
Branch-and-cut for a real-life highly constrained
soccer tournament scheduling problem

Guillermo Durán1, Thiago F. Noronha2, Celso C. Ribeiro3, Sebastián Souyris1,
and Andrés Weintraub1

1 Department of Industrial Engineering, University of Chile, Republica 701,
Santiago, Chile.

2 Department of Computer Science, Catholic University of Rio de Janeiro,
Rua Marquês de São Vicente 225, Rio de Janeiro, RJ 22453-900, Brazil.
3 Department of Computer Science, Universidade Federal Fluminense,

Rua Passo da Pátria 156, Niterói, RJ 24210-240, Brazil.
gduran@dii.uchile.cl, {tfn,celso}@inf.puc-rio.br, {ssouyris,

aweintra}@dii.uchile.cl

1 Introduction

There are 20 teams in the Chilean soccer first division. They take part in two
yearly tournaments: opening and closing. If a team X plays against a team
Y at home in the opening tournament, then it must play away against Y in
the closing tournament. Each tournament is organized in two phases: qualifying
and playoffs. The qualifying phase follows the structure of a single round robin
tournament. The teams are evenly distributed over four groups with five teams
each. The groups are formed according to the performance of each team in the
last tournament. The first four teams are distributed on the four groups. The
teams from 5th to 8th place are randomly distributed in different groups. The
same happens with the teams from 9th to 12th place. This procedure is repeated
until all teams are assigned to a group. At the end of the qualifying phase, the
teams that end up in the two first positions of each group qualify for the playoffs.

The National Association of Professional Football (ANFP) is in charge of
soccer in Chile. One of its major tasks is that of scheduling the games of the
opening and closing tournaments. Good schedules are of major importance for
the success of the tournaments, making them more balanced, profitable, and
attractive. All schedules were randomly prepared until 2004. Weintraub et al [1]
addressed the main drawbacks of such schedules and tackled the problem by
integer programming [7]. Their model is applied since 2005 opening tournament.
However, the computation times are very high and the solutions produced by
the model still lacked quality.

In this work, we improve the original integer programming formulation. Valid
inequalities are derived and appended to the model. A new branch-and-cut strat-
egy is used to speedup convergence. The main constraints and the objective
function are described in Section 2. The solution approach and the branching
strategy are summarized in Section 3. Preliminary results on a real-life instance
are reported in the last section.



2 Problem statement

We first give some definitions. A HAP (which stands for a home-away pattern)
defines a sequence of home and away games for a given team. Popular teams are
those with more fans. Traditional teams are the oldest teams. Strong teams are
those better qualified in the last tournaments. Tourist teams are those with their
home cities at tourist cities such as Viña del Mar, Valparaiso, or La Serena. A
classic is a game between two traditional teams. The constraints of the problem
are the following:

– Each team plays against every other team exactly once.
– Every team plays exactly once in each round.
– Each team plays at least nine games at home and nine games away.
– A team may never have two consecutive breaks [6].
– A team may play at most three games at home in any five consecutive rounds.
– Some teams have complementary HAPs (whenever one of them plays at

home the other plays away, and vice-versa).
– There may be at most four games at the city of Santiago in any round.
– There may be no breaks in some pre-defined rounds (rounds 1, 16, and 18).
– Pairs of excluding teams: if a team plays against one of them at home, then

it should play away against the other (and vice-versa).
– Classics should not be played before round 7 or after round 16.
– A team should have at least one game between two consecutive games with

popular teams.
– A team may not have two consecutive games against strong teams.
– Each traditional team plays exactly one classic at home.
– Tourist teams should play at least once against a traditional team during

the summer rounds.
– Traditional teams cannot play twice in the same week in the same tourist

region.
– Chile has a very particular geography, being a very long and narrow country:

a team from the Central region cannot play in the same week against a team
from the South and another from the North.

Since only the teams in the two first positions of each group qualify for the
playoffs, games between teams in the same group are more attractive. Therefore,
these games should as much as possible take place at the end of the tournament.
The objective function consists in maximizing the number of games between
teams in the same group in the last rounds of the tournament. It is computed
as the sum of the indices of the rounds where the games between teams of the
same group take place.

3 Solution approach and branching strategy

The problem is formulated by integer programming and solved by a branch-and-
cut algorithm. Two variables were used in the original model [1]: xijk = 1 if



team i plays at home against team j in round k, xijk = 0 otherwise; yik = 1
if team i has a break at round k + 1 (i.e., team i plays two consecutive home
games or two consecutive away games in rounds k and k +1), yik = 0 otherwise.

The new formulation follows the same strategy proposed by Trick [4] and is
based on the introduction of a new binary variable: zik = 1 if team i plays at
home in round k, zik = 0 otherwise. All HAP constraints are rewritten in terms
of this new variable. This formulation is more easily solvable. Furthermore, the
new variable plays a major role in the branching strategy.

Each round is a perfect matching in the complete graph whose nodes are the
participating teams [3, 5]. Cuts associated with violated matching constraints
in the linear relaxation are progressively added to the enumeration tree. As
the number of violated matching constraints may be very large, only the most
violated ones are added.

The branching strategy plays a major role in the success of a branch-and-cut
algorithm. Branching on the xijk variables is not efficient, since most of them are
null in integral solutions. Our branching strategy is based on the zik variables.
Branching on the xijk variables starts only after all the zik variables are integral.
This strategy implicitly decomposes the solution in two phases. In the first phase
the HAPs for each team are computed, while in the second the dates of the games
are established. Once the variables zik are fixed, the branch-and-cut algorithm
needs just a few branches on variables xijk to find a feasible solution.

4 Preliminary results

Two algorithms based on the previous formulation have been proposed and eval-
uated: the B&C-ANFP branch-and-cut algorithm and the B&B-ANFP branch-and-
bound algorithm without cuts. Both of them were implemented using the library
Concert Technology 1.2 and the solver CPLEX 8.0 [2]. The computational exper-
iments were performed on a 3 GHz Pentium IV machine with 1 Gbyte of RAM
memory. We illustrate the results obtained for the 2005 edition of the opening
tournament, comparing them with those reported in [1].

Computation times for solving the linear programming relaxation by different
algorithms available with the CPLEX 8.0 package are given in Table 1. The
problem is very degenerated and requires the use of perturbations, leading to
large computation times. The interior point algorithm was the best solution
strategy. We also can see in Table 1 that the new formulation considerably
reduced the computation time of the interior points algorithm, making possible
an efficient implementation of the cutting plane algorithm.

Results obtained with algorithms B&B-ANFP and B&C-ANFP are given in Ta-
ble 2. For each algorithm, we report the value of the objective function, the
number of nodes in the enumeration tree, and the integrality gap after some
elapsed times. In the beginning, algorithm B&B-ANFP finds good solutions faster
than B&C-ANFP. However, the former was not able to find the optimal solution
within a 4-hour time limit. On the contrary, the cuts used by algorithm B&C-ANFP
were able to improve the linear relaxation bound, which was already equal to



Table 1. Computation times for solving the linear relaxation.

Strategy time (s)

Primal simplex 27
Dual simplex 21
Interior points (original formulation) 12
Interior points (variables zik) 4

the optimal value at the root of the enumeration tree. The number of nodes is
much smaller for algorithm B&C-ANFP, that found the exact optimal solution in
less than two hours of computation time.

Table 2. Comparison between algorithms B&B-ANFP and B&C-ANFP.

Elapsed B&B-ANFP B&C-ANFP

time objective nodes gap (%) objective nodes gap (%)

10 minutes 617 140 3.6 474 120 25.9
30 minutes 622 600 2.9 615 330 3.9

1 hour 631 1120 1.4 633 570 1.1
2 hours 633 2190 1.1 640 1560 0.0
4 hours 639 4860 0.2 — — —

In Table 3, we compare the results obtained by algorithm B&C-ANFP with
those obtained by the strategy proposed in [1]. We give the value of the objective
function and the relative integrality gap after 30 minutes and after two hours
of computation time (on a 2.4 GHz Pentium IV computer for [1]) for both
algorithms. Algorithm B&C-ANFP not only found a better solution (615) very
quickly (30 minutes), but also found a much better – and optimal – solution
value (640) after the same time that the approach in [1] took to find a solution
value 10.0% away from the optimal.

Table 3. Comparison between algorithms B&C-ANFP and Weintraub et al [1].

Algorithm time objective gap (%)

B&C-ANFP 30 minutes 615 3.9
2 hours 640 0.0

Weintraub et al [1] 2 hours 576 10.0



References

1. G. Durán, M. Guajardo, J. Miranda, D. Sauré, S. Souyris, A. Weintraub, A. Car-
mash, and F. Chaigneau. Programación matemática aplicada al fixture de la primera
divisón del fútbol chileno. Revista Ingenieŕıa de Sistemas, 5:29–46, 2005.

2. ILOG. ILOG CPLEX 8.0 User Manual, 2002.
3. M.W. Padberg and M.R. Rao. Odd minimum cut-sets and b-matchings. Mathe-

matics of Operation Research, 7:67–80, 1982.
4. M.A. Trick. A schedule-and-break approach to sports scheduling. Lecture Notes in

Computer Science, 2079:242–253, 2001.
5. M.A. Trick. Integer and constraint programming approaches for round robin tour-

nament scheduling. Lecture Notes in Computer Science, 2740:63–77, 2003.
6. S. Urrutia and C.C. Ribeiro. Maximizing breaks and bounding solutions to the

mirrored traveling tournament problem. Discrete Applied Mathematics, to appear.
7. L.A. Wolsey. Integer programming. Wiley, 1998.


