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In this paper we introduce a robust optimization approach to solve the Vehicle Routing Problem (VRP) with demand uncertainty.
This approach yields routes that minimize transportation costs while satisfying all demands in a given bounded uncertainty set. We
show that for the Miller–Tucker–Zemlin formulation of the VRP and specific uncertainty sets, solving for the robust solution is no
more difficult than solving a single deterministic VRP. Our computational results on benchmark instances and on families of clustered
instances show that the robust solution can protect from unmet demand while incurring a small additional cost over deterministic
optimal routes. This is most pronounced for clustered instances under moderate uncertainty, where remaining vehicle capacity is used
to protect against variations within each cluster at a small additional cost. We compare the robust optimization model with classic
stochastic VRP models for this problem to illustrate the differences and similarities between them. We also observe that the robust
solution amounts to a clever management of the remaining vehicle capacity compared to uniformly and non-uniformly distributing
this slack over the vehicles.

Keywords: Robust optimization, vehicle routing, demand uncertainty

1. Introduction

Many industrial applications deal with the problem of rout-
ing a fleet of vehicles from a depot to service a set of cus-
tomers that are geographically dispersed. This type of prob-
lem is faced daily by courier services (e.g., Federal Express,
United Parcel Service and the Overnight United States
Postal Service), local trucking companies and demand re-
sponsive transportation services, just to name a few. These
types of services have experienced tremendous growth in
recent years. For example, both United Parcel Service and
the Federal Express have annual revenue of well over $10
billion, and the dial-a-ride service for the disabled and hand-
icapped is today a $1.2 billion industry (Palmer et al., 2004).
However, congestion and variability in demand and travel
times affects these industries on three major service dimen-
sions: (i) travel time; (ii) reliability; and (iii) cost (Meyer,
1996). Therefore, there is a need to develop routing and
scheduling tools that directly account for the uncertainty.
In this paper, we focus on the uncertainty in demand.

Generally speaking, current methods to represent the un-
certainty in a Vehicle Routing Problem (VRP) either make

∗Corresponding author

strong assumptions regarding the distribution of the un-
certain parameters, or use a discrete distribution repeating
the problem for each scenario (Bertsimas and Simchi-Levi,
1996; Gendreau et al., 1996). These methods then obtain a
solution that minimizes the expected value or are used to an-
alyze the performance of a routing policy in expected value
or worst case situations. The resulting solution is poten-
tially sensitive to the actual data that occur in the problem.
Considering that the VRP solution in a given application
will only face a single realization of the uncertainty, a rea-
sonable goal is to obtain a robust solution, i.e., a solution
that is good for all possible data uncertainty.

In this paper, we consider the Capacitated Vehicle Rout-
ing Problem (CVRP) with uncertain demand on a set
of fixed demand points. We use the robust optimiza-
tion methodology introduced by Ben-Tal and Nemirovski
(1998) to formulate a new problem for the VRP with de-
mand uncertainty, the Robust Vehicle Routing Problem
(RVRP). The optimal solution for this problem is the route
that optimizes the worst-case value over all data uncer-
tainty. The expectation is that such a solution would be
efficient in its worst case and thus efficient for every possi-
ble outcome. A key aspect of our work is to model demand
uncertainty in the CVRP in such a way as to obtain a RVRP
which can be solved efficiently. That is to say that it is not
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510 Sungur et al.

significantly more difficult than solving the deterministic
CVRP.

The proposed RVRP identifies an optimal a priori route
that is feasible for every demand realization and does not
consider recourse actions. Such solutions are possible in
cases where the demand uncertainty is small or the vehi-
cle fleet has sufficient capacity. A different model is needed
if there is no route that can meet all demand realizations
and we say that the RVRP is infeasible. In problems with
recourse there is the additional difficulty of determining
optimal recourse actions. This leads either to augmenting
the original deterministic model or requiring strong un-
certainty assumptions to evaluate the recourse action. In
both cases, the additional flexibility of the recourse solution
comes with an increased complexity in the formulation and
solution procedure. In this work we propose a model that
uses a simple representation of the uncertainty and does
not make the problem more difficult to solve. We concen-
trate on studying when this a priori RVRP can be beneficial,
providing solutions that effectively address the uncertainty
without being overly conservative, and leave to future re-
search the extension of this model to infeasible instances.
To illustrate the differences between the RVRP and exist-
ing stochastic VRP models we present a comparison with a
chance constrained model and a stochastic model with re-
course for the VRP with demand uncertainty. In addition
to comparing the quality of the solutions we note that each
method requires a different uncertainty model and set of as-
sumptions. These differences are important in determining
which is the best model to use for a specific application.

A natural method to address demand uncertainty is to
reserve vehicle capacity to be able to adapt to cases when
the realized demand is greater than the expected demand.
In fact, if there is abundant vehicle capacity, such as in the
uncapacitated VRP, the optimal routing solution can eas-
ily accommodate changes in the demand levels. However, in
capacitated cases with little excess vehicle capacity, the diffi-
cult question is how to distribute this extra capacity among
routes to better address the demand uncertainty. The RVRP
distributes this slack by finding a minimum cost route that
satisfies all possible demand realizations.

The structure of the paper is as follows. We discuss the rel-
evant literature in the next section. In Section 3 we present
the derivations of the RVRP formulations for problems with
demand uncertainty and show that for the Miller–Tucker–
Zemlin (MTZ) formulation and demand uncertainty sets
constructed from combinations of scenarios the resulting
RVRP is another instance of a CVRP. We present our com-
putational results in Section 4. Here we show computation
of robust solutions for a well-known suite of CVRP prob-
lems (Augerat et al., 1995), and compare the robust solution
against the deterministic solution on a family of clustered
instances. We also contrast the robust optimization method
to existing stochastic VRP methods and simple methods of
distributing the unused vehicle capacity. We finish the paper
with concluding remarks in Section 5.

2. Literature review

Problems where a given set of vehicles with finite capacity
have to be routed to satisfy a geographically dispersed de-
mand at minimum cost are known as VRPs. This class of
problems was introduced by Dantzig and Ramser (1959)
and a considerable amount of research on the VRP and its
numerous extensions and applications has been performed.
General surveys of vehicle routing research can be found in
Fisher (1995), Laporte and Osman (1995), and Toth and
Vigo (2002). The VRP is known to be NP-hard (Lenstra
and Rinnooy Kan, 1981), but nevertheless, there has been
considerable work on developing exact solution procedures,
see for instance Ralphs et al. (2003), Baldacci et al. (2004),
Lysgaard et al. (2004), and Fukasawa et al. (2006).

The most studied areas in the stochastic VRP literature
are the VRP with Stochastic Demands (VRPSD) and the
VRP with Stochastic Customers (VRPSC). A major con-
tribution to VRPSD is that of Bertsimas (1992), where a
priori solutions use different recourse policies to solve the
VRPSD and bounds, asymptotic results and other theo-
retical properties are derived. Bertsimas and Simchi-Levi
(1996) surveys work on VRPSD with an emphasis on the
proposed algorithms and the insights gained from their use.
Different solution algorithms are presented in Dror et al.
(1989) and Dror (1993), including conventional stochas-
tic programming and Markov decision processes for sin-
gle and multi-stage stochastic models. Secomandi (2001)
introduces a re-optimization-type routing policy for the
VRPSD.

The VRPSC, where fixed demand customers have a prob-
ability pi of being present, and the VRPs with Stochas-
tic Customers and Demands (VRPSCD), which combines
VRPSC and VRPSD, first appeared in Jézéquel (1985),
Jaillet (1987) and Jaillet and Odoni (1988). Bertsimas (1988)
gives a systematic analysis and presents several properties,
bounds and heuristics. Gendreau et al. (1995) proposes the
first exact solution, an L-shaped method and a tabu search
meta heuristic for the VRPSCD.

This prior work on stochastic VRPs includes two impor-
tant types of problem formulations: (i) chance constrained
models; and (ii) stochastic models with recourse. A chance
constrained model assumes that constraints are satisfied
with a high probability given a known probability distribu-
tion of the uncertain parameters. These chance constrained
models have been shown to be equivalent to deterministic
VRPs for a number of routing problems and uncertainty as-
sumptions (Stewart and Golden, 1983; Laporte et al., 1989,
1992). Stochastic models with recourse allow for recourse
actions that adjust an a priori solution after the uncertainty
is revealed. See Gendreau et al. (1996) for a good survey.
Different recourse actions have been proposed in the litera-
ture, such as skipping non-occurring customers, returning
to the depot when the capacity is exceeded, or complete
reschedule for occurring customers (Jaillet, 1988; Waters,
1989; Bertsimas et al., 1990). These recourse actions allow
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A robust optimization for the capacitated VRP 511

a broader feasible solution set but can increase the problem
size and require specialized solution procedures.

Recent works by Morales (2006) and Erera et al. (2007)
use robust optimization for the VRPSD with recourse. It is
assumed that vehicles replenish at the depot, the worst-case
value for the recourse action is computed by finding the
longest path on an augmented network and the problem is
solved using a tabu search heuristic. In contrast, the RVRP
we propose avoids the additional complexity of recourse
models and uses a simple model of uncertainty. The point
is to investigate when this simple approach can provide an
a priori solution that effectively adapts to the uncertainty
without being overly conservative.

A priori solutions for the VRPSD vary in how they al-
locate the unused capacity. This allocation strategy is key
in determining the success of the solution in coping with
uncertainty, especially when there is little unused capacity.
A few methods developed for the deterministic VRP have
focused explicitly on how to distribute the vehicle capacity
among routes. For instance, Daganzo (1988) proposes the
use of a consolidation center as a strategy to better manage
vehicle capacity. Charikar et al. (2001) introduces a con-
stant ratio approximation algorithm which assigns each ve-
hicle half of its capacity and uses the remaining capacity
to improve routes with a matching algorithm. Branke et al.
(2005) shows that managing the slack by waiting at strategic
locations can increase the probability of meeting additional
demand. Our work departs from these prior results since
we consider a different problem domain: a standard CVRP
with no transshipment nodes and with a small capacity-
to-demand ratio. Zhong et al. (2007) developed a recourse
model for the VRPSCD that uses the capacity that is not as-
signed in the first stage to adapt to the demand uncertainty
in the second stage. They show that keeping unassigned cus-
tomers near the depot is a good strategy for balancing the
workload due to daily demand variations. Although our
work differs from this because it focuses on a priori rout-
ing strategies with no recourse, we also notice that having
customers near the depot facilitates the creation of efficient
robust routes.

In this paper we use robust optimization for the VRPSD.
We follow the robust optimization methodology as intro-
duced by Ben-Tal and Nemirovski (1998, 1999) and El-
Ghaoui et al. (1998) for linear quadratic and general con-
vex programs, that were subsequently extended to integer
programming by Bertsimas and Sim (2003). The general
approach of robust optimization is to optimize against the
worst instance that might arise due to data uncertainty by
using a min-max objective. This typically results in solu-
tions that exhibit little sensitivity to data variations and are
said to be immunized to this uncertainty. Robust solutions
have the potential to be efficient solutions in practice, since
they tend not to be far from the optimal solution of the
deterministic problem and significantly outperform the de-
terministic optimal solution in the worst case (Goldfarb
and Iyengar, 2003; Bertsimas and Sim, 2004).

The robust optimization methodology assumes that the
uncertain parameters belong to a given bounded uncer-
tainty set. For fairly general uncertainty sets, the resulting
robust counterpart can have a comparable complexity to
the original problem. For example, a Linear Program (LP)
with uncertain parameters belonging to a polyhedral uncer-
tainty set has a robust problem which is an LP whose size
is polynomial in the size of the original problem (Ben-Tal
and Nemirovski, 1999). This nice complexity result, how-
ever, does not carry over to robust models of problems with
recourse, where LPs with polyhedral uncertainty can result
in NP-hard problems, see Ben-Tal et al. (2004). An impor-
tant question therefore is how to formulate a robust prob-
lem that is not more difficult to solve than its deterministic
counterpart.

3. RVRP formulations

There exist a number of different VRP formulations and
since each could lead to a different RVRP, it is important to
identify a VRP formulation that leads to a RVRP that is not
too difficult to solve. In addition to the VRP formulation,
the form of the uncertainty sets considered also influences
the resulting RVRP and the level of difficulty associated
with its solution.

In this section, we first identify the deterministic VRP
formulation and demand uncertainty sets that will be used
and then we present the derivation for the RVRP.

3.1. Identifying the VRP formulation

In addition to the problem size, the difficulty in solving a
problem is influenced by three aspects: (i) the problem data;
(ii) the problem formulation; and (iii) the solution proce-
dure. For instance, the observed runtimes of a fixed Integer
Program (IP) solver show different behavior as we vary the
VRP formulations (Ordóñez et al., 2007). In addition, the
fixed general IP solver was more efficient in solving the
MTZ formulation than other arc-based VRP formulations
considered in that study for a wide range of problem pa-
rameters.

Another important criterion in identifying a suitable for-
mulation for our robust optimization framework is the na-
ture of the formulation with respect to uncertain parame-
ters. Since we are interested in introducing uncertainty in
demand, when we consider the parts of the formulation re-
lated to demand, the MTZ formulation has constraints in
the form of inequalities. In the robust optimization method-
ology, it is preferable to have inequality constraints involv-
ing uncertain parameters than equality constraints, since
it is more difficult to satisfy equalities for all values of the
uncertainty. In fact Ben-Tal et al. (2004) show that even
for simple LPs, if there are uncertain parameters in equal-
ity constraints the robust counterpart problem can be NP-
hard.
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512 Sungur et al.

The MTZ formulation of the CVRP follows: it considers
the problem of routing at minimum cost a uniform fleet of
K vehicles, each with capacity C, to service geographically
dispersed customers, each with a deterministic demand that
must be serviced by a single vehicle. Let V be the set of
n demand nodes and a single depot, denoted as node 0.
Let di be the demand at each node i. We consider the fully
connected network, and denote the deterministic travel time
between node i and node j by cij. The arc-based model
considers integer variables xij which indicate whether or
not a vehicle goes from node i to node j. In addition, the
MTZ formulation includes continuous variables ui for every
i ∈ V \ {0} that represent the flow in the vehicle after it visits
customer i. The constraints (1)–(5) are routing constraints
and the constraints (6) and (7) impose both the capacity
and connectivity of the feasible routes.

(CVRP) min
∑
i ∈ V

∑
j ∈ V

cijxij, (1)

s.t.
∑
i ∈ V

xij = 1 for j ∈ V \ {0}, (2)

∑
j ∈ V

xij = 1 for i ∈ V \ {0}, (3)

∑
i ∈ V

xi0 = K, (4)

∑
j ∈ V

x0j = K, (5)

uj − ui + C(1 − xij) ≥ dj if i, j ∈ V \ {0},
i �= j, (6)

di ≤ ui ≤ C if i ∈ V \ {0}, (7)
xij ∈ {0, 1} if i, j ∈ V. (8)

Notice that the uncertain demand di appears by itself and
only on constraints (6) and (7). However, the lower bound
on constraint (7) is implied from constraint (6), the fact that
every node is visited, and that ui ≥ 0 for all i ∈ V \ {0}. We
will therefore only consider the uncertainty in constraint
(6) and replace all di with zero in constraint (7).

Although the nature of the MTZ formulation is the pre-
ferred one with respect to uncertain parameters for our
robust optimization framework, there is a caveat. This for-
mulation can have large initial LP gaps, which lead to large
solution times. However, it is possible to improve this gap
by adopting the lifting techniques proposed by Desrochers
and Laporte (1991).

3.2. Uncertainty in demand

We consider that the demand parameter d is uncertain and
belongs to a bounded set U . We consider uncertainty sets
which are constructed as deviations around an expected de-
mand value d0. The possible deviation directions from these
nominal values are fixed and identified by scenario vectors,
dk ∈ �n, where n is the number of nodes. The scenario vec-
tors are allowed to have negative deviation values. For a

given number of scenario vectors, s, the general uncertainty
set U is a linear combination of the scenario vectors with
weights y ∈ �s that must belong to a bounded set y ∈ Y :

UD =
{

d | d0 +
s∑

k=1

ykdk, y ∈ Y

}
,

In particular, we consider the following three sets for Y :

convex hull Y1 =
{

y ∈ �s | y ≥ 0,

s∑
k=1

yk ≤ 1

}
,

box Y2 = {
y ∈ �s | ‖y‖∞ ≤ 1

}
,

ellipsoidal Y3 = {
y ∈ �s | yTQy ≤ 1

}
,

where the ellipsoidal set is defined for some given positive
definite matrix Q, for example Q = I. We refer to the uncer-
tainty set formed by considering the combination set Yi as
Ui for i = 1, 2, 3. Note that if s = n and the scenario vectors
dk correspond to the coordinate axis, then Y2 leads to UD =
d0 + {d | ‖d‖∞ ≤ 1} and Y3 to UD = d0 + {d | dTQd ≤ 1}
the full dimensional box and ellipse centered at d0, respec-
tively. We will show that for these three sets Ui the resulting
RVRP problem is an instance of the CVRP.

3.3. Robust VRP formulation

We now propose the robust counterpart problem RVRP
for CVRP with demand belonging to an uncertainty set U .
Recall that we consider the problem only with uncertainty
in constraint (6) with constraint (7) equal to 0 ≤ u ≤ C.

The robust VRP finds the optimal route that satisfies all
possible demand outcomes, in other words the problem has
to identify routes xij and vehicle usage ui such that:

uj − ui + C(1 − xij) ≥ dj ∀d ∈ U, i, j ∈ V \ {0}, i �= j.
(9)

We can therefore state the RVRP. This problem minimizes
objective (1), subject to constraints (2), (3), (4), (5), (7), (8),
(9). If we substitute in the definition of the uncertainty set
U , we can write the robust constraint (9) as the following
inequality:

uj − ui + C(1 − xij) − d0
j ≥

s∑
k=1

ykdk
j ∀y ∈ Y,

i, j ∈ V \ {0}, i �= j. (10)

For given decision variables x and u we refer to the left-hand
side of the above inequality as φij(x, u) = uj − ui + C(1 −
xij) − d0

j for i, j ∈ V \ {0}, i �= j. Then, to enforce that the
above inequality holds for all y ∈ Y it suffices to enforce it
for supy∈Y

∑s
k=1 ykdk

j = supy∈Y yTDj•. Here we denote by
D = [d1 . . . ds ] ∈ �n×s the matrix of scenario vectors and
Dj• = (d1

j , . . . , ds
j )T the jth row of D as a column vector.

Let us also denote e as the column vector of all ones of
appropriate dimension.
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Proposition 1. Under uncertainty set U1, the robust counter-
part is obtained by replacing constraint (6) in CVRP with
constraint (11). We refer to the resulting RVRP as RVRP1:

uj − ui + C(1 − xij) ≥ d0
j + max

{
max

k
dk

j , 0
}
,

i, j ∈ V \ {0}, i �= j. (11)

Proof. Using the definition of Y1 we can write
supy∈Y1

yTDj• and its dual as the following pair of LPs:

(Primal) max yTDj• (Dual) min θ
s.t. eTy ≤ 1 s.t. θe ≥ Dj•

y ≥ 0 θ ≥ 0 .

From weak duality, the condition φij(x, u) ≥ supy∈Y1
yTDj•

is equivalent to having φij(x, u) ≥ θ for some dual feasi-
ble θ. This means that φij(x, u) ≥ 0 and φij(x, u) ≥ dk

j for
k = 1, . . . , s. Combining these conditions together for all
φij(x, u) gives constraint (11). �

Proposition 2. Under uncertainty set U2, the robust counter-
part is obtained by replacing constraint (6) in CVRP with
constraint (12). We refer to the resulting RVRP as RVRP2:

uj − ui + C(1 − xij) ≥ d0
j +

∑
k

∣∣dk
j

∣∣, i, j ∈ V \ {0}, i �= j.

(12)

Proof. Using the definition of Y2 we can write
supy∈Y2

yTDj• and its dual as the following pair of LPs:

(Primal) max yTDj•, (Dual) min eT(α + β),
s.t. y ≤ e, s.t. α − β = Dj•,

y ≥ −e, α,β ≥ 0.

It is simple to verify that the optimal solution to the dual
problem will satisfy α∗

k + β∗
k = |dk

j | for every k = 1, . . . , s.
Therefore, the dual optimal objective value is

∑s
k=1 |dk

j |.
Enforcing the robust feasibility condition on φij(x, u)
with the above optimal dual objective value we obtain
constraint (12). �

Proposition 3. Under uncertainty set U3, the robust counter-
part is obtained by replacing constraint (6) in CVRP with
constraint (13). We refer to the resulting RVRP as RVRP3:

uj − ui + C(1 − xij) ≥ d0
j +

√
DT

j•Q−1Dj•, i, j ∈ V \ {0},
i �= j. (13)

Proof. Using the definition of Y3 we have that
supy∈Y3

yTDj• = max yTDj• : yTQy ≤ 1. From the Karush–
Kuhn–Tucker optimality conditions we have that the opti-
mal solution to this problem is

y∗ = 1√
DT

j•Q−1Dj•
Q−1Dj•.

When we plug this optimal solution into the robust feasi-
bility condition φij(x, u) ≥ (y∗)TDj•, we obtain constraint
(13). �

For the three RVRPs with demand uncertainty studied,
the only change from the original CVRP formulation is an
increase in the demands that appear in constraint (6). Since
the deviation vectors, dk, are fixed, each of the RVRPs is
an instance of the CVRP. We can therefore make use of the
efficient exact algorithms in the literature to solve the ro-
bust problems. We note that the demand parameters used in
the RVRPs are at least as big as the deterministic demand
parameters, thus the RVRPs are typically more capacity
constrained than the corresponding deterministic problem.
We note this because it has been observed in practice that
solving a CVRP becomes harder as the problem is more
capacity constrained. Thus, although the RVRPs are in-
stances of a CVRP, in practice solving RVRPs is likely to be
more difficult than solving the deterministic versions. Lastly
note that, depending on the nature of the scenario vectors,
RVRPs may result in infeasible problems even though the
deterministic CVRP is feasible.

For different types of demand uncertainty sets d ∈ U ,
the key step in the derivation of the RVRP is to compute
supd∈U dj and substitute this value for the right-hand side
of Equation (9). This can be done for different uncertainty
sets than those considered in this work. We do not pursue
these formulations here for simplicity, since many require
additional constraints and variables making the resulting
robust problem not a CVRP that may necessitate a special-
ized solution procedure.

Since the robust formulations with uncertainty in de-
mand, RVRP1, RVRP2 and RVRP3 are instances of a
CVRP, it is possible to introduce uncertainty in travel time
in addition to the uncertainty in demand by using the ap-
proach proposed by Bertsimas and Sim (2003) for IPs with
uncertain cost coefficients. The authors consider a box un-
certainty set for the cost coefficients with an additional re-
striction on the number of cost coefficients that vary. They
show that the optimum solution of the robust counterpart
can be obtained by solving a polynomial number of nominal
problems with modified cost coefficients. Since the RVRPs
for our proposed uncertainty sets are instances of a general
IP, formulating and solving the robust counterparts with
independent uncertainty in both demand and travel time is
a straightforward application of this methodology.

4. Experimental analysis

In this section, we first present performance measures that
will be used to compare robust and deterministic solutions.
We then present computational results on instances from
the literature and analyze the trade-offs of robust solutions
on families of clustered instances. We also compare the ro-
bust solution with alternative methods to address demand
uncertainty in VRPs.



D
ow

nl
oa

de
d 

B
y:

 [U
ni

ve
rs

ity
 o

f S
ou

th
er

n 
C

al
ifo

rn
ia

] A
t: 

23
:4

6 
10

 M
ar

ch
 2

00
8 

514 Sungur et al.

Our computational results compare the solution val-
ues for the different problem formulations of the VRPSD.
To solve the deterministic, robust and chance constrained
models, which are instances of CVRP, we use the branch-
and-cut-based VRP solver in the open source SYM-
PHONY library due to Ralphs et al. (2003), available on-
line at http://branchandcut.org/VRP. We solve the
stochastic models with recourse using CPLEX 9.0. All
experiments were carried out with a runtime limit of an
hour on a Dell Precision 670 computer with a 3.2 GHz
Intel Xeon Processor and 2 GB RAM running Red Hat
Linux 9.0.

4.1. Performance measures

The first performance measure, the ratio κ, quantifies the
relative extra cost of the robust solution with respect to
the cost of the deterministic solution. It is given by κ =
(zr − zd)/zd where zd is the optimal objective function value
of the deterministic CVRP (with expected demand) and zr is
the optimal objective value of the robust approach counter-
part (with worst-case demand). This ratio gives information
on how much extra cost we will incur if we want to imple-
ment the robust approach to protect against the worst-case
realization of the uncertainty, instead of implementing the
deterministic approach. Note that the calculation of the
ratio requires solving two instances of CVRP.

The second performance measure considers the effect of
the solutions on the demand when it is subject to demand
uncertainty. The ratio δ is the relative unsatisfied demand
for the deterministic solution when it faces its worst-case de-
mand. It is given by δ = (γd/

∑
i∈V d0

i ) where the numerator
γd is the maximum unsatisfied demand that can occur if the
optimal deterministic solution is used. The denominator
is the total demand of the deterministic case and it is as-
sumed that the deterministic problem is feasible. To obtain
γd, we fix the routing variables to the deterministic optimal
solution and maximize the unmet demand by varying the
demand outcome within the demand uncertainty set. Note
that the calculation of this ratio requires solving only one
instance of the CVRP.

By definition, the robust counterpart gives a solution
with zero unmet demand that may have a larger cost than
the optimal solution for the expected demand. This opti-
mal solution in turn may have scenarios with unmet de-
mand. Therefore, these two measures, unmet demand and
cost, represent the trade-offs that routing solutions must
balance in a VRPSD. Depending on the specific problem
more importance should be given to the unmet demand or
the cost to decide which solution provides the best combi-
nation of these two competing objectives. In this work we
arbitrarily select the relative measures defined above and
decide which solution is best by a simple majority. For dif-
ferent choices of criteria and performance measures the re-
sults would vary, however, the tendencies should remain the
same.

4.2. Robust and deterministic approaches to standard
problems

Our first set of experiments address problem set A (random
instances), set B (clustered instances) and set P (modified
instances from the literature) of the CVRP suite of prob-
lems by Augerat et al. (1995). The instances range from
15 to 100 customers. We modified these instances to in-
clude demand uncertainty. We allow each demand param-
eter to further increase up to a fixed percentage of the
deterministic value. We randomly generate a total of five
scenarios within the allowed percent deviation for the de-
mand uncertainty set. More specifically, we use the follow-
ing values of percent deviation in demand parameters: 5,
10, 15 and 20. We first present computational results only
for the convex hull uncertainty set. We then discuss how
the results change for the box and ellipsoidal uncertainty
sets.

Table 1 shows the results based on the performance mea-
sures δ for the percent unmet demand ratio and κ for the
percent cost ratio of the solutions, where “No” indicates
the number of the instance, “T” indicates the percent tight-
ness ratio of the instance which is defined as the ratio of
the total expected demand to total vehicle capacity, “IN”
indicates infeasible instance and “NA” indicates that an op-
timal solution could not be found within the 1 hour runtime
limit.

The first observation is that since the original instances
are already tight (with a percent tightness ratio between 81
and 99%), the robust counterparts run quickly into infeasi-
bility as the uncertainty increases even though the determin-
istic CVRPs are feasible and could be solved to optimality.
In almost all of the instances with a tightness ratio greater
than 90%, the cost ratio could not be calculated for the
percent deviation values of 15 and 20% since either the ro-
bust counterpart became infeasible or the runtime limit was
reached. Recall that the robust instances are more capacity
constrained due to increased demand in the data and em-
pirical observations have shown that CVRPs become more
difficult to solve in practice as problems are more capacity
constrained.

We note that it is unclear when robust solutions are
preferable to their deterministic counterparts since this in-
volves trading off route cost to meet potential demand.
Whether the additional coverage justifies the extra cost
depends on each application. A general observation from
Table 1 is that more robust instances could be solved for the
clustered problems, set B, and with moderate cost ratios. A
close analysis of the solutions shows that the robust solu-
tion performs well on clustered instances when it can redis-
tribute efficiently the unused vehicle capacity. If a planned
route does not have enough capacity for a possible demand,
then the robust solution would route the vehicles differently.
In this case, if there is a vehicle nearby with enough slack,
then it could service this demand with a small cost increase.
However, if a vehicle with enough slack is far from the extra
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Table 1. Augerat et al. (1995) sets

Set

A B P

Unmet demand Cost ratio Unmet demand Cost ratio Unmet demand Cost ratio

No T 5 10 15 20 5 10 15 20 T 5 10 15 20 5 10 15 20 T 5 10 15 20 5 10 15 20

1 82 0.5 2.5 4.8 6.9 0 1.5 4.2 9.3 82 0 0.7 2.6 4.5 0 1.3 1.6 3.3 87 0.5 1.2 2.2 3.3 0 2.2 5.1 IN
2 89 0.2 1.7 3.5 5.9 0 2.1 6.5 IN 91 1 2.5 4.4 6.5 0 0.1 5.5 IN 96 0.5 2.3 5 8.2 0 IN IN IN
3 90 0.3 1.8 4 6.5 0 2.7 7.1 IN 87 0.7 2.3 4.4 6.7 0.1 2.8 3.2 4.4 96 0.8 2.2 4.8 7.5 0 IN IN IN
4 92 0 0.3 1.6 3.2 0 1.5 4.6 IN 85 0.4 2 4.2 7.3 0 0.1 1.7 1.9 93 0 0 0.9 3.4 0 0 0 IN
5 88 0.8 2.1 4 6.3 0 1.8 4.5 6.3 88 1.2 2.7 4.6 6.7 0 2.2 2.6 6.4 96 0.9 2.4 3.8 5.9 0 3.2 IN IN
6 81 0.2 1.6 3.3 4.8 0 2.7 4.8 5.4 94 0.9 2.4 4.3 6.7 0 4.2 IN IN 93 0.7 1.9 3.3 4.9 14.9 IN IN IN
7 95 0.7 2.4 4.5 6.8 0.1 NA IN IN 86 1.1 3.5 6.4 9.4 0 1.5 4.9 5.5 97 1.2 3.4 5.8 8.2 2.8 IN IN IN
8 96 1.4 3.8 6.4 9 0 IN IN IN 91 1.2 3.6 6 8.5 0 4.6 8.5 IN 88 0.3 1.2 2 3.1 0 0.7 2.4 IN
9 95 1 3.1 5.2 7.9 0 1.5 IN IN 97 0.9 3.1 5.3 8.1 0 IN IN IN 92 1.2 3.3 5.5 7.6 0.6 2 IN IN

10 87 1.3 4.2 7.3 10 0 0.4 2.3 5.1 98 1.8 4.4 6.9 9.3 0 IN IN IN 90 0.5 2 4.1 6.1 0.5 2 NA IN
11 95 0.9 2.2 3.8 5.8 0 1.5 IN IN 87 0.6 1.5 2.8 4.2 0 0.5 1.3 1.9 99 1.5 3.9 6.7 9.3 IN IN IN IN
12 98 1 3.7 6.4 9.1 0 IN IN IN 91 1.2 3 5.3 7.4 NA 2.7 NA IN 95 0.7 2.1 4.3 6.7 NA IN IN IN
13 90 0.8 2.4 4 6 NA NA NA IN 97 1.2 3.2 5.8 8.7 0 IN IN IN 97 1.1 3.2 5.3 7.7 NA IN IN IN
14 86 1.4 3.4 5.7 8.1 0 4.2 6.8 8 86 0.7 2 3.7 5.7 0 0.7 1.5 3.2 87 0.4 2 4.3 6.9 NA NA NA NA
15 89 1 2.6 4.5 6.6 0 NA NA IN 88 1.1 3 4.9 6.9 0 3 3.4 5.8 81 0.5 1.9 3.6 5.3 NA NA NA NA
16 94 1.1 3.3 5.7 8.2 0.5 3.7 IN IN 99 2 5 8.1 11 IN IN IN IN 90 0.8 2.9 5.1 7.7 NA NA NA IN
17 95 0.4 1.9 4.5 7 NA NA IN IN 89 1.2 3.1 5.3 7.5 NA NA NA NA 99 1.6 4.4 7.2 10 NA IN IN IN
18 93 1.3 3.4 5.8 8.5 0.1 2.8 IN IN 92 1.1 3 5.1 7.4 NA NA NA IN 94 0.5 1.7 3.7 5.9 NA NA IN IN
19 92 0.9 2.1 3.8 5.8 NA NA NA IN 97 1.2 3.3 5.6 8 0 IN IN IN 94 0.8 2.3 4 5.9 NA NA IN IN
20 98 1.7 4.4 7.2 10 NA IN IN IN 95 1.4 3.6 5.9 8.4 NA IN IN IN 93 0.6 1.8 3.3 5.3 NA NA IN IN
21 91 1.3 3.6 6.1 8.6 NA 4.7 NA IN 90 1 2.5 4.4 6.5 NA NA NA IN 97 0.5 2.3 4.4 6.6 NA IN IN IN
22 97 1.2 3.1 5.4 7.7 NA IN IN IN 93 1.6 3.9 6.4 9.1 NA NA IN IN 97 0.8 2.4 5 7.7 0.5 IN IN IN
23 93 1.1 3.3 5.6 8.1 NA NA IN IN 93 1.4 3.7 6.2 8.9 NA NA IN IN 97 0.9 2.5 5.1 7.9 NA IN IN IN
24 94 1.2 3.5 5.9 8.4 NA NA IN IN 91 0 0.9 2.9 5 0 0.4 0.6 IN
25 97 1.3 3.8 6.3 8.9 NA IN IN IN
26 93 0.8 2.5 4.5 6.8 NA NA IN IN
27 94 0.7 2.5 4.4 6.6 NA NA IN IN

demand, then the robust solution for this demand can be
significantly more expensive. Therefore, the distribution of
the demand across the network plays a key role in how the
unused capacity is distributed in an optimal solution and
its impact on the success of a robust solution. The instances
in the Augerat et al. (1995) suite of problems suggest that
when the network is clustered, optimal solutions can have
vehicles close by which could share unused capacity at a
low cost.

4.3. Robust and deterministic approaches to a family
of clustered instances

To validate our findings and to generalize them with respect
to the structure of the network, we randomly generate in-
stances with four vehicles of capacity 1500 and 49 customers
with a uniform demand of 100, in three different problem
sets. In each set, there are four clusters of customers. First of
all, we consider points which are on the circle of a given ra-
dius R, centered at a depot, and we randomly select a point
on that circle to be the center of a cluster (see Fig. 1). Then
we generate customers for that cluster within the circle with
a given radius r . We also use a measure for clustering for

our instances, θ , which is given by: θ = (R/r ). We fix the
value of r = 20 and consider the following values for R: 0,
2r , 4r , 6r and 8r .

When θ = 0 all the clusters are centered at the depot
and the instance becomes random with no clustering effect;
however, as θ increases, clusters separate from each other.

R

r

Depot

Center of Cluster

Fig. 1. Cluster generation in random sets.
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Fig. 2. Comparison of deterministic and robust solutions for random set 1.

In problem sets 1 and 2, the three clusters have 13 cus-
tomers and the fourth one has ten. Note that a vehicle can
service up to 15 customers. The reason for this selection is
that, in clustered instances where each cluster will be ser-
viced by only one vehicle, there will be one vehicle with
relatively more slack, namely the one servicing the fourth
cluster. The only difference between sets 1 and 2 is that
in the latter as we increase θ , we always keep the fourth

cluster centered at the depot. This serves the purpose of
having a random zone around the depot and some clus-
ters far from the depot. In set 3, we make the random
zone denser by increasing the number of customers in the
fourth cluster to 25 and decreasing the one for the others to
eight.

Figures 2, 3 and 4 display the results of the three sets for
percent unmet demand ratio δ and percent cost ratio κ as a
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Fig. 3. Comparison of deterministic and robust solutions for random set 2.



D
ow

nl
oa

de
d 

B
y:

 [U
ni

ve
rs

ity
 o

f S
ou

th
er

n 
C

al
ifo

rn
ia

] A
t: 

23
:4

6 
10

 M
ar

ch
 2

00
8 

A robust optimization for the capacitated VRP 517

0 2 4 6 8
0

1

2

3

4

5

6

7

8

9

10

11

A
ve

ra
g

e 
U

n
m

et
 D

em
an

d
 R

at
io

Clustering Ratio

Uncertainty
Range

5%
10%
15%
20%

0 2 4 6 8
0

1

2

3

4

5

6

7

8

9

10

11

A
ve

ra
g

e 
C

o
st

 R
at

io
Clustering Ratio

Uncertainty
Range

5%
10%
15%
20%

Fig. 4. Comparison of deterministic and robust solutions for random set 3.

function of percent clustering ratio θ for different values of
percent deviations of the uncertainty set. Each data point
on the figures is an average of 30 instances. We also noticed
that for these three sets the robust solutions are significantly
different from the deterministic solution in most cases. The
average fraction of arcs that are different between the robust
and deterministic solutions varies from 3 to 33% for set 1,
from 20 to 34% for set 2 and from 24 to 33% for set 3,
depending on the range of the demand uncertainty.

The results of set 1 suggest that both the deterministic
and the robust solutions benefit from clustering. For per-
cent deviation of 5 and 10%, both results are comparable,
for 15% the robust is better, and for 20% the robust is worse
when θ ≥ 2. In fact as the uncertainty increases, we would
expect the robust approach to outperform the deterministic
approach. The reason for this odd behavior is the distribu-
tion of the slack in the network. When the instances are
clustered for the bigger values of θ , each cluster is serviced
by only one vehicle in the deterministic approach. In the
case of a high uncertainty such as a 20% deviation, if the
total demand of a cluster exceeds the vehicle capacity then
another vehicle has to be routed to this cluster by the ro-
bust approach. When these vehicles are not close, the robust
approach results in a large travel cost. The network struc-
tures with pure clusters as in set 1 therefore do not allow
a good distribution of slack on the average and the robust
approach is not convenient for high uncertainties.

When we look at the results of set 2, as before we see the
same phenomenon in the increase of the cost ratio for the
robust approach with a 20% deviation. However, clustering
helps only after θ > 2. The reason for this behavior is due to

the random zone around the depot. When θ ≤ 2, the circles
of clusters intersect and the vehicles do not necessarily ser-
vice only customers in the same cluster. This interaction of
customers keeps the instance as random until θ > 2 since
from that point onwards the three clusters become more
distinct than the fourth one around the depot and the ef-
fect of clustering gets more pronounced in this instance.
Increasing θ until it reaches a value of two only makes the
size of the network enclosing all the customers bigger, and
therefore the cost of the robust approach increases for these
bigger random instances. When it comes to the amount of
unmet demand of the deterministic approach, the effect of
the random zone is more drastic. No matter how much
the network is clustered, the unmet demand is always con-
stant and much worse compared to set 1. The vehicles in
the deterministic approach service customers in the ran-
dom zone on their way to the clusters and usually three out
of four vehicles are filled to capacity, which is not the case
in the deterministic approach in set 1. These vehicles with
full capacity are the minimum cost solutions but they have
a significant potential to incur unmet demand under un-
certainty. The network structures with a scattered random
demand zone around the depot, as in set 2, therefore have
a very negative effect on the deterministic solution.

When the random zone is denser around the depot, the
results of set 3 are similar to the results of set 2. The deter-
ministic approach results in high unmet demand values and
is outperformed by the robust approach in almost all cases.
Having more customers in the random zone helps the ro-
bust approach even more. The reason why the phenomenon
with 20% uncertainty disappears is due to the fact that the
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Fig. 5. Comparison of three uncertainty models for random set 3.

vehicles are close now since the number of customers they
service in the random zone on their way to the clusters is
significantly larger compared to set 2. Therefore, when the
slack in one vehicle needs to be distributed to the network,
this can be achieved through customers in the random zone.
The network structures with clusters and a dense random
zone around the depot, as in set 3, therefore allow a good
distribution of slack on the average and the robust solution
benefits from this at little extra cost.

Lastly, Fig. 5 depicts results for the three uncertainty
models (convex hull, box and ellipsoidal) on random set 3
with a 5% deviation in demand. We observe that box uncer-
tainty results in the most unmet demand and cost whereas
the convex hull uncertainty results in the lowest values. In
addition all models behave with similar trends. Indeed the
results obtained from the ellipsoidal and box uncertainty
sets follow the same trends as the results presented for the
convex hull uncertainty, although with higher values of un-
met demand and cost. We therefore omit additional results
on these other two uncertainty sets in the interest of space
conservation.

We conclude this experimental subsection by emphasiz-
ing that our findings in the instances by Augerat et al. (1995)
are confirmed by a larger class of random instances from
the population of instances with the same characteristics.
In particular, we showed that both the existence of enough
slack in the solution and its distribution over the network
are very important factors affecting the quality of the ro-
bust. Our experiments reveal that clustered network struc-
tures with a dense random zone around the depot favor the
robust. For this scenario, we showed that the deterministic

could result in a large amount of unmet demand and the
extra cost of the robust approach is relatively small.

4.4. Robust versus recourse and chance constrained models

In this section, we compare the robust solution with so-
lutions obtained from different stochastic VRP models:
chance constrained and stochastic with recourse models.
This comparison will highlight the different assumptions
and uncertainty models of each approach. Which is the
most suitable model for a given application is a compli-
cated question that has to be addressed in the context of the
application. Here, we develop the stochastic models based
on the uncertainty model considered for the robust prob-
lem. To measure the quality of the solutions, we adapt the
percent unmet demand ratio δ and the percent cost ratio
κ to δ′ = γs/

∑
i∈V d0

i and κ ′ = (zr − zs)/zd, where γs is the
unmet demand and zs the optimal objective value of the
stochastic model, either chance constrained or recourse.

The chance constrained formulation replaces constraint
(6) in Problem (CVRP) with a probabilistic constraint that
can be violated with probability α:

P{uj − ui + C(1 − xij) ≥ dj} ≥ 1 − α, i, j ∈ V \ {0}, i �= j.

For a general distribution G(µj, σj) for demand parameter
dj, this is equivalent to

uj − ui + C(1 − xij) ≥ kα
j , i, j ∈ V \ {0}, i �= j,

where the constant kα
j = µj + zασj in which zα is the αth

percentile of the cumulative distribution of dj. Thus, this
chance constrained model is an instance of a CVRP with
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modified demand data similar to the robust model. The
difference is in how the demand value is determined. We
assume that each demand parameter dj follows the same
uniform distribution U(a, b) that was used to generate the
scenarios for the robust model. This gives:

kα
j = a + b

2
+ (b − a)

(
1
2

− α

)
.

We note that the distribution assumptions and confidence
level α for the chance constrained model and the uncer-
tainty set assumptions for the robust model, influence which
model considers higher levels of demand and how it is dis-
tributed among the nodes. Therefore, depending on the un-
certainty assumptions used either of these two models can
be the most difficult to satisfy.

In the recourse formulation, we use s scenarios to model
the demand uncertainty as in the robust model. In each
scenario we consider the recourse action of replenishing at
the depot to resume the route. This recourse action is ex-
ecuted by visiting the depot after visiting customer i and
before visiting customer j by following arcs (i, 0) and (0, j)
instead of following the arc (i, j) in the pre-planned route.
We assume that the demand data become available at the
beginning of each day (scenario) and that the demands of
a customer must be delivered as a single batch. As a re-
sult, a vehicle can replenish at the optimum location, not
necessarily at the location the capacity is exceeded, and the
recourse action does not allow visiting a customer more
than once. A vehicle can replenish as many times as nec-
essary along the route. The recourse model is obtained
by introducing into Problem (CVRP) additional flow vari-

ables uk
i for each scenario k and binary recourse variables

rk
ij to indicate the arc (i, j) in the pre-planned route for

which the recourse action is taken in scenario k. These
variables are integrated into Problem (CVRP) with the
constraints:

dk
j + uk

i ≤ uk
j + C

(
1 + rk

ij − xij
)
, i, j ∈ V \ {0}, i �= j,

k = 1 . . . s,
rk

ij ≤ xij, i, j ∈ V, i �= j, k = 1 . . . s,
dk

i ≤ uk
i ≤ C, i ∈ V \ {0}, k = 1 . . . s,

and the objective function:

min s
∑
i∈V

∑
j∈V

cijxij +
∑

i∈V\{0}

∑
j∈V\{0}

s∑
k=1

rk
ij (ci0 + c0j − cij).

Note that the value of zs in κ ′ for this recourse model is
obtained by dividing this objective value with s to make it
comparable to the cost of the robust solution.

Thus, this recourse model results in zero unmet demand
when the problem is feasible, just as in the robust model.
Moreover, its cost (average cost per scenario) is no worse
than the cost of the robust solution since the robust solu-
tion is feasible for the recourse model. As a result, this par-
ticular recourse model is no worse than the robust model
in terms of unmet demand and average cost per scenario;
however, the size of the problem increases with the num-
ber of scenarios, requiring specialized solution procedures.
The results in Fig. 6 are for the convex hull uncertainty set
with different ranges of demand uncertainty on random set
1. We use five scenarios as before for the recourse model
and we use 10% for the value of alpha in the chance model,
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Fig. 6. Comparison of stochastic solutions (chance and recourse) and robust solution.
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i.e., α = 0.1. Both models result in no unmet demand in
all of the cases; therefore the graph for the percent unmet
demand ratio is omitted. We were able to obtain optimal
solutions for the chance model using SYMPHONY since
this model is an instance of CVRP. However, the recourse
model is not a standard CVRP and because of its size a spe-
cial solution procedure is necessary to solve large instances.
Instead, we used CPLEX to solve this model but reduced
the size of the instances to be able to obtain optimal solu-
tions within an hour. The instances used in the comparison
with recourse are small versions of the random set 1 prob-
lems. They consider a total of 12 customers in four clusters
(three customers in each cluster) with a uniform demand of
100; and there is a total of four vehicles with an identical
capacity of 355. Note that the recourse model has sn2 addi-
tional integer variables, sn additional continuous variables
and sn2 additional constraints.

Figure 6 shows that for purely clustered instances the
chance constrained model with α = 0.1 performs better
than the robust model when uncertainty is low (5%), as
it can satisfy all the demand at a smaller cost. However, as
the uncertainty becomes more pronounced (10 and 15%),
the chance constrained model becomes more costly than
the robust model. In fact for 20% uncertainty, the chance
constrained model considers such high demand values that
it results in infeasible instances. The recourse model satis-
fies all the demand at the same cost as the robust model for
5, 10 and 15% uncertainty. However, the recourse model is

much more efficient for the 20% uncertainty, because the
robust routing sends vehicles between distant clusters to
satisfy all possible demands. We omit the results for 20%
uncertainty in Fig. 6 because the chance constrained model
could not be solved and the recourse comparison shows the
same trend as in Fig. 2 because the robust solution is inef-
ficient. This positive result for recourse models should be
tempered with the fact that here we can only solve instances
with 13 nodes, as opposed to 50 for the other models. We
also observed that the number of recourse actions taken in a
solution decreases as the clustering ratio increases, because
it is less costly to replenish at the depot when the clusters
are not far from the depot.

4.5. Robust versus distributions of excess vehicle capacity

The robust solution distributes the excess vehicle capacity
in the expected demand case aiming to obtain routes at min-
imum cost that satisfy all demand outcomes from the un-
certainty set. In this section we explore how this compares
to two simple strategies of distributing this excess capacity
among all the vehicles: uniformly and non-uniformly.

We randomly generate instances with four vehicles of
capacity 2100 and 68 customers with a uniform expected
demand of 100. Therefore, there is a total of 1600 units of
excess vehicle capacity to be used to address the demand un-
certainty. We generate these instances according to the three
sets as before. The uniform distribution of excess capacity
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Fig. 7. Comparison of uniform buffer capacity and robust solutions for random set 1.
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reserves a buffer of zero, 100, 200, 300 and 400 units of
capacity in each vehicle. The distribution of any remaining
buffer capacity is automatically determined by the solution
procedure to minimize the total cost of the deterministic
solution based on the particular instance. That is, the uni-
form buffer amount (excess capacity) is removed from con-
sideration to compute the optimal deterministic solution,
however, it is considered when determining the amount of
unmet demand that this optimal solution can face in its
worst case. On the other hand, the non-uniform distribu-
tion of excess capacity uses the same settings but allows
assigning the predetermined reserve of one vehicle to an-
other, that is the uniform buffer amount of one vehicle can
be doubled at the expense of not having a predetermined
reserve in another vehicle. Since there are four vehicles in to-
tal, at most two of them can have a doubled predetermined
reserve. This assignment, as well as the distribution of the
remaining amount of buffer, are again automatically deter-
mined by the solution procedure that minimizes the cost.

We compare the solutions with the generalized percent
unmet demand ratio δ′′ = γb/

∑
i∈V d0

i and the generalized
percent cost ratio κ ′′ = (zr − zb)/zd where zb is the optimal
objective value for the deterministic solution with reduced
vehicle capacity (buffer capacity) and γb is its unmet de-
mand under the worst case (when the buffer capacity is re-
moved). Figures 7 and 8 display respectively for the uniform
and non-uniform distributions the average results over 30
instances for different values of percent clustering ratio θ

for set 1 with 15% deviation in the uncertainty scenarios.
Similar trends are observed in the other randomly gener-
ated sets and percent deviation values for our three types
of uncertainty sets. In Fig. 7, for a given value of percent
clustering ratio, it is clear that increasing the buffer amount
makes a uniform distribution of slack have less unmet de-
mand but with an increased cost which may exceed the cost
of the robust solution in some cases, giving negative values
for the percent cost ratio κ ′′. When we compare the quality
of the two solutions, we see that when the buffer amount
is smaller than 200, this reserve capacity is insufficient to
handle the uncertain demand. When the buffer amount is
equal to 200, the uniform distribution of slack leads to a
less costly solution than the robust model with the same
zero unmet demand. When the buffer amount is equal to
300, the two methods have the same cost with the same
zero unmet demand. After this transition point (when the
buffer amount is greater than 300), if we increase the buffer
capacity unnecessarily, the resulting solution is more costly
than the robust approach and is not preferable. These trends
become less pronounced as the percent clustering ratio in-
creases. That is, clustering is good for a uniform distribution
of slack, which makes sense since such an even distribution
of slack benefits by having each vehicle assigned to distinct,
far away clusters with the same demand and uncertainty, as
in the case of θ = 8.

In Fig. 8, the first observation is that there is a minimal
increase in the cost ratios compared to the uniform case,
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Fig. 8. Comparison of non-uniform buffer capacity and robust solutions for random set 1.
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which is expected since a non-uniform distribution explores
a wider set of feasible solutions by allowing non-uniform
patterns in the solution. The second observation is that the
demand ratios are also higher than the uniform case. This
is in fact the price of having a less costly deterministic so-
lution for the non-uniform case. Due to particular assign-
ments of the predetermined buffer amount among vehicles,
non-uniform distribution creates less costly routes where
some of the vehicles have a doubled predetermined buffer
capacity whereas some others have no predetermined buffer
capacity which in return may result in unmet demand. This
effect of having an uneven distribution of predetermined
buffer capacity is much more pronounced in the case of 400
units of buffer capacity since all the available 1600 units of
extra capacity are allocated to vehicles by this non-uniform
pattern. That is, when the solution procedure chooses to
double the buffer capacity of a vehicle, another vehicle will
have exactly zero slack in the solution. Overall, the non-
uniform strategy does not outperform the robust or the
uniform distribution although it has a lower cost than the
uniform distribution.

5. Conclusions

In this study, we propose the use of robust optimization to
obtain efficient routing solutions for problems under un-
certainty. Our work has shown that robust optimization is
an attractive alternative for formulating routing problems
under uncertainty since it does not require distribution as-
sumptions on the uncertainty or a cumbersome represen-
tation through scenarios.

We derived a robust counterpart for the VRPSD which
requires the solution of a single CVRP with modified data.
This theoretical result was based on using the MTZ formu-
lation of the VRP, however, the resulting problem can be
solved with any algorithm for the CVRP. This RVRP model
assumes that a solution that is feasible for every possible de-
mand outcome exists. Therefore, a natural extension of this
work is to allow for problems with infeasible worst cases.

Our computational results showed that if the network
structure allows a strategic distribution of the slack in the
vehicles throughout the network in such a way that the ve-
hicles can easily collaborate by sharing their slacks in the
case of uncertainty, then the robust solution is favorable
on average compared to the deterministic solution. Such
a network structure appears in a problem with clustered
zones far from the depot with a dense random zone near the
depot. In comparing the robust solution against the other
stochastic models, we observed that the recourse model sat-
isfies all the demand with the same cost or better on small
instances, however, these models are significantly more dif-
ficult to solve because of their large problem size and require
specialized algorithms. The RVRP is more closely related to
the chance constrained model. Indeed, both lead to CVRP
problems with modified demand values, which depend on

the uncertainty representation. Our computational results
show that the chance constrained model can be more or less
efficient than the robust model depending on the problem
parameters and uncertainty assumptions. We also verified
that the robust solution is superior to simple strategies of
distributing the excess capacity among all vehicles. We no-
tice that such strategies compete better with the robust so-
lution as the network structure is more clustered. However,
future work is still needed to identify the best distribution
of the excess capacity in general.
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