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Key in the efforts to deter and prevent nuclear terrorism
is the ability to detect the presence of possible nuclear
threats in a given area. Resources capable of detecting
such threats are limited, expensive, and only capable
of scanning a certain total area in a given amount of
time. This limit on the ability to detect nuclear threats
makes imperative the development of efficient deploy-
ment strategies of the detection resources. In this work,
we propose a Stackelberg game-based model to deter-
mine the optimal patrolling strategy of security assets
over a network in the presence of a strategic adversary
that seeks to place a nuclear threat on edges of the net-
work. To efficiently solve this model, we introduce a novel
decomposition of the problem which requires the solu-
tion of a multivehicle rural Chinese postman problem
(CPP). Our theoretical contributions present hardness
and approximation results for the k-vehicle rural CPP.
Our computational results demonstrate the benefit of this
decomposition for the nuclear threat detection security
problem. © 2014 Wiley Periodicals, Inc. NETWORKS, Vol.
64(3), 181–191 2014
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games; security games; approximation algorithm

1. INTRODUCTION

In this era of heightened threats of nuclear terrorism,
security forces face a difficult challenge: limited security
resources must be deployed effectively to protect the home-
land against many different threats. Effective algorithmic
methods lead to a more effective use of expensive and
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sophisticated detection equipment, and reduce the require-
ments for man-power, by producing automatic alerts in
suspect cases that merit additional investigation.

In this work, we focus on the problem of detecting possible
nuclear threats in a given area represented by a network. An
approach to detect the presence of Special Nuclear Mate-
rial (SNM) in an area is to use a highly sensitive sensor
mounted on a specially designed truck to patrol the area and
contrast the radiation readings found during the patrols with
the radiation background. Significant differences from the
radiation background could indicate the presence of a threat
and would help focus more detailed inspections. The trucks
are mounted with multiple detectors and their cost is very
high. Consequently, the number of trucks available is too
small to allow to patrol all target areas of interest. The effi-
ciency with which SNMs can be detected in an area strongly
depends on the patrolling or inspection visits policies to this
area. For example, if a deterministic route is used to patrol for
changes in radiation, and it becomes known to the attacker,
then the attacker needs only to wait for the sensor to pass
a certain location to attack or move through that location
undetected. This example also illustrates that it is critical to
consider the strategic nature of the attacker when planning the
patrolling strategies. Therefore, we consider the problem of
constructing efficient patrolling strategies over a network that
is being monitored for changes in background radiation, tak-
ing into account that the patrolling strategy can be observed
by a potential adversary.

Recent work in game theory has represented problems,
where the defender takes a strategic attacker into account in
determining its optimal strategy as Stackelberg game mod-
els [16, 21, 23]. Stackelberg games are models of interaction
between agents where one can commit to a strategy before
the rest and have been widely studied in domains involving
defenders and adversaries [4, 25]. In a Stackelberg model, the
defender (security forces) acts first and the attacker (terrorist)
can observe these actions and, using this information, then
decides how and when to attack. This work has lead to real-
world deployments of Stackelberg-based security models for
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the LAX Airport, Federal Air Marshal Service [16], and US
Coast Guard [24]. These existing security games consider
the targets as independent. We adapt these Stackelberg game
models for the problem of patrolling a network to detect
SNMs. Since the prospective targets are within road network,
detecting the presence of SNMs by a traveling vehicle means
that rather than point-wise detection, the detector trucks tra-
verse street blocks and once the truck enters a certain street
block it can detect radiation changes within the block. As
such, we consider the targets graph representation as edges
in a graph. The targets in this domain are dependent since
their geographical positions impose an added burden on the
resources (detection vehicles in this case). When a vehicle is
inspecting geographically dispersed targets, valuable capac-
ity of the resource is consumed while traversing the network
from one target location to the next.

Other security detection plans that optimize the accu-
racy of detection of SNMs were given in [13, 12]. That plan
was not set to take into account adversarial game issues as
resource availability was not a consideration in that context.
Instead it addressed the problem of providing comprehensive
detection capability to a large city by mounting relatively
inexpensive detectors on vehicles such as taxi cabs, and
collecting the information along the routes traversed by
those taxi cabs, without dictating what the routes should
be. Another work related to security is on video tracking of
tagged objects, [10]. This work also does not consider limits
on security resources, and therefore, is not concerned with
adversarial aspects of the problem.

Previous work that addresses the effect of geographical
locations on the defender strategy in the context of adversarial
games, either leads to computationally intensive approaches
that are impractical for real world problems, or this type of
dependency is so difficult to address that the developed meth-
ods can be applied only for very specific target configurations,
again impractical for our purposes [1, 14, 17, 24]. Solving
games of the type and magnitude that occur when geo-
graphical considerations are incorporated is well beyond the
capabilities of current algorithms. We, therefore, tackle the
problem, by decomposing the construction of the proposed
strategy into two phases:

Phase 1: Determines the optimal defender strategy as if
the targets were independent. We represent the
nuclear detection patrolling problem as a Stack-
elberg security game, where the defenders view
targets independently without considering the
geographical effect on defender strategies. This
phase develops mixed strategies for defending
the targets based only on the relative importance
of their rewards. The output of this stage will
be a frequency with which each target is pro-
tected, assigning a probability of protection to
each target. This represents the optimal defender
strategy for independent targets.

Phase 2: Determines defender patrols that match the opti-
mal outcome of the adversarial game (from

phase 1) given limited resources (k defenders
with limited capacity) and a maximum set of
targets within a certain area. We show that deter-
mining the optimal solution for this problem is
the NP-hard k-vehicle Rural Postman Problem
(k-RPP). We devise a (2.5 − 1

k )-approximation
algorithm for this problem that works in any set-
ting (including nonmetric setting). This approx-
imation algorithm is used to construct maximal
reward patrolling routes for k defenders that
visit the edges sampled according to the optimal
defender strategy from phase 1.

1.1. Security Games

We now provide a brief background on Stackelberg secu-
rity games based on [16, 23]. These security game mod-
els represent the interaction between the defender and the
attacker as a Stackelberg game. In this game, the defender is
the leader and acts first, selecting an action i from a set of
possible actions X with probability xi. The attacker decides
its action after the defender has committed to a strategy,
hence is referred to as the follower, and taking into account
the defender’s strategy decides an action j from a set of
actions Q with probability qj. We use vectors x = (xi)i∈X
and q = (qj)j∈Q to denote the complete strategies of the
leader and follower, respectively. Let e be a vector of all 1’s.
Then, if the rewards for the defender (attacker) of the com-
bined actions i ∈ X and j ∈ Q are denoted by Rij (respectively
Cij), the bilevel program that determines the optimal strategy
x for the leader can be denoted by

maxx,q

∑
i∈X,j∈Q

Rijxiqj

s.t. eT x = 1, x ≥ 0

qj = argmax
eT q=1,q≥0

∑
i∈X,k∈Q

Cikxiqk .

This problem finds the leader’s mixed strategy that maximizes
its revenue assuming the adversary breaks ties in favor of the
leader (the strong Stackelberg equilibrium solution). We note
that although the follower has more information when making
a decision, the leader in a Stackelberg game can only improve
from the Nash equilibria solution. This is because the leader
can always play the Nash equilibrium solution, forcing the
follower to also play Nash. Hence, the leader will only deviate
if it is to its advantage. For example, suppose the defender
has to decide in which of n possible entry points to place
a detector of nuclear material and subsequently the attacker,
knowing the frequency with which a detector is placed in each
entry point, then decides which of the n entry points attack.
In this case, both sets of actions equal X = Q = {1 . . . n}.

For every fixed leader strategy x, the inner optimization
solved by the attacker is a linear optimization problem over
the simplex. In this case, since there is always an opti-
mal extreme point and all extreme points correspond to
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pure strategies, there is no loss of generality in considering
only pure strategies for the adversary. We can then express
the leader’s optimization problem as a mixed integer pro-
gramming problem using the integrality of the adversary’s
strategies. For this we need auxiliary variables d to repre-
sent the reward obtained by the defender and a to represent
the optimal reward obtained by the attacker. The problem is
expressed as follows:

maxx,q,d,a d

s.t.
∑
i∈X

Rijxi ≥ d − M(1 − qj) j ∈ Q

∑
i∈X

Cijxi ≤ a j ∈ Q

∑
i∈X

Cijxi ≥ a − M(1 − qj) j ∈ Q

eT x = 1, x ≥ 0

eT q = 1, q ∈ {0, 1}|Q| (1)

where M is a large constant and the first set of constraints is
a linealization of the defender’s reward given the attacker’s
optimal pure strategy. The second set of constraints enforces
that a is an upper bound on the attacker’s reward for any
action and the third makes a the optimal reward value of the
attacker for the action qj selected.

Bayesian formulations of this security game have been
developed in [23, 26] that considers multiple security
resources and allows for uncertainty over adversary types,
rationality, and observation capabilities. Efficient algorithms
are developed to solve these Bayesian Stackelberg games.
These efficient algorithms exploit structure present in the
security domain, such as: (1) the rewards (for every player)
take only two values, depending on whether attacker and
defender meet or not at a target. If they meet, an attack is pre-
vented. (2) The network structure that exists between targets
[15, 16, 18]. Additional work has considered the develop-
ment of algorithms when there is uncertainty due to how
the optimal defender strategy is implemented or how it is
observed by the attacker [26].

2. THE CHINESE POSTMAN PROBLEM, THE
K -CHINESE POSTMAN PROBLEM AND THE
RURAL POSTMAN PROBLEM

We are concerned here with edge traversal, and therefore,
we assume that the given graph, or network, representing
the city where the detection of threats is to be deployed, is
represented by an undirected graph G = (V , E). Although
the directed version and mixed version are of interest as well,
their discussion is beyond the scope of this article.

The set of targets to be protected and traversed form a
subset of edges in a graph. As such the Chinese Postman
Problem (CPP) concerning the shortest tour that traverses
each edge at least once is relevant here. The CPP is a classical
problem of finding a tour, in a given graph G(V, E), that

starts from the central depot (post office), traverses each edge
(street) in E at least once, then returns to the same depot
node with the total distance traveled minimized. The problem
was originally proposed in 1962 by Guan [11] in Chinese
Mathematics; thus the name. CPP is polynomial time solvable
on undirected graphs, or on directed graphs [6], but is NP-
hard on mixed graphs, that contain both (undirected) edges
and (directed) arcs, [20].

There are several versions of the k-CPP problem. The
problem involves k postmen (referred to henceforth as vehi-
cles) that have to cover all edges in a graph G(V, E).
Depending on how the objective function is defined the prob-
lem may or may not be hard. In [22], Pearn considers the
following definition of k-CPP: For a graph G = (V , E) with
edge weights (distances), the k-CPP is to find a set of k tours
so that: (1) Each route begins and ends at a common node
called the central depot, (2) Each edge in E must be serviced
by exactly one vehicle, (3) All the k vehicles must be involved
in the delivery service, and (4) The total distance traveled is
minimized. Pearn, [22], showed that this k-CPP is solved in
polynomial time, by reducing it to a specific CPP.

The k-CPP problem, where each vehicle has a bounded
capacity in terms of the total edge distances it can traverse, is
to find up to k routes (that could be paths rather than closed
tours) that jointly traverse all edges of E at least once. Even
this simple decision problem is NP-complete with an easy
reduction from k-bin packing. Our interest is in the prob-
lem where there is a common depot and each vehicle has to
complete a tour.

Another variant of interest of CPP is the RPP [19]. In
that problem there is a subset of edges E′ ⊂ E that must
be traversed. Removing the requirement that all edges must
be traversed turns the CPP into the NP-complete RPP. This
is easy to see by a reduction from the Traveling Salesman
Problem (TSP). The multivehicle RPP is obviously hard as
well. We will consider the version of this problem where each
vehicle has a bounded capacity �. The respective decision
problem is formally defined as follows:

k-RPP(�) problem:
Input: An undirected graph, G = (V , E)with edge weights

dij for all [i, j] ∈ E, and a subset E′ ⊆ E, k > 1, a depot node
v, a positive number �.

Question: Are there k tours E1, ..., Ek , each including v, so
that d(Ei) ≤ � and so that E′ ⊆ ∪k

i=1Ei?
Here, the notation d(Ei) refers to the sum of edges weights

in the tour Ei. In the optimization version of this problem, one
seeks to minimize the value of the capacity � so that there is
a feasible solution to the decision problem k-RPP(�).

To our knowledge, the most relevant result to this latter
problem in the literature is that of [2], that seeks to minimize
the capacity for a k-RPP (with no depot). The authors devise
a 7-approximation algorithm for this problem, where there is
no depot and the vehicles are not required to complete tours,
but are required instead to traverse paths that cover the subset
of edges of interest. The objective is to minimize the length
of the maximum path. Conversely, the optimization version
of the decision problem k-RPP(�) is closely related to the
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min-max k-RPP (see, e.g., [3]). Consider any instance of the
optimization version of k-RPP(�), either the problem is infea-
sible, or it should have the same optimum as the correspond-
ing min-max k-RPP. However, to our knowledge, no approx-
imation algorithms are devised for the min-max k-RPP.

3. AN APPROXIMATION ALGORITHM FOR
K -RPP(�)

3.1. A 1.5-Approximation Algorithm for RPP

We provide here a 1.5 approximation algorithm for
the RPP which is an easy extension of Christofides’ 1.5-
approximation for TSP on graph weights that satisfy the
triangle inequality (metric graphs), [5]. Existence of a 1.5-
approximation algorithm for RPP based on an extension of
Christofides’ algorithm was mentioned by [7], without proof.
We provide here the proof and demonstate that the trian-
gle inequality assumption, made in [5], is unnecessary—the
result holds for any graph weights. Christofides’ algorithm
identifies first a minimum spanning tree, and then extends it
to a Eulerian graph and TSP tour.

An instance of RPP includes a graph G = (V , E) with edge
weights dij for all [i, j] ∈ E, and a subset of edges E′ ⊂ E
that must be covered by a tour. We denote an optimal solution
to the RPP problem, by RPP∗, and the sum of edge weights
in RPP∗ is denoted by d(RPP∗). The concept of a spanning
tree in Christofides’ algorithm is replaced, for the RPP, by a
minimum cost collection of edges that contain E′ and form
a connected subgraph of G. Such connected subgraph exists,
with total weight that is only less than the cost of the optimal
RPP tour, d(RPP∗), since the set of edges of the optimal RPP
tour RPP∗ induces a connected subgraph containing E′.

Let C1, . . . Cq be the set of connected components induced
by the edges of E′ in G. Therefore, {C1, . . . Cq} forms a parti-
tion of E′. Define a complete graph H = (V(H), E(H)) on q
nodes where node k represents the component Ck . Let d̄ij be
the length of the shortest path p̄ij = [i, i1, . . . , ir , j] between
i and j in G. Let the weight of an edge in H between node
k ∈ V(H) and node k′ ∈ V(H) be the shortest path distance
between the two components: d′

kk′ = mini∈Ck ,j∈Ck′ d̄ij. Let
T (C) be a minimum spanning tree in H, of total length d(T (C)).

Theorem 3.1. The total weight of the edges in E′ and the
spanning tree T (C) is less than the weight of the edges in
RPP∗:

d(E′) + d(T (C)) ≤ d(RPP∗).

Proof. Consider the optimal tour RPP∗ in the order of
edges visited. As a “first” edge in the tour, pick, arbitrarily, an
edge of E′ in the tour RPP∗ from component Ci1 , ei1 . Let the
truncated sequence of edges in the tour RPP∗, starting with
edge ei1 be:

[ei1 , P̄i1,i1 , e′
i1

, Pi1,i2 , ei2 , P̄i2,i2 , e′
i2

, . . . , Pij−1,ij ,

eij , P̄ij ,ij , e′
ij
, . . . , Piq−1,iq , eiq ]

This sequence is truncated once all q components have been
visited, in the sense that this section of the tour traversed at
least one edge in each component. The notation is interpreted
as follows: eij denotes the first edge of component Cij visited
in the sequence; P̄ij ,ij denotes the sequence of edges on the
tour that traverses, in addition to edges of E, only edges in
∪j

k=1Cik ; e′
ij

denotes the last edge in the sequence, in compo-

nents ∪j
k=1Cik prior to the first visit to the next component

Cij+1 . It could be the case that P̄ij ,ij = ∅ and, in that case
eij = e′

ij
. That is, the first and last edges are the same.

Note that the sections of the tour Pi1,i2 , . . . , Piq−1,iq consist
of edges of E only and induce a spanning tree in the graph
H, since each connect components ∪j−1

k=1Cik to component
Cij via the path in E, Pij−1,ij . Therefore, the total length of
∪q

j=1Pij−1,ij is greater or equal to d(T (C)). Since the tour RPP∗
also traverses all edges of E′ at least once, the stated result
follows. ■

Let V ′ be the set of nodes of G induced by the edges of
E′. The set of edges E′ ∪ T (C) is a connected, not necessarily
simple, subgraph of G. Consider the degrees of the nodes
induced by this multigraph, counting the multiplicity of an
edge in the degree. Then only nodes of V ′ can have odd
degree, as nodes of V\V ′ can only be internal nodes in the
shortest paths added in the graph H, and as such their degrees
must be even.

Let the subset of the nodes of odd degree be V ′
odd ⊆ V ′,

and |V ′
odd| = p. Define a complete graph H ′

odd that has for
each pair of nodes in V ′

odd an edge connecting them of cost
of the shortest path in G between the respective nodes. We
find in H ′

odd a minimum cost perfect matching M∗
odd.

Lemma 3.1. The weight of the edges in M∗
odd is less than

half the weight of the edges in RPP∗,

d(Modd) ≤ 1

2
d(RPP∗).

Proof. The proof here is analogous to the respective
proof for TSP: Consider the tour RPP∗ restricted to the set of
nodes of V ′

odd visited in the order vj1 , vj2 , . . . , vjp and replace
the tour section between each pair of nodes vj� , vj�+1 by the
shortest path between the respective nodes. Since the num-
ber of nodes of odd degree p is even, the collection of these
paths sections form two disjoint feasible matchings on the
nodes of V ′

odd, one on the edges of H ′
odd. One is of weight∑ p

2
�=1d̄j2�−1,j2�

, and the other of weight
∑ p

2
�=1d̄j2�,j2�+1 . Thus,

d(RPP∗) ≥ 2d(M∗
odd). ■

Combining the results of Theorem 3.1 with Lemma 3.1
gives an Eulerian graph that includes all edges of E′ of length
at most 1.5 times the optimum d(RPP∗).

3.2. A (2.5 − 1
k )-Approximation Algorithm for k-RPP( �)

It is assumed that the k-RPP(�) has a feasible solution.
This requires the existence of a vehicle capacity, �, that is
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FIG. 1. The (2.5 − 1
k )-approximation algorithm for k-RPP(�). [Color figure can be viewed in the online issue,

which is available at wileyonlinelibrary.com.]

large enough so that any single edge e of E′, e can be traversed
with a vehicle that arrives along a shortest path from depot
to e, traverses it, and returns to the depot via a shortest path.
Therefore, from any point (not necessarily an endpoint) on
any edge of E′ there is a path of length less than 1

2� to the
depot.

Let �∗ be the smallest capacity for which k-RPP(�) has
a feasible solution, i.e. there are k tours, each including the
depot and each of length at most �∗, covering all the edges
of E′. Let �max be the maximum of the shortest path distance
between any point on any edge of E′ and the depot. The
following fact follows from the discussion earlier:

Fact 3.1. �max ≤ 1
2�∗

Recall that d(RPP∗) is the length of the shortest RPP tour
(single tour, or k = 1) that covers all edges of E′. Then, the
following is obvious:

Fact 3.2. The minimum vehicle capacity value, �∗, required
to cover all the edges of E′ with k vehicles satisfies,

�∗ ≥ d(RPP∗)
k

.

3.2.1. The Algorithm. The approximation algorithm for
k-RPP(�) takes as input a feasible and approximate RPP tour
that covers all the edges of E′. The idea of the algorithm is
to partition the approximate RPP tour into k segments, and
add to each one the necessary trip from the depot and back
to the depot, so that the length of each tour of the k resulting
tours is at most a kth of the length of the tour plus 2�max.
The challenge is that edges of E\E′ maybe further away than
�max from the depot. It is, therefore, necessary to construct
a partition so that the “start” edge of each segment and the
“end” edge of each segment are edges in E′. Also, note that
the first segment starts from the depot, and therefore, does not
require to arrive at the first edge from the depot; similarly, the
last, kth, segment arrives at the depot, and therefore, does not
require the addition of a path to the depot.

Let the 1.5-approximate RPP tour, from Section 3.1, be
denoted by tRPP, of length TH = d(tRPP). Since the tour
tRPP is an undirected cycle, we consider the clockwise and
counterclockwise directions from the depot (Fig. 1a) and
refer to the clockwise direction as the forward direction and
the counterclockwise direction as the backward direction.
Advancing distance L along the tour from point p means
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going forward from p to a point a distance L away. Simi-
larly, retracting distance L along the tour from point p means
going backward from p to a point a counterclockwise distance
L away.

Define p as the point (not necessarily an endpoint of an
edge) on tRPP for the next vehicle to first reach from the depot
to traverse along tRPP. Initially p is the depot node. Define
pnext as the point (not necessarily an endpoint of an edge)
on tRPP for the vehicle to finish traversing along tRPP and
return to the depot. Denote the depot node as node 0. Define
L = T H−2�max

k .

Procedure 2.5- approximate k-RPP (G, E′, tRPP, k) :

Step 1: q = 1. Let pnext be the point on the tour tRPP at a
forward distance L′ = L + �max from the depot p.

Step 2: If pnext is on an edge of E′, set Segq equal to the
tour segment from p to pnext . Set p ← pnext; go to
step 5.

Step 3: Else, retract from pnext backward toward p until the
first edge in E′ is reached and its endpoint jlast . If
no such edge exists then Segq = ∅ (the qth tour
is empty) and go to step 4. Else, set pnext ← jlast.
Let Segq be the tour segment from p to pnext .

Step 4: Advance from pnext to the first edge encountered
in E′ and its endpoint inext . If no such edge, stop.
Set p ← inext.

Step 5: Let Rq be the shortest (return) path from pnext to
depot. Let Fq+1 be the shortest (forward) path from
the depot to p. Set q ← q +1. If q = k go to step 7.

Step 6: Else, advance distance L from p. Let pnext be the
point on the tour tRPP at a forward distance L from
point p. Go to step 2.

Step 7: q = k. The depot is at a distance at most L′ =
L + �max = T H+(k−2)�max

k from p. Segk is the tour
segment from p to the depot. stop.

Note that in step 2, if pnext is on an edge of E′, then the
return and forward paths in step 5, are identical, since in this
case p = pnext.

If the algorithm reaches stop in step 3, then there are q < k
tours that cover all the edges of E′ within the designated
capacity, that will be shown to be within a factor of 2.5 of the
optimum. The output set of tours are,

k − tours(H) = {(Seg1, R1), (F2, Seg2, R2), . . . ,

(Fk−1, Segk−1, Rk−1), (Fk , Segk)}.
A figure illustration of the above 2.5-approximate k-RPP

procedure is displayed in Figure 1. The input 1.5-approximate
RPP tour tRPP is illustrated in Figure 1a. For vehicle 1, if pnext

is on an edge of E′, the process of the algorithm (Step 1 →
Step 2 → Step 5) is displayed in Figure 1b; if pnext is not on
an edge of E′, the process of the algorithm (Step 1 → Step
3 → Step 4) is shown in Figure 1c. Then for any vehicle
q (2 ≤ q ≤ k − 1), similarly, if pnext is on an edge of E′,
the process of the algorithm (Step 6 → Step 2 → Step 5)

is illustrated in Figure 1d; if pnext is not on an edge of E′,
the process of the algorithm (Step 6 → Step 3 → Step 4) is
demonstrated in Figure 1e. Finally, for vehicle k, the process
of the algorithm (Step 7) is shown in Figure 1f.

Notice that some tour splitting procedures similar to the
above that obtain e + 1 − (1/k)-approximation starting from
e-approximation were proposed by [8, 9] for different arc
routing problems (e.g., for the min-max k stacker crane
problem and min-max k-CPP).

3.2.2. Correctness Proof

Theorem 3.1. Procedure 2.5-Approximate k-RPP outputs
a feasible solution to k-RPP( �).

Proof. By construction, all edges of E′ that are covered
in the sections traversed of tRPP are also covered by the set
of tours k − tours(H). It remains to show that all edges of E′
in tRPP are traversed within the distances prescribed.

The total length of the segments along tRPP covered by
the first k – 1 tours is at least

�max + L + (k − 2)L = �max + (k − 1)L

= �max + (k − 1)
TH − 2�max

k

= (k − 1)TH − (k − 2)�max

k
.

Therefore, the total length of the remaining uncovered edges
along the input tour for the last vehicle k to cover is at most,

TH − (�max + (k − 1)L) = TH − (k − 1)TH − (k − 2)�max

k

= TH + (k − 2)�max

k
= L′.

Since L′ is the maximum distance permitted for Segk , this
completes the proof. ■

Lemma 3.2. The length of each tour in the set k − tours(H)

is at most T H+2(k−1)�max

k .

Proof. The first tour and the kth tour are both of length
at most L′ + �max since they include a segment of length
L′ and a return/forward, to/from, the depot, of length �max.
Tours 2 through k – 1 are of length at most L for the segment,
plus 2�max for the return and forward to and from the depot.
Therefore, the total length traversed by each vehicle is at
most,

L′ + �max = L + 2�max = TH + 2(k − 1)�max

k
.

■

Theorem 3.2. The k tours delivered, k − tours(H), each
have capacity at most (2.5 − 1

k )�∗.
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Proof.

TH + 2(k − 1)�max

k
≤ 1.5d(RPP∗) + 2(k − 1)�max

k

(By Fact 3.2) ≤ 1.5k�∗ + 2(k − 1)�max

k

(By Fact 3.1) ≤ 1.5k�∗ + (k − 1)�∗

k

=
(

2.5 − 1

k

)
�∗. (2)

■

3.3. An Alternative Heuristic Procedure for k-RPP( �)

For the sake of comparison with the k-RPP 2.5-
approximation algorithm, we devised a simple heuristic based
on the nearest neighbor greedy algorithm. From each posi-
tion, we seek the next edge in E′ not covered as of yet, that
is nearest. The tour proceeds to the next such edge along the
shortest path in the graph.

4. THE STACKELBERG NETWORK PATROLLING
PROBLEM

In this section, we specialize the Stackelberg security
game model to the problem of patrolling a network where
a strategic adversary is attacking edges. We then describe
how this problem is decomposed separating it into a secu-
rity game problem with independent targets that is used for
Phase I.

In general terms, we consider a security game where the
defender patrols a network G = (V , E) by using k vehi-
cles to travel routes on the network and conduct surveillance
activities on some of the edges traversed. The set of possible
actions for the defender X then corresponds to groups of k
feasible routes with surveillance activities on some subset of
the arcs. A route is feasible if a vehicle can traverse the edges
in the route and perform the surveillance activities in the time
available for that shift. The adversary then selects one edge
to attack. Making the set of possible actions of the attacker
the set of edges E. We could add a dummy target to the set of
actions of the attacker to represent that the attacker decides
not to attack.

We assume that if an attacker targets an edge where the
defender is conducting surveillance (that is, the defender per-
forms surveillance on that edge) then the attacker is caught
and the attack prevented. Conversely, if there is no surveil-
lance on the edge that is attacked then we consider the attack
successful. Furthermore, the payoffs to the defender and
attacker only depend on whether the attack was successful
or not.

If an attack on edge j ∈ E is successful then the attacker
receives a reward Ra

j and the defender a penalty Pd
j . If the

attack is prevented by the defender, then the attacker receives
a penalty Pa

j and the defender a reward Rd
j . Note that Ra

j > Pa
j

and Rd
j > Pd

j for any edge j ∈ E. Given a defender action

i ∈ X (a group of k feasible routes) and an edge j ∈ E, we
write j ∈ i to represent that edge j was checked by one of the
routes of defender action i. Then we have that the rewards of
the Stackelberg game satisfy

Rij =
{

Rd
j j ∈ i

Pd
j j /∈ i

Cij =
{

Pa
j j ∈ i

Ra
j j /∈ i.

Therefore, the network patrolling problem is given by the
optimization problem in (1) with the rewards above and action
sets given by Q = E and X the set of feasible routes. This
mixed integer program can be solved by solving |E| linear
optimization problems. This is because every feasible integer
solution is a pure strategy of the follower, which implies that
there are at most |E| possible feasible integer solutions. To
solve (1), we only need to fix the integer variable q to each of
these possible pure strategies and solve the remaining linear
optimization problem in variables x, d, a. The linear problem
that achieves the maximum reward gives the optimal solution
and the pure strategy that defines this problem, the optimal
attacker strategy. Unfortunately the number of variables of
the linear programming problem that has to be solved can
be very large, since the size of X can be exponential in the
number of nodes or edges of the network.

A standard method of addressing the large number of
variables of these LPs is to implement a column generation
method, where we begin with a small set of defender actions
and gradually incorporate variables that improve the objec-
tive. A drawback of column generation methods is that it may
be necessary to generate a large number of variables, making
the method slow. In this article, we follow a different decom-
position method that separates the complicating constraints
that define a feasible route from the decision to cover or not
different targets. We explain this decomposition in the next
subsection.

4.1. Phase I

We begin by showing that the defender’s and attacker’s
rewards can be expressed in terms of the frequency with
which each target is covered instead of the probability of
conducting each action. Given defender-attacker strategies x
and q we have

∑
i∈X,j∈Q

Rijxiqj =
∑
j∈E

qj

⎛
⎝∑

i:j∈i

Rd
j xi +

∑
i:j/∈i

Pd
j xi

⎞
⎠

=
∑
j∈E

qj

⎛
⎝Rd

j

∑
i:j∈i

xi + Pd
j (1 −

∑
i:j∈i

xi)

⎞
⎠

=
∑
j∈E

qj(R
d
j yj + Pd

j (1 − yj)). (3)

where the second equality comes from 1 = ∑
i∈Xxi =∑

i:j∈ixi+∑
i:j/∈ixi and yj(x) = ∑

i:j∈ixi (or simply yj) denotes
the frequency of coverage of target/edge j given the defender
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strategy x. Note that we can compute y = (yj)j∈E from any
defender mixed strategy x, however, the converse is not neces-
sarily true if there are constraints on what are feasible defense
actions i ∈ X.

Similarly, we can express concisely the attacker’s reward
by ∑

i∈X,j∈Q

Cijxiqj =
∑
j∈E

qj(R
a
j (1 − yj) + Pa

j yj). (4)

Equations (3) and (4) express the rewards of the defender
and attacker in terms of the vector of coverage over edges y.
These expressions remove the dependency of the attacker and
defender rewards on the set X, and suggest a formulation with
a much smaller set of variables. For this suppose that every
feasible route can visit c edges, which implies

∑
j∈Eyj = kc

and gives the following problem:

maxy,q,d,a d

s.t. Rd
j yj + Pd

j (1 − yj) ≥ d − M(1 − qj) j ∈ E

Ra
j (1 − yj) + Pa

j yj ≤ a j ∈ E

Ra
j (1 − yj) + Pa

j yj ≥ a − M(1 − qj) j ∈ E

eT y = kc, 1 ≥ y ≥ 0

eT q = 1, q ∈ {0, 1}|E| (5)

The decomposition of problem (1) introduced here removes
the constraints yj = ∑

i:j∈ixi and thus solves problem (5) on
Phase I, which relaxes the representation of feasible routes.
Problem (5) is equivalent to (1) if a solution on the set of
actions X can be recovered from the optimal solution y found.
That is, Problem (5) with additional variables x that satisfy the
constraints x ∈ X, and yj = ∑

i:j∈ixi for all j ∈ E is equivalent
to (1). It is possible to find such feasible routes x from the
solution to (5), for example, when k = 1 and every feasible
route can patrol only one edge c = 1. In general, however, it
might not be possible to recover a feasible route from (5) due
to the geographic restrictions and capacity constraints in X.

We note that the Stackelberg Network Patrolling Problem
could similarly be defined when the adversary targets nodes
instead of edges. As long as the defender actions patrol edges,
then we can decompose using a k-RPP in Phase II. Here, we
assume that a defender action i protects against an attack
on node j if action i patrols an edge incident on j. There-
fore, the defender reward when the adversary attacks j can be
expressed in terms of ye the frequency of coverage of edge e
as: Rd

j

∑
e∈∂({j})ye+Pd

j (1−∑
e∈∂({j})ye). A similar expression

can be written for the adversary reward. Using these expre-
sions we can formulate a problem to determine the optimal
frequency of coverage as:

maxy,q,d,a d

s.t. Rd
j

∑
e∈∂({j})ye + Pd

j

(
1 −

∑
e∈∂({j})ye

)
≥ d − M(1 − qj) j ∈ V

Ra
j

(
1 −

∑
e∈∂({j})ye

)
+ Pa

j

∑
e∈∂({j})ye

≤ a j ∈ V

Ra
j

(
1 −

∑
e∈∂({j})ye

)
+ Pa

j

∑
e∈∂({j})ye

≥ a − M(1 − qj) j ∈ V

eT y = kc, 1 ≥ y ≥ 0

eT q = 1, q ∈ {0, 1}|V |.

Similar to (5) this problem is equivalent to (1) if we can
recover the solution x ∈ X from y. This can be done, for
example, when both k and c equal 1 but it is not true in
general.

4.2. Phase II

Phase II builds feasible routes in the set X from the fre-
quency of coverage y found in Phase I. The procedure is
to sample without replacement edges according to a prob-
ability distribution proportional to y until the set of edges
sampled cannot be serviced with the available capacity.
The approximation algorithm for k-RPP(�) introduced above
is used to find a feasible set of routes with the available
capacity.

5. COMPUTATIONAL RESULTS

In this section, we compare the performance of the pro-
posed strategy against simple alternate solution strategies.
For this comparison, we build a realistic security instance that
aims to deter and prevent theft in downtown Santiago. This
domain is analogous to the SNM detection problem described
above and the data used to construct the instances is from
police crime statistics in downtown Santiago. The downtown
Santiago network is modeled as an undirected geometric pla-
nar graph, where each edge represents a street and each node
represents an intersection of some streets. Each node has its
X-Y coordinate and the length of an edge is the Euclidean dis-
tance between two end nodes of the edge. The graph consists
of 119 nodes and 203 edges, as shown in Figure 2.

The attacker in this security game is a thief and we assume
that he (she) conducts theft only on nodes. The defender is
the police and we assume that defenders patrol and protect
edges (e.g., police vehicles travel streets monitoring activity).
If an edge is protected by police then the two end nodes
of the edge are considered protected. Then, the attack on
either node is deterred and prevented. The crime statistics
have the number and total amount (in dollars) of thefts that
have occurred at every node of the graph over 3 years. Thus,
we compute the average amount of a theft (in dollars) on
every node. We assume that the reward of the attacker for
conducting an attack at an unprotected node is the average
amount of theft on that node, while the penalty for the attacker
when targeting a protected node is the negation of the total
amount of theft on that node. Symmetrically, we assume that
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FIG. 2. The downtown network of Santiago, Chile. [Color figure can be
viewed in the online issue, which is available at wileyonlinelibrary.com.]

the reward for the defender of protecting a node from attack
is the total amount of theft on that node, while the penalty
for the defender of not protecting a node from attack is the
negation of the average amount of theft on that node. Notice
that since the defender protects edges, the game is not a zero
sum game as the defenders receive the rewards of both end
nodes when protecting a certain edge.

We first compute the defender’s mixed strategy on this
problem instance, according to Phase I of our proposed solu-
tion approach. This determines the frequency of coverage
on each edge as described in Section 4.1 (we refer to this
solution as the Stackelberg probability). Solving this prob-
lems also determines the set of nodes that give the maximum
reward to the attacker. In our experiment, we run Phase I with
kc = 15, which generates a defender strategy that sets a large
number of nodes (110 out of the total of 119 nodes) with the
maximum reward for the attacker.

In Phase II, we implement the 2.5-approximate k-RPP
algorithm described in Section 3.2.1. In this phase, k repre-
sents the number of available police patrols (vehicles) and
the capacity of each patrol is the maximum distance that the
vehicle can patrol in 1 day, starting from and returning to
the depot (police department). We simulate a time range of
100 days in the experiment. Each day, the attacker uniformly
samples a node to attack from the set of nodes with maxi-
mum reward. The defender, in turn, selects edges to patrol
by sampling without replacement according to the Stackel-
berg probability. This sampling process is continued while
the edges selected can be patrolled with k patrols of limited
capacity, which is checked using the k-RPP approximation
algorithm. On each day, we consider that the patrol successful
if the node attacked is incident to one edge protected by the
patrols, otherwise we assume the attack was successful. The
utility perceived by the defender (and attacker) depends on
whether the patrol was successful or not: with the defender
accruing either the reward or the penalty for the attacked
node depending on whether it was covered or not. The per-
formance of the complete two-phase strategy is measured by

the total net utility (rewards plus penalties) of the defender
accumulated over the 100 days.

For each phase, we consider a counterpart for comparison.
For Phase I, we consider another mixed strategy where the
protection probability is uniform over all edges. With uniform
probability, the node that gives the maximum reward to the
attacker is unique. For Phase II, we consider another simple
nearest-neighbor routing heuristic as is outlined in Section
3.3: for each vehicle, starting from the depot, it always covers
the nearest edge that needs protection (in E′). Then starting
from this edge, it covers next the nearest edge that needs
protection. The vehicle continues this searching procedure
until the remaining capacity forces it to go back to the depot.

As a summary, by doing cross combinations, we compare
the following four two-phase strategies:

• Combination SK—Phase I: Stackelberg probability. Phase II:
k-RPP algorithm.

• Combination UK—Phase I: Uniform probability. Phase II:
k-RPP algorithm.

• Combination SN—Phase I: Stackelberg probability. Phase II:
Nearest-neighbor algorithm.

• Combination UN—Phase I: Uniform probability. Phase II:
Nearest-neighbor algorithm.

For each two-phase strategy, we study the change of the
total net utilities as a function of k, the number of avail-
able patrols, and as a function of the patrols’ capacities. To
differentiate these two effects, we explore two setups:

• For a fixed number of patrolling vehicles, we study the change
of the total net utilities as a function of the vehicles’ capacities.

• For a fixed level of vehicles’ capacities, we study the change
of the total net utilities as a function of the number of available
patrolling vehicles.

The results for the above two cases appear in Figure 3 when
the number of patrolling vehicles is kept constant and in
Figure 4 for constant capacity. For every combination of the
k and the capacity, we run all four two-phase strategies 10
times and report the average total net utility. The performance
of the four two-phase strategies are plotted in the same figure
for each testing scenario.

The above computational results show that the Stackelberg
probability gives better performance than the uniform prob-
ability. This follows because the Stackelberg probability is
the optimal solution of model (1) in Phase I, which computes
the maximum net utility. This is consistent with the previous
computational results showing that the Stackelberg probabil-
ity outperforms the uniform probability (without considering
the effect of geographical locations on the defender strat-
egy) [16, 27]. Conversely, the “worst case” 2.5-approximate
k-RPP algorithm works well for the case of 1 vehicle (k = 1).
For the cases of more vehicles, since the problem is defined
in a Euclidean plane, a simple heuristic like the nearest-
neighbor algorithm would do well, while the “worst case”
2.5-approximate k-RPP algorithm does not improve the
solution.
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FIG. 3. The change of the average total net utility with increasing capacities for a fixed number of vehicles.
[Color figure can be viewed in the online issue, which is available at wileyonlinelibrary.com.]

FIG. 4. The change of the average total net utility with increasing number of vehicles and fixed vehicle capacity.
[Color figure can be viewed in the online issue, which is available at wileyonlinelibrary.com.]

6. CONCLUSIONS

We study the security detection problem that addresses the
effect of geographical locations on the defender strategy in the
context of adversarial games. We propose a novel decomposi-
tion of the problem into two phases. In Phase I, we determine
the defender’s optimal strategy as if the targets are indepen-
dent. We model the subproblem as a Stackelberg security
game. In Phase II, we take into consideration the effect of
geographical locations. Given the limited resources, to meet
the optimal outcome of the adversarial game from Phase I, we

determine a maximum set of targets within a certain area that
can be patrolled. This subproblem is the NP-hard k-vehicle
RPP. We devise a (2.5− 1

k )-approximation algorithm for this
problem that works in any setting (including the nonmetric
setting). We conduct computational experiments to compare
the performance of the proposed two-phase strategy with
other simple heuristics.

The instance used in the computational study is not a good
instance to show the advantage of the 2.5-approximate k-
RPP algorithm over simple heuristics. It would be interesting
to find a test instance, where the 2.5-approximate k-RPP
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algorithm is better than simple heuristics. Another question
that is worth of further study is the effect of separating the
Stackelberg Security Game into these two phases on the
optimality of the solution found.
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