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Abstract

A graph G is clique-perfect if the cardinality of a maximum clique-independent set
of H equals the cardinality of a minimum clique-transversal of H, for every induced
subgraph H of G. A graph G is coordinated if the minimum number of colors that
can be assigned to the cliques of H in such a way that no two cliques with non-empty
intersection receive the same color equals the maximum number of cliques of H with
a common vertex, for every induced subgraph H of G. Coordinated graphs are a sub-
class of perfect graphs. The complete lists of minimal forbidden induced subgraphs
for the classes of clique-perfect and coordinated graphs are not known, but some
partial characterizations have been obtained. In this paper, we characterize clique-
perfect and coordinated graphs by minimal forbidden induced subgraphs when the
graph is either paw-free or {gem,W4,bull}-free, both superclasses of triangle-free
graphs.
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1 Introduction

Let G be a simple finite undirected graph, with vertex set V (G) and edge set
E(G). Denote by G the complement of G. A graph with only one vertex will
be called a trivial graph. Given two graphs G and G′, we say that G contains
G′ if G′ is isomorphic to an induced subgraph of G. When we need to refer to
the non-induced subgraph containment relation, we will mention it explicitly.

A complete set or just a complete of a graph is a subset of pairwise adjacent
vertices. A complete composed by three vertices is called a triangle. A clique is
a complete set not properly contained in any other complete set. We may also
use the term clique to refer to the corresponding complete subgraph. Given a
graph G and a vertex v in V (G), we denote by m(v) the number of cliques
including the vertex v.

A stable set in a graph G is a subset of pairwise non-adjacent vertices of G.
A graph is bipartite if its vertex set can be partitioned into two stable sets.

Let X and Y be two sets of vertices of G. We say that X is complete to Y if
every vertex in X is adjacent to every vertex in Y , and that X is anticomplete
to Y if no vertex of X is adjacent to a vertex of Y .

A vertex v of a graph G is called universal if it is adjacent to every other
vertex of G, and it is called a leaf of G if it has degree one in G.

We say that a graph G is anticonnected if G is connected. An anticomponent
of a graph G is a connected component of G. A graph is called complete
multipartite if it is not anticonnected and all its anticomponents are stable
sets.

A hole is a chordless cycle of length at least 4. An antihole is the complement
of a hole. A hole or antihole is said to be odd if it has an odd number of
vertices. A hole of length j is denoted by Cj. Denote by Pj the induced path
of j vertices.
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Fig. 1. Forbidden induced subgraphs for the class of HCH graphs.

A gem is a graph of five vertices, such that four of them induce a P4 and the
fifth vertex is universal. A wheel Wj is a graph of j +1 vertices, such that j of
them induce a Cj and the last vertex is universal. A paw is a triangle with a
leaf attached to one of its vertices. A bull is a triangle with two leafs attached
to different vertices of it.

The chromatic number of a graph G is the smallest number of colors that can
be assigned to the vertices of G in such a way that no two adjacent vertices
receive the same color, and it is denoted by χ(G). An obvious lower bound of
χ(G) is the maximum cardinality of a clique in G, the clique number of G,
denoted by ω(G).

A graph G is perfect if χ(H) = ω(H) for every induced subgraph H of G [1].
Complete graphs, bipartite graphs, and line graphs of bipartite graphs are
perfect [9]. In [17] it was proved that a graph is perfect if and only if its
complement is perfect. The characterization of perfect graphs by forbidden
induced subgraphs has been proved recently: a graph G is perfect if and only
if no induced subgraph of G is an odd hole or an odd antihole [7]. Besides,
perfect graphs can be recognized in polynomial time [6].

Consider a finite family of non-empty sets. The intersection graph of this
family is obtained by representing each set by a vertex, two vertices being
adjacent if and only if the corresponding sets have nonempty intersection.

The clique graph K(G) of G is the intersection graph of the cliques of G. A
graph G is K-perfect if K(G) is perfect.

A family S of sets is said to satisfy the Helly property if every subfamily of it,
consisting of pairwise intersecting sets, has a common element. A graph G is
clique-Helly (CH) if its cliques satisfy the Helly property, and it is hereditary
clique-Helly (HCH) if H is clique-Helly for every induced subgraph H of G.
A graph G is HCH if and only if G does not contain any of the graphs in
Figure 1 as an induced subgraph [21].

A clique-transversal of a graph G is a subset of vertices meeting all the cliques
of G. A clique-independent set is a collection of pairwise vertex-disjoint cliques.
The clique-transversal number and clique-independence number of G, denoted
by τC(G) and αC(G), are the sizes of a minimum clique-transversal and a
maximum clique-independent set of G, respectively. Clearly, αC(G) ≤ τC(G)
for any graph G. A graph G is clique-perfect if τC(H) = αC(H) for every

3
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induced subgraph H of G. Clique-perfect graphs have been implicitly studied
in several works but the term “clique-perfect” has been introduced in [10].
The only clique-perfect graphs which are minimally imperfect are C6j+3, for
any j ≥ 1 [8].

A K-coloring of a graph G is an assignment of colors to the cliques of G
in such a way that no two cliques with non-empty intersection receive the
same color (equivalently, a K-coloring of G is a coloring of K(G)). A Helly K-
complete of a graph G is a collection of cliques of G with common intersection.
The K-chromatic number and Helly K-clique number of G, denoted by F (G)
and M(G), are the sizes of a minimum K-coloring and a maximum Helly K-
complete of G, respectively. It is easy to verify that F (G) = χ(K(G)) and that
M(G) = maxv∈V (G) m(v). Also, F (G) ≥ M(G) for any graph G. A graph G is
C-good if F (G) = M(G). A graph G is coordinated if every induced subgraph
of G is C-good. Coordinated graphs were defined and studied in [4], where it
was proved that they are a subclass of perfect graphs.

The recognition problem for coordinated graphs is NP-hard. Furthermore, this
problem is NP-complete when restricted to {gem,W4,C4}-free graphs G with
M(G) ≤ 3 [23]. The complexity of the recognition problem for clique-perfect
graphs is still unknown.

Bipartite graphs are clique-perfect and coordinated [13,14].

A class of graphs C is hereditary if for every G ∈ C, every induced subgraph of
G also belongs to C. If C is a hereditary class of K-perfect clique-Helly graphs,
then every graph in C is clique-perfect and coordinated [2,5].

Finding the complete lists of minimal forbidden induced subgraphs for the
classes of clique-perfect and coordinated graphs turns out to be a difficult task
[2,24]. However, some partial characterizations have been obtained in previous
works. In [16], clique-perfect graphs are characterized by minimal forbidden
subgraphs for the class of chordal graphs. In [2] and [3], clique-perfect graphs
are characterized by minimal forbidden subgraphs for two subclasses of claw-
free graphs, and for Helly circular-arc graphs, respectively. In the same direc-
tion, coordinated graphs are characterized by minimal forbidden subgraphs
for line graphs and complements of forests [5].

In this paper, we characterize clique-perfect and coordinated graphs by mini-
mal forbidden induced subgraphs when the graph lies in one of two superclasses
of triangle-free graphs: paw-free and {gem,W4,bull}-free graphs. In particular,
we prove that in these cases both classes are equivalent to perfect graphs and,
in consequence, the only forbidden subgraphs are the odd holes (odd anti-
holes of length at least seven are neither paw-free nor {gem,W4,bull}-free).
As a direct corollary, we can deduce polynomial-time algorithms to recognize
clique-perfect and coordinated graphs when the graph belongs to these classes.
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2 Superclasses of triangle-free graphs

A graph is triangle-free if it contains no triangle as induced subgraph. Triangle-
free graphs were extensively studied in the literature, usually in the context
of graph coloring problems (see for example [12,18,19]).

It is interesting to remark that if the graph G is triangle-free, then F (G)
equals the chromatic index of G and M(G) equals the maximum degree of
G. Hence, the graph G is coordinated if and only if every induced subgraph
H of G belongs to Class 1 (i.e., graphs where the chromatic index equals the
maximum degree).

It is easy to see that if a graph G is triangle-free, then G is perfect if and
only if G is clique-perfect, if and only if G is coordinated. In order to prove
this, we only need to use the following facts: odd holes are neither perfect, nor
clique-perfect, nor coordinated; graphs with neither triangles nor odd holes
are bipartite; and bipartite graphs are perfect, clique-perfect and coordinated.
Therefore, it is enough to forbid odd holes to characterize clique-perfect (and
coordinated) graphs in this case. We shall extend this result by analyzing two
superclasses of triangle-free graphs: paw-free and {gem,W4,bull}-free graphs.

2.1 Paw-free graphs

A graph is paw-free if it contains no paw as induced subgraph. Paw-free graphs
were studied in [20]. This class is interesting to analyze because it contains
graphs with an exponential number of cliques, while in most of the classes
where a forbidden subgraph characterization or a polynomial-time recognition
algorithm for clique-perfect or coordinated graphs is known, the number of
cliques is polynomially bounded (e.g., chordal graphs, diamond-free graphs,
claw-free HCH graphs, Helly circular-arc graphs, and line graphs).

In this section we prove that the characterization mentioned above for clique-
perfect and coordinated graphs on triangle-free graphs also holds for paw-free
graphs.

The proof of this result can be divided into two cases: the case when G is
anticonnected and the case when G is not anticonnected.

In the first case, we shall resort to the following result presented in [20]: if G
is also connected, then G contains no triangles (Lemma 2). Furthermore, it is
shown that if G is anticonnected, then G is perfect if and only if G is bipartite
(Corollary 4), and bipartite graphs are clique-perfect and coordinated. Finally,
if G is clique-perfect and does not contain triangles, then G is perfect.

5
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In the second case, we shall rely on the fact that all the anticomponents of
G are stable sets (Lemma 1), so an appropriate coloring of K(G) for this
kind of graphs is found (Theorem 5) for the coordinated case, and the clique-
perfectness follows from known results.

Lemma 1 [20] Let G be a paw-free not anticonnected graph. Then the anti-
components of G are stable sets, i.e., G is a complete multipartite graph.

Lemma 2 [20] Let G be a paw-free connected and anticonnected graph. Then
G is triangle-free.

We first prove the following auxiliary results.

Proposition 3 Let G be a connected graph. Then the following statements
are equivalent:

(i) G is perfect, paw-free, and it has at most two anticomponents.
(ii) G is bipartite.

PROOF.

(i) ⇒ (ii)) If G is not anticonnected, then by Lemma 1 the anticomponents
of G are stable sets. The graph G has at most two anticomponents, so it is
bipartite.

If G is anticonnected, since G is connected and paw-free, then G is triangle-free
by Lemma 2. As G is also perfect, it does not have odd holes. If G contains
no triangles and contains no odd holes, then G contains no odd cycles as
subgraphs. Therefore, G is bipartite.

(ii) ⇒ (i)) Trivial. 2

We have, therefore, the following straightforward corollary.

Corollary 4 Let G be a paw-free, connected, and anticonnected graph. Then
G is perfect if and only if G is bipartite.

Complete multipartite graphs are a subclass of distance-hereditary graphs.
In [15] it is proved that distance-hereditary graphs are clique-perfect, hence
complete multipartite graphs are clique-perfect.

Theorem 5 If G is a complete multipartite graph, then G is coordinated.

PROOF. Complete multipartite graphs are clearly hereditary. Then, it is
enough to see that every graph in this class is C-good.

6
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Let H be a complete multipartite graph. Let A1, . . . , Ak (k ≥ 1) be the anti-
components of H . We can assume that |Ai| ≤ |Ai+1| (1 ≤ i < k).

Let b = |Ak|, i.e., the size of the biggest anticomponent of H . If b = 1, then
H is complete and is, therefore, trivially C-good. We thus assume b > 1.

Every clique of H has exactly one vertex in each anticomponent, hence m(v) =∏i=k
i=1,i6=j |Ai| for each vertex v ∈ Aj . Since A1 is the smallest anticomponent,

M(H) =
∏i=k

i=2 |Ai|.

Furthermore, there is a one-to-one correspondence between the cliques of H
and the sequences [a1, . . . , ak] with 0 ≤ ai ≤ |Ai| − 1. Let A be the set of all
such sequences, and let c : A → N0 be defined as follows:

c(0, a2, . . . , ak) =
k∑

i=2

aib
i−2, (1)

c(a1, a2, . . . , ak) = c(0, r(a2 − a1, |A2|), . . . , r(ak − a1, |Ak|)) if a1 > 0, (2)

where r(x, z) denotes the remainder of the integer division x/z. We shall use
c as a coloring of the cliques of H .

The number of sequences in A with a0 = 0 is
∏i=k

i=2 |Ai|, so the function c uses
at most M(H) colors. If c is a valid coloring then M(H) = F (H), implying
that H is C-good.

We now check that c is a valid coloring. Consider two sequences a = [a1, . . . , ak],
a′ = [a′

1, . . . , a
′
k] ∈ A, such that c(a) = c(a′). We shall prove that either a = a′

or a does not intersect a′ (that is, ai 6= a′
i for all 1 ≤ i ≤ k).

By (2) and (1), we get

c(a) = c(0, r(a2 − a1, |A2|), . . . , r(ak − a1, |Ak|)) =
k∑

i=2

r(ai − a1, |Ai|)b
i−2

and, similarly,

c(a′) =
k∑

i=2

r(a′
i − a′

1, |Ai|)b
i−2.

Since c(a) = c(a′), we have

7
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k∑

i=2

r(ai − a1, |Ai|)b
i−2 =

k∑

i=2

r(a′
i − a′

1, |Ai|)b
i−2.

Since b > 1 and 0 ≤ r(ai − a1, |Ai|), r(a
′
i − a′

1, |Ai|) < |Ai| ≤ b. By the
uniqueness of representation of a natural number in base b, it follows that
r(ai − a1, |Ai|) = r(a′

i − a′
1, |Ai|) for all 2 ≤ i ≤ k. That is, ai − a1 ≡ a′

i − a′
1

mod |Ai| for all 2 ≤ i ≤ k.

Therefore, for each 2 ≤ i ≤ k, a1 ≡ a′
1 mod |Ai| if and only if ai ≡ a′

i

mod |Ai|. But, since 0 ≤ ai, a
′
i < |Ai| and 0 ≤ a1, a

′
1 < |A1| ≤ |Ai|, it follows

that a1 = a′
1 if and only if a1 ≡ a′

1 mod |Ai|, if and only if ai ≡ a′
i mod |Ai|,

if and only if ai = a′
i. So, if a1 = a′

1 then ai = a′
i for every 2 ≤ i ≤ k, and if

a1 6= a′
1 then ai 6= a′

i for every 2 ≤ i ≤ k. That is, either a = a′ or the cliques
corresponding to a and a′ do not intersect. 2

We are now in position of proving the main result of this section.

Theorem 6 If G is a paw-free graph, then the following statements are equiv-
alent:

(i) G is perfect.
(ii) G is clique-perfect.
(iii) G is coordinated.

PROOF.

(i) ⇒ (ii)) If G is not anticonnected, then by Lemma 1 G is a complete multi-
partite graph, so G is clique-perfect [15]. Otherwise, without loss of generality,
we can assume that G is connected. Then, by Corollary 4, G is bipartite and
so G is clique-perfect.

(ii) ⇒ (iii)) If G is not anticonnected, then by Lemma 1 and Theorem 5, G
is coordinated. Otherwise, without loss of generality, we can assume that G is
connected. By Lemma 2, G has no triangles and therefore G does not have odd
antiholes with length greater than 5. On the other hand, as odd holes are not
clique-perfect, G has no odd holes. We conclude that G is perfect. Let G′ be
an induced subgraph of G. To see that G′ is C-good, it is enough to prove that
every connected component of G′ is C-good. Let H be a connected component
of G′. If H is not anticonnected, then H is coordinated, by Lemma 1 and
Theorem 5; in particular it is C-good. If H is anticonnected, since it is also
connected and perfect, it follows by Corollary 4 that H is bipartite. Then H
is C-good.

8
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(iii) ⇒ (i)) Coordinated graphs are a subclass of perfect graphs. 2

As a consequence of these results, the recognition problem can be solved in
linear time.

Theorem 7 The problem of determining if a paw-free graph is clique-perfect
(coordinated) can be solved in linear time.

PROOF. Check every connected component of the graph looking for one
component that is anticonnected and not bipartite. If such a component exists,
then return “the graph is not clique-perfect (coordinated)”. Otherwise, return
“the graph is clique-perfect (coordinated)”.

This algorithm clearly runs in linear time with respect to the size of the input.
The correctness is a consequence of Corollary 4 and Theorems 5 and 6. 2

2.2 Another superclass of triangle-free graphs: {gem,W4,bull}-free graphs

Bull-free graphs have been studied in the context of perfect graphs [11,22], and
{gem,W4}-free graphs have been considered in the context of clique-perfect
graphs [8]. Recall that the recognition of coordinated graphs is NP-Hard in
{gem,W4,C4}-free graphs [23].

We analyze here another superclass of triangle-free graphs: {gem,W4,bull}-free
graphs. We prove that if such a graph is perfect, then it is K-perfect. By the
forbidden subgraph characterization of HCH graphs, {gem,W4}-free graphs
are also HCH . Since the class of {gem,W4,bull}-free graphs is hereditary, we
obtain as a corollary ([2,5]) that {gem,W4,bull}-free graphs are clique-perfect
(coordinated) if and only if they are also perfect, the same result that holds
for triangle-free graphs.

It is interesting to remark that this result does not hold for {gem,W4}-free
graphs. It is not difficult to build examples of {gem,W4}-free perfect graphs
which are neither clique-perfect nor coordinated.

In order to show that a perfect {gem,W4,bull}-free graph G is K-perfect, we
need to prove that K(G) contains neither odd holes nor odd antiholes. We
begin by proving that no induced subgraph of K(G) is an odd antihole of
length at least 7.

Theorem 8 If G is a {gem,W4}-free graph then K(G) is a {gem,W4}-free
graph.

9
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PROOF. Suppose that there exist cliques Q1, . . . , Q4 of G such that
Q′

1, . . . , Q
′
4 (the corresponding vertices in K(G)) induce a path or hole in

K(G) (in that order), and let Q0 be a clique having common intersection with
all of Q1, . . . , Q4. Define V2 = (Q0 ∩Q1 ∩Q2) and V3 = (Q0 ∩Q3 ∩Q4), which
are non-empty because G is HCH , and choose v2 ∈ V2 and v3 ∈ V3. From
Q2 ∩ Q4 = ∅, we obtain Q2 ∩ V3 = ∅. Consequently, there exists a vertex
v1 ∈ Q2 which is non-adjacent to v3. In a similar way, there exists a vertex
v4 ∈ Q3 which is non-adjacent to v2.

Both v2 and v1 belong to Q2, so they are adjacent. Similarly, v3 and v4 are
also adjacent because they both belong to Q3. Finally, v2 and v3 are adja-
cent because they both belong to Q0. Therefore, v1, v2, v3, v4 induce a path
or a hole in G. Choose v0 ∈ Q2 ∩ Q3. Then v0 is adjacent (and different)
to all of v1, v2, v3, v4, so v0, v1, v2, v3, v4 induce a gem or W4 in G, which is a
contradiction. 2

Any antihole of length at least seven contains a gem, thus we have the following
corollary.

Corollary 9 If G is a {gem,W4}-free graph then K(G) contains no odd an-
tihole of length greater than 5.

Let G be a graph. A hole of cliques Q1, . . . , Qk (k ≥ 4) is a set of cliques of G
which induces a hole in K(G) (i.e., Qi ∩Qj 6= ∅ ⇔ i = j or i ≡ j±1 mod k).
An intersection cycle of a hole of cliques Q1, . . . , Qk is a cycle v1, . . . , vk of
G such that vi ∈ Qi ∩ Qi+1 for every i = 1, . . . , k. Let C = v1, . . . , vk be
an intersection cycle of a hole of cliques Q1, . . . , Qk. The clique Qi+1 will be
denoted either by QC(vi, vi+1) or by QC(vi+1, vi). When the cycle C is clear
from the context, we note simply Q(vi, vi+1) or Q(vi+1, vi).

We proceed to prove that if G is perfect and {gem,W4,bull}-free, then K(G)
has no induced odd hole. To this end, we introduce the following lemmas,
some of which are trivial and stated with no proof.

Lemma 10 Let G be a {gem,W4}-free graph and C = v1, . . . , v2k+1 (k ≥ 2)
an intersection cycle of a hole of cliques of G. Then

(1) C has no short chord, and
(2) no vertex of C is adjacent to three consecutive vertices of C.

PROOF.

(1) If vi−1 is adjacent to vi+1, since Q(vi−1, vi) is a clique and vi+1 6∈ Q(vi−1, vi),
there exists a vertex wi−1 ∈ Q(vi−1, vi) non-adjacent to vi+1. In a similar way,
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there exists another vertex wi+1 ∈ Q(vi+1, vi) non-adjacent to vi−1. Therefore
vi, wi−1, vi−1, vi+1, wi+1 induce a gem or a W4.

(2) If vi is adjacent to three consecutive vertices vj , vj+1, vj+2, since Q(vj , vj+1)
is a clique, there exists a vertex w ∈ Q(vj , vj+1) which is not adjacent to vi. On
the other hand, by item 1, vj is not adjacent to vj+2. Therefore vj+1, w, vj, vi, vj+2

induce a gem or a W4. 2

The next two lemmas are straightforward.

Lemma 11 Let G be a {gem,W4}-free graph, C = v1, . . . , v2k+1 (k ≥ 2) be
an intersection cycle of a hole of cliques of G, vi, vj , vl be a triangle, and
d ∈ {−1, 1}. If i + d 6= j and i + d 6= l, then vj and vl are both adjacent to
vi+d or both non-adjacent to vi+d.

Lemma 12 Let G be a bull-free graph, and C = v1, . . . , v2k+1 (k ≥ 2) be a
cycle and let i′, j′, l′ ∈ {−1, 1}. If vi, vj, vl induce a triangle, vi+i′ is adjacent
to neither vj nor vl, vj+j′ is adjacent to neither vi nor vl, and vl+l′ is adjacent
to neither vi nor vj, then vi+i′, vj+j′, vl+l′ induce a triangle.

Lemma 13 Let G be a {gem,W4,bull}-free graph, C = v1, . . . , v2k+1 be an
intersection cycle of a hole of cliques of G and d ∈ {1,−1}. If vi, vj, vj+1

induce a triangle, then vi+d, vj , vj+1 induce a triangle, or vi+d, vj−1, vj+2 induce
a triangle.

PROOF. By item (1) of Lemma 10, vj−1 is non-adjacent to vj+1 and vj is
not adjacent to vj+2. In particular, i+d differs from j and j +1. The vertex vi

is adjacent to both vj and vj+1, therefore, item (2) of Lemma 10 implies that
vi is adjacent to neither vj−1 nor vj+2.

Suppose that vi+d, vj, vj+1 is not a triangle. By Lemma 11, vi+d is adjacent
to neither vj nor vj+1. Then, vi, vj , vj+1 induce a triangle, vi+d is adjacent to
neither vj nor vj+1; vj−1 is adjacent to neither vi nor vj+1; vj+2 is adjacent to
neither vi nor vj . Thus, by Lemma 12, vi+d, vj−1, vj+2 induce a triangle. 2

Lemma 14 Let G be a {gem, W4,bull}-free graph, C = v1, . . . , v2k+1 (k ≥ 2)
be an intersection cycle of a hole of cliques of G, vi, vj−1, vj+2 be a triangle,
and d ∈ {−1, 1}. If i + d 6= j − 1 and i + d 6= j + 2, then vi+d, vj−1, vj+2 or
vi+d, vj, vj+1 induce a triangle.

PROOF. By item (1) of Lemma 10, C has no short chord. In particular, i
differs from j and j +1; vj is non-adjacent to vj+2 and vj−1 is non-adjacent to
vj+1. By Lemma 11 (with i := j−1, i+d := j, j := i, l := j +2, recalling that
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vi, vj−1, vj+2 is a triangle), vj is non-adjacent to vi. Using the same argument,
we obtain that vj+1 is non-adjacent to vi.

Suppose that vi+d, vj−1, vj+2 is not a triangle. By Lemma 11, vi+d is adjacent to
neither vj−1 nor vj+2. Therefore, vi, vj−1, vj+2 induce a triangle; vi+d is adjacent
to neither vj−1 nor vj+2; vj is adjacent to neither vi nor vj+2; vj+1 is adjacent
to neither vi nor vj−1. Hence, Lemma 12 implies that vi+d, vj, vj+1 induce a
triangle. 2

Let C be a cycle of a graph G. An edge (v, w) of C is improper if there is a
vertex z ∈ C such that v, w, z is a triangle. Conversely, an edge of C is proper
if it is not improper. A vertex of C is lonely if it does not induce a triangle
with any two other vertices of C.

In order to prove our main theorem we are going to show that if (vi, vi+1) is
an improper edge of an intersection cycle v1, . . . , v2k+1 (k ≥ 2) of a hole of
cliques of G, then (vi+1, vi+2) is a proper edge. Also, if (vi, vi+1) is a proper edge
then (vi+1, vi+2) is an improper edge. Therefore, there is no such odd-length
intersection cycle.

Lemma 15 Let G be a perfect {gem,W4,bull}-free graph and C = v1, . . . , v2k+1

(k ≥ 2) be an intersection cycle of a hole of cliques of G. Then no vertex of
C is lonely.

PROOF. By contradiction, suppose that C contains lonely vertices. Since G
is perfect and C is an odd cycle, it follows that C must have three vertices
inducing a triangle. Therefore, we can find a lonely vertex vi such that vi+1 is
not lonely. Let vj , vj+l be two vertices such that vi+1, vj, vj+l induce a triangle.
Without loss of generality, we may assume that i + 1 < j < j + l and that j
and l are chosen so that l is minimum. Since vi is lonely, it follows that i 6= j
and i 6= j + l.

If l = 1 (i.e., vi+1, vj, vj+1 is a triangle) then by Lemma 13 (taking i := i + 1)
it follows that vi, vj, vj+1 induce a triangle or vi, vj−1, vj+2 induce a triangle,
contradicting the fact that vi is lonely. By item (1) of Lemma 10, C has no
short chord, so vj is not adjacent to vj+2. Therefore, l ≥ 3.

From l ≥ 3 we obtain i + 1 < j + 1 < j + l and, in particular, vi+1, vj+1

and vj+l are three different vertices. Moreover, since we chose j and l such
that l is minimum, vj+1 is non-adjacent either to vj+l or to vi+1 (otherwise,
we may choose vj+1 instead of vj). By Lemma 11 (taking i := j, j := i + 1,
l := j + l), it follows that both vj+l and vi+1 are non-adjacent to vj+1. By the
same argument, interchanging j+1 with j+ l−1 and j+ l with j, we conclude
that vj+l−1 is adjacent to neither vj nor vi+1.
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We have that vi+1, vj , vj+l induce a triangle; vi is adjacent to neither vj nor
vj+l; vj+1 is adjacent to neither vj+l nor vi+1; vj+l−1 is adjacent to neither vj

nor vi+1. By Lemma 12, vi, vj+l−1, vj+1 induce a triangle, contradicting the
fact that vi is lonely. 2

Lemma 16 Let G be a perfect {gem,W4,bull}-free graph and C = v1, . . . , v2k+1

(k ≥ 2) be an intersection cycle of a hole of cliques of G. Then C does not
contain two consecutive improper edges.

PROOF. Suppose the lemma is false. Then, there are vertices vi−1, vi, vi+1

such that vi−1, vi, vj is a triangle and vi, vi+1, vj+h is another triangle. Let
I = {vj, vj+sg(h), . . . , vj+h} (where sg(h) = 1 if h > 0,−1 if h < 0 and 0 if
h = 0). We can choose h to be positive or negative, so that none of vi−1, vi, vi+1

belongs to I. We may also assume that j and h are taken such that |h| is
minimum satisfying these conditions. For ease of notation, call wj = vj and
wj+s = vj+s×sg(h) for all 1 ≤ s ≤ |h|. Also call l = |h|.

By item (2) of Lemma 10, wj is non-adjacent to vi+1 because wj is adjacent
to both vi−1 and vi. Similarly, wj+l is non-adjacent to vi−1. Then wj+l 6= wj ,
so l > 0.

By item (1) of Lemma 10, C has no short chord and therefore vi−1 is non-
adjacent to vi+1. If l = 1 then vi, vi−1, wj, wj+1, vi+1 induce a gem, which is a
contradiction, so l ≥ 2. From l ≥ 2, vi−1, vi, wj+1 is not a triangle, otherwise
we could choose wj+1 instead of wj contradicting the minimality of l = |h|.
Clearly, wj+1 ∈ I and vi, vi−1 6∈ I, so they are all different. By Lemma 13,
wj+1, vi−2, vi+1 induce a triangle.

Suppose l = 2. Then wj+l = wj+2 is adjacent to vi+1. The vertex wj+1 is also
adjacent to vi+1, vi 6= wj+2, vi 6= wj+1, and vi is adjacent to wj+2. Therefore,
Lemma 11 implies that vi is also adjacent to wj+1. We have that vi is adjacent
to wj , wj+1 and wj+2, contradicting item (2) of Lemma 10, hence l > 2.

Since wj, wj+1, wj+3 ∈ I and vi−1, vi, vi+1 6∈ I, we have that wj+2 6= vi−2 and
wj+2 6= vi+1. Also, since wj+1, vi−2, vi+1 induce a triangle, Lemma 11 implies
that wj+2, vi−2, vi+1 induce a triangle or wj+2 is adjacent to neither vi−2 nor
vi+1.

If wj+2, vi−2, vi+1 induce a triangle, since vi+1 is adjacent to both wj+1 and
wj+2, by item 2 of Lemma 10 it follows that vi+1 is non-adjacent to wj+3.
In this case, we have l > 3. By the same arguments as before (interchanging
j +2 and j +3) we conclude that wj+3 6= vi−2 and wj+3 6= vi+1. By Lemma 11,
knowing that wj+3 is non-adjacent to vi+1, it follows that wj+3 is adjacent to
neither vi−2 nor vi+1. So, we conclude that if wj+2, vi−2, vi+1 induce a triangle
then wj+3 is adjacent to neither vi−2 nor vi+1.
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If wj+2, vi−2, vi+1 induce a triangle, define a = 3 and, if wj+2 is not adjacent to
none of vi−2, vi+1, define a = 2. In both cases (a = 2 or a = 3), wj+a is adjacent
to neither vi−2 nor vi+1; wj+a−1, vi−2, vi+1 induce a triangle, and a < l. Then,
by Lemma 14, wj+a, vi−1, vi induce a triangle. This is a contradiction, since the
triangles wj+a, vi−1, vi and wj+l, vi, vi+1 contradict the minimality of l = |h| on
the election of j and h (taking into account that the distance between wj+a

and wj+l is l − a). 2

Lemma 17 Let G be a perfect {gem,W4,bull}-free graph and C = v1, . . . , v2k+1

(k ≥ 2) be an intersection cycle of a hole of cliques of G. Then C does not
contain two consecutive proper edges.

PROOF. Suppose the lemma is false. Then, there exist vertices vi−1, vi, vi+1

such that (vi−1, vi) and (vi, vi+1) are edges which do not belong to any triangle
containing only vertices of C. By Lemma 15, vi is not lonely and therefore
there are vertices vi−j , vi+l such that vi−j , vi, vi+l is a triangle. We may assume
that we have chosen l ≥ 1 to be minimum and then (once l is chosen) we
choose j ≥ 1 to be minimum. We may also assume, changing the labels of the
vertices of C if necessary, that j ≥ l and i − j < i < i + l. Therefore, the sets
{i − j, i − j + 1, . . . , i − 1} and {i + 1, i + 2, . . . , i + l} do not intersect.

Since (vi, vi+1) is proper, it follows that neither vi−j , vi, vi+1 nor vi, vi+1, vi+l is
a triangle, so vi+1 is adjacent to none of vi−j, vi+l. Therefore, l > 1. Neither
vi+l−1, vi, vi−j nor vi+l, vi, vi−j+1 are triangles because we have chosen l mini-
mum and then we have taken j minimum. Therefore, by Lemma 11 (setting
i := i + l, l := i, j := i − j and d := −1) vi+l−1 is adjacent to neither vi nor
vi−j and (setting i := i − j, l := i + l, j := i and d := 1) vi−j+1 is adjacent
to neither vi nor vi+l. Since vi+1 is adjacent to neither vi+l nor vi−j, Lemma
12 implies that vi+1, vi+l−1, vi−j+1 is a triangle. Labelling the vertices of C in
the reverse order and interchanging j and l it follows that vi−1, vi+l−1, vi−j+1

is also a triangle (note that the conditions for l and j are not symmetric, but
in the argument above we have used them in a symmetric way).

By item (1) of Lemma 10, C has no short chord, so l > 2. Now we split our
proof into two cases, either: 1) l = j = 3 or 2) j > 3, l ≥ 3.

Case 1) l = j = 3: In this case vi+1, vi+2, vi−2 is a triangle and vi−1, vi+2, vi−2

is another triangle. Since Q = Q(vi−2, vi−1) is a clique and vi−2, vi−1 are both
adjacent to vi+2, there exists a vertex w ∈ Q − {vi−1, vi−2} non-adjacent to
vi+2. The cycle C has no short chord, so vi−1 is non-adjacent to vi+1. Therefore,
w, vi−1, vi+2, vi+1 induce a hole or a path. Furthermore, vi−2 is adjacent to all
of them, so these five vertices induce a gem or W4, which is a contradiction.

Case 2) l ≥ 3, j > 3: By Lemma 11 (instantiating i := i − j + 1, j = i + 1,
l = i+ l−1 and d := 1), vi−j+2 is adjacent to both vi+1 and vi+l−1 (case 2A) or

14
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to none of them (case 2B). In case 2A, by item (2) of Lemma 10, as vi+l−1 is
adjacent to both vi−j+1 and vi−j+2, vi+l−1 is non-adjacent to vi−j+3. Similarly,
we obtain that vi−j+3 is non-adjacent to vi+1.

Let a = j − 3 in case 2A, and a = j − 2 in case 2B. In both cases vi−a−1,
vi+l−1, vi+1 is a triangle and vi−a is not adjacent to neither vi+l−1 nor vi+1.
If vi+l is adjacent to vi−a−1, since vi+l−1 is also adjacent to vi−a−1 and Q′ =
QC(vi+l, vi+l−1) is a clique, it follows that there is a vertex w ∈ Q′ which is
non-adjacent to vi−a−1. Recalling that vi+l is non-adjacent to vi+1, we obtain
that vi+l−1, w, vi+l, vi−a−1, vi+1 induce a gem or W4, which is a contradiction.
So, vi+l is non-adjacent to vi−a−1.

We already know that vi−a−1, vi+l−1, vi+1 is a triangle and vi−a is adjacent
to neither vi+l−1 nor vi+1; vi+l is adjacent to neither vi−a−1 nor vi+1; and, as
(vi, vi+1) is proper, vi is adjacent to neither vi+l−1 nor vi−a−1. By Lemma 12,
vi−a, vi+l, vi is a triangle, which is a contradiction because a < j and we have
taken j to be minimum. 2

We can now prove the main results of this section.

Theorem 18 If G is a perfect {gem,W4,bull}-free graph then G is K-perfect.

PROOF. Suppose G is not K-perfect. By Corollary 9, K(G) contains no odd
antihole of length greater than 5. Therefore, K(G) contains an odd hole, and
in consequence there exists an odd hole of cliques in G. So there is an odd-
length intersection cycle v1, . . . , v2k+1 in G (k ≥ 2). Call ei = (vi, vi+1) for all
1 ≤ i ≤ 2k + 1. By Lemmas 16 and 17 we may assume that e1 is an improper
edge and e2 is a proper edge. By a repeated application of Lemmas 16 and 17
(note that the cycle is odd) we obtain that e2k+1 is improper and therefore e1

is proper, a contradiction. 2

Theorem 19 Let G be a {gem,W4,bull}-free graph. Then the following state-
ments are equivalent:

(i) G is perfect.
(ii) G is clique-perfect.
(iii) G is coordinated.

PROOF. This is a direct corollary of Theorem 18 and the fact that every
graph in a hereditary class of K-perfect clique-Helly graphs, is clique-perfect
and coordinated. Recall that {gem,W4}-free graphs are a hereditary class of
clique-Helly graphs and the only clique-perfect graphs which are minimally
imperfect (C6j+3, for j ≥ 1) contain gems. 2
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Corollary 20 The clique-perfect and coordinated graph recognition problem
restricted to the class of {gem,W4,bull}-free graphs can be solved in polynomial
time.

PROOF. It is a direct consequence of Theorem 19 and the fact that perfect
graphs can be recognized in polynomial time [6]. 2

3 Summary

These results allow us to formulate partial characterizations of clique-perfect
and coordinated graphs by minimal forbidden subgraphs on two superclasses
of triangle-free graphs, as it is shown in Table 1.

Graph classes Forbidden subgraphs Recognition Ref.

Paw-free graphs odd holes linear Thm 6

{gem,W4,bull}-free graphs odd holes polynomial Thm 19

Table 1
Minimal forbidden induced subgraphs for clique-perfect and coordinated graphs in
each class analyzed here.

It remains as an open problem to determine the “biggest” superclass of triangle-
free graphs where the three classes studied here (perfect, clique-perfect and
coordinated graphs) are equivalent.

Acknowledgments: We thank Annegret Wagler, Mart́ın Safe, and Javier Marenco
for their comments and suggestions.
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