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Abstract. Many classes of graphs where the vertex coloring problem is polynomially solvable
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1. Introduction. A coloring of a graph G = (V,E) is a function f : V → N

such that f(v) 6= f(w) whenever vw ∈ E. A k-coloring is a coloring f such that
f(v) ≤ k for every v ∈ V . The vertex coloring problem takes as input a graph G and
a natural number k, and consists in deciding whether G is k-colorable or not. This
well-known problem is a basic model for frequency assignment and resource allocation
problems.

In order to take into account particular constraints arising in practical settings,
more elaborate models of vertex coloring have been defined in the literature. One of
such generalized models is the list-coloring problem, which considers a prespecified set
of available colors for each vertex. Given a graph G and a finite list L(v) ⊆ N for each
vertex v ∈ V , the list-coloring problem asks for a list-coloring of G, i.e., a coloring f

such that f(v) ∈ L(v) for every v ∈ V .

Many classes of graphs where the vertex coloring problem is polynomially solv-
able are known, the most prominent being the class of perfect graphs [12]. Meanwhile,
the list-coloring problem is NP-complete for general perfect graphs, and is also NP-
complete for many subclasses of perfect graphs, including split graphs [19], interval
graphs [3, 22], and bipartite graphs [19]. However, using dynamic programming tech-
niques this problem can be solved in polynomial time for a well known subclass of
bipartite graphs: trees [19]. Another class of graphs where list-coloring can be polyno-
mially solved is the class of complete graphs: we can reduce this problem to maximum
matching on bipartite graphs, a known polynomial problem.

We are interested in the complexity boundary between vertex coloring and list-
coloring. Our goal is to analyze the computational complexity of coloring problems
lying “between” (from a computational complexity viewpoint) these two problems.
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We consider some particular cases of the list-coloring problem. The precoloring

extension (PrExt) problem takes as input a graph G = (V,E), a subset W ⊆ V ,
a coloring f ′ of W , and a natural number k, and consists in deciding whether G

admits a k-coloring f such that f(v) = f ′(v) for every v ∈ W or not [3]. In other
words, a prespecified vertex subset is colored beforehand, and our task is to extend
this partial coloring to a valid k-coloring of the whole graph. This is a typical case of
a completion problem. Many efficiently-solvable combinatorial problems have a more
difficult general solution by the imposition of a partial one (we refer to [9] for a review
about some completion problems).

Given a graph G and a function µ : V → N, G is µ-colorable if there exists a
coloring f of G such that f(v) ≤ µ(v) for every v ∈ V [4]. This model arises in
the context of classroom allocation to courses, where each course must be assigned a
classroom which is large enough so it fits the students taking the course. We define
here a new variation of this problem. Given a graph G and functions γ, µ : V → N

such that γ(v) ≤ µ(v) for every v ∈ V , we say that G is (γ, µ)-colorable if there exists
a coloring f of G such that γ(v) ≤ f(v) ≤ µ(v) for every v ∈ V .

The classical vertex coloring problem is clearly a special case of µ-coloring and
precoloring extension, which in turn are special cases of (γ, µ)-coloring. Furthermore,
(γ, µ)-coloring is a particular case of list-coloring. These observations imply that all
the problems in this hierarchy are polynomially solvable in those graph classes where
list-coloring is polynomial and, on the other hand, all the problems are NP-complete in
those graph classes where vertex coloring is NP-complete. Furthermore, list-coloring
can be polynomially reduced to precoloring extension in a straightforward way. To
this end, attach precolored vertices of degree 1 to each vertex in order to reduce the
available colors from which it can be colored, creating the desired lists. But note that
this reduction, unlike the previous ones, does not preserve the graph. In particular,
many graph classes are not closed under this kind of operations. List-coloring can be
polynomially reduced to µ-coloring in a similar way, but again this reduction does not
preserve the graph structure.

In this work, we are interested in the computational complexity of these problems
over graph classes where vertex coloring is polynomially solvable and the complex-
ity of list-coloring is either NP-complete or unknown. In §2, we show some known
complexity results about these coloring problems. In §3, we prove new complexity re-
sults about precoloring extension, µ-coloring, (γ, µ)-coloring, and list-coloring in some
subclasses of perfect graphs and line graphs of complete graphs. In §4, some general
theorems are stated. Finally, §5 presents a table reviewing the complexity situation
of these problems in the classes of graphs we analyzed.

An extended abstract of a preliminary version of this work appears in [5].

2. Known results. Most of the graph classes considered in this paper are sub-
classes of perfect graphs. A graph G is perfect when the chromatic number is equal
to the cardinality of a maximum complete subgraph for every induced subgraph of G.

A graph is an interval graph if it is the intersection graph of a set of intervals
over the real line. A unit interval graph is the intersection graph of a set of intervals
of length one. Since interval graphs are perfect, vertex coloring over interval and unit
interval graphs is polynomially solvable. On the other hand, precoloring extension
over unit interval graphs is NP-complete [22], implying that (γ, µ)-coloring and list-
coloring are NP-complete over this class and over interval graphs.

A graph is a block graph if it is connected and every block (maximal 2-connected
component) is a complete. The vertex coloring problem on block graphs is trivial. A
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necessary and sufficient condition for list-colorability of block graphs is proved in [14],
but this condition does not seem to lead to a straightforward polynomial algorithm
for list-colorability on block graphs.

A split graph is a graph whose vertex set can be partitioned into a complete graph
K and an independent set I. A split graph is said to be complete if its edge set includes
all possible edges between K and I. It is trivial to color a split graph in polynomial
time, and it is a known result that precoloring extension is also solvable in polynomial
time on split graphs [17], whereas list-coloring is known to be NP-complete even over
complete split graphs [19].

A bipartite graph is a graph whose vertex set can be partitioned into two indepen-
dent sets V1 and V2. A bipartite graph is said to be complete if its edge set includes all
possible edges between V1 and V2. Again, the vertex coloring problem over bipartite
graphs is trivial, whereas precoloring extension [16] and µ-coloring [4] are known to
be NP-complete over bipartite graphs, implying that (γ, µ)-coloring and list-coloring
over this class are also NP-complete, and that the four problems are NP-complete
on comparability graphs, a widely studied subclass of perfect graphs which include
bipartite graphs. Moreover, list-coloring is NP-complete even over complete bipartite
graphs [19].

For complements of bipartite graphs, precoloring extension can be solved in poly-
nomial time [17], but list-coloring is NP-complete [18]. The same holds for cographs,
i.e., graphs with no induced P4 (or P4-free) [17, 19]. For this class of graphs, µ-
coloring is polynomial [4]. Cographs are a subclass of distance-hereditary graphs,
another known subclass of perfect graphs. A graph is distance-hereditary if any two
vertices are equidistant in every connected induced subgraph containing them.

Two known subclasses of cographs are trivially perfect and threshold graphs. A
graph is trivially perfect if it is {C4, P4}-free. A graph G is threshold if G and G are
trivially perfect. This last class includes complete split graphs.

The line graph of a graph is the intersection graph of its edges. The edge coloring
problem (equivalent to coloring the line graph) is NP-complete in general [15] but
can be solved in polynomial-time for complete graphs and bipartite graphs [20]. It
is known that precoloring extension is NP-complete on line graphs of complete bi-
partite graphs Kn,n [7], and list-coloring is NP-complete on line graphs of complete
graphs [21].

A good survey on variations of the coloring problem appears in [23]. Graph classes
and graph theory properties not defined here can be found in [6, 11].

3. New results. In this section we introduce new results on the computational
complexity of the previously mentioned coloring problems over the graph classes de-
scribed in §2 and related classes. We first analyze different subclasses of perfect graphs
and in subsection 3.2 we study a non-perfect class: line graphs of complete graphs.

3.1. Subclasses of perfect graphs.

3.1.1. Interval graphs. In order to prove that the µ-coloring problem over in-
terval graphs is NP-complete we will show a reduction from the coloring problem over
circular-arc graphs, which is NP-complete [10].

Theorem 3.1. The µ-coloring problem over interval graphs is NP-complete.

Proof. An instance of the coloring problem over circular-arc graphs is given by a
circular-arc graph G and an integer k ≥ 1, and consists in deciding whether G can be
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k-colored or not. Let G be a circular-arc graph and k be an integer greater than zero.
Let A = {(a1, b1), . . . , (an, bn)} be a circular-arc representation of G (i.e., a collection
of arcs over the unit circle [0, 2π) such that G is the intersection graph of A). For
i = 1, . . . , n, we call vi the vertex of G corresponding to the arc (ai, bi).

Let A0 be the set of arcs from A containing the point 0. We can suppose
w.l.o.g. A0 = {(a1, b1), . . . , (at, bt)}. We can also suppose t ≤ k, otherwise G is
clearly not k-colorable. Define

I = (A\A0) ∪ {(ai, 2π) : i = 1, . . . , t}

∪ {(0, bi) : i = 1, . . . , t}

to be a family of arcs over the unit circle. Since a < b for every arc (a, b) ∈ I, we can
see I as a family of intervals on the real line. Let H be the interval graph induced
by I. For i = 1, . . . , t, we call wi and w′

i the vertices of H corresponding to the
intervals (ai, 2π) and (0, bi), respectively. For i = t + 1, . . . , n, we call wi the vertex
corresponding to the interval (ai, bi). Moreover, let µ : V (H) → N be defined by

µ(wi) =

{

i if i = 1, . . . , t

k otherwise
for i = 1, . . . , n

µ(w′
i) = i for i = 1, . . . , t

This construction is clearly polynomial. We claim that G is k-colorable if and only if
H is µ-colorable.

Assume first that G is k-colorable and let c : V (G) → N be a coloring of G

using at most k colors. The vertices v1, . . . , vt corresponding to arcs of A0 form a
complete graph, hence we can reorder the colors of c in such a way that c(vi) = i, for
i = 1, . . . , t. Now, the function d : V (H) → N defined by

d(wi) = c(vi) for i = 1, . . . , n

d(w′
i) = c(vi) for i = 1, . . . , t

is a µ-coloring of H and, therefore, H is µ-colorable.
On the other hand, assume that H is µ-colorable and let d : V (H) → N be a µ-

coloring of H. Since the vertices w1, . . . , wt form a complete subgraph and µ(wi) = i

for i = 1, . . . , t, then we have d(wi) = i for i = 1, . . . , t. A similar analysis shows
d(w′

i) = i for i = 1, . . . , t.
Consider now the function c : V (G) → N defined by c(vi) = d(wi) for i = 1, . . . , n.

Since t ≤ k and d(wi) ≤ µ(wi) for i = 1, . . . , n, it holds that c(vi) ≤ k for i = 1, . . . , n.
We claim that c is a valid k-coloring of G. To this end, let vivj ∈ E(G) be an edge of
G. The following case analysis shows that c(vi) 6= c(vj):

− If i, j > t or i, j ≤ t, then c(vi) = d(wi) 6= d(wj) = c(vj).
− If i ≤ t and j > t, then either the interval (aj , bj) intersects the interval

(ai, 2π) (in which case c(vi) = d(wi) 6= d(wj) = c(vj)), or the interval (aj , bj)
intersects the interval (0, bi) (in which case c(vi) = d(wi) = i = d(w′

i) 6=
d(wj) = c(vj)). In both cases we get c(vi) 6= c(vj).

− If i > t and j ≤ t, a similar argument shows c(vi) 6= c(vj).
Hence, the graph G is k-colorable.

With this result and the NP-completeness of precoloring extension on interval
graphs, it follows that the four problems considered are NP-complete also for chordal
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graphs, one of the most studied subclasses of perfect graphs, which is a superclass of
interval graphs.

3.1.2. Complete bipartite graphs. The next theorem uses combinatorial ar-
guments to prove that (γ, µ)-coloring problem is polynomial in complete bipartite
graphs. If G = (V,E) is a graph and γ, µ : V → N, we define γmin = min{γ(v) : v ∈ V }
and µmax = max{µ(v) : v ∈ V }.

Theorem 3.2. The (γ, µ)-coloring problem in complete bipartite graphs can be

solved in polynomial time.

Proof. Let G = (V,E) be a complete bipartite graph, with bipartition V1∪V2, and
let γ, µ : V → N such that γ(v) ≤ µ(v) for every v ∈ V . Let K0 = {γmin, . . . , µmax},
and consider the following procedure:

set K := K0; {available colors}

set F := ∅; {uniquely colorable vertices}

while there exists some non-colored vertex v ∈ V such that
K ∩ {γ(v), . . . , µ(v)} is a singleton, say {i}:

Let j ∈ {1, 2} such that v ∈ Vj ;

Assign color i to all the vertices w in Vj such that
γ(w) ≤ i ≤ µ(w) (note that this includes the vertex v);

set K := K\{i};

set F := F ∪ {v};

end;

Upon termination of this procedure, we are left with a set C ⊆ V of colored
vertices. Moreover, every vertex of F ⊆ C is assigned the only possible color in
any valid (γ, µ)-coloring of G. We now show that G is (γ, µ)-colorable if and only if
K ∩ {γ(v), . . . , µ(v)} 6= ∅ for every v ∈ V \C. Assume there exists some v ∈ V \C
such that K ∩ {γ(v), . . . , µ(v)} = ∅, and suppose w.l.o.g. v ∈ V1. For every j =
γ(v), . . . , µ(v), there exists some w ∈ V2 ∩ F such that the procedure has assigned
the color j to w, and this is the only possible color for w in any (γ, µ)-coloring.
Hence v cannot be assigned any color in {γ(v), . . . , µ(v)} and, therefore, G is not
(γ, µ)-colorable.

On the other hand, suppose K ∩ {γ(v), . . . , µ(v)} contains at least two colors for
every v ∈ V \C. Let K = {i1, . . . , ik} with it < it+1 for t = 1, . . . , k − 1. Since each
vertex in V1\C (resp. V2\C) admits at least two consecutive colors in K, then we can
color V1\C with colors in {ij in K : j is odd} and we can color V2\C with colors in
{ij in K : j is even}, thus obtaining a valid (γ, µ)-coloring of G. This procedure is
clearly polynomial in the number of vertices of G.

This result implies that µ-coloring over complete bipartite graphs can be solved
in polynomial time.
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3.1.3. Split graphs. We first prove that for general split graphs the µ-coloring
problem is NP-complete. We use a reduction from the dominating set problem on
split graphs, which is NP-complete [2, 8].

Theorem 3.3. The µ-coloring problem over split graphs is NP-complete.

Proof. An instance of the dominating set problem on split graphs is given by a
split graph G and an integer k ≥ 1, and consists in deciding if there exists a subset
D of V (G), with |D| ≤ k, and such that every vertex of V (G) either belongs to D or
has a neighbor in D. Such a set is called a dominating set.

Let G be a split graph and k be an integer greater than zero. We will construct
a split graph G′ and a function µ : V (G′) → N such that G′ is µ-colorable if and
only if G admits a dominating set of cardinality at most k. Let K and I such that
V (G) = K ∪ I, K is a complete and I is an independent set in G. We may assume
w.l.o.g. that G does not have isolated vertices and k ≤ |K|. The graph G′ is defined
as follows: V (G′) = K ∪ I; K is a complete and I is an independent set in G′; for
every pair of vertices v ∈ K and w ∈ I, vw ∈ E(G′) if and only if vw 6∈ E(G). Define
µ(v) = |K| for every v ∈ K, and µ(w) = k for every w ∈ I.

Suppose first that G admits a dominating set D with |D| ≤ k. Since G has no
isolated vertices, G admits such a set D ⊆ K. Let us define a µ-coloring of G′ as
follows: color the vertices of D using different colors from 1 to |D|; color the remaining
vertices of K using different colors from |D|+1 to |K|; for each vertex w in I, choose
w′ in D such that ww′ ∈ E(G) and color w with the color used by w′.

Suppose now that G′ is µ-colorable, and let c : V (G′) → N be a µ-coloring of
G′. Since µ(v) = |K| for every v ∈ K and K is complete in G′, it follows that
c(K) = {1, . . . , |K|}. Since k ≤ |K|, for each vertex w ∈ I there is a vertex w′ ∈ K

such that c(w) = c(w′) ≤ k. Then ww′ 6∈ E(G′), so ww′ ∈ E(G). Thus the set
{v ∈ K : c(v) ≤ k} is a dominating set of G of size k.

This result implies that (γ, µ)-coloring over split graphs is NP-complete too. At
this moment, split graphs is the only class where we know that the computational
complexity of µ-coloring and precoloring extension is different, unless P = NP. Now,
integer programming techniques are employed to prove the polynomiality of the (γ, µ)-
coloring problem for complete split graphs.

Theorem 3.4. The (γ, µ)-coloring problem in complete split graphs can be solved

in polynomial time.

Proof. Let G = (V,E) be a complete split graph with partition V = K ∪ I,
where K is a complete graph and I is an independent set. For 0 < j ≤ i ≤ µmax,
let Li,j = |{v ∈ K : j ≤ γ(v) and µ(v) ≤ i}|. We reduce the problem of finding a
(γ, µ)-coloring of G to a linear programming feasibility problem. For j = 1, . . . , µmax,
we define the integer variable xj to be the number of colors from the set {1, . . . , j}
assigned to vertices of K and, based on this definition, we consider the following linear
program:
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x0 = 0 (1)

xj+1 − xj ≥ 0 ∀ j ∈ {0, . . . , µmax − 1} (2)

xj+1 − xj ≤ 1 ∀ j ∈ {0, . . . , µmax − 1} (3)

xi − xj−1 ≥ Li,j ∀ i, j : 0 < j ≤ i ≤ µmax (4)

xµ(v) − xγ(v)−1 ≤ µ(v) − γ(v) ∀ v ∈ I (5)

We may assume that every color between 1 and µmax belongs to the interval
[γ(v), µ(v)], for some v ∈ V . Furthermore, we may assume µ(v) − γ(v) ≤ d(v) for
every v ∈ K ∪ I, implying that the number of variables and constraints is polynomial
in the size of G. All the constraints take the form xj − xk ≥ αjk or xj = αj , hence
the constraint matrix is totally unimodular, implying that the associated polytope is
integral. To complete the proof, we verify that G is (γ, µ)-colorable if and only if the
linear program (1)-(5) is feasible.

Assume first G is (γ, µ)-colorable. Let x0 = 0 and, for j = 1, . . . , µmax, let xj

be the number of colors from {1, . . . , j} assigned to vertices of K. Constraints (1) to
(3) are clearly verified. Since K is a complete subgraph, then |K| different colors are
assigned to the vertices of K, hence constraints (4) hold. Finally, since every vertex
v ∈ I is assigned a color between γ(v) and µ(v), and v is adjacent to every vertex in
K, then K cannot use all the colors in {γ(v), . . . , µ(v)} and, therefore, constraints (5)
are verified. Thus, the linear program (1)-(5) admits a feasible solution.

Conversely, assume the linear program (1)-(5) is feasible and let x be an integer
solution, which exists since the associated polytope is integral. We shall verify that
G admits a (γ, µ)-coloring. Let M = {j : 1 ≤ j ≤ µmax and xj − xj−1 = 1}. We
construct a bipartite graph B with vertex set K∪M , and such that v ∈ K is adjacent
to j ∈ M if and only if γ(v) ≤ j ≤ µ(v). Any (γ, µ)-coloring of K using a subset of M

as color set corresponds to a matching of B of size |K|. Moreover, by Hall’s Theorem,
such a matching exists if and only if for every subset R of K, the neighborhood of R

in M has at least |R| vertices [13].
Let R be a subset of K, and let MR ⊆ M be the neighborhood of R in B. Let

i1, . . . , it be the elements of M in (strictly) increasing order, and partition MR = M1
R∪

· · · ∪ Mk
R such that M

j
R is a maximal interval in MR (i.e., M

j
R = {ipj

, ipj+1, . . . , iqj
}

for some pj and qj , and ipj−1, iqj+1 6∈ MR). Since the neighborhood of every vertex
of K is an interval in M , then we can partition R in k disjoint sets R1, . . . , Rk

such that the neighborhood of Ri in M is exactly M i
R, for i = 1, . . . , k. Therefore,

|MR| =
∑k

i=1 |M
i
R| and |R| =

∑k

i=1 |Ri|. In order to complete the proof, we verify
|M i

R| ≥ |Ri| for i = 1, . . . , k.
Let M ′ = M ∪{0, µmax +1}. For i = 1, . . . , k, define ai to be the maximum value

in M ′ such that every element from M i
R is strictly greater than ai, and define bi to

be the minimum value in M ′ such that every element from M i
R is strictly less than bi.

We have |Ri| ≤ Lbi−1,ai+1 and, since x verifies (2)-(4), then |M i
R| ≥ Lbi−1,ai+1. We

conclude that B admits a matching of size |K| and, therefore, K is (γ, µ)-colorable.
Since x verifies (5) and I is an independent set, then this (γ, µ)-coloring of K can be
extended to a (γ, µ)-coloring of G.

This theorem implies that µ-coloring over complete split graphs can be solved in
polynomial time.
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3.1.4. Block graphs. These graphs can be constructed from trees by replac-
ing every edge by a complete of arbitrary size. The blocks of a graph have at most
one vertex in common, and such a vertex is a cutpoint of the graph. We say that a
block is a leaf-block if it contains only one cutpoint of the graph. We can describe an
easy polynomial procedure to solve the list-coloring problem on block graphs. This
procedure generalizes the ideas used to solve this problem in two subclasses of block
graphs: trees and complete graphs.

Theorem 3.5. The list-coloring problem can be solved in polynomial time for

block graphs.

Proof. If the graph is complete, then reduce the problem to maximum matching
on bipartite graphs and obtain a list-coloring, if it exists, or else say that the graph
admits no list-coloring. If the graph is not a complete, choose a leaf-block M and its
cutpoint vertex v. For each color c in L(v), try to color the complete M\v with the
lists obtained by deleting c from L(w) for each w ∈ M\v. If M\v cannot be com-
pletely colored, then eliminate c of L(v). If this procedure finishes with L(v) empty,
then stop and say that the graph admits no list-coloring. Else, delete M\v from the
graph and recursively apply this procedure until we are left with a complete graph.
Clearly, this procedure runs in polynomial time and finishes with a list-coloring of the
graph if and only if such list-coloring exists.

This result implies that (γ, µ)-coloring, µ-coloring and precoloring extension over
block graphs can be solved in polynomial time.

3.1.5. Line graphs of complete bipartite graphs. Considering these color-
ing variations applied to edge coloring, we have the following result.

Theorem 3.6. The µ-coloring problem over line graphs of complete bipartite

graphs is NP-complete.

Proof. We will show a reduction from precoloring extension of line graphs of
bipartite graphs, which is NP-complete [7], to µ-coloring of line graphs of complete
bipartite graphs. The former takes as input a bipartite graph B = (V1 ∪ V2, E), an
integer k ≥ 1, and a partial edge-precoloring f : E1 ⊆ E → {1, . . . , k}, and consists
in deciding whether f can be extended to a valid k-edge-coloring of B or not. The
second takes as input a complete bipartite graph Kn,n, a function µ, and consists in
deciding whether B′ can be µ-edge-colored or not.

Let B = (V1∪V2, E), k ≥ 1, f : E1 ⊆ E → {1, . . . , k} be an instance of precoloring
extension of line graphs of bipartite graphs.
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Construct a new graph B′ = (V ′
1 ∪ V ′

2 , E′) with

V ′
1 = V1 ∪ {wv′v : v ∈ V1, v

′ ∈ V2 and vv′ ∈ E1}

∪ {zvv′j : v ∈ V1, v
′ ∈ V2 and vv′ ∈ E1, 1 ≤ j < f(vv′)},

V ′
2 = V2 ∪ {wvv′ : v ∈ V1, v

′ ∈ V2 and vv′ ∈ E1}

∪ {zv′vj : v ∈ V1, v
′ ∈ V2 and vv′ ∈ E1, 1 ≤ j < f(vv′)},

E′ = (E \ E1) ∪ {v wvv′ : v ∈ V1, v
′ ∈ V2 and vv′ ∈ E1}

∪ {v′ wv′v : v ∈ V1, v
′ ∈ V2 and vv′ ∈ E1}

∪ {wvv′ zvv′j : v ∈ V1, v
′ ∈ V2 and vv′ ∈ E1, 1 ≤ j < f(vv′)}

∪ {wv′v zv′vj : v ∈ V1, v
′ ∈ V2 and vv′ ∈ E1, 1 ≤ j < f(vv′)}.

Define µ : E′ → N as follows: µ(e) = k for e ∈ E \ E1; µ(v wvv′) = µ(v′ wv′v) =
f(vv′) for vv′ ∈ E1; µ(wvv′ zvv′j) = µ(wv′v zv′vj) = j for vv′ ∈ E1, 1 ≤ j < f(vv′).

Finally, let n = max{|V ′
1 |, |V

′
2 |}. Add the required vertices and edges to B′ in

order to obtain Kn,n, and extend µ by defining µ(e) = 2n − 1 for each new edge e

(this upper bound allows to color correctly the new edges because they have 2n − 2
incident edges). It is not difficult to see that the transformation is polynomial, and
that f can be extended to a valid k-edge-coloring of B if and only if Kn,n can be
µ-edge-colored.

3.2. A non-perfect class: line graphs of complete graphs. Finally, we
analyze the class of line graphs of complete graphs. Again, we have to consider the
edge coloring of complete graphs.

Theorem 3.7. The µ-coloring problem over line graphs of complete graphs is

NP-complete.

Proof. We show a reduction from the edge coloring problem, which is NP-
complete [15], to the edge µ-coloring problem of complete graphs, which is equivalent
to the µ-coloring problem over line graphs of complete graphs. The edge coloring
problem takes as input a graph G with n vertices, and consists in deciding whether
the edges of G can be colored with ∆(G) colors or not, where ∆(G) is the maximum
degree of the vertices of G. The reduction consists in extending G to the complete
graph Kn, and then defining µ : E(Kn) → N such that µ(e) = ∆(G) if e ∈ E(G) and
µ(e) = 2n − 3, otherwise (this upper bound allows to color correctly the new edges
because they have 2n− 4 incident edges). It is easy to see that G can be ∆(G)-edge-
colored if and only if Kn can be µ-edge-colored.

This result implies that (γ, µ)-coloring over line graphs of complete graphs is NP-
complete too.

Theorem 3.8. The precoloring extension problem over line graphs of complete

graphs is NP-complete.

Proof. We provide a reduction from the precoloring extension problem over line
graphs of complete bipartite graphs, which is NP-complete [7], to the edge precoloring
extension problem of complete graphs, which is equivalent to the precoloring extension
problem over line graphs of complete graphs. The former takes as input the complete
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bipartite graph Kn,n = (V1 ∪ V2, E) on 2n vertices, an integer k, and a partial edge-
precoloring f : E′ ⊆ E → {1, . . . , k}, and consists in deciding whether f can be
extended to a valid k-edge-coloring of Kn,n or not.

Consider the case n even first. We extend the graph Kn,n to the complete graph
K2n by adding an edge between every pair of vertices in V1 and an edge between
every pair of vertices in V2. Denote by E1 (resp. E2) the set of edges joining pairs
of vertices in V1 (resp. V2). Since V1 (resp. V2) induces a complete graph on (even)
n vertices, then E1 (resp. E2) can be optimally edge-colored with n − 1 colors. We
precolor the edges in E1 (resp. E2) with such an optimal edge-coloring using colors
k+1, . . . , k+n−1, and we maintain the original precoloring f for the precolored edges
in E. Since every vertex in V1 (resp. V2) is incident to an edge precolored with color
c, for each c ∈ {k + 1, . . . , k + n− 1}, then this new precoloring can be extended to a
(k + n− 1)-edge-coloring of K2n if and only if f can be extended to a k-edge-coloring
of Kn,n.

Consider now the case n odd. We cannot directly apply the previous procedure
in this case, since for odd n the chromatic index of Kn is n, hence some edge in E

could be assigned a color in {k + 1, . . . , k + n}. In order to handle this situation, we
first construct a graph K2n,2n with bipartition V11 ∪ V12 and V21 ∪ V22 (each set Vij

has n vertices). Define the partial precoloring f ′ in the following way: color the edges
joining vertices of V11 with vertices of V22 (resp. V12 and V21) with an optimal n-color
edge-coloring using colors k + 1, . . . , k + n, and the edges joining vertices of V11 with
vertices of V21 (resp. V12 and V22) with the precoloring f . This new graph admits a
precoloring extension with k + n colors if and only if the original graph admits a pre-
coloring extension with k colors. To complete the proof, we now apply the procedure
for the even case to the newly constructed graph, thus obtaining a complete graph on
4n vertices which admits a precoloring extension with (k + 3n − 1) colors if and only
if f ′ can be extended to a k + n-edge-coloring of K2n,2n

4. General results. We present in this section some general results.

Theorem 4.1. Let F be a family of graphs such that every graph in F has mini-

mum degree at least two. Then list-coloring, (γ, µ)-coloring and precoloring extension

are polynomially equivalent in the class of F-free graphs.

Proof. Let (G,L) be an instance of list-coloring over F-free graphs, consisting of
an F-free graph G = (V,E) and a list L(v) ⊆ {1, . . . , k} of colors for every v ∈ V .
We may assume

⋃

v∈V L(v) = {1, . . . , k}. For v ∈ V , define L̄(v) = {1, . . . , k} \ L(v)
to be the set of forbidden colors for the vertex v. We shall reduce this instance to an
instance of precoloring extension over F-free graphs. To this end, we construct a new
graph H = (V ′, E′) with

V ′ = V ∪ {wvj : v ∈ V and j ∈ L̄(v)},

E′ = E ∪ {v wvj : v ∈ V and j ∈ L̄(v)}.

In other words, for every vertex v ∈ V and every color j ∈ L̄(v), we add a new vertex
wvj adjacent to v. Furthermore, for every v ∈ V and every j ∈ L̄(v), we precolor the
vertex wvj with color j. Since G is an F-free graph and all the vertices added to G

by the construction have degree one, then H does not contain any induced subgraph
from F . Moreover, G is list-colorable if and only if the precoloring of H can be ex-
tended to a k-coloring. We can, therefore, reduce list-coloring over F-free graphs to
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house domino gem Cn

Fig. 1. Forbidden induced subgraphs for distance-hereditary graphs.

precoloring extension over F-free graphs and conversely, hence precoloring extension,
(γ, µ)-coloring, and list-coloring are polynomially equivalent over this class.

Theorem 4.2. Let F be a family of graphs satisfying the following property:

for every graph G in F , no connected component of G is complete, and for every

cutpoint v of G, no connected component of G \ v is complete. Then list-coloring,

(γ, µ)-coloring, µ-coloring and precoloring extension are polynomially equivalent in

the class of F-free graphs.

Proof. Since F satisfies the conditions of Theorem 4.1, it follows that list-coloring,
(γ, µ)-coloring, and precoloring extension are polynomially equivalent over the class
of F-free graphs. It suffices now to show a reduction from (γ, µ)-coloring on F-free
graphs to µ-coloring on F-free graphs.

Let (G, γ, µ) be an instance of (γ, µ)-coloring over F-free graphs, consisting of an
F-free graph G = (V,E) and two functions γ, µ : V → N such that γ(v) ≤ µ(v) for
every v ∈ V . We may assume µ(v) − γ(v) ≤ d(v) for every v ∈ V , and that all the
intervals cover the set {1, . . . , µmax}, implying that µmax is polynomial in the size of
G. We shall reduce this instance to an instance of µ-coloring over F-free graphs. To
this end, we construct a new graph H = (V ′, E′) with

V ′ = V ∪ {wvj : v ∈ V and 1 ≤ j < γ(v)},

E′ = E ∪ {v wvj : v ∈ V and 1 ≤ j < γ(v)}

∪ {wvj wvt : v ∈ V and 1 ≤ j < t < γ(v)}.

In other words, for every vertex v ∈ V we add a complete subgraph on γ(v) − 1
vertices, all of them joined to v. Furthermore, we keep µ(v) for every v ∈ V and set
µ(wvj) = j for every v ∈ V and every j = 1, . . . , γ(v) − 1. Note that any µ-coloring
of H assigns color j to wvj , for v ∈ V and j = 1, . . . , γ(v) − 1, hence precluding the
colors in {1, . . . , γ(v)−1} for the vertex v. Therefore, G is (γ, µ)-colorable if and only
if H is µ-colorable.

Finally, we verify that the construction of H ensures that H does not contain
any induced subgraph from F . Suppose the contrary, i.e., assume H contains some
induced subgraph S ∈ F . Denote by V new = V ′\V the vertices of H added to G by
the previous construction. Since G is an F-free graph, then S must contain at least
one vertex from V new. Moreover, since no connected component of S is complete and
every connected component of H induced by V new is complete, then every connected
component of S must contain at least one vertex from V . Let C be a connected
component of S containing vertices of V new, and let v ∈ C ∩V such that v has some
neighbor in C ∩ V new. By construction, and since C is not complete, v is a cutpoint
of C, and the neighbors of v in C ∩ V new form a complete connected component M

of C\v (in order to see that v is a cutpoint of C, recall that every vertex in C ∩ V ,
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Class coloring PrExt µ-col. (γ, µ)-col. list-col.

Complete bipartite P P P P NP-c [19]

Bipartite P NP-c [16] NP-c [4] NP-c NP-c [21]

Cographs P [12] P [17] P [4] ? NP-c [19]

Distance-hereditary P [12] NP-c NP-c NP-c NP-c [19]

Interval P [12] NP-c [3] NP-c NP-c NP-c

Unit interval P NP-c [22] ? NP-c NP-c

Split P P [17] NP-c NP-c NP-c

Complete split P P P P NP-c [19]

Trivially perfect P P P ? NP-c

Threshold P P P ? NP-c

Block P P P P P

Line of Kn,n P [20] NP-c [7] NP-c NP-c NP-c

Complement of bipartite P [12] P [17] ? ? NP-c [18]

Line of Kn P [20] NP-c NP-c NP-c NP-c [21]

Table 1

Complexity table for coloring problems. Boldfaced results have been obtained here. “NP-c”

indicates an NP-complete problem, “P” a polynomial problem, and “?” an open problem. Results

with no reference are trivial or can be directly deduced from the other ones.

different from v, does not have adjacencies in M). Therefore, S admits a cutpoint v

such that some connected component of S\v is complete, contradicting the fact that
S ∈ F .

Please note that, since odd holes and antiholes satisfy the conditions of the the-
orems above, then these results are applicable for many subclasses of perfect graphs.
For example, since distance-hereditary graphs are equivalent to {house, domino, gem,
{Cn}n≥5}-free graphs [1] (see Figure 1 for the definition of each one of these graphs),
we obtain the following result as a corollary of Theorem 4.2 and the fact that list-
coloring is NP-complete for distance-hereditary graphs [19].

Corollary 4.3. The (γ, µ)-coloring, µ-coloring and precoloring extension prob-

lems are NP-complete for distance-hereditary graphs.

5. Summary of complexity results. We summarize all the results about these
coloring problems in Table 1. As this table shows, unless P = NP, µ-coloring and
precoloring extension are strictly more difficult than vertex coloring (due for example
to interval and bipartite graphs). On the other hand, list-coloring is strictly more
difficult than (γ, µ)-coloring, due to complete split and complete bipartite graphs,
and (γ, µ)-coloring is strictly more difficult than precoloring extension, due to split
graphs. It remains as an open problem to know if there exists any class of graphs such
that (γ, µ)-coloring is NP-complete and µ-coloring can be solved in polynomial time.
Among the classes considered in this work, the candidate classes are cographs, unit

interval, trivially perfect, threshold and complement of bipartite.
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[20] D. König, Über graphen und ihre anwendung auf determinantentheorie und mengenlehre,
Mathematische Annalen, 77 (1916), pp. 453–465.

[21] M. Kubale, Some results concerning the complexity of restricted colorings of graphs, Discrete
Applied Mathematics, 36 (1992), pp. 35–46.

[22] D. Marx, Precoloring extension on unit interval graphs, Discrete Applied Mathematics, 154
(2006), pp. 995–1002.

[23] Zs. Tuza, Graph colorings with local constraints – a survey, Discussiones Mathematicae. Graph
Theory, 17 (1997), pp. 161–228.


