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Abstract

The current practice in wireless sensor networks is to develop functional system designs and protocols
for information extraction using intuition and heuristics, and validate them through simulations and
implementations. We address the need for a complementary formal methodology by developing non-linear
optimization models of static WSN that yield fundamental performance bounds and optimal designs.
We present models both for maximizing the total information gathered subject to energy constraints
(on sensing, transmission and reception), and for minimizing the energy usage subject to information
constraints. Other constraints in these models correspond to fairness and channel capacity (assuming
noise but no interference). We also discuss extensions of these models that can handle data aggregation,
interference and even node mobility. We present results and illustrations from computational experiments
using these models that show how the optimal solution varies as a function of the energy/information
constraints, network size, fairness constraints, and reception power. We also compare the performance
of some simple heuristics with respect to the optimal solutions.

1 Introduction

Wireless sensor networks (WSN) are an emerging technology which seem ready to revolutionize the avail-
ability and quality of information in a wide array of application areas. This new technology has come about
due to the rapid advances in embedded microprocessors, wireless communications, and MEMS sensors over
the past decade.

As we set out to design and implement these kinds of systems, however, one fact becomes clear. In the area
of WSN there is a significant gap between practice and formal understanding: proposed system designs and
protocols are rapidly out-pacing analysis. There are very few formal models for analyzing the fundamental
performance of information routing in wireless sensor networks.

Such models are necessary to understand the theoretical bounds on performance and how they are affected
by different design parameters such as topology, number of nodes, energy levels, and fairness. We take an
optimization approach in this paper. Due to the underlying equations that describe the capacity of physical
channels, we will rely on convex non-linear programming techniques. We present models both for maximizing
the total information gathered subject to energy constraints (on sensing, transmission and reception) and
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for minimizing the energy usage subject to information constraints. Fairness constraints are also modeled.
We will also discuss extensions of these models that can handle data aggregation, interference and even node
mobility.

Optimization models can aid us in two complementary ways. The first involves designing a WSN for a given
application. The best network configuration for an application is often difficult to determine due to the
variability in problem parameters that characterize the diverse applications to which this technology can
be applied. These parameters include the quality of information requested, the energy cost of sensing and
receiving information, and node positions. The most appropriate network parameters for the application in
question can be determined by comparing the optimal performance for different parameter settings.

The second way in which optimization models can improve our understanding of WSN concerns the operation
of a sensor network. Here an optimization model provides the means to evaluate proposed protocols for
information routing. Much of the current literature in sensor and ad-hoc wireless networks consists of
practical proposals for new protocols for information routing. Typically, simulation results are used to
examine the impact of various parameters on the effectiveness of the protocol. Comparisons are usually
performed with respect to some baseline heuristic strategies or with alternative protocols. Iterated over time,
this procedure yields practical, implementable protocols with successively better performance characteristics.
However, if we do not know the fundamental bounds imposed by the underlying problem structure, then it
will not be clear how the implemented protocol differs from optimal performance. It is important to know
the fundamental performance bounds and optimal solutions to determine if there is room for additional
improvement of a given protocol.

The rest of the paper is organized as follows. In section 2, we discuss some recent papers on information
routing in wireless sensor networks and optimization models of wireless networks to place our work in context.
In section 3, we define our notation and present a basic operational optimization model. We expand this
model in section 4 to a more general pair of optimization problems that can be used for WSN design problems
and discuss extensions. We present computational results based on these models in section 5, and conclude
with a discussion in section 6.

2 Related Work

Wireless sensor networks, consisting of large numbers of unattended devices capable of communication,
computation and sensing are fast becoming a hot research area [2], [3]. Some of the early work in this
area has developed the hardware and software needed for such sensor systems - e.g. Smart Dust Motes
[11], TinyOS [13], and PicoRadio [15] projects from UC Berkeley; the Wireless Integrated Network Sensors
(WINS) project [1] at UCLA; and the µAMPS project at MIT [14].

Several papers describe novel querying and routing mechanisms suitable for sensor networks. These include
LEACH [18], SPIN protocols [17], Directed Diffusion [19], Rumor Routing [26] , ACQUIRE [23], GHT [28],
and DIMENSIONS [29]. Protocols have also been developed for querying sensor networks as distributed
databases [20], [21], [22], [27]. In most of this work, the performance of the proposed querying and routing
mechanisms is validated through simulations or implementation, without reference to an optimum benchmark
solution.

There are also some papers presenting first-order performance analysis of such protocols. For example, in
[23], the performance of ACQUIRE is analyzed using mathematical modeling. Different variants of Directed
Diffusion are modeled and analyzed in [31]. However, the body of literature on the optimal behavior and
fundamental limitations of these kinds of wireless networks is still considerably small.

In [6], the authors show that for an arbitrary communication pattern, the per-node throughput in a multi-hop
wireless network goes to zero asymptotically as the size of the network increases. A similar negative result is
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shown for the many-to-one capacity of wireless sensor networks in [30]. The impact of spatial correlation on
capacity for joint routing-compression is described in [9], [10]. The complexity of optimal aggregation and
its impact on data gathering in sensor networks is discussed in [16]. An aggregation tree construction that
yields an O(log k) to the optimum for all concave aggregation functions is described in [32].

Most closely related to our work presented here are papers relating to optimization models of general multi-
hop wireless networks as well as wireless sensor networks (which can be considered a special case of the
former with a many-to-one data flow instead of arbitrary communication between pairs of nodes). The
most important work in this area in recent years has been the work by Toumpis and Goldsmith on capacity
regions for wireless networks [4], [5]. Using a linear-programming optimization based formulation (similar in
spirit to our work), the authors study the characteristics of the maximum information throughput that can
be obtained in a network with arbitrary topology. One key difference from our work is that Toumpis and
Goldsmith focus on general-purpose wireless networks and do not incorporate energy or fairness constraints
in their modeling. They also do not use constraints corresponding to the non-linear channel capacity.

The non-linear physical channel constraints are considered in the optimization models discussed in [33], [34].
In these works the authors consider a similar model to ours (jointly optimizing the routing as well as power
control and bandwidth allocation). They also treat the constraints imposed by interference in their models.
Again a significant difference between our work and these models is that they do not focus on sensor networks
where energy and fairness constraints are important.

Optimization models have also been used to study maximum lifetime conditions for sensor networks. Bhard-
waj and Chandrakasan [8] develop upper bounds on the lifetime of networks based on optimum role assign-
ments to sensors (e.g. whether they should act as routers or aggregators). Kalpakis et al. [24] formulate a
linear programming problem to schedule flows within the network in such a way as to maximize the network
lifetime. Our work incorporates a number of different constraints from these, such as the non-linear physical
channel constraint (which allows for joint optimization of power control and routing) and fairness constraints.

3 Notation and Preliminary Model

Our first optimization model considers the problem of operating an existing WSN in the most efficient
manner. Assume we have placed n sensor nodes in fixed locations, each with a limited energy supply Ei,
and let dij denote the physical distance between nodes i and j. The purpose of this network is to extract as
much information as possible to a given sink node (node n+1 with unlimited energy resources – a reasonable
assumption if the sink is “plugged in”). Each node consumes C units of energy per-bit received and β units
of energy per-bit sensed.

We assume that the sensor nodes can adjust both the information flow rate and the transmission power,
which are denoted fij and Pij for the link between nodes i and j, respectively. The relation between the
flow rate and transmission power on a link is given by Shannon’s capacity equation for an AWGN channel,
assuming a square-law signal decay:

fij ≤ log

(
1 +

Pijd
−2
ij

η

)
. (1)

This expression assumes that the decay factor of the medium is d−2
ij , the communication channel has a noise

of η, and that all transmissions are scheduled (either through time or frequency division multiplexing) such
that they are non-interfering.

The objective therefore is to find the coordinated operation of all nodes by setting transmission powers and
flow rates in order to maximize the amount of information that reaches the sink:

n∑
j=1

fjn+1 . (2)
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We assume that there is no data aggregation in this model, and additionally we guarantee end-to-end fairness
of our solution by explicitly enforcing that each node sends at most a fraction αi of the total information
that reaches the sink.

n+1∑
j=1

fij −
n∑

j=1

fji ≥ 0 i = 1 : n (3)

n+1∑
j=1

fij −
n∑

j=1

fji ≤ αi

n∑
j=1

fjn+1 i = 1 : n (4)

The fractions must satisfy
∑n

i=1 αi ≥ 1 and αi ≥ 0 for all i = 1 : n for there to be a feasible solution.
The total energy consumed at node i, which we denote εi, is the sum of the energy consumed sensing,
transmitting and receiving. The constraint that this energy does not exceed the available energy Ei for all
sensor nodes is given by

εi := β

n+1∑
j=1

fij −
n∑

j=1

fji

+
n+1∑
j=1

Pij +
n∑

j=1

Cfji ≤ Ei i = 1 : n (5)

Combining the objective in Expression (2) with the constraints in Expressions (1), (3), (4), (5), and the fact
that the flow rates and transmission powers are non-negative we obtain the following non-linear optimization
model

max
n∑

j=1

fjn+1

s.t.
n+1∑
j=1

fij −
n∑

j=1

fji ≥ 0 i = 1 : n

n+1∑
j=1

fij −
n∑

j=1

fji ≤ αi

n∑
j=1

fjn+1 i = 1 : n

β

n+1∑
j=1

fij −
n∑

j=1

fji

+
n+1∑
j=1

Pij +
n∑

j=1

Cfji ≤ Ei i = 1 : n

fij ≤ log

(
1 +

Pijd
−2
ij

η

)
i = 1 : n, j = 1 : n + 1

fij ≥ 0, Pij ≥ 0 i = 1 : n, j = 1 : n + 1

(6)

4 Design Models

Consider now the problem of designing a WSN for a given application. In this context we now have the
liberty to determine the position of the nodes and the amount of energy to place at each node. A node that
should have more energy for the overall performance of the entire network can be given a bigger battery.
The problem of actively optimizing the location of the nodes poses serious difficulties, as for example the
non-linear inequality (1) becomes non-convex. We avoid this problem in the current work.

Below we present a pair of optimization problems that investigate the trade-off between minimum energy
requirements and maximum information possible for a given network topology. We end the section discussing
generalizations from these models and their different domains and applications.
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The problem of deciding how to distribute a given overall amount of energy is easier to implement. Adding
all the consumption of energy for every node i given in Expression (5) we obtain the following expression for
the overall energy consumed by the sensor nodes of the WSN:

n∑
i=1

εi =
n∑

i=1

β

n+1∑
j=1

fij −
n∑

j=1

fji

+
n+1∑
j=1

Pij +
n∑

j=1

Cfji


= β

n∑
i=1

fin+1 +
n∑

i=1

n+1∑
j=1

Pij + C

n∑
i=1

n∑
j=1

fij

=
n∑

i=1

(βfin+1 + Pin+1) +
n∑

i=1

n∑
j=1

(Cfij + Pij) .

Note that this expression for the total energy consumed has a nice interpretation: the first term represents
the cost of sensing the information that is sent to the sink and the cost of transmitting it to the sink, while
the second term represents simply the cost of transmitting information among all pairs of nodes i− j, it is
composed of Pij the energy node i spends transmitting, and Cfij the cost node j spends receiving.

Assuming we have an overall energy budget of Emax to distribute among the sensor nodes, the previous
expression for the total energy consumed gives the following overall energy bound:

n∑
i=1

(βfin+1 + Pin+1) +
n∑

i=1

n∑
j=1

(Cfij + Pij) ≤ Emax . (7)

Replacing the energy bound constraint (5) in Problem (6) by this later global energy constraint we obtain the
following non-linear optimization problem, which allows the optimization problem to determine the optimal
energy distribution.

max
n∑

j=1

fjn+1

s.t.
n+1∑
j=1

fij −
n∑

j=1

fji ≥ 0 i = 1 : n

n+1∑
j=1

fij −
n∑

j=1

fji ≤ αi

n∑
j=1

fjn+1 i = 1 : n

n∑
i=1

(βfin+1 + Pin+1) +
n∑

i=1

n∑
j=1

(Cfij + Pij) ≤ Emax

fij ≤ log

(
1 +

Pijd
−2
ij

η

)
i = 1 : n, j = 1 : n + 1

fij ≥ 0, Pij ≥ 0 i = 1 : n, j = 1 : n + 1

(8)

A “dual” problem to Problem (8) above, is the problem of minimizing the overall energy usage, while
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guaranteeing that we extract at least fmin information to the sink. This problem can be stated as

min
n∑

i=1

(βfin+1 + Pin+1) +
n∑

i=1

n∑
j=1

(Cfij + Pij)

s.t.
n+1∑
j=1

fij −
n∑

j=1

fji ≥ 0 i = 1 : n

n+1∑
j=1

fij −
n∑

j=1

fji ≤ αi

n∑
j=1

fjn+1 i = 1 : n

n∑
j=1

fjn+1 ≥ fmin

fij ≤ log

(
1 +

Pijd
−2
ij

η

)
i = 1 : n, j = 1 : n + 1

fij ≥ 0, Pij ≥ 0 i = 1 : n, j = 1 : n + 1

(9)

4.1 Relation between design problems

The relationship between Problems (8) and (9) above is the subject of the following proposition. In it we
denote by (f, P ) = (f12, . . . , fnn+1, P12, . . . , Pnn+1) the vector of flow rate and transmission power variables.

Proposition 1 If (f∗, P ∗) is the optimal solution to Problem (9) with fmin, then (f∗, P ∗) is the optimal
solution to Problem (8) with

Emax =
n∑

i=1

(
βf∗in+1 + P ∗

in+1

)
+

n∑
i=1

n∑
j=1

(
Cf∗ij + P ∗

ij

)
.

Conversely, if (f∗, P ∗) is the optimal solution to Problem (8) with Emax, then (f∗, P ∗) is the optimal solution
to Problem (9) with fmin =

∑n
j=1 f∗jn+1.

Proof: First note that any (f∗, P ∗) optimal for Problem (9) must satisfy
∑n

j=1 f∗jn+1 = fmin. If this were

not the case, we can define a = fmin∑n
j=1 f∗jn+1

< 1 and P̃ij = ηd2
ij

(
eaf∗ij − 1

)
, then the solution (af∗, P̃ ) would

be feasible for Problem (9) with a strictly better objective function, a contradiction. Let E∗ denote the
optimal objective function value of Problem (9). Consider now Problem (8) with Emax = E∗, then (f∗, P ∗)
is feasible for (8) with an objective function value of

∑n
j=1 f∗jn+1 = fmin. Let (f̂ , P̂ ) denote the optimal

solution for (8), then
∑n

j=1 f̂jn+1 ≥ fmin. Therefore (f̂ , P̂ ) is feasible for (9) with a total energy cost less
than E∗, and thus an optimal solution for (9), which in turn implies that

∑n
j=1 f̂jn+1 = fmin. We conclude

that (f∗, P ∗) is optimal for Problem (8).

The proof of the converse assertion is analogous, where we use the continuity of the constraint functions to
show that any optimal solution of Problem (8) must satisfy that

n∑
i=1

(
βf∗in+1 + P ∗

in+1

)
+

n∑
i=1

n∑
j=1

(
Cf∗ij + P ∗

ij

)
= Emax .

The relationship between Problems (8) and (9) can also be observed computationally. In Figure 1 we plot
both the maximal information extracted as a function of the energy bound and minimum energy needed as a
function of the information bound. The experiments that originated these results considered the same WSN
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with all nodes placed in a straight line, the sink node at one end, 10 sensor nodes uniformly distributed
from a distance 1 to 10 of the sink, and the following values for other problem parameters: β = 0.00001,
C = 0.00005, η = 0.0001, and αi = 0.20 for all i. The minimum information bound was varied from fmin = 1,
to fmin = 20 when solving Problem (9), and the maximum energy bound was varied from Emax = 0.01 to
Emax = 0.2 when solving Problem (8).

0 0.02 0.04 0.06 0.08 0.1 0.12 0.14 0.16 0.18 0.2
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Figure 1: Optimal energy versus information

However there is one striking difference between these two optimization problems, Problem (9) exhibits con-
sistently a faster convergence than Problem (8). This is illustrated by the following table which summarizes
the number of interior point iterations that an algorithm takes to solve each problem, as we increase the
number of nodes. The experiments considered all nodes placed in a straight line, with the sink node at one
end, all sensor nodes uniformly distributed from 1 to 10 of the sink, and the following values for other prob-
lem parameters: β = 0.00001, C = 0.00005, η = 0.0001, and αi = 0.20 for all i. The minimum information
bound was set at 10 for Problem (9) and the maximum energy bound was set at 0.01 for Problem (8).

Table 1: Convergence comparison for Problems (1) and (2). Line topology with β = 0.00001, C = 0.00005,
η = 0.0001, αi = 0.25, and either information bound of 10 or energy bound of 0.01.

No. nodes Problem (1) Problem (2)
IPM iterations IPM iterations

4 19 19
7 19 21
10 20 19
15 21 22
20 27 22
25 22 24
30 27 116
40 39 447
50 31 272
60 39 89
70 49 371
80 34 347
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4.2 Problem properties

The discussion in this subsection highlights some important properties of Problem (9), which can be reduced
to a much simpler form. This simplification, which does not have a direct translation to Problem (8), provides
insight into the differences in the observed computational convergence.

To simplify our presentation we will use the arc-incidence matrix, as it is used in the Network Flows literature;
see for example [25]. For a network with n + 1 nodes and m arcs, the arc-incidence matrix, usually denoted
by N , is a n + 1 by m matrix with coefficients equal to 0, 1 or −1. The matrix is defined by

Ni(k,l) =

 1 if i = k
−1 if i = l
0 otherwise .

We can write the flow constraints, Expressions (3) and (4), in Problems (8) and (9) (the first two constraints),
using matrix N as

0 ≤ Nf ≤ α
n∑

j=1

fjn+1 .

Proposition 2 Define κj = C if j = 1 : n and κn+1 = β. Problem (9) obtains the same optimal solution
as Problem (10) below:

min
n∑

i=1

n+1∑
j=1

κjfij + ηd2
ij

(
efij − 1

)
s.t. 0 ≤ Nf ≤ αfmin

n∑
j=1

fjn+1 = fmin

fij ≥ 0 i = 1 : n, j = 1 : n + 1 .

(10)

Proof: Consider (f∗, P ∗) any optimal solution for Problem (9). Then we have that f∗ is feasible for (10),
with a possibly better objective value since ηd2

ij

(
ef∗ij − 1

)
≤ P ∗

ij . Conversely, given any f feasible for (10),

define Pij = ηd2
ij

(
efij − 1

)
, and (f, P ) is feasible for (9) with the same objective value. This completes the

proof.

For f a vector of flow rates, let us denote by z(f) the objective function of Problem (10),

z(f) =
n∑

i=1

n+1∑
j=1

κjfij + d2
ij

(
efij − 1

)
,

note that z(f) is a convex function. We also denote by S(y) the feasible region of Problem (10) and φ(y)
the optimal objective function value of Problem (10), both as a function of the information bound fmin = y.
Therefore Problem (10) can be rewritten as

φ(fmin) = min z(f)
s.t. f ∈ S(fmin) (11)

Proposition 3 The function φ(y) is convex for all y ≥ 0

Proof: First note that Problem (10) is feasible for any information bound fmin = y ≥ 0 and the objective
function z(f) ≥ 0, therefore φ(y) is well defined for all y ≥ 0. Consider two information bound values
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y1, y2 ≥ 0 and let f∗1 and f∗2 be the respective optimal solutions for Problem (10). From the convexity of the
constraints we can show that for any λ ∈ [0, 1], λf∗1 + (1 − λ)f∗2 ∈ S(λy1 + (1 − λ)y2). Then the convexity
follows from

φ(λy1 + (1− λ)y2) ≤ z(λf∗1 + (1− λ)f∗2 ) ≤ λz(f∗1 ) + (1− λ)z(f∗2 ) = λφ(y1) + (1− λ)φ(y2) .

4.3 Model variations

The following are some variations on these models that incorporate additional constraints or different vari-
ables:

• We can formulate all problems above only in terms of variables fij representing the number of bits
transmitted from i to j (rather than the bit rate). In this setting each sensor node transmits with
a fixed power, and therefore at a fixed rate. More bits are transmitted by taking a longer period of
time. The resulting problem is a simpler linear programming model. A bit version of Problem (6), for
example, is obtained by replacing Expression (1) by fij ≤ B and Expression (5) by

β

n+1∑
j=1

fij −
n∑

j=1

fji

+
n+1∑
j=1

Tijfij +
n∑

j=1

Cfji ≤ Ei ,

where Tij is the per-bit transmission energy cost. The upper bound on the total bits effectively limits
the length of a round. An interesting open question is to quantify the loss of efficiency on the network
by considering this more constrained model.

• An alternate objective can be to maximize a weighted fairness. This could be achieved by replacing
the objective in Problem (6) by max

∑n
i=1 wiαi and by modifying the constraint (4) to

n+1∑
j=1

fij −
n∑

j=1

fji ≥ αi .

• Additional requirements that can be modeled by incorporating a simple linear constraint are: a per
node limit on the total energy available to each node and a limit on the amount of information that
can be sensed by each node during a round.

• Multiple time periods can be easily represented in these models. The only constraint that links different
time periods is the energy constraint (Expression (5) in Problem (6) for example). The total energy
available has to be distributed across all time periods.

• The problems above do not allow for data aggregation, i.e. all data that is sensed must leave the
network through the sink. To expand the model to consider data aggregation we need to relax the
lower bound in the flow constraints, Expression (3), to some negative value. To model data aggregation
reasonably we should consider multi-commodity flows, in order to identify what is the data that can
be aggregated.

The variations on the problem above are fairly straightforward and the only potential complications in
solving the new models are that considering multiple time periods or multi-commodity flows makes the
problem larger. Below are a pair of variations on the model that create non-convex optimization problems,
and are therefore much harder to solve. We mention them here to show possible future research directions.

• The models above assume that the network has scheduled communications on all links (using TDMA
or FDMA). For a CDMA like environment, interference poses a non-convex constraint. There are some
techniques that can be used to handle such constraints approximately [34].
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• Models can also consider the possibility of mobile nodes, in which locations and therefore inter-node
distances can be varied as a design parameter at the expense of some energy for motion. However, this
also introduces a non-convex constraint.

5 Computational Experiments

We performed our computational experiments with the non-linear solver LOQO 6.02 called from AMPL
scripts. We used the NEOS server for optimization to perform our computations; see [35].

Throughout our computational experiments we have considered two different types of network topologies
that are easily scalable and that we denote the line topology and the square topology. In the line topology
we considered WSN where all sensor nodes lie uniformly distributed in a line of length L, with the sink node
placed at one end. The square topology considers n = k2 nodes uniformly distributed on a square grid with
sides of length L ([0, L]× [0, L]) and the sink is located outside that square.

Our computational experiments illustrate different possible uses for optimization models for WSN. We first
show how to use Problem (10) to obtain the optimal amount of information that should be extracted from a
given WSN. We then use the optimization model to benchmark the performance of two very simple heuristics
that set energy levels and route information for different WSN. Our last three studies investigate the effect
of different problem parameters on the performance of the sensor network: we show the effect of changing
the fairness pattern on the minimum energy required to extract certain information, the effect of the fairness
patterns on optimal energy distribution and routing patterns, and the effect of the reception cost on the
routing behavior of the WSN.

5.1 Optimal level of information extraction

In our previous discussion of the equivalence between Problems (8) and (9) we presented computational
results that showed the trade-off between the information to be extracted from the WSN and the energy
needed to do so. In Figure 1 we note that each extra unit of information demands an increasing amount of
energy. Granted this observation is for that particular example, we will therefore investigate this further.

We now address the question of whether for any WSN each extra unit of information demands an increasing
amount of energy. The answer is yes and we show this by proving that for any WSN the subgradient of φ(y),
∂φ(y), is an increasing positive multifunction. The fact that ∂φ(y) is monotonic increasing is due to the
convexity of φ(y) (Proposition 3), so we simply have to show that it is positive. We work with subgradients
because φ(y) could be non-differentiable.

Proposition 4 Assume that either β > 0 or din+1 > 0 for all i = 1 : n. Then for any y > 0, all subgradients
of φ(y) are positive.

Proof: The assumptions β > 0 or din+1 > 0 for all i = 1 : n are to remove a pathological case where a
sensor node located at the sink can supply the sink with y information at zero cost, in this case φ(y) = 0
and φ′(y) = 0.

Consider any y > 0, then from the fact that y flow has to reach the sink and the assumptions of this
proposition, we have that φ(y) > 0 = φ(0). The subgradient set of φ(y) at y is defined by

∂φ(y) = {ξ | φ(y + z) ≥ φ(y) + ξz, for all z s.t. y + z ≥ 0} .

Consider any ξ ∈ ∂φ(y). The subgradient satisfies φ(0) ≥ φ(y) + ξ(−y), which implies that ξ ≥ φ(y)
y > 0.
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In the context of a commercial application of a WSN and given the increasing energy cost of additional
information for all WSN, it is reasonable to try to determine the optimal amount of information to extract
from a given WSN. In a commercial setting it is reasonable to assume that there is some monetary value
for information from a WSN, for example a dollars per unit of information, likewise it is reasonable to
assume that the cost of energy is b dollars per unit of energy. In this setting we can explicitly compare the
trade-off between information extraction and energy consumption by maximizing the net return function
V (y) = ay − bφ(y), where y is the amount of information extracted. The maximum level of net return is
obtained for the solution y∗ that satisfies 0 ∈ ∂V (y∗), since φ(y) is convex, which implies that the optimal
information level satisfies a/b ∈ ∂φ(y∗). Optimization solvers also provide subgradient values of ∂φ(y) as the
dual variable on the information constraint, for illustrative purposes we plot the dual variable for an example
in Figure 2. The values in ∂φ(y) quantify the change in the objective function with respect to changes in y.
Because of the monotonicity of the subgradient, we can perform a binary search to obtain the information
level y∗ which has a/b ∈ ∂φ(y∗) and thus gives the optimal level of return. This leads to an approach where
to obtain a solution ŷ such that |y∗ − ŷ| ≤ ε, we solve a polynomial number (O(log(1

ε )) of Problems (10).
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Figure 2: Dual variable of information bound for different information constraints

5.2 Comparison of Optimal Performance v.s. Heuristics

In this subsection we explore how the optimal performance given by Problem (10) compares to two very
simple heuristics for assigning energy to nodes and distributing the information.

In our first heuristic we will only allow transmissions from nodes directly to the sink. The simplified version
of Problem (10) under this assumption is

min
n∑

i=1

(
βfi + ηd2

i e
fi − ηd2

i

)
s.t.

n∑
i=1

fi = fmin

fi ≤ αifmin

fi ≥ 0 ,

where fi represents the information flow from i to the sink. A seemingly efficient solution to this problem is
to assign as much information as possible to the nodes with smallest objective function contribution. (This
does not lead to the optimal as the optimal sets the flow at each node with a positive flow such that their
objective contribution is the same.) We achieve this solution by the following heuristic, which we denote the
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Direct Heuristic: (1) sort the nodes according to their distance to the sink, that is d1 ≤ d2 ≤ . . . ≤ dn, (2)
set the flow from i = 1 to n to fi = αifmin until

∑n
i=1 fi = fmin, and (3) set all remaining flows to zero.

Our second heuristic, which we denote the Hop Heuristic, routes all information from a node to the closest
node in the direction of the sink. This heuristic can be generally described as follows, Hop Heuristic: (1)
sort the nodes according to their distance to the sink, (2) set the amount of flow generated at i from i = 1
to n to αifmin until

∑n
i=1 fi = fmin, (3) determine the shortest path from every node providing information

to the sink, (4) send all the information from i to the next node on the shortest path from i to the sink.

In Figures 3, 4, 5, 6, and 7 below we present how the optimal energy levels compare with the energy levels
obtained from the heuristic procedures. The experiments considered linear and square topologies, and present
the different energy levels as we increase the number of nodes in the network. For the both types of problems
we considered the following problem parameters β = 0.00001, C = 0.00005, η = 0.0001, and fmin = 10. The
linear topologies examples considered from 4 to 80 sensor nodes placed in a line uniformly distributed a
distance 1 to 10 from the sink. The square topologies considered from 4 to 81 nodes uniformly distributed
on a grid in the square [0, 1] × [0, 1] with the sink located at (−0.3, 0.5). For both types of problems we
considered two different uniform fairness patterns. One constant in n, with αi = 0.25 for all i, and the other
with αi = 2/n for all i.

Due to the fact that for the constant fairness pattern (αi = 0.25), both heuristic procedures will generate all
information from the 4 closest nodes, the performance of both heuristics is very similar. We therefore opted
to ignore the Hop Heuristic in this case and only plot the Direct Heuristic to compare with the optimal
performance.
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Figure 3: Minimal Energy and Direct Heuristic, for fixed fairness 0.25 as a function of the number of nodes,
linear topology

A striking observation from Figure 4 is the poor performance of the Hop Heuristic. The reason for this is
that in the line topology all the information is routed through the node that is closest to the sink, this node
then is forced to spend a significant amount of energy to transmit it to the sink. In the Direct Heuristic
and in the optimal solution no node transmits all the information, so the transmission powers can be much
smaller.

The performance of the Hop Heuristic for the square topology is better, as can be noted in Figure 6. In this
example, all the information is first routed to the nodes that are on the face of the square next to the sink,
from where they can be transmitted directly. Therefore there is no “bottleneck” node that has to send all
the information and incur in the exponential transmission cost.
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Figure 4: Minimal Energy and Heuristics, for variable fairness 2/n as a function of the number of nodes,
linear topology
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Figure 5: Minimal Energy and Direct Heuristic, for fixed fairness 0.25 as a function of the number of nodes,
square topology
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Note that the energy is plotted in a log axis, therefore although that in general the differences persist the
Direct Heuristic provides a reasonable approximation to the optimal solution for large n. This statement
however should be taken with a grain of salt, as the topology of the problem and problem parameters do
influence the proximity of the heuristic to the optimal solution. For instance, in the example with square
topology and fairness αi = 2/n the heuristic obtains the same energy level as the optimal solution for n
larger than 40. In fact the optimal solution routes the information directly to the sink just as the heuristic
solution, see Figure 6. This observation breaks down if we simply scale the example by 100 (the sensor nodes
are now uniformly distributed on the square [0, 100]× [0, 100] with the sink node at (−30, 50)), see Figure 7.

5.3 Effect of fairness on optimal energy

From Problem (10) above we note that the energy needed to extract a certain amount of information, depends
in an exponential fashion on the amount of information to extract. Consider a given WSN with n sensor
nodes, with a fixed topology, fixed energy cost coefficients β and C, and on a communication channel with
a fixed noise η. We now obtain an upper bound on the amount of energy to extract any information level
fmin with any fairness pattern α, such that

∑n
i=1 αi ≥ 1. The optimal energy level E∗ for the WSN will be

less than or equal to Ê, the energy needed to route the information for a completely fair WSN, that is when
αi = 1

n for all i = 1, . . . , n. Analogously Ê will be less than or equal to the energy needed to have each node
route 1

nfmin directly to the sink, since this is one of many feasible ways of routing that information. This
means that

Ê ≤ β

n∑
i=1

1
n

fmin + η
n∑

i=1

d2
in+1

(
e

1
n fmin − 1

)
= βfmin +

n∑
i=1

d2
in+1η

(
e

1
n fmin − 1

)
.

This expression provides an upper bound on the energy needed to extract fmin information from a given
WSN with any fairness pattern α. We plot this upper bound, as well as the energy needed for a WSN
with uniform alpha patterns (we considered αi = 0.1, 0.2 and 1 on every sensor node) in Figure 8. The
computational experiment considered a network with 11 sensor nodes, equally spaced on a line at a distance
.1 to 1.1 from the sink, with other problem parameters set at C = 0.00005, β = 0.00001, and η = 0.001. We
computed the optimal energy needed to extract for different information bound levels.

The process of obtaining a lower bound is trickier, as the optimal solution for the completely unfair WSN
(i.e. αi = 1 for all i = 1, . . . , n) still looks for the shortest route and origin to obtain its information. Simple
bounds, like having all the information originate at the node closest to the sink, which has a cost of

βfmin + η(min{d1n+1, . . . , dnn+1})2
(
efmin − 1

)
,

provide functions that are not bounds and increase very rapidly. We plot this function, and the energy
cost of sending all the information from the node furthest from the sink, in Figure 9. Here we also plot
the upper bound on the minimum energy obtained previously for comparison purposes. Valid lower bounds
on the optimal energy for any fairness pattern are provided by the linear functions constructed from the
subgradients of φ(y) for the completely unfair WSN.

5.4 Effect of fairness patterns on performance

In this subsection we study how different fairness patterns affect the optimal energy distribution in the WSN
and also what is the form of the optimal routing of the information.
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Figure 6: Minimal Energy and Heuristics, for variable fairness 2/n as a function of the number of nodes,
square topology on [0, 1]2
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Figure 7: Minimal Energy and Heuristics, for variable fairness 2/n as a function of the number of nodes,
square topology on [0, 100]2
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We consider an example with 25 sensor nodes uniformly distributed on a grid [0, 10] × [0, 10] and a sink
node located at (−3, 5). Other problem parameters were set at β = 0.00001, C = 0.00005, η = 0.0001, and
fmin = 10. Below we present four examples, each considering a different fairness pattern on the network. The
first pattern considered a totally unfair network, where every node could potentially send all the information,
αi = 1 for all i, The optimal energy distribution and flow rates are presented in Figure 10. We note that
although all the information could potentially originate from a single node, the optimal is to use several
nodes, the ones that are within a certain radius from the sink to obtain all the information. Also note that
in this solution the information is routed directly to the sink.
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Figure 10: Optimal energy distribution and flow rates, α = 1 for all nodes

Our second experiment considers a more restrictive uniform fairness pattern. We set αi = 0.05 for all i.
Although this is not a totally fair system, now every node can send at most 5% of the total information, so
at least 20 of the 25 nodes must be used. As can be seen from the optimal energy distribution and flow rates
in Figure 11. Also now some information originates far enough that it is beneficial to route the information
through other nodes to be efficient, for example, the information that originates in nodes that are on the
4th column is routed through some other node.

Both the reason for not sending all the information from a single node in the first example, and deciding to
route the information that originates far away are decisions that are minimizing the contribution of the cost
of the power to transmit, which can be seen from the objective function of (10) is ηdi(efij − 1). The reason
to send information from nodes that are further away that available capacity is not to increase the exponent
fij too much, and the reason to route the information that is far away is to keep at zero the contribution of
terms which have a big dij .
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Figure 11: Optimal energy distribution and flow rates, α = 0.05 for all nodes
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Examples three and four consider skewed fairness patterns, which increase as we approach the upper right
corner of the grid. Both patterns have the same form, in which the nodes in the diagonal from the lower
left to the upper right, and all nodes that are directly above and to the right of that diagonal node take the
same value. The third example considers α gradually taking the values 0, 0.125, 0.25, 0.375, and 0.5; while
example four considers α varying though 0, 0.035, 0.07, 0.105, and 0.14.

The optimal energy distribution and flow rates for example three can be seen in Figure 12. The optimal
energy distribution and flow rates for example four are in Figure 13.
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Figure 12: Optimal energy distribution and flow rates, α concentrated on upper right corner, maximum
value α = 0.5
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Figure 13: Optimal energy distribution and flow rates, α concentrated on upper right corner, maximum
value α = 0.2

In the last two examples we note that the optimal energy distribution is no longer symmetric, as it should
be due to the fact that the fairness pattern is skewed. We also observe a peculiar phenomenon, information
is routed through a longer path to get to the sink. The reason for this is again the exponential cost of the
transmission power, if all the nodes in the shortest paths are already sending a certain amount of information
at a certain power level, it might be more economical to route an additional unit through a longer path of
nodes that are not transmitting. Granted, in this example the actual amount of information that was routed
on longer paths is minimal, and probably would not occur if we consider discrete phenomena, such as that
if a transmission power is below a certain threshold, no transmission actually occurs.

18



5.5 Types of solution

Predicting properties of the optimal solution can help us in obtaining efficient distributed protocols to route
the information in the WSN. A very useful insight would be to determine when the optimal solution prefers
to route the information directly and when it is more efficient to hop through a different node. A complete
answer involving all the problem’s parameters is too convoluted at this moment. An optimization model can
provide the optimal routing solution, and we can observe how the hopping behavior is affected for different
values of the reception cost C. For this experiment we preferred to take a different approach, we consider a
very simple example that is also amenable to an analytical solution.

To provide an initial solution to this question we consider a very simplified problem consisting of only two
sensor nodes, one of which provides all the information (that is α1 = 0 and α2 = 1). The question is to try
to predict when node 2 will prefer to send the information directly to the sink and when it will prefer to
route it through node 1. In order to avoid a trivial solution we place node 1 closer to the sink than node
two, in fact for simplicity we place it exactly mid-way between node 2 and the sink. Assume also that we
have fmin = 1, that we have a sensing cost of β, and noise parameter of η. Clearly the decision of whether
to route information or not will be affected for different reception costs C. We note that for small values
of C node 2 will find more attractive to route its information through node 1. In this case node two has
the alternative to route part of the information and send the rest directly to the sink. For high values of
C the network will decide that it’s too expensive to route information through node 1 and node 2 will send
everything directly. Here we investigate for what values of C will the network decide to hop and for which
to send the information directly.

With the use of optimization models we solve for the optimal routing behavior given different values of the
reception cost C. In Figure 14 we plot the total value of flow that is sent directly to the sink from node 2
for different reception cost values. This computational example additionally has the following parameters
values β = 0.00001 and η = 0.1.
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Figure 14: Flow to the sink without hopping as a function of the reception cost C

We note that for reception costs higher than a critical value (plotted as a dashed vertical line) node 2 sends
all the information directly to the sink. We also note that it is never optimal to hop all the information,
as for any reception cost there is some fraction of the information being sent directly. We finally note that
there is a dramatic change in the type of the routing solution as C varies from 10−2 to 0.3.

Due to the simplicity of this example, we can analyze the results further. We are simply comparing the
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solution in which we route all the information directly at a cost

hs = β + η(e− 1)

with the case in which we send f1 from node 2 to node 1 and then to the sink, and f2 = 1− f1 directly form
node 2 to the sink, at a cost

hc(f1) = β +
1
4
η(ef1 − 1) + Cf1 +

1
4
η(ef1 − 1) + η(e1−f1 − 1)

= β + Cf1 +
1
2
η(ef1 − 1) + η(e1−f1 − 1) .

The amount of information that will be routed will be the minimizer of function hc(f1) on the domain [0, 1].

We need to determine for what values of C will hc(f1) < hs for some f1 ∈ (0, 1], which means that it is
more convenient to route f1 than to send everything directly. Equivalently we will determine for what value
of C, the function HC(f1) = hc(f1) − hs ≥ 0 for all f1 ∈ [0, 1], these are the values of C that will make
it more convenient to send directly rather than route the information. It is easy to show that HC(f1) is a
convex function and HC(0) = 0, therefore to guarantee that HC(f1) ≥ 0 for all f1 ≥ 0 it is sufficient to show
that H ′

C(f1) ≥ 0. This last condition reduces to C ≥ η(e − 1
2 ). This critical value for the reception cost is

C = 0.221828 for the problem parameters of this example. We plot this value a vertical line in Figure 14.
Note that the WSN prefers to route all the information precisely at that critical value.

6 Conclusions

In this paper we addressed the need for a systematic methodology by developing formal non-linear optimiza-
tion models of static WSN that yield fundamental performance bounds and optimal designs. We presented
models for two problems: 1. maximizing the total information gathered subject to energy constraints (on
sensing, transmission and reception) and 2. minimizing the energy usage subject to information constraints.
Other constraints in these models correspond to fairness and channel capacity (assuming noise without
interference).

We showed that the two problems are in fact equivalent to each other in terms of a correspondence between
optimal solutions and constraints. However, it turns out that the second model is computationally more
efficient. We provided some analytical insight into this property of the second model.

We then presented a number of results from computational experiments showing how the optimum informa-
tion extraction varies with energy, for different fairness constraints. We discussed how the dual variable can
be used by a designer to determine a desired trade-off between information extraction and energy expendi-
ture.

We also presented results showing how some simple heuristics (sending directly to sink and shortest multi-
hop paths) compare to the optimal solution as network size increases. One interesting result is that when
there are no fairness constraints the optimal way for all nodes to send directly to the sink is for them to send
information in such a way that their contributions to the objective function are all equal. We also illustrated
optimal energy distribution and flow patterns for scenarios with different fairness constraints.

Another novel result presented here pertains to the condition when the optimal solution should involve
multi-hop routing and when it shouldn’t. We identified a threshold for the reception cost beyond which the
optimal solution sends the information directly to the sink rather than doing multi-hop routing, for a simple
example.

There are a number of natural extensions of this work we would like to undertake in the future. Many of these
involve the model variations we mentioned in section 4.3 — in particular enriching our models to incorporate
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data aggregation, mobility and interference (which would be meaningful in a CDMA environment as opposed
to the interference-free TDMA/FDMA scheduled access assumed in this paper).
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[35] J. Czyzyk, M. Mesnier, and J. Moré, “The NEOS Server,” IEEE Journal on Computational Science and Engi-
neering, vol. 5, pp. 68-75, 1998.

22


