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1 Introduction

Let G be a graph, with vertex set V(G) and edge set E(G). Denote by G,
the complement of G. Given two graphs G and G’ we say that G’ is smaller
than G if |V(G')| < |V(G)|, and that G contains G' if G’ is isomorphic to an
induced subgraph of G. When we need to refer to the non-induced subgraph
containment relation, we will say so explicitly. A claw is the graph isomorphic
to K 3. A graph is claw-free if it does not contain a claw. The line graph L(G)
of G is the intersection graph of the edges of G. A graph F' is a line graph if
there exists a graph H such that L(H) = F. Clearly, line graphs are a subclass
of claw-free graphs.

The neighborhood of a vertex v is the set N(v) consisting of all the vertices
which are adjacent to v. The closed neighborhood of v is N[v] = N(v) U {v}.
A vertex v of G is universal if N[v] = V(G). Two vertices v and w are twins
if N[v] = N[w]; and u dominates v if N(v) C Nlul.

A complete set or just a complete of GG is a subset of vertices pairwise adjacent.
(In particular, an empty set is a complete set.) We denote by K, the graph
induced by a complete set of size n. A clique is a complete set not properly
contained in any other. We may also use the term clique to refer to the cor-
responding complete subgraph. Let X and Y be two sets of vertices of G. We
say that X is complete to Y if every vertex in X is adjacent to every vertex in
Y, and that X is anticomplete to Y if no vertex of X is adjacent to a vertex
of Y. A stable set in a graph G is a subset of pairwise non-adjacent vertices
of G. The stability number a(G) is the cardinality of a maximum stable set of

G.

A complete of three vertices is called a triangle, and a stable set of three
vertices is called a triad. Let A be a set of vertices of G, and v a vertex of
G not in A. Then v is A-complete if it is adjacent to every vertex in A, and
A-anticomplete if it has no neighbor in A.

A vertex is called simplicial if its neighbors induce a complete, and singular if
its non-neighbors induce a complete. Equivalently, a vertex is singular if it is
in no stable set of size three. The core of G is the subgraph induced by G on
the set of non-singular vertices.

Let G be a graph and X be a subset of vertices of G. Denote by G|X the
subgraph of G induced by X and by G \ X the subgraph of G induced by
V(G) \ X. X is connected, if there is no partition of X into two non-empty
sets Y and Z, such that no edge has one end in Y and the other one in Z. In
this case the graph G| X is also connected. X is anticonnected if it is connected
in G. In this case the graph G|X is also anticonnected.



The set X is a cutset if G\ X has more connected components than G. Let G
be a connected graph, X a cutset of G, and M;, M, a partition of V(G) \ X
such that M, M5 are non-empty and M is anticomplete to M, in G. In this
case we say that G = M; + My + X, and M; + X denote G|(M; U X), for
i =1,2. When X = {v}, we simplify the notation to M; + My +v and M; +v,
respectively.

Let X be a cutset of G. If X = {v} we say that v is a cutpoint. If X is complete,
it is called a clique cutset. A clique cutset X is internal if G = My + My + X
and each M; contains at least two vertices that are not twins.

Let G be a graph and H a subgraph of G' (not necessarily induced). The graph
H is a cliqgue subgraph of G if every clique of H is a clique of G.

A clique cover of a graph G is a subset of cliques covering all the vertices of
G. The clique-covering number k(G) is the cardinality of a minimum clique
cover of G. The chromatic number of a graph G is the smallest number of
colors that can be assigned to the vertices of G in such a way that no two
adjacent vertices receive the same color, and is denoted by x(G). An obvious
lower bound is the maximum cardinality of the cliques of G, the clique number
of G, denoted by w(G).

A graph G is perfect if x(H) = w(H) for every induced subgraph H of G. Per-
fect graphs are interesting from the algorithmic point of view, see [16]. While
determining the clique-covering number, the independence number, the chro-
matic number and the clique number of a graph are NP-complete problems,
they are solvable in polynomial time for perfect graphs [17].

The clique graph K(G) of G is the intersection graph of the cliques of G. A
graph G is K-perfect if K(G) is perfect.

A graph is bipartite if its vertex set can be partitioned into two stable sets.
A graph is split if its vertex set can be partitioned into a stable set and a
complete. Bipartite and split graphs are perfect.

A hole is a chordless cycle of length at least 4. An antihole is the complement
of a hole. A hole or antihole is said to be odd if it consists of an odd number
of vertices. A hole of length n is denoted by C,.

A graph is chordal if it does not contain a hole. Chordal graphs can be recog-
nized in polynomial time [25].

An r-sun, r > 3, is a chordal graph of 2r vertices whose vertex set can be
partitioned into two sets: W = {wy,...,w,} and U = {uy, ..., u,}, such that
W is a stable set and for each ¢ and j, w; is adjacent to u; if and only if i = j
ori=j+1 (mod r). Please note, that since an r-sun is a chordal graph, it



follows that U induces a cycle with no holes. An r-sun is said to be odd if r is

odd.

A graph is balanced if its vertex-clique incidence matrix is balanced. A 0-1
matrix is balanced if it does not contain the incidence matrix of an odd cycle
as a submatrix.

A family of sets S is said to satisfy the Helly property if every subfamily of
it, consisting of pairwise intersecting sets, has a common element. A graph is
clique-Helly (CH) if its cliques satisfy the Helly property, and it is hereditary
clique-Helly (HCH) if H is clique-Helly for every induced subgraph H of G.

A clique-transversal of a graph G is a subset of vertices that meets all the
cliques of G. A clique-independent set is a collection of pairwise vertex-disjoint
cliques. The clique-transversal number and clique-independence number of G,
denoted by 7¢(G) and ac(G), are the sizes of a minimum clique-transversal
and a maximum clique-independent set of (G, respectively. It is easy to see
that 7¢(G) > ac(G) for any graph G. A graph G is clique-perfect if 7o(H) =
ac(H) for every induced subgraph H of G. Clique-perfect graphs have been
implicitly studied in [1,3,6,4,7,14,18,19]. The terminology “clique-perfect” has
been introduced in [18]. There are two main open problems concerning this
class of graphs:

e find all minimal forbidden induced subgraphs for the class of clique-perfect
graphs, and
e is there a polynomial time recognition algorithm for this class of graphs?

In this paper, we present some results related to these problems. We charac-
terize clique-perfect graphs by forbidden subgraphs when the graph belongs
to a certain class. Both classes studied are subclasses of claw-free graphs: line
graphs and HC'H claw-free graphs. As corollaries of these partial characteri-
zations, we can immediately deduce polynomial time algorithms to recognize
clique-perfect graphs in these classes of graphs.

2 Preliminaries

It has been proved recently that perfect graphs can be characterized by two
families of minimal forbidden induced subgraphs [9] and recognized in poly-
nomial time [8].

Theorem 1 (Strong Perfect Graph Theorem) [9] Let G be a graph. Then
the following are equivalent:

(i) no induced subgraph of G is an odd hole or an odd antihole.



(ii) G is perfect.

On the other hand, the problem of recognition of clique-perfect chordal graphs
can be reduced to the recognition of balanced graphs, which is solvable in
polynomial time [5,13].

Theorem 2 [19] Let G be a chordal graph. Then the following are equivalent:

(i) G does not contain odd suns.
(ii) G is balanced.
(i) G is clique-perfect.

Next we define the family of the so called “generalized suns” [4]. Let G be a
graph and C' be a cycle of G not necessarily induced. An edge of C'is non proper
(or improper) if it forms a triangle with some vertex of C'. An r-generalized
sun, r > 3, is a graph G whose vertex set can be partitioned into two sets:
a cycle C' of r vertices, with all its non proper edges {e;};es (J is permitted
be an empty set) and a stable set U = {u;},ecs, such that for each j € J,
u; is adjacent only to the endpoints of e;. An r-generalized sun is said to be
odd if r is odd. Clearly, an odd hole is an odd generalized sun, with the set
of non-proper edges J being empty. Odd suns are also odd generalized suns,
since every edge of the cycle in an r-sun is a non-proper edge.

Theorem 3 [4] Odd generalized suns and antiholes of length t = 1,2 mod 3
(t > 5) are not clique-perfect.

Unfortunately, odd generalized suns are not necessary minimal (with respect
to taking induced subgraphs) and besides there are other minimal non-clique-
perfect graphs, for example the following family of graphs. Define the graph Sy,
k> 2, as follows: V(Sg) = {v1, ..., vk, v, 0", w,w'} where vy, ..., vy induce a
path; v is adjacent to v', vy, v9 and vey; v is adjacent to v, v, Vop_1 and voy; w is
adjacent only to v; and ve; and w' is adjacent only to ve,_1 and vy (Figure 1).

Vok1 Vs

Fig. 1. The graph Sj.

Every clique of Sy contains at least two of the vertices vy, . .., U, v, 80 . (Sk) <
k. On the other hand, consider the following family of cliques of Sy : {vox_1,
Vag, W'}, {var, v, '}, {v, vy, v}, {1, ve, w} and either {vq, vor_1}, if k=2, or
{va,v3}, ..., {vag—2,vor_1}, if & > 2. No vertex of Si belongs to more than
two of these 2k + 1 cliques, so 7.(Sg) > k + 1.



At this time we do not know whether the list of all such forbidden graphs has
a nice description. However, if we restrict our attention to certain classes of
graphs (that can be described by forbidding certain induced subgraphs), we
can describe all the minimal forbidden induced subgraphs.

Hereditary clique-Helly graphs are of particular interest because in this case it
follows from [4] that if K'(H) is perfect for every induced subgraph H of G, then
G is clique-perfect (the converse is not necessarily true). On the other hand,
the class of hereditary clique-Helly graphs can be characterized by forbidden
induced subgraphs.

Theorem 4 [23] A graph G is hereditary clique-Helly if and only if it does
not contain the graphs of Figure 2 as induced subgraphs.

RN AR

Fig. 2. Forbidden induced subgraphs for hereditary clique-Helly graphs: (left to
right) 3-sun (or 0-pyramid), 1-pyramid, 2-pyramid and 3-pyramid.

One of our main results in this paper is a characterization of clique-perfect
HCH claw-free graphs by induced subgraphs. To prove this characterization
we use a recent structure theorem for claw-free graphs [11]. In order to state
that theorem we need to introduce some definitions.

A graph G is prismatic if for every triangle T of G, every vertex of G not in
T' has a unique neighbor in 7. A graph G'is antiprismatic if its complement
graph G is prismatic.

Construct a graph G as follows. Take a circle C, and let V(G) be a finite set of
points of C'. Take a set of intervals from C' (an interval means a proper subset
of C' homeomorphic to [0,1]) such that there are not three intervals covering
C'; and say that u,v € V(G) are adjacent in G if the set of points {u,v} of
C' is a subset of one of the intervals. Such a graph is called circular interval
graph. When the set of intervals does not cover C', the graph is called linear
interval graph.

Fig. 3. Example of a circular interval graph and its circular interval representation.



Let G be a graph and A, B be disjoint subsets of V(G). The pair (A, B) is
called a homogeneous pairin G if for every vertex v € V(G)\ (AUB), v is either
A-complete or A-anticomplete and either B-complete or B-anticomplete. If,
in addition, B is empty, then A is called a homogeneous set. Let (A, B) be
a homogeneous pair, such that A, B are both completes, and A is neither
complete nor anticomplete to B. In these circumstances the pair (A, B) is
called a W-join. Note that there is no requirement that AU B # V(G). The
pair (A, B) is non-dominating if some vertex of G\ (A U B) has no neighbor
in AU B, and it is coherent if the set of all (A U B)-complete vertices in
V(G) \ (AU B) is a complete.

Next, suppose that V;, V4 is a partition of V(G) such that V3, V5 are non-empty
and there are no edges between V; and V5. The pair (14, V43) is called a 0-join
in GG. Thus G admits a 0-join if and only if it is not connected.

Next, suppose that Vi, V5 is a partition of V(G), and for i = 1,2 there is a
subset A; C V; such that:

e for i =1,2, A; is a complete, and A;, V; \ A; are both non-empty
e A, is complete to A,y
e every edge between V] and V5 is between A; and As.

In these circumstances, the pair (V4,V3) is a 1-join.

Now, suppose that Vp, Vi, Vs are disjoint subsets with union V(G), and for
1 = 1,2 there are subsets A;, B; of V; satisfying the following:

o fori=1,2, A;, B; are completes, A; N B; =0, and A;, B; and V; \ (4; U B;)
are all non-empty

e A, is complete to Ay, and Bj is complete to By, and there are no other
edges between V; and V5

e 1} is a complete, and for i = 1,2, V; is complete to A; U B; and anticomplete

The triple (Vo, V4, V) is called a generalized 2-join, and if Vy = (), the pair
(V1, V) is called a 2-join. This is closely related to, but not the same as, what
has been called a 2-join in other papers, like [8].

The last decomposition is the following. Let (Vi,V3) be a partition of V(G),
such that for i = 1,2 there are completes A;, B;, C; C V; with the following
properties:

e For i = 1,2 the sets A;, B;, C; are pairwise disjoint and have union V;

e V] is complete to V5 except that there are no edges between A; and As,
between By and Bs, and between C; and Cy

e 1}, V5 are both non-empty.



In these circumstances it is said that G is a hez-join of G|V} and G|V;. Note
that if G is expressible as a hex-join as above, then the sets Ay U By, B; U Cy
and Cy U Ay are three completes with union V(G), and consequently no graph
G with a(G) > 3 is expressible as a hex-join.

Now, define classes S, . .., Sg as follows.

e Sy is the class of all line graphs.

e The icosahedron is the unique planar graph with twelve vertices all of de-
gree five. For 0 < k < 3, icosa(—k) denotes the graph obtained from the
icosahedron by deleting k pairwise adjacent vertices. A graph G € §; if
G is isomorphic to icosa(0), icosa(—1) or icosa(—2). As it can be seen in
Figure 4, all of them contain odd holes.

Fig. 4. Graphs icosa(0), icosa(—1) and icosa(—2).

e Let H; be the graph with vertex set {vy, ..., vi3}, with adjacency as follows:
V1V . .. Vg1 18 & hole in G of length 6; v; is adjacent to vy, vg; vg is adjacent
to v4, vs and possibly to v7; vg is adjacent to vg, vy, v9, v3; v1o is adjacent
to w3, v4, U5, Vg, Vg; v11 is adjacent to vz, v4, vg, V1, Vg, U10; V12 1S adjacent
to vo, V3, Vs, Vg, Vg, V10; and vz is adjacent to vy, vo, vy, vs, V7, vs. A graph
G € S, if G is isomorphic to Hy \ X, where X C {v11,v12,v13}. Please note
that vertices v3v4v5v6v9v3 induce a hole of length five in G.

‘\
v/

Fig. 5. Graph Hp \ {v11,v12,v13}. Every graph in S contains it as an induced
subgraph.

e S; is the class of all circular interval graphs.



e Let Hy be the graph with seven vertices hyg, ..., hg, in which hq, ..., hg are
pairwise adjacent and hg is adjacent to hy. Let H3z be the graph obtained
from the line graph L(Hs) of Hs by adding one new vertex, adjacent pre-
cisely to the members of V(L(H3)) = E(H,) that are not incident with hy
in Hy. Then Hj is claw-free. Let Sy be the class of all graphs isomorphic to
induced subgraphs of H3. Note that the vertices of H3 corresponding to the
members of E(Hs) that are incident with Ay in Hs, form a complete in Hj.
So every graph in Sy is either a line graph or it has a singular vertex.

e Let n > 0. Let A = {ay,...,a,}, B ={b1,...,b,}, C = {c1,...,¢cn} be
three completes, pairwise disjoint. For 1 <14,5 < n, let a;,b; be adjacent if
and only if ¢ = j, and let ¢; be adjacent to a;, b; if and only if 7 # j. Let
dy, dg, ds, dy, ds be five more vertices, where d; is (A U B U C)-complete;
dy is complete to AU B U {d;}; ds is complete to AU {ds}; d4 is complete
to B U {ds,ds}; ds is adjacent to ds,dy; and there are no more edges. Let
the graph just constructed be Hy. A graph G € Ss if (for some n) G is
isomorphic to Hy \ X for some X C AU B U C. Note that vertex d; is
adjacent to all the vertices but the triangle formed by d3, ds and ds, so it is
a singular vertex in G (Figure 6).

Fig. 6. Graph Hy, for n = 2.

e Let n > 0. Let A = {ag,...,a,}, B = {bo,...,b.}, C = {c1,...,¢cn} be
three completes, pairwise disjoint. For 0 < 4,5 < n, let a;,b; be adjacent
if and only if i = 7 > 0, and for 1 < i < nand 0 < 57 < n let ¢; be
adjacent to a;,b; if and only if i # j # 0. Let the graph just constructed
be Hs. A graph G € S if (for some n) G is isomorphic to Hs \ X for some
X C (A\{ao}) U(B\{b})UC, and then G is said to be 2-simplicial of
antihat type (Figure 7).

a1 bl
v
B
N
a b

2 2

Fig. 7. Graph Hs, for n = 2.

The structure theorem in [11] is the following:



Theorem 5 [11] Let G be a claw-free graph. Then either G € S U --- U Sg,
or G admits twins, or a non-dominating W-join, or a coherent W-join, or a
0-join, or a 1-join, or a generalized 2-join, or a hex-join, or G is antiprismatic.

In the proofs in this paper we will mention some special graphs, shown in
Figure 8, and we will use the following results on perfect graphs, cutsets and
clique graphs (some of the results bellow are immediate, and in these cases
we do not give a proof or a reference; we state these in order to make it more
convenient to refer to them in the future.)

/&RI/I\

3-fan 4-wheel claw 3-sun trinity

Fig. 8. Some graphs mentioned in the paper.

Lemma 6 Let G be a graph and v be a simplicial vertex of G. Then G is
perfect if and only if G\ {v} is.

Theorem 7 [2] Let G be a graph and X be a clique cutset of G, such that
G = My + My + X. Then the graph G s perfect if and only if the graphs
M, + X and My + X are.

Theorem 8 [27] Let G be a perfect graph and let e = vive be an edge of G.
Assume that no vertex of G is a common neighbor of vi and vy. Then G\ e is
perfect.

Let P be an induced path of a graph G. The length of P is the number of
edges in P. The parity of P is the parity of its length. We say that P is even
if its length is even, and odd otherwise.

Theorem 9 Let G be a graph, and let u,v € V(G) non-adjacent and such
that {u,v} is a cutset of G, G = My + My + {u,v}. Fori = 1,2, let G; be a
graph obtained from M; + {u,v} by joining u and v by an even induced path.
If G1 and G5 are perfect, then G is perfect.

PROOF. Suppose GG; and G5 are perfect, and G contains an odd hole or an
odd antihole, denote it by A. Since no odd antihole of length at least 7 has a
one- or two-vertex cutset, if A is an odd antihole of length at least 7, then A
is contained either in Gy or in (G5, a contradiction. So A is an odd hole, and it
is not contained in M; 4+ {u,v} for i = 1,2, thus {u,v} is a cutset for A. Let
Ay, Ay be the two subpaths of A joining u and v. Then both A, A; have length
at least two, and one of them, say A;, is odd. But then, if A; is contained in
M; + {u, v}, the graph G; contains an odd hole, a contradiction. O
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Theorem 10 [12] Let G be a graph and let U be a homogeneous set in G. Let
G’ be the graph obtained from G by deleting all but one vertex of U. Then G
is perfect if and only if both G' and G|U are.

Theorem 11 Let G be a graph, and let u,v € V(G) such that u dominates
v. Then G is perfect if and only if both G \ {u} and G\ {v} are.

PROOF. The “only if” part is clear, so it is enough to prove that if G\ {u}
and G'\ {v} are perfect, then so is G. Since neither odd holes nor odd antiholes
contain a pair of vertices such that one of them dominates the other one, the
result follows from Theorem 1. O

Theorem 12 [10] Let G be a claw-free graph admitting an internal clique
cutset. Then G is either a linear interval graph or G admits twins, or a 0-
join, or a 1-join, or a coherent W-join.

Lemma 13 Let G be a graph and H a clique subgraph of G. Then K(H) is
an induced subgraph of K(G).

Lemma 14 If G admits twins u,v, then K(G) = K(G \ {v}).

Lemma 15 If G is disconnected, then so is K(G), and G is K-perfect if and
only if each connected component is.

Theorem 16 [22,24] Let G be a claw-free graph with no induced 3-fan, 4-
wheel or odd hole. Then K(G) is bipartite.

Graphs whose line graph is perfect were characterized in [26] and [21].

Theorem 17 [21,26] Let G = L(H) be the line graph of a graph H. Then the
following three conditions are equivalent:

(i) G is a perfect graph.

(ii) no subgraph of H is an odd cycle of length at least five.

(iii) Any connected subgraph H' of H salisfies at least one of the following
properties:
e H' is a bipartite graph;
e H' is a complete of size four;
e H' consists of exactly p+2 vertices 1, ..., %y, a,b, such that{z1,...,z,}

is a stable set, and {z;,a,b} is a triangle for each j =1,...,p.

e H' has a cutpoint.

11



3 Partial characterizations

We say that a graph is interesting if no induced subgraph of it is an odd
generalized sun or an antihole of length greater than 5 and equal to 1,2 mod 3.
Since odd generalized suns and antiholes of length greater than 5 and equal
to 1,2 mod 3 are not clique-perfect, it follows that every clique-perfect graph
is interesting. We prove that for some subclasses of claw-free graphs, this
necessary condition is also sufficient.

Our two main results are the following.

Theorem 18 Let G be a line graph. Then G is clique perfect if and only if
no induced subgraph of G' is an odd hole or a 3-sun.

Theorem 19 Let G be an HCH claw-free graph. Then G is clique perfect if
and only if no induced subgraph of G is an odd hole or an antihole of length
seven.

We observe the following:

Proposition 20 Let S be an odd generalized r-sun, and assume that S is
claw-free. Then either S is an odd hole or r = 3.

PROOF. As in the definition of a generalized sun, let C' be a cycle of S, and
let U =V(S)\ V(C) be a stable set, such that every vertex of U is complete
to both ends of exactly one non-proper edge of C' and has no other neighbor
in V(C'). We may assume that S is not an odd hole, and so C has at least one
non-proper edge. Let c¢i¢y be a non-proper edge of C, let ¢3 € V(C) \ {c1, 2}
be such that {cy, co, c3} is a triangle, and let u be the vertex of U adjacent to ¢;
and co. We may assume r > 3, and therefore, possibly with ¢; and ¢y switched,
c1 has a neighbor ¢, in C, different from ¢, and c¢3. Since {c1,u, c3, ¢4} does
not induce a claw in S, it follows that ¢, is adjacent to ¢, and therefore ¢,¢
is another non-proper edge of S. Let u’ be the vertex of U adjacent to ¢; and
cy. Then {¢y,u,u’,c3} is a claw, a contradiction. O

Let us call a class of graphs C hereditary if for every G € C, every induced
subgraph of G also belongs to C. The following is a useful fact about hereditary
clique-Helly graphs:

Proposition 21 Let L be a hereditary graph class, such that every graph in L
1s HCH, and every interesting graph in L is K-perfect. Then every interesting
graph in L is clique-perfect.

12



PROOF. Let G be an interesting graph in £. Let H be an induced subgraph
of GG. Since L is hereditary, H is an interesting graph in £, so it is K-perfect.
Since every graph in £ is HCH, it follows that H is clique-Helly, and so
ac(H) =a(K(H)) =k(K(H)) =1c(H) [4], and the result follows. O

In general, the class of clique-perfect graphs is neither a subclass nor a su-
perclass of the class of K-perfect graphs. It is not difficult to verify that the
3-sun or O-pyramid (Figure 8) is K-perfect but it is not clique-perfect and, on
the other hand, the graph in Figure 9 is clique-perfect but its clique graph
contains a hole of length five. However, we will prove that within the classes
of graphs analyzed in this paper, clique-perfect graphs are also K-perfect.

Fig. 9. A clique-perfect graph that is not K-perfect.

3.1 Line graphs

First, we prove that interesting line graphs are K-perfect.

Proposition 22 A line graph is interesting if and only if it has no induced
subgraph isomorphic to an odd hole or a 3-sun.

PROOF. Since no line graph contains an antihole of length at least seven,
and every line graph is claw-free, the result follows from Proposition 20. O

Note that, if G = L(H) then G contains no odd hole if and only if H contains
no odd cycle of length at least five as a subgraph. A trinity is the complement
of the 3-sun, and its line graph is also the 3-sun. Moreover, the trinity is the
only graph whose line graph is the 3-sun. Therefore GG does not contain a 3-sun
if and only if H does not contain a trinity as a subgraph.

Theorem 23 If G is a line graph and G contains no odd holes, then K(Q)
18 perfect.

PROOF. The proof is by induction on |V (G)|. The theorem holds for the
graph with one vertex, and in each case we will reduce the K-perfection of
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G to the K-perfection of some proper induced subgraphs of G. Since every
induced subgraph of a line graph with no odd holes is also a line graph with
no odd holes, the result will then follow from the inductive hypothesis.

Let G = L(H). By Lemma 15, we may assume H is connected. Since G
has no odd holes, it follows that all the odd cycles of H are triangles. So by
Theorem 17 either H is a bipartite graph, or H is a complete of size four,

or H consists of exactly p + 2 vertices z1,...,xp,a,b, such that {z1,...,2,}
is a stable set, and {z;,a,b} is a triangle for each j = 1,...,p, or H has a
cutpoint.

If H is bipartite then G = K(H) and K(G) = K?(H) is an induced subgraph
of H [15], so it is bipartite and hence perfect.

If H is a complete of size four, then K(L(H)) is the complement of 4K, and
so it is perfect (it is the complement of a bipartite graph).

If H consists of exactly p + 2 vertices x1,...,%,,a,b, such that {z1,...,2,}
is a stable set, and {z;,a,b} is a triangle for each j = 1,...,p, then all the
cliques of G contain the vertex corresponding to the edge ab of H, so K(G) is
a complete graph, and hence perfect.

Suppose H has a cutpoint x, and let M, be the complete subgraph of G
induced by the vertices corresponding to the edges of H incident with x. Since
x is a cutpoint of H, M, is a clique of GG, and let v be the vertex of K(G)
corresponding to M,.

If H= H, 4+ Hy + x and both H; and H, have at least one edge, then v is a
cutpoint of K(G), and K(G) = My + Ms + v, where M; is the clique graph of
the line graph of the subgraph of H formed by H; and the edges incident with
x with their respective endpoints. So the property follows from Theorem 7 by
the inductive hypothesis.

Otherwise, z is adjacent to at least one vertex y of degree one in H. Let M. be
the complete subgraph of L(H \ {y}) induced by the vertices corresponding to
the edges of H — {y} incident with x. If M is still a clique of L(H \ {y}), then
K(G) = K(L(H \ {y})), and the property holds by the inductive hypothesis.

If M is not a clique in L(H \{y}), then = has degree 3 in H, and the other two
neighbors z and w of x in H are adjacent. The cliques meeting M, in G pairwise
intersect (all of them contain the vertex corresponding to the edge wz of H),

so v is simplicial in K (G). On the other hand, K(L(H \ {y})) = K(G) \ {v},
so the property follows from Lemma 6 by the inductive hypothesis. O

Theorem 18 is an immediate corollary of the following:
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Theorem 24 Let G be a line graph. Then the following are equivalent:

(1) no induced subgraph of G is and odd hole, or a 3-sun.
(ii) G is clique-perfect.
(iii) G is perfect and it does not contain a 3-sun.

PROOF. The equivalence between (i) and (iii) is a corollary of Theorem 17.
From Theorem 3 it follows that (ii) implies (i).

It therefore suffices to prove that (i) implies (ii). This proof is again by in-
duction on |V(G)|. The class of line graphs with no odd holes or induced
3-suns is hereditary, so we only have to prove that for every graph in this
class 7¢ equals to ag. By Theorem 23 and Proposition 22, every such graph
is K-perfect. So, by Proposition 21, an interesting HC H line graph is clique-
perfect. Let G = L(H) and suppose that G is not HCH. Then G contains a
0-,1-,2- or 3-pyramid (see Figure 2).

A O-pyramid is a 3-sun. A 2-pyramid is not a line graph, and therefore is not
an induced subgraph of G.

Suppose that G contains a 3-pyramid. This happens if and only if H contains a
complete set of size four, say K. By Lemma 15 we may assume H is connected.
We analyze how vertices of V(H)\ K attach to K. If a vertex v is adjacent to
two different vertices of K, then H contains an odd cycle as a subgraph and G
contains an odd hole. If two different vertices v, w are adjacent to two different
vertices of K, then H contains a trinity as a subgraph and so GG contains a
3-sun. These cases can be seen in Figure 10.

Fig. 10. How the remaining vertices of H can be attached to the Kj.

So, only one of the four vertices x1, x2, x3, x4 of K may have neighbors in
H\ K, say x;. Let v, w, 21, 22, z3 and z4 be the vertices of G corresponding to
the edges 119, x314, T1273, T124, Tox4 and xox3 of H, respectively. The vertex
w is adjacent in G only to 21, 29, 23 and z4. These four vertices induce a hole
of length 4 and are adjacent also to v. So G \ {w} is a clique subgraph of G
(every clique of G'\ {w} is a clique of G). On the other hand, since x5 has no
neighbors in H \ K, all the neighbors of v other than z3 and z, are vertices
corresponding to edges of H containing x1, and they are a complete in GG. This
situation can be seen in Figure 11.
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rest of the graph

Fig. 11. Structure of G when H has a Kj.

By the inductive hypothesis, G \ {w} is clique-perfect. Let A be a maximum
clique-independent set and 7" be a minimum clique-transversal of G'\ {w}. By
maximality and by the structure of G, A has exactly one clique containing v.
Adding w, four new cliques appear, each one disjoint from a different one of
the four cliques containing v, and adding w to T" we have a clique-transversal
of G, s0 ac(G) = ac(G\ {w}) +1 =717(G\{w}) + 1 = 7¢(G). So we may
assume that H contains no complete set of size four.

Suppose finally that G contains a 1-pyramid. Since G contains a 1-pyramid, H
contains as a subgraph a graph on five vertices vy, ..., vs where v; is adjacent
to ve, v3 and vy, vy is adjacent to vs and v4, and vs is adjacent to vy (Figure 12).
Moreover, v3 and vy are not adjacent because H does not contain a complete
set of size four; v; and vy are not adjacent to vs, otherwise H contains an odd
cycle as a subgraph; and v; and v, do not have other neighbors, otherwise H
contains a trinity as a subgraph. Then v; and v, form a cutset in H, because
if there is a path v3Pvy in H \ {v1, v}, then either v3 Pvjvivs or v Pvusjvivavs
is an odd cycle in H.

Fig. 12. Subgraph of H when H contains no K4 and G contains a 1-pyramid.

Let wq, ..., ws be the vertices of G corresponding to the edges v v3, vov3, V14,
vy and vivy of H, respectively. Then wiwswswsw, is a hole of length four
in G, ws is adjacent only to wy,wsy, w3, wy and woy, w3, ws is a cutset of G.
The remaining neighbors of w; or ws are adjacent to both w; and wsy, and
form a non-empty complete in G (they are the vertices corresponding to the
edges of H containing v3 and not v; or v, and there exists at least one such
edge, namely the edge vzvs). Similarly, the remaining neighbors of ws or wy
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are adjacent to both w3 and wy, and form a (possibly empty) complete in G.
The structure of GG in this case can be seen in Figure 13.

rest of the graph |

rest of the graph Il
Fig. 13. Structure of G when H has no Kj.

We show that ac(G) = ac(G') and 7¢(G) = 7¢(G’), where G’ is the line
graph of the graph H’, obtained from H by deleting the edges vov3 and vjvy.
So G’ = G\ {wq, ws}.

Since every clique-transversal of G’ either contains ws, or contains both w;
and wy, it follows that every clique-transversal of G’ is a clique-transversal of
G. On the other hand, starting with a clique-transversal T of G and replacing
the vertices wo and w3 by w; and wy respectively, if wy or wsz belong to T,
produces a clique-transversal of G'. Therefore 7¢(G) = 7¢(G").

We claim that there is a maximum clique-independent set of G not containing
either of the cliques {wy,ws, w5}, {wy, wy, ws}. Suppose the claim is false.
Let I be a clique-independent set of GG, we may assume I contains the clique
{wy, w3, ws}. Then I does not contain any other clique containing w; or ws;
and since the only clique containing ws and not wy is {ws, wy, ws}, it follows
that every clique in [ is disjoint from {w;, ws, w5}. But now the set obtained
from I by removing the clique {w, w3, ws} and adding the clique {wy, wq, w5}
has the desired property. This proves the claim.

Let I be a maximum clique-independent set of G not containing either of the
cliques {wy, ws,ws}, {wq, ws, ws}. Let I' be a set of cliques of G’, obtained
from I by replacing the clique {wy,wy, ws} by {wq,ws} if {wy, we, w5} € I,
and the clique {ws, wy, w5} by {wy, ws} if {ws, wy, ws} € I. On the other hand,
clearly every clique-independent-set of G’ gives rise to a clique-independent
set of G, and therefore ac(G) = ac(G).

But now, since G’ is a proper induced subgraph of G, it follows inductively
that a.(G") = 7¢(G’), and therefore a.(G) = 7¢(G). This completes the proof
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of Theorem 24. O

The recognition of clique-perfect line graphs can be solved in linear time in
the following way. Given a graph G, in linear time we can obtain a graph H
such that L(H) = G, or deduce that such a graph does not exist [20]. Now, by
Theorem 24 and Theorem 17, and since G contains a 3-sun if and only if H
contains a trinity as a subgraph, it suffices to check if H contains an odd cycle
of length at least five or a trinity as a subgraph. It can be done in linear time
in the number of edges of H, which is the number of vertices of GG, combining
the ideas in the proofs of Theorem 17 and Theorem 24.

3.2 Hereditary clique-Helly claw-free graphs

Let us first describe interesting HC H claw-free graphs.

Proposition 25 No HCH graph contains an antihole of length at least eight.
An HCH claw-free graph is interesting if and only if it does not contain an
odd hole or an antihole of length seven.

PROOF. Since by Theorem 4 an HC'H graph contains no induced subgraph
isomorphic to one of the graphs of Figure 2, it follows that no HC'H graph
contains a 3-sun. Since every antihole of length at least eight contains a 2-
pyramid, it follows that no HC'H graph contains an antihole of length at
least eight. Finally, since by Proposition 20, every claw-free odd generalized
sun is either an odd hole or a 3-sun, it follows that an HC'H claw-free graph
is interesting if an only if it contains no odd hole and no antihole of length
seven. O

We will use Proposition 21 to prove the characterization for HC'H claw-free
graphs, so first we need to prove the following.

Theorem 26 Let G be an interesting HCH claw-free graph. Then K(G) is
perfect.

In the remainder of this section we use the structure theorem for claw-free

graphs (Theorem 5) to prove that every interesting HC'H claw-free graph G
is K-perfect. The proof is by induction on |V (G)|.
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3.2.1  Circular Interval Graphs

First we prove that clique graphs of interesting HC'H circular interval graphs
are perfect.

Lemma 27 Let G be a circular interval graph. Then K(G) is an induced
subgraph of G.

PROOF. Let G be a circular interval graph with vertices vy, ..., v, in clock-
wise order, say. We define a homomorphism v from V(K (G)) to V(G) (mean-
ing that for two distinct vertices a,b € V(K(G)), v(a) # v(b); and a is adjacent
to b if and only if v(a) is adjacent to v(b)). For every clique M of G, since no
three intervals in the definition of a circular interval graph cover the circle,
M = {v;,...,vis¢} (where the indices are taken mod n). In this case we say
that v; is the first vertex of M. We define v(M) = v;. Since v; is the first vertex
of a unique clique, it follows that v(M) # v(M') if M and M’ are distinct
cliques of G. It remains to show that v(M) is adjacent to v(M') if and only if
MNOM # 0. If M and M’ intersect at a vertex vy, then the clockwise order of
v(M), v(M') and vy, is either v(M), v(M'), vy, or v(M’), v(M), vj and in both
cases v(M) and v(M’) are adjacent. On the other hand, if there are two cliques
such that v(M) and v(M') are adjacent, we may assume v(M) appears first
clockwise in the circular interval which contains both v(M) and v(M’). Then
since v(M) is the first vertex of the clique M, it follows that v(M') belongs
to M, so M and M’ intersect. O

Proposition 28 Let G be an HCH interesting circular interval graph. Then
K(G) is perfect.

PROOF. By Lemma 27, K(G) is an induced subgraph of G. Since G is
HCH and interesting, it contains no odd hole and no antihole of length at
least seven, and therefore it is perfect by Theorem 1.

3.2.2  Decompositions

Now we show that if an interesting HCH claw-free graph admits one of the
decompositions of Theorem 5, then either it is K-perfect or we can reduce the
problem to a smaller one.

Theorem 29 Let G be an interesting HCH claw-free graph. If G admits a

1-join, then K(G) has a cutpoint v, K(G) = Hy + Hy +v, and H; + v is the
clique graph of a smaller interesting HC'H claw-free graph.
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PROOF. Since G admits a 1-join, it follows that V(G) is the disjoint union
of two non-empty sets V4 and V5, each V; contains a complete M;, such that
M7 U M, is a complete and there are no other edges from V; to V5. So My U M,
is a clique in G. Let v be the vertex of K(G) corresponding to M; U Ms. Every
other clique of G is either contained in Vj or in V5, and no clique of the first
type intersects a clique of the second type. So v is a cutpoint of K(G), and
K(G) = Hy+ Hy +v, where Hy (H,) is the subgraph of K(G) induced by the
vertices corresponding to cliques of G of the first (second) type. Let G; be the
graph obtained from G|V; by adding a vertex v; complete to M; and with no
other neighbors in GG;. Then G; is isomorphic to an induced subgraph of G, so
it is interesting, HC'H and claw-free, and for ¢ = 1,2, H; + v is isomorphic to
K(G;) (where the vertex v is mapped to the vertex of K(G;) corresponding
to the clique M; U {v;} of G;). This proves Theorem 29. O

Theorem 30 Let G be an interesting HCH claw-free graph. If G admits a
generalized 2-join and no twins, 0-join or 1-join, then there exist two clique

graphs of smaller interesting HCH claw-free graphs, Hy and Hs, such that if
H, and Hy are perfect, then so is K(G).

PROOF. Since G admits a generalized 2-join, it follows that V(G) is the
disjoint union of three sets V, V4 and V5, for ¢ = 1,2 each V; contains two
disjoint completes A;, B; such that A;, B; and V;\ (A; U B;) are all non-empty,
A1 U Ay UV and By U By U Vp are completes and there are no other edges
from V7 to V5 or from Vj to Vi U V5. Since G admits no twins, it follows that
Vol < 1.

So Ay U Ay UVy and By U By UV are cliques of GG, and they correspond to
vertices wy, we of K(G). Every other clique of G is either contained in V; or
in V5, and no clique of the first type intersects a clique of the second type. So
{wy,wsy} is a cutset in K(G).

If Vj is non-empty, then w; is adjacent to we and {wy,ws} is a clique cutset in
K(G). Let Vo = {vo}. Now K(G) = M; + My + {w,ws}, where, for i = 1,2,
H; = M; + {wy,wy} is the clique graph of the subgraph of G induced by
ViU{w}. By Theorem 7, K(G) is perfect if and only if H; and Hs are. So we
may assume that 1} is empty, and therefore w, is non-adjacent to ws.

We start with the following easy observation
(*) Let S be a graph which is either a claw, or an odd hole, or C7, or a 0-,1-,2-,
or 3-pyramid, and suppose there exists a vertex s € V (.S), whose neighborhood

is the union of two non-empty completes with no edges between them. Then
S is and odd hole.
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Since G admits no 0-join or 1-join, for ¢ = 1,2 there exist a; in A; and b; in
B; joined by an induced path with interior in V; \ (A; U B;). (The interior of a
path are the vertices different from the endpoints; the interior may be empty,
if a; and b; are adjacent.)

Then, since GG contains no odd hole, for every a; in A; and b; in B;, all induced
paths from a; to by with interior in V; \ (A; U By) and all induced paths from
as to by with interior in V3 \ (Ay U By) have the same parity.

Case 1: This parity is even.

Note that in this case A; is anticomplete to B;. Let H be the graph obtained
from K(G) by adding the edge wyws. Since A; is anticomplete to B;, there is
no clique in G intersecting both A; U A and By U By. So wy and ws have no
common neighbor in K (G). By Theorem 8, if H is perfect then K(G) is.

Construct graphs G; with vertex set V; U {v;}, where G;|V; = G|V; and v;
is complete to A; U B; and has no other neighbors in G;. Now, H = M; +
My + {wq,wy}, with M; + {wy,ws} = K(G}), and {wy,ws} is a clique cutset
in H. By Theorem 7, it follows that if K(G;) and K(G3) are perfect then H
is perfect and thus K(G) is perfect.

We claim that for ¢ = 1,2 the graphs G; are claw-free, HC'H and interesting.
Suppose that GG1, say, is not. So G; contains an induced subgraph .S isomorphic
to a claw, an odd hole, C7, or a 0-,1-,2- or 3-pyramid. If V'(S) does not contain
vy, then S is isomorphic to an induced subgraph of G, a contradiction. If
V(S) contains v; but has empty intersection with A; or By, say Bj, then S
is isomorphic to an induced subgraph of GG, obtained by replacing v; by any
vertex of Ay, a contradiction. So V'(S) meets both A; and By, and therefore
the neighborhood of v; in S can be partitioned into two non-empty completes
Ag, Bg, such that Ag is anticomplete to Bg. By (*), S is an odd hole. Let
a; € Ay and by € By be the neighbors of vy in S. Then S\ {v;} is an induced
odd path from a; to b; with interior in V; \ (4; U By), a contradiction.

Case 2: This parity is odd.

Construct graphs G; with vertex set V; + {va,, vg;}, where G;|V; = G|V}, va
is complete to A;, vp, is complete to B;, va, is adjacent to vp,, and there
are no other edges in G;. Now, K(G) = M; + My + {wy, ws}, and K(G;) is
obtained from M; + {w;,ws} by joining w; and we by an induced path of
length two. By Theorem 9, if K(G;) and K(G3) are perfect, so is K(G).

We claim that both G; are claw-free, interesting and HC H. Suppose that G,

contains an induced subgraph S isomorphic to a claw, an odd hole, C7, or a
0-,1-,2-,0or 3-pyramid.
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If V(S) does not contain vs; or vgs, say vgi, then S is isomorphic to an
induced subgraph of G, obtained by replacing v by any vertex of Ay, a
contradiction. If V(S) contains v4; and vp; but has empty intersection with
Ay or By, say By, then S is isomorphic to an induced subgraph of G, obtained
by replacing v4; and vp; by two adjacent vertices as,co of V4 such that
as € Ay and ¢y € V5 \ Ay (such a pair of vertices exist because there is at least
one path from A to B, in ), a contradiction. So V() meets both A; and
B, and the neighborhood of v4; in S can be partitioned into two non-empty
completes with no edges between them, namely Ag = A; NV (S) and {vp1}.
By (*) S is an odd hole. Let a; € A; and b; € B; be the neighbors of v, and
vp1 in V(S) N Vi, respectively. Then S\ {va1,vp1} is an induced even path
from a; to by with interior in V; \ (A; U By), a contradiction. This concludes
the proof of Theorem 30. O

Lemma 31 Let G be an HCOH graph such that G is a bipartite graph. Then
K(G) is perfect.

PROOF. In this proof we use the vertices of K(G) and the cliques of G
interchangeably. By Theorem 1, if K(G) is not perfect then it contains an odd
hole or an odd antihole.

Let A, B be two disjoint completes of G' such that AU B = V(G). If there
exists a vertex v of G adjacent to every other vertex in GG, then v belongs to
every clique of G and K(G) is a complete graph, and therefore perfect. So
we may assume that no vertex of A is complete to B and no vertex of B is
complete to A. Then A and B are cliques of G, and every other clique of G
meets both A and B. The degree of A and B in K(G) is |[V(K(G))| — 1, so
they cannot be part of an odd hole or an odd antihole in K(G).

It is therefore enough to show that there is no odd hole or antihole in the graph
obtained from K(G) by deleting the vertices A and B. We prove a stronger
statement, namely that there is no induced path of length two in this graph.
Since every hole and antihole of length at least five contains a two edge path,
the result follows.

Suppose for a contradiction that there are three cliques X, Y and Z in G,
each meeting both A and B, and such that X is disjoint from Z, and both
X NY and Y N Z are non-empty. From the symmetry we may assume that
X NY contains a vertex a,, € A.

Suppose first that there is a vertex a,, € ANY NZ. Let b, be a vertex in Y N B.
Since no vertex of B is complete to A, there is a vertex a in A non-adjacent
to b,. Since a,, does not belong to X, there is a vertex b, in X non-adjacent
to ay., and since A is a complete, b, belongs to B. Analogously, since a,, does
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not belong to Z, there is a vertex b, in B N Z non-adjacent to a,,. But now
{asy, ayz, by, b, by, a} induce a 1-, 2- or 3-pyramid, a contradiction.

So ANY N Z is empty, and therefore B NY N Z is non-empty, and, by the
argument of the previous paragraph with A and B exchanged, BN X NY is
empty. Choose b, in BNY NZ. Choose a, in ZNA, then a, € X UY. Since a,
does not belong to X, there is a vertex b, € X non-adjacent to a,, and since A
is a complete, b, is in B. Since b,, does not belong to X and B is a complete,
there is a vertex a, € ANX non-adjacent to b,.; and since a,, does not belong
to Z and A is a complete, there is a vertex b, € B N Z non-adjacent to ag,.
But now {a., asy, by, @z, b, b.} induces a 2- or a 3-pyramid, a contradiction.

This proves Lemma 31. O

Theorem 32 Let G be a connected interesting HC'H claw-free graph, and
suppose G admit no twins. Assume that G' admits a coherent or a non-dom-
inating W-join (A, B). Then either K(G) is perfect, or there exist induced
subgraphs G, ...,Gy of G, each smaller than G, such that if G; is K-perfect
for everyi=1,... k, then so is G.

PROOF. Choose a coherent or non-dominating W-join (A4, B) with AU B
minimal. Let C' be the vertices complete to A and anticomplete to B, D be the
vertices complete to B and anticomplete to A, E be the vertices complete to
AU B, and F be the vertices anticomplete to AU B. Since the W-join (A, B)
is either coherent or non-dominating, it follows that either E is a complete,
or F' is non-empty.

32.1 AUC, BU D are both completes, and F is anticomplete to F.

Suppose not. Assume first that there exist two nonadjacent vertices ¢y, co in
C'. Choose a in A and b in B such that a is adjacent to b, now {a, ¢y, ¢z, b}
is a claw, a contradiction. So C' is a complete, and since A is a complete, it
follows that AU C' is a complete. From the symmetry it follows that BU D is
a complete.

Next assume that there are two adjacent vertices e in £ and f in F'. Choose
a in A and b in B such that a is not adjacent to b. Then {e, a,b, f} is a claw,

a contradiction. This proves 32.1.

Let E; be a clique of G|E. Let £ be the set of all cliques of G|(A U B).
Let

U={EyUL : LeLl and L# A, B}.
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Since E is anticomplete to F, and every member of U meets both A and B,
it follows that the members of U are cliques of G.

32.2 We may assume that |U| > 2.

Suppose |U| < 1. Since in G there is at least one edge between A and B, it
follows that there is a unique clique L in G|(A U B) meeting both A and B,
and |U|=1. Let A =ANL, B =BNL. Then A" is complete to B’, A\ A’
is anticomplete to B and B\ B’ is anticomplete to A. Since G does not admit
twins, each of A, A\ A’, B’, B\ B’ has size at most 1, and by the minimality
of AU B at most one of A\ A, B\ B’ is non-empty. By the symmetry, we may
assume that B\ B’ is empty and |A'| = |B'| = |[A\ A'| = 1. Let A" = {a;},
B'={b;} and A\ A" = {as}.

If K(G\ {a2}) = K(G) then the theorem holds, so we may assume not.
Therefore there exists a subset E’ of E such that M = AU E’ is a clique of
G. It follows, in particular, that no vertex of C' is complete to E.

If G|E is complete, consider the cliques My = {ay,b1 }UE and My = {ay, as}U
E of G. Since every clique of G containing as also contains a;, then every
clique of G that has a non-empty intersection with Ms, meets M;. Therefore
the vertex w; of K(G), corresponding to M, dominates the vertex wy of
K(G), corresponding to M. Since K(G) \ {w;} is an induced subgraph of
K(G\{a1}) and K(G)\{ws} = K(G\{az}), by Theorem 11, K(QG) is perfect
if K(G\{a1}) and K(G\{az}) are and the theorem holds. So we may assume
that F is not a complete.

Next we claim that D is empty. Since E is not a complete, there are two
non-adjacent vertices e;,es in F, and let d in D. If d is non-adjacent to
both of e; and ey, then {by,e1,es,d} is a claw, a contradiction. Otherwise,
{b1,e1,ea,d,a1,as} induces a 1- or 2-pyramid, a contradiction. This proves
that D is empty.

Since D is empty, every clique disjoint from F' contains the vertex a;, and,
since every clique containing a vertex of F' is disjoint from A, B and FE, it
follows that the vertices of K(G) corresponding to the cliques {a1,b1} U F',
with E’ a clique of G|E, are simplicial in K(G). By Lemma 6, K(G) is perfect
if and only if K(G \ {b1}) is. This proves 32.2.

32.3 We may assume that no vertex of B is complete to A, and no vertex
of A is complete to B.

Suppose there is a vertex b € B complete to A. Since A is not complete to
B, there is a vertex b’ € B\ {b}. By 32.2, |A| > 1. But now (4, B\ {b}) is a
coherent or non-dominating W-join in GG, contrary to the minimality of AU B.
This proves 32.3.
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In view of 32.2 and 32.3, we henceforth assume that |U| > 2, no vertex of
A is complete to B, and no vertex of B is complete to A.

32.4 G|E is complete.

Since no vertex of B is complete to A, and there is at least one edge between
A and B, there is a vertex a; € A with a neighbor b; and a non-neighbor b,
in B. Since b; is not complete to A, there is a vertex as € A, non-adjacent to
b,. Since A, B are both cliques, a; is adjacent to as and by to by. If there exist
two non-adjacent vertices e; and e in E, then {aq, as, by, b, €1, 5} induces a
2- or a 3-pyramid in GG, a contradiction. This proves 32.4.

32.5 Every vertex of K(G) \ U with a neighbor in U is complete to U.

Throughout the proof of 32.5 we use cliques of G and vertices of K (G) inter-
changeably.

It follows from 32.4 that F; = E. Let w be a vertex of K(G) \ U with a
neighbor in U. Since w has a neighbor in U, it follows that w meets one of
A, B,E. If w meets E, then w is complete to U and the result follows. If w
includes one of A, B, then since every member of U meets each of A, B, we
again deduce that w is complete to U and the result follows. So we may assume
that w is disjoint from FE, and the sets wN (AU B), A\ {w}, and B\ {w} are
all non-empty.

Assume first that w meets both A and B. Since w is a clique of G, C'U F' is
anticomplete to B and DUF is anticomplete to B, it follows that w C AUBUE.
But now, since w is a clique, it follows that w includes F and w belongs to U,

a contradiction. So we may assume that w is disjoint from at least one of A
and B.

By the symmetry we may assume that w is disjoint from B, and therefore w
meets A. Since F'U D is anticomplete to A, it follows that w is a subset of
AUCUF, and since w is a clique, w includes A, a contradiction. This proves
32.5.

32.6 U is a homogeneous set in K (G) and the graph K(G)|U is perfect.

It follows from 32.5 that U is a homogeneous set in K (G). The graph K(G)|U
is isomorphic to the graph obtained from K(G|(AU B U E)) by deleting the
vertices corresponding to the cliques AUE and BUE. Since G|(AUBUE) is
bipartite, it follows from Theorem 31 that K (G)|U is perfect. This proves 32.6.

Choose v € U.
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32.7 If there exist a1, as € A and by, by € B, such that a; is adjacent to b; and
not to by, and ay is adjacent to by and not to by, then either K (G) is perfect,
or there is an induced subgraph G’ of G, such that K(G)\ (U \{u}) = K(G).

If there exist non-adjacent ¢ € C' and e € E, then {aj,as,¢€,c¢, by, by} induces
a l-pyramid, a contradiction, so C' is complete to F, and similarly D is com-
plete to E. By 32.4, G|E is complete. Since G admits no twins, |E| < 1. If
C'U D is empty, then, since GG is connected, F' is empty, and G is the comple-
ment of a bipartite graph. By Lemma 31, K(G) is perfect. So we may assume
that C is non-empty, and in particular, A U E is not a clique of G. But now
K(G)\ (U\{u})=K(G\ ((AUB)\ {a1,b1,by})). This proves 32.7.

To finish the proof, let a; € A and b; € B be adjacent. By 32.3, there ex-
ist a vertex by € B, non-adjacent to a; and a vertex ay; € A non-adjacent
to by. If as is adjacent to by, then the theorem follows from 32.6, 32.7 and
Theorem 10. So we may assume that as is non-adjacent to by. Let G' =
G\ ((AuB)\{a1,b1,az2,b2}). We deduce from 32.2 that G’ is smaller than G.
Moreover, G’ is an induced subgraph of G. But K(G) \ (U \ {u}) = K(G'),
and, together with 32.6 and Theorem 10, this implies that the theorem holds.
This proves Theorem 32. O

Theorem 33 Let G be an interesting HC'H claw-free graph. Suppose G ad-
mits a hex-join and no twins and every vertex of G is in a triad. Then G = Cg.

PROOF. Since G admits a hex-join, there exist six completes Ay, By, Cf,
Ay, By, C5 in G such that A; is anticomplete to Ay and complete to By and
Cs; By is anticomplete to By and complete to A, and Cs; Cf is anticomplete to
C5 and complete to Ay and By; A1 U By UCT and A; U B, U Cy are non-empty;
and V(G) = Ay U By UC, U Ay U By U Cy. Since every vertex of G is in a triad
and no stable set of size three meets both A; U B; U C; and Ay U By U (s, it
follows that A;, B;, C; are all non-empty.

Suppose there is an edge a;b] with a; in A; and b} in By. Since every vertex
is a triad, there exists a stable set {ag, by, o} with ag in Ay, by in By and ¢y
in Cy, and a stable set {aq, by, c;} with a; in Ay, by in By and ¢; in C}. Since
G is interesting, a;bjascibeay is not a hole in G, so b is adjacent to ¢;. But
now {b},as,by,c1} is a claw in G, a contradiction. So A; is anticomplete to
By, C. Since the vertices of A; are not twins in G, it follows that |A;| = 1.
From the symmetry, |A;| = |B;| = |Ci| = 1 for i = 1,2, and G = Cg. This
proves Theorem 33. O

Theorem 34 Let G be an interesting HCH graph. Assume that G admits no

twins and no coherent or non-dominating W-join, and contains no stable set
of size three. Then K(G) is perfect.
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PROOF. Since G is claw-free, we may assume G contains either a 4-wheel
or a 3-fan, otherwise, by Theorem 16, K(G) is bipartite.

Case 1: G contains a 4-wheel. Let ajasazasa; be a hole and let ¢ be adjacent to
all a;. We claim every vertex in GG is adjacent to c¢. Suppose v is non-adjacent
to c¢. Then since G contains no stable set of size three, from the symmetry
we may assume v is adjacent to aj,as. But now {aj,as,as,ay,c,v} induces
a 1-,2-, or 3-pyramid, a contradiction. So every clique in G contains ¢, then
K(G) is a complete graph and the result follows. This proves Case 1.

Case 2: (G contains a 3-fan and no 4-wheel.

Let Aq,..., Ay be anticonnected sets in GG, pairwise complete to each other,
with & > 2, |A;| > 1, and subject to that with maximal union, say A. (Such
sets exist because there is a 3-fan. Let c;coc3e4 be a path and let ¢ be adjacent
to all ¢;. Then A; = {c1,¢3}, As = {ca}, A3 = {c} make a family of sets with
the desired properties.)

Suppose |Az| > 1. Then, since A;, A; are both anticonnected, each of Ay, Ag
contains a non-edge, say a;b;. Choose a3 in Az. Now {ai,as,b1,bs, a3} is a
4-wheel, a contradiction. So for 2 <i < k, |4;| =1, and let A; = {a;}.

(*) No vertex in V(G) \ A is complete to more than one of Ay, ..., Ay.

Let v be a vertex in V(G) \ A and define I = {i : 1 <1i <k and v is complete
to A;} and J = {j : 1 < j < k and v has a non-neighbor in A;}. Suppose
[I] > 1. Define A} = A, for t € I and A} = U;c; A; U {v}. Then {Aj}icr, A
is a collection of at least three anticonnected sets, pairwise complete to each

other, but their union is a proper superset of A, contrary to the maximality
of A. This proves (*).

(**) There is no Cy in A;.

Otherwise, G contains a 4-wheel with center as, a contradiction. This proves

Since |A;] > 1 and A; is anticonnected, A; contains a non-edge, and so,
since there is no stable set of size three in G, every vertex of V(G) \ A has a
neighbor in A;. Let A’ = A\ A;. If no vertex of V(G) \ A has a neighbor in
A’ then the vertices of A" are twins (they are pairwise adjacent, complete to
A; and anticomplete to V(G) \ A), a contradiction.

So there exists v in V(G) \ A with a neighbor in A; and a neighbor o’ in A’.
By (*) v has a non-neighbor a” in A’. If v has two non-adjacent neighbors in
Ay, say x,y then xvya”z is a 4-hole and o’ is complete to it, so G contains a
4-wheel, a contradiction. So the neighbors of v in A; are a complete. Since GG
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has no stable set of size three, the non-neighbors of v in A; are a complete.
Thus G|A; is the union of two completes (complement bipartite), and since it
is anticonnected the bipartition is unique, say X,Y, both X and Y are non-
empty, and every vertex of V(G) \ A with a neighbor in A’ is either complete
to X and anticomplete to Y, or complete to Y and anticomplete to X. Let X’
be the vertices with a neighbor in A’ and complete to X, Y’ be the vertices
with a neighbor in A’ and complete to Y. Then, X’ UY’ is non-empty, and
since there is no stable set of size three in GG, X', Y’ are both completes.

For i = 2,...,k let X; be the vertices of X’ adjacent to a;, and let Y; be
defined similarly. By (*), X; N X; = 0 for i # j, and the same holds for Y;, Y.
If there is an edge from X to Y then there is no edge from X; to Y}, or else G
contains a 4-wheel with center a;.

34.1 k <4 and X' = X;, Y’ =Y for some ¢ different from j.

Suppose both X5, X3 are non-empty, choose x5 in Xy and z3 in X3. Then
asxor3azas is a hole of length four, and every x in X is complete to it, so G
contains a 4-wheel, a contradiction. So we may assume that X’ = X, and,
similarly, Y =Y for some j. If Y5 is non-empty, then since s, y5, as is not a
stable set of size three, x5 is adjacent to y». Since A; is anticonnected, there
exist non-adjacent vertices x € X and y € Y. But now xzsy-yasx is a hole of
length five, a contradiction. So Y3 is empty and therefore i is different from 7,
say j = 3. Since ay, as are not twins, k£ < 4. This proves 34.1.

By 34.1 we may assume that X' = X5, Y’ = V3. Let Z be the vertices of
G with no neighbor in A’. Then, since G contains no triad, Z is a complete.

34.2 Every vertex in Z is complete to X’ UY”’ and to one of X, Y.

If some vertex z in Z has a non-neighbor x5 in X5, then z, x5, a3 is a stable set
of size three, a contradiction, so Z is complete to X', and similarly to Y. Next
suppose some vertex z in Z has a non-neighbor x in X and a non-neighbor y
in Y. Then z is adjacent to y, and there is an odd antipath ) from z to y in
X UY. By (**) XUY contains no Cy, so @ has length three, say Q = zy'2y.
Since there is no stable set of size three, z is adjacent to iy’ and z’. But then
zx'xyy'z is a hole of length five, a contradiction. This proves 34.2.

Let Z, be the vertices of Z complete to X, and let Z, = Z \ Z,.

34.3 If Z, X', Y’ are all non-empty then the theorem holds.

We may assume Z, is non-empty. Since aszozysazas (where z € Z, x5 € X5
and y3 € Y3) is not a hole of length five, X5 is complete to Y3. Suppose z in

Z, has a neighbor y in Y. Since A; is anticonnected, y has a non-neighbor
x in X. But now aszzasysryrsas (with zo in Xy and y3 in Y3) is an antihole
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of length seven, a contradiction. So Z, is anticomplete to Y. Choose z in Z,
and non-adjacent x in X and y in Y. Then zzasyysz is a hole of length five,
a contradiction. This proves 34.3.

34.4 If Z is empty then the theorem holds.

The pairs (X,Y) and (Xa,Y3) are coherent homogeneous pairs, and since G
does not admit twins or a coherent W-join, all four of these sets have size < 1.
Every vertex of GG is adjacent to ag, except the vertex xy of Xy, if X’ is non-
empty. So every clique of G contains either az or xy, and therefore K(G) is
perfect (it is either a complete graph, or the complement of a bipartite graph).
This proves 34.4.

In view of 34.4, we henceforth assume that Z # (). By 34.3 we may assume X'
is empty, and so Y’ is non-empty. By 34.1 we may assume Y’ = Yj3. Since the
vertices of Y3 are not twins, Y3 = {ys3}.

34.5 Z is complete to Y.

Suppose not. Choose z in Z, with a non-neighbor ¥ is in Y. Then z in Z,.
Since A; is anticonnected, y has a non-neighbor x in X. But now zzasyysz is
a hole of length five, a contradiction. This proves 34.5.

Let M be the set of vertices in X with a neighbor in Z. Suppose some z
in Z has adjacent neighbors x in X and y in Y. Then zzasysz is a hole of
length four, and y is complete to it, so G contains a 4-wheel, a contradiction.
This proves that M is anticomplete to Y. Now (Z, M) is a coherent homo-
geneous pair, and the same for (X \ M,Y). Since G’ admits no twins and no
coherent W-join, all four of these sets have size < 1. Also, since ay and ay
are not twins, k = 3. Let Z = {z}. Every vertex of G different from z is
adjacent to ag. So every clique of G contains either a3 or z, and then K(G) is
perfect (it is the complement of a bipartite graph). This completes the proof
of Theorem 34. O

Theorem 35 Let G be an interesting HC H claw-free graph, and suppose that
G 1is connected, does not admit a coherent or non-dominating W-join, or a 1-

join or twins. If G contains a stable set of size three and a singular vertex,
then K(G) is perfect.

PROOF. The proof is by induction on |V (G)|. Assume that for every smaller
graph G’ satisfying the hypotheses of the theorem, K (G’) is perfect. Let v be
a singular vertex in G with maximum number of neighbors (there exists at
least one singular vertex in GG, by hypothesis). Let A be the set of neighbors of
v and B be the set of its non-neighbors. Since v is singular, B is a complete.
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Since G contains a stable set of size three, and every such set meets both A
and B (because B is a complete, and G is claw-free), there exist vertices in B
that are non singular. Let U be the set of all such vertices.

35.1 If U is anticomplete to A then K(G) is perfect.

Let By = B\ U, so every vertex of By is singular, and since G is connected,
By is non-empty. Let a1, as be two non-adjacent vertices in A. If b € By is
non-adjacent to both ay,aq, then {b,a;,as} is a stable set of size three, and
if b is adjacent to both a,as then {b,ai,as,u} is a claw for every u € U;
in both cases we get a contradiction. So every vertex in Bj is adjacent to
exactly one of ay,as. Suppose there exist vy, vy in By with v; adjacent to a;.
Then vivea9vaqvy is a hole of length five, a contradiction. So one of ay, as is
anticomplete to By, and therefore the other one is complete to Bs. Let A; be
the vertices in A complete to By, As be the vertices in A anticomplete to By
and Az = A\ (A;UA,). It follows from the previous argument that A;UA3 and
Ay U Az are both completes. If Aj is non-empty, then |By| > 1 and (As, By)
is a coherent W-join, a contradiction. So we may assume Aj is empty. Now
(A1, Ay) is a coherent homogeneous pair, and all the vertices of each of U, By
are twins. So all these sets have size at most 1 and K(G) is the clique graph
of an induced subgraph of a 4-edge path, and hence perfect. This proves 35.1.

So we may assume that there exists a non-singular vertex u in B with a
neighbor in A. Let M be the set of neighbors of u in A, N the set of non-
neighbors. Since v is non-singular, N contains two non-adjacent vertices z, y.
Choose m in M. If m is adjacent to both x,y then {m,x,y,u} is a claw. If m
is non-adjacent to both z,y then {v,z,y,m} is a claw. So every vertex in M
is adjacent to exactly one of x,y. So there is no complement of an odd cycle
in G|N, and therefore the complement of G| N is bipartite and N is the union
of two completes.

Let M; be the vertices in M adjacent to x, M, those adjacent to y, then
M1UM2:Mand MlﬂMQZQ)

If there exists m; in My and my in M, such that m; is adjacent to ms, then
the graph induced by {my, ma, v, z,y, u} is 3-sun, a contradiction. So there are
no edges between M; and M,, M, is anticomplete to y and M, is anticomplete
to . Since {v,m,m’,y} is not a claw for m, m’ in My, it follows that M is a
complete, and the same holds for M.

Case 1: M; and M, are both non-empty.

Since A contains no stable set of size three (for otherwise there would be a claw
in G), every vertex in N is complete to one of M, Ms. Let N3 be the vertices
complete to M; U My, N; the vertices of N \ N3 complete to M; and Ny the
vertices of N '\ N3 complete to M. So x € Ny and y € Ns. Since {m,n,n’, u}
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is not a claw for m in M; and n,n’ in N; U N3, it follows that Ny U N3 is
a complete. Similarly Ny U N3 is a complete. Suppose N3 is non-empty, and
choose n € N3. Then n is complete to (AU{v})\ {n}, and therefore is singular
(for its non-neighbors are a subset of B); and by the choice of v, n and v are
twins. Since G admits no twins, it follows that N3 is empty. Suppose some
ny in N is adjacent to ng in Ny. Choose m) in M; non-adjacent to ny and
mb in My non-adjacent to ny. Then m)ninombum| is a hole of length five, a
contradiction. So N; is anticomplete to Ny. Suppose ny in N; has a neighbor
mb in My. Then {mb, nq,y,u} is a claw, a contradiction. So N; is anticomplete
to Ms, and, similarly, N, is anticomplete to M;.

For i = 1,2 choose m} in M;, and assume that m/ has a non-neighbor b; in
B. If m} and m), have a common non-neighbor b € B, then {u, m}, m}, b} is
a claw, a contradiction. So there are two vertices by and b, in B such that
by is non-adjacent to m) and adjacent to m), and by is non-adjacent to mj
and adjacent to m}. But then m/bsbymivm/ is a hole of length five, again a
contradiction. So, exchanging M; and M, if necessary, we may assume that
M is complete to B, and since G admits no twins, |M;| = 1, say M; = {m}.

Let b be a vertex of B with a neighbor ny in N;. We claim that b is complete to
M; and anticomplete to Ns. If b has a non-neighbor ms in Ms, then nibumsvn,
is a hole of length five; and if b has a neighbor ny in Ny, then {b, ny,ny, u} is
a claw; in both cases a contradiction. This proves the claim.

So every vertex of B is either anticomplete to Ny, or complete to M, and
anticomplete to N,. Let B; be the set of vertices of B with a neighbor in
Ni. Then (Bj, Ny) is a non-dominating homogeneous pair, and since G does

not admit a non-dominating W-join or twins, it follows that |B;| < 1 and
|N1’ = 1, say Nl = {.CE}

Assume that B; is non-empty, let By = {b1}. Let By = B\ B;. We claim
that in this case By is complete to M. If by in By has a non-neighbor ms in
My, then by # by and {by,x,ma, by} is a claw, a contradiction. This proves
the claim. But now the vertices of M, are all twins, and since G does not
admit twins, |Ms| = 1. Moreover, (Bs, N3) is a non-dominating homogeneous
pair, and since G does not admit a non-dominating W-join or twins, it follows
that |By| = |No| = 1, so By = {u} and Ny = {y}. But now every clique of
G contains either v or by, and hence K(G) is the complement of a bipartite
graph, and therefore perfect. This finishes the case when B; is non-empty.

If By is empty, (B, My U N;) is a non-dominating homogeneous pair, and
since G does not admit a non-dominating W-join or twins, it follows that
|B| = |MyU N3| = 1, a contradiction because both My and Ny are non-empty.
This finishes the case when both M; and M, are non-empty.

Case 2: One of My, M is empty.
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We may assume that M, is empty, and so M is complete to x and anticomplete
to y. Let N7 be the set of vertices in N complete to M, N, the set of vertices
in N that are anticomplete to M and let N3 = N\ (N; U Ny).

We claim that N; U N3 and N, U N3 are both completes. Choose two different
vertices n3 in N3U N; and n; in Ny, and let m be a neighbor of n3 in M. Since
{m,u,ny,n3} is not a claw, n; is adjacent to ng; and therefore Ny is a complete
and Nj is complete to N3. Next, choose two different vertices ns in N3 U Ns
and ny in Ny, and let m be a non-neighbor of ng in M. Since {v,m,ny, n3}
is not a claw, ny is adjacent to ns; and therefore Ny is a complete and Ny is
complete to N3. Finally, suppose there exist two non-adjacent vertices ns and
ny in N3. Since {m,u,n3,ns} is not a claw for any m € M, it follows that no
vertex of M is adjacent to both n3 and nj. Let m be a neighbor of ng in M
and m' be a neighbor of n4 in M. Then m is non-adjacent to nj and m’ is
non-adjacent to nz, and the graph induced by {v, m,m’, u,ng, ns} is a 3-sun,
a contradiction. So N3 is a complete. This proves the claim. Since there exist
two non-adjacent vertices in N, both Ny and N, are non-empty.

35.2 Let b in B adjacent to ng in N3 and to m in M. Then n3 is non-adjacent
to m.

Suppose they are adjacent. Let m’ be a non-neighbor of ns in M, and let ns
be in N,. Then ngmuv is a triangle, b is adjacent to nz, m; ns is adjacent to
v and ng; m' is adjacent to v and m, and this is a 0-, 1- or 2-pyramid, a
contradiction. This proves 35.2.

35.3 Every vertex in Ny has a non-neighbor in Ns.

Suppose some vertex ny of Ny is complete to Ny. Then the set of non-neighbors
of n; is included in B, and therefore n; is singular; and it is complete to
A\ {ny}. From the choice of v, ny has no neighbor in B, but now n; and v
are twins, a contradiction. This proves 35.3.

35.4 M is complete to B.

Let By be the set of vertices in B that are complete to M. Suppose there
exists by in B\ By, and let m be a non-neighbor of by in M.

35.4.1 | N3] = 1 and N, is anticomplete to B.

Let n be in N,. Since nbyumwvn is not a hole of length five, it follows that
n is non-adjacent to by, and the same holds for every vertex of B\ Bj. So
n is anticomplete to B\ Bj. Since {by, by, m,n} is not a claw for b; € By, it
follows that n is anticomplete to B;, and the same holds for every vertex of
Ny. Therefore Ny is anticomplete to B. But now {v} U N3 U N3 is a clique
cutset separating Ny from M U B. By Theorem 12, G is either a linear interval
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graph or G admits twins, or a 0-join, or a 1-join, or a coherent W-join, or
it is not an internal clique cutset; and it follows from the hypotheses of the
theorem and from Theorem 28, that we may assume that the last alternative
holds, and |Ny| = 1, say Ny = {ny}. This proves 35.4.1.

35.4.2 B is anticomplete to Ns.

Suppose a vertex b € B has a neighbor n € N3. By the definition of N3, n has
a neighbor m’ in M. By 35.2, m’ is non-adjacent to b. But now {n,ny, b, m'}
is a claw, a contradiction. This proves 35.4.2.

Now M U N, is a clique cutset separating {v} U Ny U N3 from B. Since |B| > 1
and |[{v} UN;UN3| > 1, it follows from Theorem 12, that G is a linear interval
graph, and therefore K(G) is perfect by Theorem 28. This completes the proof
of 35.4.

By 35.4, for every non-singular vertex in B, the set of its neighbors in A is
complete to B.

35.5 B is anticomplete to Nj.

Suppose some vertex b in B has a neighbor ng in N3. By the definition of Nj,
ngz has a neighbor in M, and this contradicts 35.2. This proves 35.5.

35.6 N3 is empty and | M| = 1.

If N3 is non-empty then |M| > 1 and (N3, M) is a coherent homogeneous
pair. So N3 is empty, but now the vertices of M are twins, so |[M| = 1. This
proves 35.6.

It follows from 35.6 that every non-singular vertex in B has at most one
neighbor in A, and since M is complete to B and has size 1, every non-
singular vertex in B is complete to M and anticomplete to A\ M. Therefore
the vertices of U are all twins, and since G' admits no twins, U = {u}. Let

By =B\ U.
35.7 B, is non-empty.

Otherwise (N7, N,) is a coherent homogeneous pair, so each of them has size
1 and K(G) is a three-edge path. This proves 35.7.

35.8 If ny in NV; is non-adjacent to ny in Ny, then every b in Bs is adjacent to
exactly one of ny, no.

Let by in Bs. Since by, in B, is singular, b, is adjacent to at least one of nq, no.
Since {by,n1,n9,u} is not a claw, by is non-adjacent to at least one of ny, ns.
This proves 35.8.
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35.9 No vertex of N; has a neighbor and a non-neighbor in Bs.

Suppose n; in N7 has a neighbor b; in By and a non-neighbor b, in By. By 35.3
n; has a non-neighbor ny in Ny. By 35.8 ny is adjacent to by and not to b;.
But now bynjvnsbseby is a hole of length five, a contradiction. This proves 35.9.

Let Np; be the vertices of N; complete to By, N1o = Ny \ Nyi. So Ny is anti-
complete to B. It follows from 35.8 that every vertex of Ny is either complete
to Ny; or to Nijo. Let Naog be the set of vertices in Ny with a non-neighbor in
Nii. Then Ny is complete to Nis. Let No; be the vertices in Ny with a non-
neighbor in Njp. Then Ny; is complete to Nyj. Let Nog = No \ (Nop U Noy).
So Ns3 is complete to N;. By 35.8 Bs is anticomplete to Noy and complete
to Naj. Now (Bsg, Na3) is a coherent homogeneous pair, and all the vertices of
Ni1, N1g, Noo, Noy are twins, so all these sets have size at most 1.

Now, every clique of G contains either v or by, so K(G) is the complement
of a bipartite graph, and hence it is perfect. This completes the proof of
Theorem 35. O

3.2.8 Basic classes

Finally we show that if an interesting HC H claw-free graph belongs to one of
the basic classes of Theorem 5, then its clique graph is perfect.

Theorem 36 If G is interesting HC H, antiprismatic and every vertex of G
is in a triad, then K(G) is perfect.

PROOF. We prove that GG contains no 4-wheel or 3-fan, and then, by The-
orem 16, K (G) is bipartite.

Suppose G contains a 4-wheel. Let ayasazasa; be a hole and let ¢ be adjacent
to all a;. Since every vertex is in a triad, there are two vertices ¢y, ¢y different
from ay, aq, ag, as such that {c, ¢y, ¢y} is a stable set. Since G is antiprismatic,
every other vertex in G is adjacent exactly to two of {c, c1,c2}. In particular,
each a; is adjacent either to ¢; or to cs. If two consecutive vertices of the hole,
for instance aj,as, are adjacent to the same c;, then {a1, a3, as, a4, ¢, ¢;}
induces a 1-,2- or 3-pyramid, a contradiction because G is HC'H. So, without
loss of generality, we may assume that a; and ag are adjacent to ¢; and not to
2, while ay and a4 are adjacent to ¢z, and not to ¢;. But then {ay, as, as, c2}
induces a claw, a contradiction. This proves that G does not contain a 4-wheel.

Suppose now that GG contains a 3-fan. Let ayasazas be an induced path and
let ¢ be adjacent to all a;. Since every vertex is in a triad, there are two
vertices c1, co different from aq, ag, as, aq such that {c, ¢, 2} is a stable set.
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Since G is antiprismatic, each a; is adjacent either to ¢; or to co. If ay and
as, are adjacent to the same c;, then {a1, as, as, a4, ¢, ¢;} induces a 0-,1- or
2-pyramid, a contradiction because G is HC' H. So, without loss of generality,
we may assume that as is adjacent to ¢; and not ¢y, while a3 is adjacent to
¢ and not ¢;. Since {ag, as, ¢y, a4} is not a claw, a4 is adjacent to cq, and,
analogously, a; is adjacent to c;. By the same argument applied to the 3-fan
induced by the path ascasco and the vertex as, there is a vertex d adjacent to
as and co but not adjacent to ag, ¢ or as, and so d & {ay,as,as,aq,c,c1,ca}
(see Figure 14).

Fig. 14. Situation for the second part of the proof of Theorem 36.

Since cjasasasde; is not a hole of length five, d is non-adjacent to ¢;. Thus
c1, ¢ and d form a triad, but the vertex ¢, is adjacent only to one of them, a
contradiction because G is antiprismatic. This concludes the proof of Theorem
36. O

Theorem 37 Let G € S¢ be a connected interesting HC'H graph such that
every vertex of G is in a triad. Then K(G) is perfect.

PROOF. Let A, B and C be the sets of vertices of the graph Hy in the
definition of the class Sg, and let Ag, Bg and Cg be those sets intersected
with V(G). We remind the reader that ay € Ag and by € Bg by the definition
of Sg. Every triad in G is of the form {a;,b;, cx}, since Ag, B and Cq are
complete sets. Moreover, either i = j =0 or k =7 and j =0 or kK = j and
1 = 0. Since every vertex of GG is in a triad, it follows that Ag, Bg and Cg are
non-empty and if ¢ # 0 and a; € Ag, then ¢; € Cg. Analogously, if ¢ # 0 and
b; € Ag, then ¢; € Cg. Let [y ={i >0:a; € Ag}, Ig ={i > 0:b; € Bg}
and Ioc ={i>0:¢ € Cg}. Then [n U Ip C I¢.

Assume first that I \ (14 U Ip) is non-empty. Since the set C' = {¢; : i €
C\ (Ix UIg)} is complete to V(G) \ (C" U {ag,bo}), and the only cliques
containing ag or by are Ag and Bg, respectively, it follows that every pair of
cliques of GG, except for the pair Ag, Bg, has non-empty intersection. Thus
K(QG) is a split graph, hence perfect.

So we may assume that [, U Ip = I¢o. If |14 U Ig| > 3, we may assume by
switching A and B if necessary that 1,2 € I4 and 3 € s, and then the
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graph induced by {aq, as, ¢1, ¢a, c3,a0} is a 1-pyramid, a contradiction because
G is HCH. On the other hand, since GG is connected, both I, and Ig are non-
empty and |[,Ulg| > 2. So, without loss of generality, we consider three cases:
Iy=1Ip={1,2}; I, ={1,2} and Ip = {2}; [, = {1} and Ip = {2}. Graphs
obtained in each case are depicted in Figure 15, with their corresponding clique
graphs, which are all perfect. That concludes this proof. O

al bl al al
~C:— C, C,
a, ‘." b, a, b, a, b,
cl
aQ bz aZ bz b2
I« I« I«

Fig. 15. Last three cases for the proof of Theorem 37.

3.2.4  Proof of Theorem 19

First we prove that the clique graph of an interesting HCH claw-free graph
is perfect.

Proof of Theorem 26. Let G be an interesting HCH claw-free graph. The
proof is by induction on |V(G)|, using the decomposition of Theorem 5. As-
sume that for every smaller interesting HCH claw-free G', K(G") is perfect.
We show that K(G) is perfect.

If G admits twins, then K(G) is perfect by Lemma 14, and if G is not con-
nected, then K (G) is perfect by Lemma 15. If G is connected, admits a 1-join
and no twins, then K(G) is perfect by Theorem 29 and Theorem 7. If G ad-
mits no twins, 0- or 1-joins, but admits a 2-join, then K(G) is perfect by
Theorem 30. If G admits a coherent or non-dominating W-join and no twins,
then K(G) is perfect by Theorem 32. If G contains a singular vertex, then
K (G) is perfect by Theorems 34 and 35. So we may assume not. If G admits
a hex-join and no twins, then by Theorem 33 G = K(G) = Cg, and therefore
K(QG) is perfect.

So we may assume that G admits none of the decompositions of the previous
paragraph, and by Theorem 5, GG is antiprismatic, or belongs to Sy U - - - U Sg.

If G € S, then K(G) is perfect by Theorem 23. The graphs icosa(—2),
icosa(—1) and icosa(0) contain holes of length five, and therefore are not

interesting, so G € S;. G € Sy, because vertices vs, vy, Us, Vg, V9 induce a hole
of length five in Hy (Figure 5). If G € Ss, then by Proposition 28, K(G) is
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perfect. If G € &, then, since G does not contain a singular vertex, G is a
line graph and K (G) is perfect by Theorem 23. G ¢ Ss, because the vertex
d; in the definition of the class S; is singular. If G € S, then K(G) is perfect
by Theorem 37, and finally, if G is antiprismatic, then K(G) is perfect by
Theorem 36. This completes the proof of Theorem 26. O

Now, Theorem 19 is an immediate corollary of the following:

Theorem 38 Let G be claw-free and assume that G s HCH. Then the fol-
lowing are equivalent:

(i) nmo induced subgraph of G is an odd hole, or C.
(ii) G is clique-perfect.
(i) G is perfect.

PROOF. The equivalence between (i) and (iii) is a corollary of Theorem 1,
because by Proposition 25 HC'H graphs contain no antiholes of length at least
eight. From Theorem 3 it follows that (ii) implies (i). Finally, by Theorem 26
and Propositions 21 and 25, we deduce that (i) implies (ii), and this completes
the proof. O

The recognition of clique-perfect HC H claw-free graphs can be reduced to the
recognition of perfect graphs, which is solvable in polynomial time [8].

3.3 Summary

These results allow us to formulate partial characterizations of clique-perfect
graphs by forbidden subgraphs, as is shown in Table 1.

Graph classes Forbidden subgraphs | Reference
HCH claw-free graphs | odd holes Thm 19
Cr
Line graphs odd holes Thm 18
3-sun
Table 1

Forbidden induced subgraphs for clique-perfect graphs in each studied class.

Note that in both cases all the forbidden induced subgraphs are minimal.
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