
Coordinating Randomized Policies for Increasing
Security of Agent Systems

Praveen Paruchuri1, Jonathan P. Pearce2, Janusz Marecki3, Milind Tambe4,
Fernando Ordóñez4, and Sarit Kraus5

1 Carnegie Mellon University
Pittsburgh, PA 15232
paruchur@gmail.com

2 Knight Capital Group
New Jersey

jppearce@usc.edu
3 IBM Research

York Town, New York
marecki@usc.edu

4 University of Southern California
Los Angeles, CA 90089
{tambe, fordon}@usc.edu

5 Bar-Ilan University
Ramat-Gan 52900, Israel
sarit@cs.biu.ac.il

Abstract. We consider the problem of providing decision support to a
patrolling or security service in an adversarial domain. The idea is to
create patrols that can achieve a high level of coverage or reward while
taking into account the presence of an adversary. We assume that the
adversary can learn or observe the patrolling strategy and use this to
its advantage. We follow two different approaches depending on what
is known about the adversary. If there is no information about the ad-
versary we use a Markov Decision Process (MDP) to represent patrols
and identify randomized solutions that minimize the information avail-
able to the adversary. This lead to the development of algorithms CRLP
and BRLP, for policy randomization of MDPs. Second, when there is
partial information about the adversary we decide on efficient patrols
by solving a Bayesian Stackelberg game. Here, the leader decides first
on a patrolling strategy and then an adversary, of possibly many ad-
versary types, selects its best response for the given patrol. We provide
two efficient MIP formulations named DOBSS and ASAP to solve this
NP-hard problem. Our experimental results show the efficiency of these
algorithms and illustrate how these techniques provide optimal and se-
cure patrolling policies. Note that DOBSS is at the heart of the ARMOR
system that is currently deployed at the Los Angeles International air-
port (LAX) for randomizing checkpoints on the roadways entering the
airport and canine patrol routes within the airport terminals.

Key words: Multiagent Systems, Decision Theory, Game Theory, Se-
curity, Randomized Policies

1 Introduction

Security, commonly defined as the ability to deal with intentional threats from
other agents is a major challenge for agents deployed in adversarial environ-
ments [16]. In this paper, we focus on adversarial domains where the agents
have limited information about the adversaries. Such adversarial scenarios arise
in a wide variety of situations that are becoming increasingly important such as
patrol agents providing security for a group of houses or regions [5] [14], UAVs
monitoring a humanitarian mission [1] [16], agents assisting in routine security
checks at airports [18], agents providing privacy in sensor network routing [12]
or agents maintaining anonymity in peer to peer networks [2].

This paper brings together some of our recent work on how to plan for agents
acting in uncertain environments in the presence of adversaries [16] [14] [13]. This
research has introduced two very different approaches for increasing security in
agent systems and has lead to the ARMOR (Assistant for Randomized Moni-
toring over Routes) system which has been deployed for security scheduling at
the LAX airport since August 2007 [13][17] [11]. Here we will present the main
results and algorithms proposed in these two approaches and highlight the re-
lationship between them. The common assumption in these security domains is
that the agent commits to a plan or policy first while the adversary observes the
agent’s actions and hence knows its plan/policy. The adversary can then exploit
the plan or policy the agent committed to. In addition, the agent might have
to decide on its strategy having only incomplete information. For example, in
a typical security domain such as the patrolling agents example, agents provide
security for a group of houses or regions via patrolling. The patrol agents com-
mit to a plan or policy while the adversaries can observe the patrol routes, learn
the patrolling pattern and exploit it to their advantage. Furthermore, the agents
might not know which adversaries they face or what exactly their objectives are.
To solve this problem with incomplete information about the adversaries, we
provide efficient algorithms for improving security broadly considering two real-
istic situations: Firstly, when the agents have no model of their adversaries, our
objective is to obtain strategies for a Markov Decision Process (MDP) that bal-
ance the agent’s reward with the amount of information gained by the adversary
about the agent. Secondly, when the agents have partial model of their adversary
we use a game theoretic framework to obtain maximal reward strategies taking
into account the uncertainty over adversary types.

When the agents have no model of their adversaries, we briefly present ef-
ficient algorithms, as introduced in [16], for generating randomized plans or
policies for the agents that minimize the information that can be gained by
adversaries. Such randomized policies that attempt to minimize the opponent’s
information gain are referred to as secure policies. However, arbitrary random-
ization can violate quality constraints, such as: increasing resource usage, fre-
quency of patrols in key areas. To that end, we developed algorithms for efficient
policy randomization with quality guarantees using Markov Decision Processes
(MDPs) [19]. We measure randomization via an entropy-based metric. In par-
ticular, we illustrate that simply maximizing entropy-based metrics introduces a

non-linear program that has non-polynomial run-time. Hence, we introduce our
CRLP (Convex combination for Randomization) and BRLP (Binary search for
Randomization) linear programming (LP) techniques that randomize policies in
polynomial time with different tradeoffs as explained later.

When the agents have a partial model of their adversary, we model the se-
curity domain as a Bayesian Stackelberg game [14] [6]. A Bayesian game is a
game in which agents may belong to one or more types; the type of an agent
determines its possible actions and payoffs. The assumption made here is that
the agent knows the adversary’s actions and payoffs but does not know which
adversary is active at a given time. Usually these games are analyzed according
to the concept of Bayes-Nash equilibrium, an extension of Nash equilibrium for
Bayesian games in which it is assumed that all the agents choose their strategies
simultaneously. However, the main feature of the security games we consider is
that one player must commit first to a strategy before the other players choose
their strategies. In the patrol domain, the patrol agent commits to a strategy
first while the adversaries get to observe the agent’s strategy and decide on their
choice of action. These scenarios are known as Stackelberg games [9]. More pre-
cisely, we model our security domains as Bayesian Stackelberg games to take into
account that the leader must plan for possibly many different types of adver-
saries. The solution concept for these games is that the security agent has to pick
the optimal strategy considering the actions, payoffs and probability distribu-
tion over the adversaries. In [14] and [13], we introduced efficient techniques for
generating optimal leader strategies with controlled and optimal randomization
for Bayesian Stackelberg games, named as ASAP (Agent Security via Approxi-
mate Policies) and DOBSS (Decomposed Optimal Bayesian Stackelberg Solver)
respectively. Furthermore, DOBSS is at the heart of the ARMOR (Assistant for
Randomized Monitoring over Routes) [13] [17] system that is currently deployed
for security scheduling at the LAX airport, which has been described in popular
scientific magazines and news media such as [11].

The ARMOR software is a general-purpose security scheduler built over the
DOBSS algorithm. In particular, it is being used for randomizing police check-
points and canine patrols for improving security at the LAX airport. For ex-
ample, airports cannot afford having checkpoints on all roads at all times due
to limited security personnel. Potential adversaries can monitor the checkpoints
regularly and learn weaknesses/patterns. ARMOR accounts for various factors
including number of checkpoints, their operation times, traffic patterns, adver-
sarys cost for getting caught, estimated target priority for adversary, etc. to cal-
culate the optimal randomized solution. In most security domains, police/canine
units commit first to a security policy while our adversaries observe and exploit
the policy committed to. This key observation is mapped to a Bayesian Stackel-
berg game and is solved using the DOBSS algorithm. 6

The rest of this paper is organized as follows. Section 3 introduces the clas-
sic Markov Decision approach for planning and the LP solution to solve it.

6 The ARMOR software has been developed in close interaction with the LAWA (Los
Angeles World Airports) police, and has been in use at LAX since Aug’07.

We then briefly present a non-linear program and two approximate linear pro-
gramming alternatives called the CRLP and the BRLP algorithms for efficient
randomized policy generation in the presence of an unmodeled adversary. Sec-
tion 4 briefly presents the DOBSS procedure for generating optimal randomized
strategies, first for non-Bayesian games, for clarity; then shows how it can be
adapted for Bayesian games with partial adversary information. We then provide
a brief description of the ASAP algorithm that generates policies with controlled
randomization using the framework developed for DOBSS. Section 5 provides
experimental results for both the techniques developed in this paper. Section 6
gives the conclusions.

2 Related Work

Decision theoretic frameworks, such as MDPs, are extremely useful and powerful
modeling tools that are being increasingly applied to build agents and agent
teams that can be deployed in real world. The main advantage of modeling
agent and agent teams using these tools is the following:

– Real world is uncertain and the decision theoretic frameworks can model such
real-world environmental uncertainty. In particular, the MDP [19] framework
can model stochastic actions and hence can handle transition uncertainty.

– Efficient algorithms have been devised for generating optimal plans for agents
and agent teams modeled using these frameworks [19].

However, these optimal policy generation algorithms have focused on maximiz-
ing the total expected reward while taking the environmental uncertainties into
account. Such optimal policies are deterministic and therefore useful when the
agents act in environments where acting in a predictable manner is not prob-
lematic. As agents get increasingly deployed in real world, they will have to act
in adversarial domains often without any adversary model available. Hence, ran-
domization of policies becomes critical. Randomization of policies using decision
theoretic frameworks as a goal has received little attention, and is primarily seen
as a side-effect in attaining other objectives like in Constrained MDPs [15] [7].

Stackelberg games [23] [20] are commonly used to model attacker-defender
scenarios in security domains [3]. In particular [3] develops algorithms to make
critical infrastructure more resilient against terrorist attacks by modeling the
scenario as a Stackelberg game. However they do not address the issue of in-
complete information about adversaries whereas agents acting in the real world
quite frequently are uncertain, or do not have complete information, about the
adversary faced. Bayesian games have been a popular choice to model such in-
complete information games [6] [4] and the solution concept is called the Bayes-
Nash equilibrium [9]. The problem of choosing an optimal strategy for the leader
to commit to in a Stackelberg game is analyzed in [6] and found to be NP-hard
in the case of a Bayesian game with multiple types of followers. Methods for
finding optimal leader strategies for non-Bayesian games [6] can be applied to
this problem by converting the Bayesian game into a normal-form game by the

Harsanyi transformation [10]. However, by transforming the game, the compact
structure of the Bayesian game is lost. In addition, the method by [6] (called
the Multiple LPs method) requires solving many linear programs, some of which
may be infeasible. If, on the other hand, we wish to compute the highest-reward
Nash equilibrium, new methods using mixed-integer linear programs (MILPs)
[21] may be used, since the highest-reward Bayes-Nash equilibrium is equivalent
to the corresponding Nash equilibrium in the transformed game. Furthermore,
since the Nash equilibrium assumes a simultaneous choice of strategies, the ad-
vantages of being the leader are not considered. Our work proposes an efficient
and compact technique for choosing optimal strategies in Bayesian-Stackelberg
games.

3 Randomization with No Adversary Model

In this section, we first describe MDPs, followed by our approaches to random-
ization of MDP policies. An MDP is a tuple 〈S,A, P,R〉, that consists of world
states {s1, . . . , sm}, actions {a1, . . . , ak}, transition function which is a set of
tuples p(s, a, j) and immediate reward denoted by tuples r(s, a). If x(s, a) rep-
resents the number of times the MDP visits state s and takes action a and αj
represents the number of times the MDP starts in each state j ∈ S, then the
optimal policy, maximizing expected reward, is derived via the following linear
program [8]:

max
∑
s∈S

∑
a∈A

r(s, a)x(s, a)

s.t.
∑
a∈A

x(j, a)−
∑
s∈S

∑
a∈A

p(s, a, j)x(s, a) = αj ,∀j ∈ S

x(s, a) ≥ 0 ∀s ∈ S, a ∈ A

(1)

If x∗ is the optimal solution to (1), the optimal policy π∗ is given by (2) below,
where π∗(s, a) is the probability of taking action a in state s and is deterministic
i.e., π∗(s, a) has a value of either 0 or 1. However, such deterministic policies are
undesirable in security domains.

π∗(s, a) =
x∗(s, a)∑
â∈A x

∗(s, â)
. (2)

3.1 Maximal Entropy Solution

We aim to randomize these optimal deterministic policies, where randomness is
quantified using some entropy measure. The notion of entropy for probability
distributions is introduced by Shannon in [22]. Entropy for a discrete distri-
bution p1, . . . , pn is defined by H = −

∑n
i=1 pi log pi. For a Markov Decision

Process we introduce the weighted entropy function, borrowing from the classic
entropy definition. The weighted entropy is defined by adding the entropy for

the distributions at every state weighted by the likelihood the MDP visits that
state, namely

HW (x) = −
∑
s∈S

∑
â∈A x(s, â)∑
j∈S αj

∑
a∈A

π(s, a) log π(s, a)

= − 1∑
j∈S αj

∑
s∈S

∑
a∈A

x(s, a) log

(
x(s, a)∑
â∈A x(s, â)

)
.

Note that when all states have equal weight of 1, we call the above function
as additive entropy denoted by HA(x). The maximal entropy solution for MDP
can be defined as:

max − 1∑
j∈S αj

∑
s∈S

∑
a∈A

x(s, a) log

(
x(s, a)∑
â∈A x(s, â)

)
s.t.

∑
a∈A

x(j, a)−
∑
s∈S

∑
a∈A

p(s, a, j)x(s, a) = αj

∀j ∈ S∑
s∈S

∑
a∈A

r(s, a)x(s, a) ≥ Emin

x(s, a) ≥ 0 ∀s ∈ S, a ∈ A

(3)

Here, Emin is the reward threshold and is an input domain parameter. Note
that for Emin = 0 the above problem finds the maximum weighted entropy
policy, and for Emin = E∗, Problem (3) returns the maximum expected reward
policy with largest entropy, where E∗ is the maximum possible expected reward.
Unfortunately the functionHW (x) is neither convex nor concave in x, hence there
are no complexity guarantees in solving Problem (3), even for local optima. This
negative complexity motivates the polynomial methods presented below.

3.2 Efficient single agent randomization

Note that, while entropy calculation is a non-linear function, entropy-maximization
is a convex problem. The non-convexity in the functions above arises due to way
probabilities are calculated i.e. as a ratio of the flow variables in the (MDP)
network. We now present two polynomial time algorithms to obtain policies for
an MDP that balance the reward and randomness. The algorithms that we in-
troduce below consider two inputs: a minimal expected reward value Emin and
a randomized solution x̄ (or policy π̄). The input x̄ can be any solution with
high entropy and is used to enforce some level of randomness on the high ex-
pected reward output, through linear constraints. One such high entropy input
for MDP-based problems is the uniform policy, where π̄(s, a) = 1/|A|. We en-
force the amount of randomness in the high expected reward solution that is
output through a parameter β ∈ [0, 1]. For a given β and a high entropy solu-
tion x̄, we output a maximum expected reward solution with a certain level of
randomness by solving (4).

max
∑
s∈S

∑
a∈A

r(s, a)x(s, a)

s.t.
∑
a∈A

x(j, a)−
∑
s∈S

∑
a∈A

p(s, a, j)x(s, a) = αj

∀j ∈ S
x(s, a) ≥ βx̄(s, a) ∀s ∈ S, a ∈ A .

(4)

which can be expressed in matrix notation. Let x = (x(s, a))s∈S,a∈A be an
|S||A| dimensional variable vector, α a vector in <|S|, r a vector in <|S||A|, and
M a matrix with |S| rows and |S||A| columns. The matrix shorthand would then
be,

max rTx
s.t. Mx = α

x ≥ βx̄ .

As the parameter β is increased, the randomness requirements of the solution
become stricter and hence the solution to (4) would have smaller expected reward
and higher entropy. For β = 0 the above problem reduces to (1) returning the
maximum expected reward solution E∗; and for β = 1 the problem obtains
the maximal expected reward (denoted E) out of all solutions with as much
randomness as x̄.

Theorem 1. If x̄ is a feasible solution to (1) (that is Mx̄ = α, x̄ ≥ 0) and E∗ is
finite, then x̄ is an optimal solution to (4) when β = 1 and Ē =

∑
s∈S

∑
a∈A r(s, a)x̄(s, a) =

rT x̄.
Proof: If E∗ is finite then for any x such that Mx = 0, x ≥ 0 we must

have that rTx ≤ 0. By construction x̄ is feasible for (4) with β = 1. Consider
a solution x̃ feasible for (4) with β = 1. Then x̃ − x̄ ≥ 0 and M(x̃ − x̄) = 0,
therefore since E∗ is finite we have rT (x̃− x̄) ≤ 0, which shows that x̄ is optimal
for (4).�

Our new algorithm to obtain an efficient solution with a expected reward
requirement of Emin is based on the following result which shows that the solution
to (4) is a convex combination of the deterministic and random input solutions.

Theorem 2. ([16], Theorem 1) Consider a solution x̄, which satisfies Mx̄ = α
and x̄ ≥ 0. Let x∗ be the solution to (1) and β ∈ [0, 1]. If xβ is the solution to
(4) then xβ = (1− β)x∗ + βx̄.

Proof: We reformulate problem (4) in terms of the slack z = x− βx̄ of the
solution x over βx̄ leading to the following problem :

βrT x̄ + max rT z
s.t. Mz = (1− β)α

z ≥ 0 ,

The above problem is equivalent to (4), where we used the fact that Mx̄ = α.
Let z∗ be the solution to this problem, which shows that xβ = z∗+βx̄. Dividing
the linear equation Mz = (1 − β)α, by (1 − β) and substituting u = z/(1 − β)

we recover the deterministic problem (1) in terms of u, with u∗ as the optimal
deterministic solution. Renaming variable u to x, we obtain 1

1−β z
∗ = x∗, which

concludes the proof.�
Since xβ = (1−β)x∗+βx̄, we can directly find a randomized solution which

obtains a target expected reward of Emin. Due to the linearity in relationship
between xβ and β, a linear relationship exists between the expected reward
obtained by xβ (i.e rTxβ) and β. In fact setting β = rT x∗−Emin

rT x∗−rT x̄
makes rTxβ =

Emin. Using the theorem, we now present below algorithm CRLP based on the
observations made about β and xβ .

Algorithm 1 CRLP(Emin, x̄)
1: Solve Problem (1), let x∗ be the optimal solution

2: Set β = rT x∗−Emin
rT x∗−rT x̄

3: Set xβ = (1− β)x∗ + βx̄
4: return xβ (expected reward = Emin, entropy based on βx̄)

Algorithm CRLP is based on a linear program and thus obtains, in polyno-
mial time, solutions to problem(4) with expected reward values Emin ∈ [E,E∗].
Note that Algorithm CRLP might unnecessarily constrain the solution set as
Problem (4) implies that at least β

∑
a∈A x̄(s, a) flow has to reach each state s.

This restriction may negatively impact the entropy it attains, as experimentally
verified in Section 5. This concern is addressed by a reformulation of Problem
(4) replacing the flow constraints by policy constraints at each stage. For a given
β ∈ [0, 1] and a solution π̄ (policy calculated from x̄), this replacement leads to
the following linear program

max
∑
s∈S

∑
a∈A

r(s, a)x(s, a)

s.t.
∑
a∈A

x(j, a)−
∑
s∈S

∑
a∈A

p(s, a, j)x(s, a) = αj , ∀j ∈ S

x(s, a) ≥ βπ̄(s, a)
∑
b∈A

x(s, b), ∀s ∈ S, a ∈ A .

(5)

For β = 0 this problem reduces to (1) returning E∗, for β = 1 it returns a
maximal expected reward solution with the same policy as π̄. This means that
for β at values 0 and 1, problems (4) and (5) obtain the same solution if policy
π̄ is the policy obtained from the flow function x̄. However, in the intermediate
range of 0 to 1 for β, the policy obtained by problems (4) and (5) are different
even if π̄ is obtained from x̄. Thus, theorem 2 holds for problem (4) but not for
(5). We now present our BRLP algorithm 2.

Given input x̄, algorithm BRLP runs in polynomial time, since at each it-
eration it solves an LP and for tolerance of ε, it takes at most O

(
E(0)−E(1)

ε

)
iterations to converge (E(0) and E(1) expected rewards correspond to 0 and 1
values of β).

Algorithm 2 BRLP(Emin, x̄)
1: Set βl = 0, βu = 1, and β = 1/2.
2: Obtain π̄ from x̄
3: Solve Problem (5), let xβ and E(β) be the optimal solution and expected reward

value returned
4: while |E(β)− Emin| > ε do
5: if E(β) > Emin then
6: Set βl = β
7: else
8: Set βu = β
9: β = βu+βl

2

10: Solve Problem (5), let xβ and E(β) be the optimal solution and expected reward
value returned

11: return xβ (expected reward = Emin ± ε, entropy related to βx̄)

Throughout this paper, we set x̄ based on uniform randomization π̄ = 1/|A|.
By manipulating x̄, we can accommodate the knowledge of the behavior of the
adversary. For instance, if the agent knows that a specific state s cannot be
targeted by the adversary, then x̄ for that state can have all values 0, implying
that no entropy constraint is necessary. In such cases, x̄ will not be a complete
solution for the MDP but rather concentrate on the sets of states and actions
that are under risk of attack. For x̄ that do not solve the MDP, Theorem 2 does
not hold and therefore Algorithm CRLP is not valid. In this case, a high-entropy
solution that meets a target expected reward can still be obtained via Algorithm
BRLP.

4 Randomization using Partial Adversary Model

In this section, we first describe the Bayesian Stackelberg games, followed by
our efficient approaches to obtain optimal randomized policies. As mentioned in
Section 1, in the case that the leader has a partial model of the adversary, we use
a Bayesian Stackelberg game to represent the interaction between players. In a
Stackelberg game, a leader commits to a strategy first, and then a follower (or
group of followers) selfishly optimize their own rewards, considering the action
chosen by the leader. To see the advantage of being the leader in a Stackelberg
game, consider a simple game with the payoff table as shown in the table below.
The leader is the row player and the follower is the column player.

1 2

1 2, 1 4, 0

2 1, 0 3, 2

If we consider the above problem to be a simultaneous move game, then the
only pure-strategy Nash equilibrium for this game is when the leader plays 1 and

the follower plays 1 which gives the leader a payoff of 2; in fact, for the leader,
playing 2 is strictly dominated. However, if the leader can commit to playing 2
before the follower chooses its strategy, then the leader will obtain a payoff of
3, since the follower would then play 2 to ensure a higher payoff for itself. If the
leader commits to a uniform mixed strategy of playing 1 and 2 with equal (0.5)
probability, then the follower will play 2, leading to a payoff for the leader of 3.5.

4.1 Exact Solution: DOBSS

We developed an efficient exact procedure to generate an optimal leader strategy
for security domains known as DOBSS (Decomposed Optimal Bayesian Stack-
elberg Solver). This method has two key advantages. First, it directly searches
for an optimal strategy, rather than a Nash (or Bayes-Nash) equilibrium, thus
allowing it to find high-reward non-equilibrium strategies. Second, the method
expresses the Bayes-Nash game compactly without requiring conversion to a
normal-form game.

The DOBSS procedure we propose operates directly on the compact Bayesian
representation, without requiring the Harsanyi transformation. This is achieved
because the different follower (robber) types are independent of each other.
Hence, evaluating the leader strategy against a Harsanyi-transformed game ma-
trix is equivalent to evaluating against each of the game matrices for the individ-
ual follower types. This independence property is exploited in DOBSS to yield a
decomposition scheme. Also, note that DOBSS requires the solution of one op-
timization problem, rather than solving a series of problems as in the Multiple
LPs method [6].

Note that for a single follower type, we simply take the mixed strategy for the
leader that gives the highest payoff when the follower plays a reward-maximizing
strategy. We need only to consider the reward-maximizing pure strategies of the
followers, since for a given fixed strategy x of the leader, each follower type
faces a problem with fixed linear rewards. If a mixed strategy is optimal for the
follower, then so are all the pure strategies in the support of that mixed strategy.

We begin with the case of a single follower. Let the leader be the row player
and the follower the column player. We denote by x the leader’s policy, which
consists of a vector of the leader’s pure strategies. The value xi is the proportion
of times in which pure strategy i is used in the policy. Similarly, q denotes the
vector of strategies of the follower. We also denote X and Q the index sets of the
leader and follower’s pure strategies, respectively. The payoff matrices R and C
are defined such that Rij is the reward of the leader and Cij is the reward of
the follower when the leader takes pure strategy i and the follower takes pure
strategy j.

We first fix the policy of the leader to some policy x. We formulate the
optimization problem the follower solves to find its optimal response to x as the
following linear program:

maxq
∑
j∈Q

∑
i∈X

Cijxi qj

s.t.
∑
j∈Q qj = 1

q ≥ 0.

(6)

Thus, given the leader’s strategy x, the follower’s optimal response, q(x),
satisfies the LP optimality conditions:

a ≥
∑
i∈X

Cijxi, j ∈ Q

qj

(
a−

∑
i∈X

Cijxi

)
= 0 j ∈ Q

∑
j∈Q

qj = 1

q ≥ 0 .

Therefore the leader solves the following integer problem to maximize its own
payoff, given the follower’s optimal response q(x):

maxx
∑
i∈X

∑
j∈Q

Rijq(x)j xi

s.t.
∑
i∈X xi = 1

xi ∈ [0 . . . 1].

(7)

Problem (7) maximizes the leader’s reward with follower’s best response,
denoted by vector q(x) for every leader strategy x. We complete this problem
by including the characterization of q(x) through linear programming optimality
conditions. The leader’s problem becomes:

maxx,q,a
∑
i∈X

∑
j∈Q

Rijxiqj

s.t.
∑
i xi = 1∑
j∈Q qj = 1

0 ≤ (a−
∑
i∈X Cijxi) ≤ (1− qj)M

xi ∈ [0 . . . 1]
qj ∈ {0, 1}
a ∈ < .

(8)

Here, M is some large constant and a is the follower’s maximum reward value.
The first and fourth constraints enforce a feasible mixed policy for the leader,
and the second and fifth constraints enforce a feasible pure strategy for the
follower. The third constraint enforces dual feasibility of the follower’s problem
(leftmost inequality) and the complementary slackness constraint for an optimal
pure strategy q for the follower (rightmost inequality).

We now show how we can apply our decomposition technique on the MIQP
to obtain significant speedups for Bayesian games with multiple follower types.
To admit multiple adversaries in our framework, we modify the notation defined
in the previous section to reason about multiple follower types. We denote by x
the vector of strategies of the leader and ql the vector of strategies of follower l,
with L denoting the index set of follower types. We also denote by X and Q the
index sets of leader and follower l’s pure strategies, respectively. We also index
the payoff matrices on each follower l, considering the matrices Rl and Cl.

Given a priori probabilities pl, with l ∈ L of facing each follower, the leader
now faces the decomposed problem:

maxx,q,a
∑
i∈X

∑
l∈L

∑
j∈Q

plRlijxiq
l
j

s.t.
∑
i xi = 1∑
j∈Q q

l
j = 1

0 ≤ (al −
∑
i∈X C

l
ijxi) ≤ (1− qlj)M

xi ∈ [0 . . . 1]
qlj ∈ {0, 1}
a ∈ <

(9)

Proposition 1. Problem (9) for a Bayesian game with multiple follower types
is equivalent to Problem (8) on the payoff matrices given by the Harsanyi trans-
formation.

Proof: To show the equivalence we show that a feasible solution to (9) leads
to a feasible solution to (8) of same objective value or better and vice-versa. This
implies the equality in optimal objective value and the correspondence between
optimal solutions.

Consider x, ql, al with l ∈ L a feasible solution to Problem (9). We now
construct a feasible solution to (8). From its second constraint and integrality of
q we have that for every l there is exactly one jl such that qljl = 1. Let j be the
Harsanyi action that corresponds to (j1, . . . , j|L|) and let q be its pure strategy
(i.e. q is a strategy in the transformed game where qj = 1, and qh = 0 for all
other h 6= j). We now show that the objective of (9) equals that of (8) exploiting
these corresponding actions. In particular:∑

i∈X

∑
l∈L

plxi
∑
h∈Q

Rlihq
l
h =

∑
i∈X

xi
∑
l∈L

plRlijl

=
∑
i∈X

xiRij =
∑
i∈X

∑
h∈Q

xiRihqh

So now we just have to show that x, q, and a =
∑
l∈L p

lal is feasible for
Problem (8). Constraints 1, 2, 4, and 5 in (8) are easily satisfied by the proposed
solution. Constraint 3 in (9) means that

∑
i∈X xiC

l
ijl
≥
∑
i∈X xiC

l
ih, for every

h ∈ Q and l ∈ L, leading to∑
i∈X

xiCij =
∑
l∈L

pl
∑
i∈X

xiC
l
ijl
≥
∑
l∈L

pl
∑
i∈X

xiC
l
ihl

=
∑
i∈X

xiCih′ ,

for any pure strategy h1, . . . , h|L| for each of the followers and h′ its corresponding
pure strategy in the Harsanyi game. We conclude this part by showing that∑

i∈X
xiCij =

∑
l∈L

pl
∑
i∈X

xiC
l
ijl

=
∑
l∈L

plal = a .

Now we start with (x, q, a) feasible for (8). This means that qj = 1 for some
pure action j. Let (j1, . . . , j|L|) be the corresponding actions for each follower l.
We show that x, ql with qljl = 1 and qlh = 0 for h 6= jl, and al =

∑
i∈X xiC

l
ijl

with l ∈ L is feasible for (9). By construction this solution satisfies constraints
1, 2, 4, 5 and has a matching objective function. We now show that constraint 3
holds by showing that

∑
i∈X xiC

l
ijl
≥
∑
i∈X xiC

l
ih for all h ∈ Q and l ∈ L. Let us

assume it does not. That is, there is an l̂ ∈ L and ĥ ∈ Q such that
∑
i∈X xiC

l̂
ijl̂
<∑

i∈X xiC
l̂
iĥ

. Then by multiplying by pl̂ and adding
∑
l 6=l̂ p

l
∑
i∈X xiC

l
ijl

to both
sides of the inequality we obtain

∑
i∈X

xiCij <
∑
i∈X

xi

∑
l 6=l̂

plClijl + pl̂C l̂
iĥ

 .

The right hand side equals
∑
i∈X xiCih for the pure strategy h that corresponds

to (j1, . . . , ĥ, . . . , j|L|), which is a contradiction since constraint 3 of (8) implies
that

∑
i∈X xiCij ≥

∑
i∈X xiCih for all h. �

We can then linearize the quadratic programming problem (9) through the
change of variables zlij = xiq

l
j , obtaining the following problem

maxq,z,a
∑
i∈X

∑
l∈L
∑
j∈Q p

lRlijz
l
ij

s.t.
∑
i∈X

∑
j∈Q z

l
ij = 1∑

j∈Q z
l
ij ≤ 1

qlj ≤
∑
i∈X z

l
ij ≤ 1∑

j∈Q q
l
j = 1

0 ≤ (al −
∑
i∈X C

l
ij(
∑
h∈Q z

l
ih)) ≤ (1− qlj)M∑

j∈Q z
l
ij =

∑
j∈Q z

1
ij

zlij ∈ [0 . . . 1]
qlj ∈ {0, 1}
a ∈ <

(10)

Theorem 3. Problems (9) and (10) are equivalent.

Proof: Consider x, ql, al with l ∈ L a feasible solution of (9). We will show
that ql, al, zlij = xiq

l
j is a feasible solution of (10) of same objective function

value. The equivalence of the objective functions, and constraints 4, 7 and 8 of
(10) are satisfied by construction. The fact that

∑
j∈Q z

l
ij = xi as

∑
j∈Q q

l
j = 1

explains constraints 1, 2, 5 and 6 of (10). Constraint 3 of (10) is satisfied because∑
i∈X z

l
ij = qlj .

Lets now consider ql, zl, al feasible for (10). We will show that ql, al and
xi =

∑
j∈Q z

1
ij are feasible for (9) with the same objective value. In fact all

constraints of (9) are readily satisfied by construction. To see that the objectives
match, notice for each l one qlj must equal 1 and the rest equal 0. Let us say
that qljl = 1, then the third constraint in (10) implies that

∑
i∈X z

l
ijl

= 1. This
condition and the first constraint in (7) give that zlij = 0 for all i ∈ X and all
j 6= jl. In particular this implies that

xi =
∑
j∈Q

z1
ij = z1

ij1 = zlijl ,

the last equality from constraint 6 of (10). Therefore xiqlj = zlijlq
l
j = zlij . This

last equality is because both are 0 when j 6= jl (and qlj = 1 when j = jl). This
shows that the transformation preserves the objective function value, completing
the proof. �

We can therefore solve this equivalent linear integer program with efficient
integer programming packages which can handle problems with thousands of
integer variables. We implemented the decomposed MILP and the results are
shown in the following section.

We now provide a brief intuition into the computational savings provided
by our approach. We compare the work done by DOBSS and by the other ex-
act solution approach for Bayesian Stackelberg games, namely the Multiple-LPs
method by [6]. The DOBSS method achieves an exponential reduction in the
problem that must be solved over the multiple-LPs approach due to the fol-
lowing reasons: The multiple-LPs method solves an LP over the exponentially
blown Harsanyi transformed matrix for each joint strategy of the adversaries
(also exponential in number). In contrast, DOBSS solves a problem that has one
integer variable per strategy for every adversary.

To be more precise, let X be the number of agent actions, Q the number
of adversary actions and L the number of adversary types. The DOBSS proce-
dure solves a MILP with XQL continuous variables, QL binary variables, and
4QL+2XL+2L constraints. We note that this MILP has QL feasible integer so-
lutions, due to constraint 4 in (10). Solving this problem with a judicious branch
and bound procedure will lead in the worst case to a tree with O(QL) nodes
each requiring the solution of an LP of size O(XQL). Here the size of an LP is
the number of variables + number of constraints.

On the other hand the multiple-LPs method needs the Harsanyi transforma-
tion. This transformation leads to a game where the agent can take X actions
and the joint adversary can take QL actions. This method then solves exactly
QL different LPs, each with X variables and QL constraints, i.e. each LP is of
size O(X +QL).

In summary, both methods require the solution to about O(QL) linear pro-
grams, however these are of size O(XQL) for DOBSS while they are of size
O(X + QL) for Multiple LPs. This exponential increase in the problem size
would lead to much higher computational burden for Multiple LPs as the num-

ber of adversaries increases. We note also that the branch-and-bound procedure
seldom explores the entire tree as it uses the bounding procedures to discard
sections of the tree which are provably non optimal. The multiple-LPs method
on the other hand must solve all QL problems.

4.2 Approximate Solution: ASAP

We now present our limited randomization approach introduced in [14], where
we limit the possible mixed strategies of the leader to select actions with prob-
abilities that are integer multiples of 1/k for a predetermined integer k. One
advantage of such strategies is that they are compact to represent (as fractions)
and simple to understand; therefore they can potentially be efficiently imple-
mented in real patrolling applications. Thus for example, when k = 3, we can
have a mixed strategy where strategy 1 is picked twice i.e., probability = 2/3
and strategy 2 is picked once with probability = 1/3. We now present our ASAP
algorithm using mathematical framework developed in the previous section. In
particular we start with problem 9 and convert x from continuous to an integer
variable that varies between 0 to k; thus obtaining the following problem:

maxx,q,a
∑
i∈X

∑
l∈L

∑
j∈Q

pl

k
Rlijxiq

l
j

s.t.
∑
i xi = k∑
j∈Q q

l
j = 1

0 ≤ (al −
∑
i∈X

1
k
Clijxi) ≤ (1− qlj)M

xi ∈ {0, 1,, k}
qlj ∈ {0, 1}
al ∈ <

(11)

We then linearize problem (11) through the change of variables zlij = xiq
l
j ,

obtaining the following equivalent MILP:

maxq,z,a
∑
i∈X

∑
l∈L

∑
j∈Q

pl

k
Rlijz

l
ij

s.t.
∑
i∈X

∑
j∈Q z

l
ij = k∑

j∈Q z
l
ij ≤ k

kqlj ≤
∑
i∈X z

l
ij ≤ k∑

j∈Q q
l
j = 1

0 ≤ (al −
∑
i∈X

1
k
Clij(

∑
h∈Q z

l
ih)) ≤ (1− qlj)M∑

j∈Q z
l
ij =

∑
j∈Q z

1
ij

zlij ∈ {0, 1,, k}
qlj ∈ {0, 1}
al ∈ <

(12)

Unfortunately, although ASAP was designed to generate simple policies, the
fact that it has so many more integer variables makes it a more challenging
problem than DOBSS. In fact, as we present in the next section, our computa-
tional results show that solution times for DOBSS and ASAP are comparable,
when ASAP finds an optimal solution. However, ASAP can experience difficulty

in finding a feasible solution for large problems. This added difficulty makes
DOBSS the method of choice.

5 Experimental Results

5.1 No Adversary Model

Our first set of experiments examine the tradeoffs in run-time, expected re-
ward and entropy for single-agent problems. Figure 1 shows the results based
on generation of MDP policies for 10 MDPs. These experiments compare the
performance of our four methods of randomization for single-agent policies. In
the figures, CRLP refers to Algorithm 1; BRLP refers to Algorithm 2; whereas
HW (x) and HA(x) refer to Problem 3 with these objective functions. The top
graph examines the tradeoff between entropy and expected reward thresholds. It
shows the average weighted entropy on the y-axis and reward threshold percent
on the x-axis. The average maximally obtainable entropy for these MDPs is 8.89
(shown by line on the top) and three of our four methods (except CRLP) attain
it at about 50% threshold, i.e. an agent can attain maximum entropy if it is
satisfied with 50% of the maximum expected reward. However, if no reward can
be sacrificed (100% threshold) the policy returned is deterministic.

Figure 1 also shows the run-times, plotting the execution time in seconds on
the y-axis, and expected reward threshold percent on the x-axis. These numbers
represent averages over the same 10 MDPs. Algorithm CRLP is the fastest and
its runtime is very small and remains constant over the whole range of threshold
rewards as seen from the plot. Algorithm BRLP also has a fairly constant runtime
and is slightly slower than CRLP. Both CRLP and BRLP are based on linear
programs and hence their small and fairly constant runtimes. Problem 3, for
both HA(x) and HW (x) objectives, exhibits an increase in the runtime as the
expected reward threshold increases. This trend can be attributed to the fact that
maximizing a non-concave objective while simultaneously attaining feasibility
becomes more difficult as the feasible region shrinks.

We conclude the following from Figure 1: (i) CRLP is the fastest but provides
lowest entropy. (ii) BRLP is significantly faster than Problem 3, providing 7-fold
average speedup over the 10 MDPs over the entire threshold range. (iii) Problem
3 with HW (x) provides highest entropy among our methods, but the average
gain in entropy is only 10% over BRLP. (iv) CRLP provides a 4-fold speedup
on an average over BRLP but with a significant entropy loss of about 18%. In
fact, CRLP is unable to reach maximal possible entropy for the threshold range
considered in the plot.

5.2 Partial Adversary Model

We performed experiments on a patrolling domain where the police patrol var-
ious number of houses as presented in [13]. The domain is then modeled as a
Bayesian Stackelberg game consisting of two players: the security agent (i.e. the

0

1

2

3

4

5

6

7

8

9

10

50 60 70 80 90 100
Reward Threshold(%)

A
ve

. W
ei

g
h

te
d

 E
n

tr
o

p
y

BRLP
Hw(x)
Ha(x)
CRLP
Max Entropy

0

20

40

60

80

100

120

50 60 70 80 90 100
Reward Threshold(%)

E
xe

cu
ti

o
n

 T
im

e
(s

ec
)

BRLP
Hw(x)
Ha(x)
CRLP

Fig. 1. Comparison of Single Agent Algorithms

patrolling robot or the leader) and the robber (the follower) in a world consisting
of m houses, 1 . . .m. The security agent’s set of pure strategies consists of pos-
sible routes of d houses to patrol (in some order). The security agent can choose
a mixed strategy so that the robber will be unsure of exactly where the secu-
rity agent may patrol, but the robber will know the mixed strategy the security
agent has chosen. With this knowledge, the robber must choose a single house
to rob, although the robber generally takes a long time to rob a house. If the
house chosen by the robber is not on the security agent’s route, then the robber
successfully robs the house. Otherwise, if it is on the security agent’s route, then
the earlier the house is on the route, the easier it is for the security agent to
catch the robber before he finishes robbing it.

The payoffs are modeled with the following variables:

– vy,x: value of the goods in house y to the security agent.
– vy,q: value of the goods in house y to the robber.
– cx: reward to the security agent of catching the robber.
– cq: cost to the robber of getting caught.
– py: probability that the security agent can catch the robber at the yth house

in the patrol (py < py′ ⇐⇒ y′ < y).

The security agent’s set of possible pure strategies (patrol routes) is denoted
by X and includes all d-tuples i =< w1, w2, ..., wd >. Each of w1 . . . wd may take
values 1 through m (different houses), however, no two elements of the d-tuple
are allowed to be equal (the agent is not allowed to return to the same house).
The robber’s set of possible pure strategies (houses to rob) is denoted by Q and
includes all integers j = 1 . . .m. The payoffs (security agent, robber) for pure
strategies i, j are:

– −vy,x, vy,q, for j = l /∈ i.
– pycx + (1− py)(−vy,x),−pycq + (1− py)(vy,q), for j = y ∈ i.

With this structure it is possible to model many different types of robbers
who have differing motivations; for example, one robber may have a lower cost
of getting caught than another, or may value the goods in the various houses
differently. We performed our experiments using four methods for generating
the security agent’s strategy: DOBSS method for finding the optimal solution
[13], ASAP procedure that provides best policies with limited randomization
[14], the multiple-LPs method presented in [6] that provides optimal policies
and the MIP-Nash procedure [21] for finding the best Bayes-Nash equilibrium.
The multiple-LPs method and the MIP-Nash procedure require a normal-form
game as input, and so the Harsanyi transformation is required as an initial step.
We do not record this preprocessing time here thus giving those other methods
an advantage.

Figure 2 shows the runtime results for all the four methods for two, three and
four houses. Each runtime value in the graph(s) corresponds to an average over
twenty randomly generated scenarios. The x-axis shows the number of follower
types the leader faces starting from 1 to 14 adversary types and the y-axis of

the graph shows the runtime in seconds on log-scale ranging from .01 to 10000
seconds. The choice of .01 to 10000 is for convenience of representation of log
scale(with base 10). All the experiments that were not concluded in 30 minutes
(1800 seconds) were cut off.

From the runtime graphs we conclude that the DOBSS and ASAP methods
outperform the multiple-LPs and MIP-Nash methods with respect to runtime.
We modeled a maximum of fourteen adversary types for all our domains. For
the domain with two houses, while the MIP-Nash and multiple-LPs method
needed about 1000s for solving the problem with fourteen adversary types, both
the DOBSS and ASAP provided solutions in less than 0.1s. Note that DOBSS
provided the optimal solution while ASAP provided the best possible solution
with randomization constraints. These randomization constraints also sometimes
cause ASAP to incorrectly claim solutions to be infeasible, the details of which
are presented later on in this section. The runtime for ASAP in all our results is
taken as either the time needed to generate an optimal solution or to determine
that no feasible solution exists.

The first graph in Figure 2 shows the trends for all these four methods for the
domain with two houses. While the runtimes of DOBSS and ASAP show linear
increase in runtimes, the other two show an exponential trend. The runtimes
of DOBSS and ASAP are themselves exponential since they show a linear in-
crease when plotted on a log-scale graph. Furthermore, they have an exponential
speedup over the other two procedures as seen in the graph.

The second graph in Figure 2 presents results for the domain having three
houses. Both the MIP-Nash and multiple-LPs could solve this problem only till
seven adversary types within the cutoff time of 1800s whereas DOBSS and ASAP
could solve the problem for all the fourteen adversary types modeled under 10s.
(The cutoff of 1800s is also the reason MIP-Nash and multiple-LPs appear to
have a constant run-time beyond seven adversary types.) Similar trends can
be observed in the third graph with a domain of four houses where MIP-Nash
and multiple-LPs could solve only till 5 adversary types whereas DOBSS and
ASAP could solve till fourteen adversary types within 400s for DOBSS and 500s
for ASAP. From this set of three graphs, we conclude that DOBSS and ASAP
outperform the other two procedures, by an exponential margin.

Between DOBSS and ASAP, DOBSS is our procedure of choice since ASAP
suffers from problems of infeasibility. Therefore, we present our second set of
experimental results in Figure 3 to highlight the infeasibility issue of the ASAP
procedure. In this experiment, the same settings as described above were used.
The number of houses was varied between two to seven(columns in the table) and
the number of adversary types was varied between one to fourteen(rows in the
table). For each fixed number of houses and follower types, twenty scenarios were
randomly generated. We ran the ASAP procedure and presented the number
of infeasible solutions obtained, as a percentage of all the scenarios tested for
each of the fixed number of houses and adversary types. For example, with
the 8th adversary type(row numbered 8) and 4 houses(column numbered 4)
scenario, ASAP generates 15% infeasible solutions. Note that for the values

Fig. 2. Runtimes(plotted on log scale): DOBSS, ASAP, MIP-Nash and multiple-LP
methods

Fig. 3. Percent of infeasible solutions for ASAP. Rows represent # of adversary types(1-
14), columns represent # of houses(2-7).

marked with a star the percentage presented in the table represents an upper
bound on the number of infeasible scenarios. In these starred scenarios the ASAP
procedure ran out of time in many instances. When ASAP ran out of time, it
either indicated infeasibility, in which case it was classified as infeasible solution
making it an upper bound (since there might be feasible solution when sufficient
time is provided); or it indicated that there was a feasible solution even though
it has not found the optimal yet, in which case it was obviously not marked as
infeasible.

We make the following conclusions about ASAP from the table in Figure 3:
(a) In general, given a fixed number of houses, as the number of adversary types
increase (i.e from 1 to 14) the percentage of infeasible solutions increase(as we go
down the columns). (b) Given a fixed number of adversary types, as the number
of houses increase, the percentage of infeasible solutions increase(as we go across
the rows). Although there are exceptions to both the conclusions, the general
trend is that as the problem size increases (due to increase in either houses
or adversary types or both) ASAP tends to generate more infeasible solutions
thus making it unsuitable for bigger problems. From the table we obtain that
more than 12.5% of the solutions are infeasible for the five house problem when
averaged over all the adversary scenarios. This number increases to as high
as 18% and 20% on an average for the six and seven house problems. If we
perform similar calculations over the last five adversary scenarios i.e., when the
number of adversary types are varied from 10 to 14, we obtain 16%, 29% and 25%
respectively for the five, six and seven house scenarios. This shows that the ASAP
produces more infeasible solutions as the problem size increases. Furthermore,
there is no procedure to determine if ASAP will generate a infeasible solution
until runtime, thus making the ASAP approach impractical.

6 Conclusions and Policy Implications

In this paper we presented new algorithms for secure patrols in adversarial do-
mains. We followed two different approaches based on what is known about
the adversary. When there is no information about the adversary, we provided
algorithms for random policy generation using MDPs. When there is partial in-
formation available about the adversary, we modeled our domain as a Bayesian
Stackelberg game and provided efficient MIP formulations for it. We note that
these models are related, and the idea of randomizing to reduce the informa-
tion made available to the adversary can be the optimal Stackelberg strategy
for the leader when the adversary’s reward matrix is balanced over the different
actions. Let us illustrate this idea with the following simple example. Consider
a zero-sum square game where the payoff matrix for the agent gives 1 in the
diagonal and -1 everywhere else, we can show that the uniform strategy is also
the optimal Stackelberg solution. Note that when the agent must decide among
a set of actions, the maximum entropy solution is also the uniform strategy.
Given a strategy x for the leader in this example, the payoff the leader gets if
adversary chooses action j is xj − (x1 + ... + xj−1 + xj+1 + ... + xn) = 2xj − 1
since x adds up to 1. Since the adversary receives a payoff = 1 − 2xj (a zero
sum game) for this action, the adversary will select the action which does the
following: maxj=1...n1 − 2xj , giving the leader a reward of minj=1...n2xj − 1.
The leader therefore must maximize minj=1...n2xj − 1 when selecting x which
is done for the uniform x. Thus, we conclude that the uniform randomization
approach can be represented as a Stackelberg game with appropriate payoffs for
the agent and adversary.

We then provided experimental results to show that our techniques pro-
vide optimal, secure policies. Thus, this work represents a significant advance
in the state of the art in addressing security domains. The policy implications
from this work are numerous and can be summarized as follows: (a) Random-
ization decreases predictability and the information given out to the adversary
and hence increases security of many systems in general. (b) When there is no
model of the adversary or we believe that the adversary information we have
is quite corrupted, the rational choice for the agent would be to maximize ran-
domization while ensuring that certain quality constraints are met. Quality here
could mean resources like time, fuel etc or could mean usability of the policy
in practice (for example, cannot randomize flight schedules). We presented four
MDP-based algorithms with different trade-offs for addressing this. (c) When
there is partial model of the adversaries, we developed a game-theoretic formu-
lation named DOBSS for obtaining the optimal randomized policies. In fact, the
DOBSS formulation presented here initiated and become heart of a real-world se-
curity scheduler named ARMOR. ARMOR is in deployment at the LAX airport
for more than a year now and this work has been described in many technical
papers and press [17] [11]. (d) The algorithms presented here are general-purpose
and can be tailored to improve security at many real-world places like airports,
dams, museums, stadiums and others.

Acknowledgments : This research is supported by the United States Department
of Homeland Security through Center for Risk and Economic Analysis of Terrorism
Events (CREATE). Sarit Kraus is also affiliated with UMIACS.

References

1. R. Beard and T. McLain. Multiple uav cooperative search under collision avoidance
and limited range communication constraints. In IEEE CDC, 2003.

2. N. Borisov and J. Waddle. Anonymity in structured peer-to-peer networks. In
University of California, Berkeley, Technical Report No. UCB/CSD-05-1390, 2005.

3. G. Brown, M. Carlyle, J. Salmeron, and K. Wood. Defending critical infrastruc-
tures. Interfaces, 36(6):530–544, 2006.

4. J. Brynielsson and S. Arnborg. Bayesian games for threat prediction and situation
analysis. In FUSION, 2004.

5. D. M. Carroll, C. Nguyen, H. Everett, and B. Frederick. Development and test-
ing for physical security robots. http://www.nosc.mil/robots/pubs/spie5804-63.pdf,
2005.

6. V. Conitzer and T. Sandholm. Choosing the optimal strategy to commit to. In
ACM Conference on Electronic Commerce, 2006.

7. D. Dolgov and E. Durfee. Approximating optimal policies for agents with limited
execution resources. In Proceedings of IJCAI, 2003.

8. D. Dolgov and E. Durfee. Constructing optimal policies for agents with constrained
architectures. Technical report, Univ of Michigan, 2003.

9. D. Fudenberg and J. Tirole. Game Theory. MIT Press, 1991.
10. J. C. Harsanyi and R. Selten. A generalized Nash solution for two-person bar-

gaining games with incomplete information. Management Science, 18(5):80–106,
1972.

11. A. Murr. Random checks. In Newsweek National News,
http://www.newsweek.com/id/43401, 28 Sept. 2007.

12. C. Ozturk, Y. Zhang, and W. Trappe. Source-location privacy in energy-
constrained sensor network routing. 2004.

13. P. Paruchuri, J. P. Pearce, J. Marecki, M. Tambe, F. Ordonez, and S. Kraus. Play-
ing games for security: An efficient exact algorithm for solving bayesian stackelberg.
In AAMAS, 2008.

14. P. Paruchuri, J. P. Pearce, M. Tambe, F. Ordonez, and S. Kraus. An efficient
heuristic approach for security against multiple adversaries. In AAMAS, 2007.

15. P. Paruchuri, M. Tambe, F. Ordonez, and S. Kraus. Towards a formalization of
teamwork with resource constraints. In AAMAS, 2004.

16. P. Paruchuri, M. Tambe, F. Ordonez, and S. Kraus. Security in multiagent systems
by policy randomization. In AAMAS, 2006.

17. J. Pita, M. Jain, J. Marecki, F. Ordonez, C. Portway, M. Tambe, C. Western,
P. Paruchuri, and S. Kraus. Deployed armor protection: The application of a game
theoretic model for security at the los angeles international airport. In AAMAS
Industry Track, 2008.

18. R. Poole and G. Passantino. A risk based airport security policy. 2003.
19. M. Puterman. Markov Decision Processes: Discrete Stochastic Dynamic Program-

ming. John Wiley and Sons, 1994.
20. T. Roughgarden. Stackelberg scheduling strategies. In ACM Symposium on TOC,

2001.

21. T. Sandholm, A. Gilpin, and V. Conitzer. Mixed-integer programming methods
for finding nash equilibria. In AAAI, 2005.

22. C. Shannon. A mathematical theory of communication. The Bell Labs Technical
Journal, pages 379–457,623,656, 1948.

23. H. V. Stackelberg. Marktform and gleichgewicht. In Springer, 1934.

