86,87].
Cominetti et al. [87] generalized the results
of the section titled ‘‘Efficiency of Wardrop
Equilibria’’ to this setting, getting a bound
of 3/2 when cost functions are afine. It is an
open question whether this bound is tight.
Swamy [88] proved that tolls that induce
an optimal routing of the game with finite
players always exist.

Generalizing a classic paper by Rosenthal
[89], Milchtaich [90] considered a generaliza-
tion of the basic model referred to by con-
gestion games. In this model the network is
abstracted away and each user selects a strat-
egy that consists of a subset of arcs (instead
of a route), selected among a set of feasible
strategies defined in advance. The defining
characteristic of these models is that a link
travel cost function for one arc just depends
on its demand. Milchtaich himself and oth-
ers have looked at existence, uniqueness,
and computation of equilibria in congestion
games with and without atoms, and with
homogeneous and heterogeneous cost func-
tions. Actually, some of the results presented
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in the section titled ‘‘Efficiency of Wardrop
Equilibria’’ were originally presented for this
kind of model.

Finally, another important area of
research involves extending the basic model
along the time dimension. Starting with the
seminal work of Merchant and Nemhauser
[42], many articles have been published
about dynamic user equilibria. These models
consider time-varying conditions on both
the offer and demand side of the network.
In contrast to the static model discussed
here, there is less agreement on the basic
characteristics of the model, and on the
conditions that such a model should verify,
which highlights the difficulty of the prob-
lem. Nevertheless, transportation planners
commonly make use of tools that rely on
analytic or simulation models of this kind.
We refer the readers to Ran and Boyce [91],
Peeta and Ziliaskopoulos [44], and the report
by the Transportation Research Board [92]
for more details about dynamic models.

Another relevant issue related to equilib-
ria in general, and to Wardrop equilibria,
in particular, is whether players ‘‘learn’’ the
equilibria of the game and if so, how fast
they do it. There is a rich literature mainly
concerned with the dynamics that govern the
behavior of players. The book by Sandholm
[93] contains an in-depth treatment of the
subject. In particular, he describes some
learning dynamics under which players of
a congestion game, such as those described
in this article, converge to an equilibrium.
Related to learning and equilibria, there
has been limited empirical work to validate
whether test subjects behave as the theory of
Wardrop equilibria predicts they do [94–98].

FURTHER READING

For an extensive discussion on modeling and
algorithmic techniques, we refer the reader
to Magnanti [99], Sheffi [8], Nagurney [100],
Patriksson [30], Florian and Hearn [31],
and Marcotte and Patriksson [19]. Altman
et al. [10] surveys the use of this framework
in modeling telecommunication networks.
Nisan et al. [101] and the references therein
provide details on the efficiency of equilibria
in network games.
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