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Abstract We consider the problem of dispatching technicians to service/repair
geographically distributed equipment. This problem can be cast as a vehicle rout-
ing problem with time windows, where customers expect fast response and small
delays. Estimates of the service time, however, can be subject to a significant amount
of uncertainty due to misdiagnosis of the reason for failure or surprises during repair. It
is therefore crucial to develop routes for the technicians that would be less sensitive to
substantial deviations from estimated service times. In this paper we propose a robust
optimization model for the vehicle routing problem with soft time windows and ser-
vice time uncertainty and solve real-world instances with a branch and price method.
We evaluate the efficiency of the approach through computational experiments on real
industry routing data.
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1 Introduction

In this paper we are concerned with the routing problem faced by maintenance and
repair service providers for a certain type of equipment (copiers, washers, refrigera-
tors). In this problem, requests are generated by the distributed owners of the equipment
due to regular maintenance or failure of the equipment. Each request for service will
include an estimated service time and a time window constraint, or more specifically
a deadline for the start of service. The repair service center decides on a schedule for
the technicians to service these requests in order to minimize travel time and delays
at customers. Such a problem can be formulated as a classic vehicle routing problem
(VRP) with soft time windows [49]. When the focus is just to minimize the delays at
customers this problem is also referred to as the k-traveling repairmen problem [28].

In the case of repair services, the a-priori service time estimates can be radically
different from the actual service times, due to misdiagnoses of the reason for service
or unexpected situations during repair. This uncertainty in the service time of one
client can result in a large delay for customers scheduled later for the same technician.
Therefore it becomes important to construct technician dispatching strategies that will
be efficient even in the presence of significant uncertainty in service times.

The motivation for this work is a real industrial application (repair technicians
for business copiers) which services each day about 40 requests with 10 technicians
in a large urban setting [51]. Given that travel times between customers are much
smaller than service times and that variations on these travel times are usually small,
we consider travel times deterministic. The estimated service times on the other hand
can be significantly different from the actual service times. In this application about
30% of the requests have estimates for service time that significantly differ from actual
repair times. In such cases the actual service times can be several times the estimated
service times. Therefore, service time is the only relevant source of uncertainty. Similar
conditions are encountered in other problems that route services, such as doctor house
calls, as long as service times are uncertain and delays are costly.

In this work we are interested in the stochastic aspects of this sequencing problem.
To be more precise, we focus on the VRP with soft time windows and uncertainty in ser-
vice times, which is representative of the repair technician routing problem that moti-
vates us. Because customer satisfaction is important in a repair service industry, our
objective is to obtain an a-priori scheduling strategy that will obtain a small cost (travel
time) and small delays regardless the outcome of the uncertainty. In practice, such an a-
priori scheduling strategy could be implemented dinamically by resolving the problem
as the day progresses and the uncertainty is revealed. However, our focus is to develop
a method that obtains routing solutions that not only have good performance measures
on average, but also have a small deviation of these measures under uncertainty.

The bulk of research on stochastic VRP (SVRP) has concentrated on stochastic
customers and demands, see [14,30] for surveys of methods and algorithms. The few
existing works on SVRP with stochastic service times and/or travel times formulate
the problem as a stochastic program either with recourse or chance constraints, or both,
see [34,41,43]. Typically the stochastic optimization solution approach assumes that
the distribution of the uncertainty is known, which is difficult in practice. In addition,
solution methods may require the distribution of the sum of the travel and service
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times along routes [30,43]. However, such a distribution may not be easy to compute,
in particular for problems with hard time windows. Also, representing the distribution
of the uncertainty through scenarios typically leads to a large increase in the dimension
of the problem.

In this paper we present an alternative model for this SVRP, whose objective is to
find an efficient solution that is insensitive to the uncertainty in service times. This
robust solution is obtained by solving a robust counterpart problem that optimizes the
worst case value over all data uncertainty. To formulate and solve the robust version of
the VRP with stochastic service times (VRPSST) we borrow a formulation from the
mathematical programming literature which defines the robust counterpart for convex
optimization problems [4,7,8] later extended to integer programming problems [12].
Robust solutions have the potential to be viable solutions in practice, since they tend
not to be far from the deterministic optimal solution but can significantly outperform
it in the worst case [13,32].

The paper continues as follows, in the following section we provide a review of
relevant literature in stochastic VRP, robust optimization, and recent work combining
these two. In Sect. 3 we introduce the problem and its robust counterpart in general
form. In Sect. 4 we discuss the uncertainty assumptions on service times and present
the robust counterpart problem in detail. We then present a column generation solution
approach with a constraint programming subproblem for this problem, adapted from
[51] in Sect. 5, and present computational results and conclusions in Sects. 6 and 7
respectively.

2 Literature review

The VRP determines the set of routes to be performed by a fleet of vehicles to serve
a dispersed set of customers at minimum travel cost, see [42,48] for comprehen-
sive overviews of the VRP. The SVRP differs from its deterministic counterpart in
several aspects, such as problem formulation approaches and solution techniques. A
general review on SVRP appears in [30]. In broad terms SVRPs can be classified
by the type of uncertainty into VRP with stochastic customers (VRPSC) [10,37–
39,50], VRP with stochastic demands (VRPSD) [10,11,14,21–23,45,46], VRP with
stochastic travel time (VRPSTT) [18,40,41,43] and VRP with stochastic service time
(VRPSST) [34].

The VRP with stochastic travel time (VRPSTT) models the uncertainty in moving
from client to client due to traffic conditions. Some first heuristics for the TSP with
stochastic travel time, based on dynamic programming and implicit enumeration are
proposed in [40]. A generalized dynamic programming methodology is used to solve
the TSP with uncertainty in travel times in [18]. Systematic research on VRP with
stochastic service time and travel time (VRPSSTT) is done in [43]. That work proposed
three models for VRPSSTT: a chance constrained model, a 3-index recourse model
and a 2-index recourse model. A general branch-and-cut algorithm is applied to solve
all 3 models to optimality for up to 20 vertices. The VRPSSTT model was applied to
a banking context in [41]. The problem is to design money collection routes through
bank branches in the presence of stochastic travel times. Late arrival at the depot
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means that all money contained in the vehicles loses one day’s interest. An adaptation
of the Clarke and Wright Savings algorithm, [19] is used for this problem. The VRP
with stochastic service time was used in [34] to model and solve a repair service.
They used a two stage recourse model and a paired tree search algorithm to solve
it.

When the vehicle routing problem focuses only on minimizing the delay (or latency)
at customers, it is also referred to as the repairmen problem, [28]. Previous work has
considered the stochastic version of the problem and developed offline, online, and
distributed control strategies for the repairmen problem, [16,29].

In this paper we use the robust optimization methodology to obtain solutions for
the VRPSST that perform well for all possible data uncertainty. The robust optimiza-
tion approach was introduced for convex optimization problems in a series of papers
[7,9,26], and extended and adapted to a number of applications, including least squares
problems [24], structural truss design [6], portfolio optimization [25,32] and supply
chain management [5,15]. It has also been extended to general combinatorial opti-
mization problems [12] and applications in network problems [1], transportation [27],
and routing [47]. The general approach of robust optimization is to optimize against
the worst instance that might arise due to data uncertainty by using a min-max objec-
tive. The resulting solution from the robust counterpart problem is insensitive to the
data uncertainty as it is the one that minimizes the worst case. The robust optimization
methodology assumes the uncertain parameters belong to an uncertainty set, with-
out additional distribution assumptions. Recent work has developed richer models
of uncertainty sets that fit historic data without fixing the distribution of uncertain
parameters, see for example [3,20,31]. The theoretical and applied work on robust
optimization has shown that for many classes of problems and uncertainty sets the
robust counterpart problem is only modestly larger than the original deterministic
problem, and therefore of comparable complexity. Furthermore, the robust solution
can provide significant protection for the worst case outcome at a modest loss in the
expected objective value [13,32].

In particular the work on robust routing [47] considers a capacitated VRP with
uncertainty in demand. The problem is shown to be equivalent to a deterministic
instance with modified demand values, similar to a chance constrained model, if the
Miller-Tucker-Zemlin (MTZ) formulation of the VRP is used. The approach is also
applicable for uncertainty in travel times in VRPTW given the similarity of the MTZ
constraints and the arrival time definition constraints. Furthermore, that paper notes
that uncertainty in travel cost could be handled using the robust combinatorial opti-
mization approach from [12], which would require solving m deterministic routing
problems, where m is the number of arcs. An alternative form of robust routing solu-
tion is the concept of consistent routing [33], where routes in addition aim to visit
random customers by the same driver and in the same order.

3 Notation and problem definition

The repair scheduling problem considered in this work is based on the problem intro-
duced in [51] with the addition of uncertain service times. This problem considers K
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technicians and I customers, which can be separated into I1 = {1, . . . , K }, the set of
customers currently being serviced by the K technicians, and I2 = {K + 1, . . . , I },
the set of customers that need to be scheduled. We also denote by K = {1, . . . , K } the
set of technicians, letting technician k ∈ K begin its route at client k ∈ I1 without loss
of generality. We assume that all technicians are sent to a dummy depot client I + 1
after their schedule is finished. We define the arc set A = {(i, j) | i ∈ I1 ∪ I2, j ∈
I2 ∪ {I + 1}, i �= j} that represents all feasible trips among clients. Let Wi be the
upper bound of the time window for service at client i , and si the estimated service
time at that client.

The travel time from client i to client j is ti j and all jobs have to be sched-
uled before the end of the work day L . We let variable xk

i j indicate whether tech-
nician k services client i and then client j , or not. In addition we make use of
some auxiliary variables to represent the time technician k starts service at client
i , wik , and penalty for having technician k violate the soft time window constraint
at client i , δik . Finally, we define a binary variable vi to represent when demand is
not served during the day with the available fleet and is scheduled for the next day,
at a high penalty P . Then, vi is equal to one if request i is assigned to the next
day, and equal to zero otherwise. The deterministic problem can then be expressed
by

minx,v,w,δ β
∑

k∈K
∑

i∈I2

δik + (1 − β)
∑

k∈K
∑

(i, j)∈A
ti j xk

i j+
∑

i∈I2

vi P

s.t.
∑

k∈K
∑

j :(i, j)∈A
xk

i j = 1 i ∈ I1

∑

k∈K
∑

j :(i, j)∈A
xk

i j = 1 − vi i ∈ I2

∑

j :(i, j)∈A
xk

i j − ∑

j :( j,i)∈A
xk

ji = bk
i i ∈ I1 ∪ I2 ∪ {I + 1}, k ∈ K

xk
i j ∈ {0, 1} (i, j) ∈ A, k ∈ K

vi ∈ {0, 1} i ∈ I2

wik + si + ti j − w jk ≤ (1 − xk
i j )M (i, j) ∈ A, k ∈ K

wik ≤ L
∑

j :( j,i)∈A
xk

ji i ∈ I2, k ∈ K
wik − δik ≤ Wi i ∈ I2, k ∈ K
wik, δik ≥ 0 i ∈ I2, k ∈ K .

(1)

The objective function is made up of a convex combination between the total delay
and the total travel time, with β ∈ [0, 1], and a penalty for not serving clients. The
first five sets of constraints define feasible routes and identify which customers are
left for the next day, if any. We first require that customers currently being serviced
are visited by exactly one technician. The second constraint ensures the remaining
customers are served by at most one technician or will be left for the next day. The
third set of constraints are the technician flow constraints. Here the demand/supply
vectors bk are defined by
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bk
i =

⎧
⎨

⎩

1 i ∈ I1, i = k
−1 i = I + 1
0 otherwise,

where k = i and i ∈ I1 indicate that technician k starts its route at client i .
The sixth set of constraints define the arrival time of technician k to client j , forcing

it to be greater than the arrival at i (wik) plus the service time at i (si ) and the travel time
to j (ti j ) if technician k goes from i to j (xk

i j = 1). The parameter M is a large constant

that makes this constraint redundant when xk
i j = 0. We also need to set wik = 0 for

all i ∈ I1 and k ∈ K. The seventh set of constraints enforces that all technicians arrive
at customers before the end of the work day L . The next set of constraints define the
delay of technician k at client i when wik > Wi .

The model and the results in this paper extend to more general problems with some
simple adjustments. For instance, heterogeneous technicians that travel at different
speeds or with restricted capabilities can be modeled by indexing travel times on k (tk

i j )

or eliminating variables xk
i j for clients i and j where technician k is not able to provide

service. We can consider a different travel cost, modifying the travel time coefficient in
the objective to a given cost ci j that could also be indexed on the technician. Finally we
note that since the model considers the set I1 of customers currently being serviced, this
model can readily be used to re-optimize during the day when sufficient information
of the uncertainty is revealed.

A model with uncertain service times aims to capture the discrepancy between the
service times si that have been estimated for i ∈ I2, known at the time of scheduling,
and the service times that actually occur. Which uncertainty model is used to represent
this discrepancy is greatly determined by the type and quality of information available.
For instance, if the exact probability distribution of service times is known at every
client, it is possible to develop chance constrained models that would minimize travel
time and a delay that can be satisfied with a prescribed probability. This is achieved
by replacing constraint six in problem (1) with the following constraint for a given
confidence level α ∈ (0, 1):

P(wik + si + ti j − w jk ≤ (1 − xk
i j )M) ≥ 1 − α (i, j) ∈ A, k ∈ K ,

for the known probability distribution of si . Such chance constraints can be linearized
using the inverse cumulative density function. In particular, in our technician routing
problem, as in many industrial applications, there is historic data on service times that
can be used to build models of its variability.

In robust optimization, the uncertainty is represented by closed, convex and bounded
uncertainty sets, which can also be estimated from the historic data. Accordingly we
consider that s ∈ U , a given uncertainty set. We now present the robust repair service
scheduling problem and later mention two cases of uncertainty sets that lead to tractable
robust counterpart problems. We consider robust solution as the solution that achieves
the best worst case outcome with respect to the uncertainty. In other words the solution
is robust if its worst case is minimized. Since we consider uncertainty only on the
estimated service times s this leads to the following problem:
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minx,v,w,δ β
∑

k∈K
∑

i∈I2

δik + (1 − β)
∑

k∈K
∑

(i, j)∈A
ti j xk

i j + ∑

i∈I2

vi P

s.t. (x1, . . . , x K , v) ∈ X
wik + si + ti j − w jk ≤ (1 − xk

i j )M (i, j) ∈ A, k ∈ K, s ∈ U
wik ≤ L

∑

j :( j,i)∈A
xk

ji i ∈ I2, k ∈ K
wik − δik ≤ Wi i ∈ I2, k ∈ K
wik, δik ≥ 0 i ∈ I2, k ∈ K

(2)

For clarity, here we used the set X to represent feasible paths for the K technicians to
service all customers. In other words (x1, . . . , x K , v) ∈ X if and only if the variables
xk

i j and vi satisfy the first five sets of constraints in problem (1).

4 Robust technician dispatching variants

In this section we present the robust counterpart problem (2) of the technician dis-
patching problem under different types of uncertainty sets. The objective is to obtain
robust counterparts that are not harder to solve than the original deterministic ver-
sion of the problem. We present two robust counterpart models that increasingly take
into account the correlation between uncertain parameters. Our first model effectively
assumes that the uncertainty in service time is independent between customers while
the second takes into account the correlation between the service times that each tech-
nician faces. We note that the formulation used is central to the ability to obtain a
robust problem that takes into account correlation between uncertain parameters. We
conclude by pointing out the difficulty in considering correlations between service
times at all customers.

4.1 Independent uncertainty per client

First we assume only that the uncertainty set U is bounded. In this case, for all i ∈ I2
there is a finite maximal value ŝi = sups∈U si . Note that only one of these bounded
uncertain parameters (service times) appears in each constraint. Therefore the robust
problem is equivalent to the deterministic problem with the maximum service time
(ŝi ) in each client, i.e.:

minx,v,w,δ β
∑

k∈K

∑

i∈I2

δik + (1 − β)
∑

k∈K
∑

(i, j)∈A
ti j xk

i j + ∑

i∈I2

vi P

s.t. (x1, . . . , x K , v) ∈ X
wik + ŝi + ti j − w jk ≤ (1 − xk

i j )M (i, j) ∈ A, k ∈ K
wik ≤ L

∑

j :( j,i)∈A
xk

ji i ∈ I2, k ∈ K
wik − δik ≤ Wi i ∈ I2, k ∈ K
wik, δik ≥ 0 i ∈ I2, k ∈ K.

Note that because in this formulation of the routing problem there is only one uncer-
tain parameter per constraint, this robust counterpart is exactly the same as the problem
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obtained when the uncertainty set is a box U = {s | s̄i − γi ≤ si ≤ s̄i + γi , i ∈ I2},
replacing ŝi = s̄i + γi . Therefore, if the set U has correlations between the random
variables they are not reflected in this robust counterpart. To take into account the cor-
relations between uncertain parameters at different customers a different formulation
should be used, where multiple uncertain parameters appear on the same constraint.
One possibility is switching to a path or route based formulation of the technician
dispatching problem. These formulations use variables xr = (x1, . . . , x K ), such that
(xr , v) ∈ X , that represent feasible routes for each technician. We consider such
formulations next.

4.2 Independent uncertainty per technician

We now consider that service times can vary between s̄i − γi ≤ si ≤ s̄i + γi and that
there is an upper bound on the total sum of service time deviations, say U . So far this
is a special case of the bounded uncertainty sets discussed above. In this subsection
we assume in addition that the uncertainty does not concentrate on any one route, and
that there is a bound Uk on the sum of the deviations on route k. The idea is that each
technician will see at most Uk of the uncertainty and the worst case will not concentrate
on a single technician. For example, if the uncertainty is distributed uniformly across
technicians we can set Uk = U/K . This is different from the uncertainty sets from the
previous subsection as the uncertainty set depends on the routes that each technician
takes. Let (xr , v) ∈ X represent a feasible routing solution and Pk(xr ) the route taken
by technician k. The route is represented by the set of arcs traversed by technician k,
that is Pk(xr ) = {(i, j) ∈ A | xk

i j = 1}. Furthermore if technician k visits client i , we

denote the partial route of technician k until client i by the set of arcs Pk
ki (xr ). Given

the routes xr the uncertainty set is given by:

U(xr ) =
⎧
⎨

⎩
s | s̄i ≤ si ≤ s̄i + zi , 0 ≤ zi ≤ γi , i ∈ I2,

∑

(q,l)∈Pk(xr )

zq ≤ Uk

⎫
⎬

⎭
.

Using this uncertainty set and denoting c the vector of travel costs, so cT xr =∑
k∈K

∑
(i, j)∈A ti j xk

i j , the robust counterpart problem is written as

minxr ,v (1 − β)cT xr+ β
∑

k∈K
�k + ∑

i∈I2

vi P

s.t. (xr , v) ∈ X

�k ≥ ∑

i∈I2

⎛

⎝
∑

(q,l)∈Pk
ki (xr )

(
s̄q + zq + tql

) − Wi

⎞

⎠

+
k ∈ K

∀ 0 ≤ zi ≤ γi ,
∑

(q,l)∈Pk (xr )
zq ≤ Uk .

Here �k is an auxiliary variable that represents the worse case time windows violations
for technician k given route xr and uncertainty set U(xr ), that is �k will be set to
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maxz
∑

i∈I2

⎛

⎝
∑

(q,l)∈Pk
ki (xr )

(
s̄q + zq + tql

) − Wi

⎞

⎠

+

s.t.
∑

(q,l)∈Pk (xr )

zq ≤ Uk

0 ≤ zi ≤ γi .

(3)

The next result shows that the solution to (3) has variations in service times as early
as possible.

Proposition 1 If the path Pk(xr ) visits customers 1, 2, . . . , q, then the optimal
solution to problem (3) is such that, for any i = 2, . . . , q, if zi > 0 then zi−1 = γi−1.

Proof Assume that z is a feasible solution to problem (3) that satisfies zi > 0 and
zi−1 < γi−1 for some i ∈ {2, . . . , q}. We define z̃ equal to z except for z̃i = zi − ε

and z̃i−1 = zi−1 + ε. The solution z̃ is feasible for any 0 < ε ≤ min{γi−1 − zi−1, zi }.
The difference between the objective functions becomes:

q∑

j=2

⎛

⎝
j−1∑

l=1

(s̄l + z̃l + tl l+1) − W j

⎞

⎠

+
−

q∑

j=2

⎛

⎝
j−1∑

l=1

(s̄l + zl + tl l+1) − W j

⎞

⎠

+

which due to the definition of z̃ and the fact that z̃i−1 + z̃i = zi−1 + zi , simplifies to

(
i−1∑

l=1

(s̄l + z̃l + tl l+1) − Wi

)+
−

(
i−1∑

l=1

(s̄l + zl + tl l+1) − Wi

)+

=
(

i−1∑

l=1

(s̄l +zl +tl l+1) + ε − Wi

)+
−

(
i−1∑

l=1

(s̄l + zl + tl l+1) − Wi

)+
≥ 0

which shows that z̃ can only improve the objective. �	
We obtain the robust counterpart by taking into account this result and the fact

that in the worst case technician k will face the maximum uncertainty, which equals
min{Uk,

∑
(q,l)∈Pk (xr )

γq}. This leads to representing problem (3) as the following
mixed integer program. Here y ji ∈ {0, 1} is an auxiliary variable that is equal to one
when customer j has z j = γ j and the path visits i right after j .

minz,y
∑

i∈I2

⎛

⎝
∑

(q,l)∈Pk
ki (xr )

(
s̄q + zq + tql

) − Wi

⎞

⎠

+

s.t.
∑

(q,l)∈Pk (xr )

zq ≥ min{Uk,
∑

(q,l)∈Pk (xr )

γq}
0 ≤ zi ≤ γi

∑

j :( j,i)∈A
y ji i ∈ I2

y ji ≤ xk
ji ( j, i) ∈ A

y ji ≤ z j
γ j

( j, i) ∈ A

y ji ∈ {0, 1} ( j, i) ∈ A
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The second set of constraints make sure that variations are possible on a customer in
I2 that is immediately preceded by a customer with full variation in service time. The
last three constraints enforce the definition of y ji . The robust counterpart problem is
obtained by using the above formulation of problem (3), which gives:

minxr ,v,z,y (1−β)cT xr+β
∑

k∈K

∑

i∈I2

⎛

⎜
⎝

∑

(q,l)∈Pk
ki (xr )

(
s̄q +zq +tql

) − Wi

⎞

⎟
⎠

+

+
∑

i∈I2

vi P

s.t. (xr , v) ∈ X∑

(q,l)∈Pk (xr )

zq ≥ min{Uk,
∑

(q,l)∈Pk (xr )

γq} k ∈ K
0 ≤ zi ≤ γi

∑

j :( j,i)∈A
y ji i ∈ I2

y ji ≤ ∑

k∈K
xk

ji ( j, i) ∈ A

y ji ≤ z j
γ j

( j, i) ∈ A

y ji ∈ {0, 1} ( j, i) ∈ A .

(4)

This is slightly more complicated than the deterministic problem. The robust coun-
terpart is a routing problem with an additional |A| + |I1 ∪ I2| new variables (|A| of
them binary) and 2|A| + |I1 ∪ I2| + 1 new constraints. We discuss in Sect. 5 that we
solve this problem with a similar column generation method to the one previously
used to solve a deterministic version of this problem. In this solution method all the
new constraints and variables are part of the column generation subproblem.

4.3 Correlated uncertainty sets

A robust optimization model that takes into account correlations of service times at
all customers has been much harder to tackle. For this we consider the following
uncertainty set

U = {s | s̄i ≤ si ≤ s̄i + zi , i ∈ I2,
∑

i∈I2

zi ≤ U, 0 ≤ zi ≤ γi },

which includes a global bound on the variation of service times at all customers. Again,
this is a special case of the bounded uncertainty sets discussed in Sect. 4.1. However,
the objective now is to find a robust counterpart formulation that does not ignore the
correlation in the uncertainty. Since time window violations are taken into account in
the objective and the arrival time at a customer depends on the stops visited by that
technician, uncertain parameters on the same route are naturally related.

Indeed, as in Proposition 1 we can show that, given a routing solution xr ∈ X , any
variation assigned to a particular technician will occur at the start of that route in the
worst case. Therefore, a robust counterpart would distribute the global uncertainty U
between technicians (uk for k ∈ K) and use the previous approach for each technician.
The challenge is to find the worst case division of this global uncertainty budget U
among technicians. Possible alternatives either approximate this worst case value by
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arbitrarily separating the budget or lead to non-linear problems when using duality of
the linear program in variables uk to obtain robust bounds.

Recent work, [17], has analyzed a rolling horizon robust model with correlated
uncertainty sets for multi period linear programming. The heuristic methods devel-
oped, which use duality and therefore do not readily apply for integer routing problems,
highlight the difficulty in addressing correlated uncertainty. Finding a reformulation
that does not significantly increase the difficulty of solving this routing problem with
uncertainty is left for future work.

5 Branch and price solution method

To be able to solve large instances of this problem exactly we implemented a branch
and price solution method. The algorithm here follows what was implemented for the
deterministic version of this problem and described in [51]. In particular our Branch
and Price scheme [2] uses the branching strategy proposed by Ryan and Foster [44].
The remaining key aspect of this algorithm is the column generation method imple-
mented to solve the linear programming relaxations at each node. It is this column
generation that has to be modified to adapt the solution method for the robust formu-
lation of the problem.

The column generation method is applied to a path formulation of the routing
problem. Analogous to the algorithm for the deterministic version of the problem, the
master problem is a set partitioning model that chooses what routes will be used given
a set R of robust routes:

minxr ,v

∑

r∈R
ĉr xr + ∑

i∈I1∪I2

vi P

s.t.
∑

r∈R
air xr = 1 − vi i ∈ I1 ∪ I2

xr ∈ {0, 1} r ∈ R
vi ∈ {0, 1} i ∈ I1 ∪ I2

In this model, the binary variable xr is 1 if route r is used and 0 otherwise. Note
that route r has a cost ĉr=∑

k∈K
∑

(q,l)∈Pk (xr )
βδr

l + (1−β)tql . The soft time window
penalty that route r incurs at client l, δr

l , is a master problem parameter, computed
as part of the subproblem resolution. The parameter air is equal to 1 if customer i is
visited by route r and 0 otherwise. Therefore, the set partitioning constraint ensures
that each customer is visited by only one route. The column generation procedure can
be initialized with an empty set R, making the initial feasible solution vi = 1 for all
clients i ∈ I1 ∪ I2, with a cost I × P . If the column generation procedure ends with
an optimal solution where one or more clients have a variable vi = 1, then there is no
feasible routing solution that visits all clients on the same day. Clients with vi = 1 are
scheduled for the next day.

At each iteration of the column generation, the subproblem generates a new robust
route that could improve the actual routing solution. The model is a shortest path
problem with negative costs. The cost of the path is equal to the total travel time, plus
the soft time windows penalties, minus the shadow prices from the set partitioning
constraint of the customers that belong to the path. As the following formulation will
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result in a single route for a specific technician, we omit the k index in all variables. In
addition, since the route can start from any technician in the original problem, we add
a dummy origin node {0}, from where the shortest path route will start. This dummy
depot is connected to all nodes belonging to I1, with travel time equal to 0. The new
set of arcs A′ then becomes A′ = A ∪ {(0, j) | j ∈ I1}. The column generation
subproblem is formulated as follows,

minx,w,δ,z,y β
∑

i∈I2

δi+(1−β)
∑

(i, j)∈A′
ti j xi j− ∑

(i, j)∈A′
αi xi j

s.t.
∑

j :(i, j)∈A
xi j − ∑

j :( j,i)∈A
x ji=bi i ∈ {0} ∪ I1 ∪ I2 ∪ {I+1}

wi+si+zi+ti j−w j ≤ (1−xi j )M (i, j) ∈ A′
wi ≤ L

∑

j :( j,i)∈A
x ji i ∈ I2

wi −δi ≤ Wi i ∈ I2∑

i
zi ≥ min{U,

∑

i
γi xi j }

0 ≤ zi ≤ γi
∑

j :( j,i)∈A
y ji i ∈ I2

0 ≤ zi ≤ γi
∑

j :(i, j)∈A
xi j i ∈ I1

y ji ≤ x ji ( j, i) ∈ A′
y ji ≤ z j

γ j
( j, i) ∈ A′

xi j ∈ {0, 1} (i, j) ∈ A′
y ji ∈ {0, 1} ( j, i) ∈ A′
wi , δi , zi ≥ 0 i ∈ I2

(5)

The objective function is the reduced cost of the new route created: the sum of soft
time windows penalties plus the total travel time minus the sum of the shadow prices
αi of the customers that belong to the new created route that come from the master
problem’s partition constraints. For the dummy origin 0 we set α0 = 0. The first set
of constraints ensures the flow conservation for each client, the starting condition for
dummy origin 0 and the final arrival to the fictitious node I + 1 (bi is equal to 1 for
i = 0, −1 for i = I +1, and 0 otherwise). The second to fourth constraint sets impose
the arrival times and the relation with the time windows penalties and extra service
time. And the fifth to ninth constraint sets impose the relation between the variables
defined in formulation (4).

The solution procedure used is similar to what was implemented in [51], simply
modifying the column generation subproblem to problem (5) above, which consid-
ers additionally variables z, γ and y, and the fifth to ninth constraint sets. We solve
the master problem using a linear programming solver (CPLEX 9.0 [35]) and the
subproblem with a constraint programming (CP) solver (SOLVER 6.0 [36]).

6 Computational experiments

In this section we compare the solutions obtained by the robust model with uncer-
tainty bounds per technician for different levels of robustness. The robustness level
corresponds to the amount of uncertainty that the model takes into consideration when
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planning the routes, if this level is zero we are looking for the deterministic optimal
solution. In the approach we are proposing here, the level of robustness is given by the
parameters Uk and γi . The objective of these simulation experiments is to measure how
the solutions behave in terms of configuration and service level for different values of
the robust parameters. Notice that γi is a parameter associated with the customer while
Uk is related to the maximum uncertainty faced by technician k, which originates from
the group of customers that are serviced by that technician during the day.

To organize the experiments, we define a base case taken from a real-world instance
comprising 41 customers and 15 technicians. The soft time window deadlines, Wi , are
those reported by the company and are linked with the priority of each customer and the
accumulated wait of that customer so far. The travel and service times were estimated
from historical data corresponding to all service requests in one year of operation
of this company. This data suggests that service times per customer approximately
follow a Weibull distribution with a mean of si = 77 minutes and a standard deviation
of σi = 44 minutes. In the experiments that follow we use a constant mean, s, and
standard deviation, σ , equal to these estimated values to build the robust routing
model. We evaluate the solutions found by simulating actual service times from a
Weibull distribution with mean s and standard deviation σ .

For a given security factor ρ ≥ 0, we define the parameters γi and Uk that describe
the uncertainty model as follows: γi = σρ and Uk = √|I2|/Kσρ, where |I2|/K is an
estimate of the number of customers that will be visited by every technician. In these
experiments we use

√|I2|/K = 2.45. The parameter γi therefore is also constant over
all customers in these experiments. We note that, if service times were normally dis-
tributed, a security factor of 1.96 would ensure that in approximately 95 % of the cases
the actual service time is less than or equal to s +ρσ . Note that the original determin-
istic model is recovered by setting ρ = 0. Thus, ρ is the parameter used to calibrate the
desired level of robustness. Our experiments consider ρ ∈ {0, 0.3, 0.6, 0.9, 1.2, 1.5},
obtaining six solutions for each scenario below.

Each solution is evaluated on 1,000 simulated instances with service times for every
customer drawn from a Weibull distribution with mean s and standard deviation σ . For
each different routing solution we evaluate the objective function under the simulated
service times. Note that although the travel costs remain constant, the time window
violation and penalty for pushing clients to the next day can vary in each simulation.
In fact if a customer cannot be served because of the simulated service times, then
that customer is pushed to the next day with a penalization equal to a complete day of
violation. In that case, the extra delay is added to the time window violation, weighted
by β. The route is not recomputed in the simulation and still considers the travel time
to that client.

We conduct a sensitivity analysis from the base case, varying each of the following
twice: 1) the penalty on the time window violation β, 2) the number of technicians K ,
3) the standard deviation of service times σ , and 4) tightness of the time windows. The
complete set of experiments, where we vary one parameter at a time, is summarized
in Table 1, with the base case highlighted in bold. For each combination of parameters
we solve the robust routing problem, with a stopping criteria of an optimality gap
≤0.3 %. We evaluate each solution found by simulating 1,000 scenarios with service
times randomly chosen from a Weibull distribution function as described above.
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Table 1 Summary of sensitivity parameters

Description Parameter Values

Time window violation penalty β 0.3 0.6 0.9

Number of technicians K 13 15 17

Standard deviation of the service times σ 22 44 70

Time window deadlines relative to base case ω 1 0.85 0.6

Fig. 1 Average objective
function components
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In Fig. 1 we plot the average value of the objective function (from the 1,000 rep-
etitions) split in the two major components, travel time and time window violation,
where the latter includes the penalty of sending customers to the next day. We can
see that solutions that take less uncertainty into account (i.e. when ρ is close to zero)
have a higher the time window violation. The reason for this is that in solutions that
take little uncertainty into account many clients can be scheduled with little slack. This
causes more clients to be sent to the next day when simulating service times. Note also
that the solutions with smaller time window violations incur a slight increase in travel
cost. In Figs. 2 to 5 below we present a summary of these results. We plot the mean
value of the objective function (av(of )), the mean value of the time window violation
(av(twv)) and the standard deviation computed for the objective function (sd(of )) as
a function of ρ for each instance solved. The value of sd(of ) can be interpreted as a
measure of the reliability of the solution. A low value of sd(of ) allows the dispatcher
to have a good estimation of the arrival time of the technicians to each of the clients.

Figure 2 shows the sensitivity with respect to β of the performance measures dis-
cussed above. Here and in the subsequent results, the base case is represented with
the solid line. Recall that the solutions for the deterministic case are obtained when
ρ = 0.

Notice that as β increases, the quality of the solutions improves with the level of
robustness. This effect can be visualized in av(of ), where clearly the line with the
lowest β value (β = 0.3) does not improve with ρ in the same magnitude as the lines
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Fig. 2 Sensitivity to parameter (β)
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Fig. 3 Sensitivity to the number of technicians
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Fig. 4 Sensitivity to service time standard deviation (σ )

corresponding to β = 0.6 and β = 0.9. In addition, both av(twv) and sd(of ) show
the same tendency as av(of ).

This is expected for the robust formulation, as the robust counterpart tries to protect
the system against the violation of the time windows, which becomes more important
as β increases. We note that the line for β = 0.3 is not monotonically decreasing.
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Fig. 5 Sensitivity to time window deadlines

The reason for this is that the dispatcher schedules more customers with little slack
up to the end of the day. This causes these clients to be pushed beyond the end of
day limit under simulated service times. The resulting values for sd(of ) show an
inverse relation to what is observed in the function average value. In the case β = 0.9
we observe the largest standard deviation, while it has the smallest average objective
function. Finally we note that as ρ increases, the mean objective function for the three
β values becomes quite different, while the standard deviation decreases for all β and
become quite similar for higher values of ρ.

Figure 3 shows the sensitivity analysis with respect to the number of technicians of
the performance measures discussed above. More technicians implies better quality
solutions albeit more expensive. This trade off must be carefully analyzed in terms of
desired robustness as a guide to determine the size of the work force (equivalent to
planning the fleet size if one route is assigned to one technician). For example, if the
level of robustness is high (namely, ρ values above 0.6), there is not much difference in
hiring either 15 or 17 technicians. However, if the solution is not robust enough (small
values of ρ) there is substantial difference in performance for the two extra technicians
(from 15 to 17). The results also show that the real jump in terms of system benefit
from the robust formulation is observed when ρ moves from 0.6 to 0.9 for all curves,
beyond that the benefits decrease considerably, stabilizing the results with ρ around
1.2 or 1.5.

Figure 4 illustrates the system response when we artificially add more uncertainty
to the system, reflected in the value of the standard deviation in service times (σ ). The
larger the σ value, the more relevant the effect of the robustness parameter ρ in the
solution quality. If the standard deviation of the uncertain parameter is high, the robust
formulation can improve the solution quality notoriously. Moreover, if σ is low, the
robust formulation does not improve much the solution quality. Then, in that case it
seems better to use the deterministic model for finding the routes, which is easier to
solve as it has fewer integer variables. Actually, for a standard deviation of 22, the
implementation of the robust solutions does not produce significant effect at all in the
performance indicators.

Finally, Fig. 5 shows the effect of having tighter time window deadlines. As expected
the results show that a tighter time window implies a worse solution quality. This is
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Table 2 Average number of customers serviced on the next day

w ρ

0 0.3 0.6 0.9 1.2 1.5

1.00 0.275 0.209 0.170 0.047 0.030 0.007

0.85 0.149 0.062 0.029 0.015 0.005 0.002

0.60 0.000 0.000 0.000 0.000 0.000 0.000

what can be seen in the plots for av(of ) and av(twv) in Fig. 5, with the exception of a
few cases where the different configuration of the robust routes resulted in a difference
in the number of customers scheduled on the next day. This effect is not simple to
visualize in the figures. Actually, the crossing of the curves associated with ω = 1
and ω = 0.85, in both figures (av(of ) and av(twv)) occurs when ρ = 0.6 and 0.3.
In these cases, the number of customers left for the next day is considerably larger
for ω = 1 compared with ω = 0.85, see Table 2. This leads to a larger time window
violation in the base case scenario, producing a larger average objective function in the
graph. Note also that the average number of clients pushed to the next day decreases
as ρ increases.

The four previous experiments show that as the robustness parameter increases, in
almost all cases the quality of the solution improves: the average objective function
decreases, as well as the average violation of the time windows and the standard
deviation of the objective function. Recall that for a given routing solution, the total
travel time is constant no matter what the values of the service times are. We also
can say that from the results, the tendency observed in the different curves showed
stable results after ρ > 1.5 (higher robustness levels are not relevant any further),
making those results not very interesting, and that is why we chose that threshold in
all previous figures.

7 Conclusions

In this paper we develop a model for the VRP with stochastic service times (VRPSST)
to find an efficient solution that is insensitive to the uncertainty in service times. This
problem is motivated by a real routing problem faced by maintenance and repair service
providers where service times can show high variability depending on the features of
each specific service request. We propose a robust solution that is obtained by solving
a robust counterpart problem that optimizes the worst-case value over all data uncer-
tainty. To formulate and solve the robust version of the VRPSST we follow the robust
optimization literature for integer programming problems. The contribution here is to
explore problem formulations that allow to capture the correlation between uncertain
parameters. We show that we can find a robust solution when the uncertainty faced
by each technician is bounded. Robust solutions have the potential to be preferable
in practice because uncertain parameters differ from estimated values on day to day
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operations and a robust solution tends to be not far from the solution that optimizes
the average scenario, and can significantly outperform that solution in the worst case.

The robust formulation we present in this paper considers that the uncertainty is rep-
resented by having the uncertain parameters belong to a closed, convex, and bounded
set. This uncertainty set could be estimated from historical data on the uncertain
parameters. Other modeling approaches require building detailed probability density
functions of service times, which is not an easy task considering the quality and accu-
racy in databases of service time variability from real companies. In this paper, we
present a model for the robust repair service scheduling problem and later mention
two versions of uncertainty sets that lead to tractable robust counterpart problems. We
leave for future work a comparison of this robust model to other existing optimization
models under uncertainty for the VRP. Such comparison should make careful deci-
sions on which models to consider, how to represent the uncertainty for each, and how
to fairly evaluate their performance. Another topic for future research is to understand
the merits of using a robust model to re-optimize during operations.

With regard to the solution method, the structure of our model allows to easily
adapt a branch and price methodology (originally developed to solve the deterministic
problem) to efficiently solve our problem in case of real instances. The results show
that we can solve instances of size relevant for real-world problems. Our sensitivity
analysis evaluates the practical quality of the robust solutions found seeing how they
perform under simulated service times. We find that solutions that take uncertainty
into account exhibit a smaller sensitivity to the uncertainty but also have smaller time
window violations. The reason for this drop in time window violations is due to the fact
that a solution that incorporates slack in its schedule will tend to send less customers
to the next day.

The proposed approach nicely fits the conditions of service scheduling problem we
are working with; however the model and the results of the paper can be extended to
more general problems with minor adjustments (heterogeneous technicians, different
travel costs, and so on). The robust approach can also be extended to include other
sources of uncertainty, such as travel times which are uncertain due to traffic conditions,
congestion, and time of the day.
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