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Abstract: Research on facility location is abundant.  However, this research does not typically 

address the particular conditions that arise when locating facilities to service large-scale 

emergencies, such as earthquakes, terrorist attacks, etc.  In this work we first survey general 

facility location problems and identify models used to address common emergency situations, such 

as house fires and regular health care needs.  We then analyze the characteristics of large-scale 

emergencies and propose a general facility location model that is suited for large-scale emergencies.  

This general facility location model can be cast as a covering model, a P-median model or a 

P-center model, each suited for different needs in a large-scale emergency.  Illustrative examples 

are given to show how the proposed model can be used to optimize the locations of facilities for 

medical supplies to address large-scale emergencies in the Los Angeles area.  Furthermore, 

comparison of the solutions obtained by respectively using the proposed model and the traditional 

model is given to show the benefits of the proposed model in reducing life-loss and economic loss.  
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1. Introduction 

 

Research on facility location problems is abundant and many models have been developed to 

formulate and solve various location problems.  However the prior work on facility location 

problems has not considered the special characteristics of large-scale emergency situations.  In this 

paper we define large-scale emergencies as those rare events that overwhelm local emergency 

responders and require regional and/or national assistance, such as natural disasters (examples are 

the Northridge earthquake and hurricane Floyd) and terrorist attacks such as September 11.  The 

staffing levels and materials of local emergency responders are designed to cope with the regular 

small-scale emergencies, such as household fires or vehicle accidents, and it is for these frequent 

emergencies that many facility location problems have been investigated.  These solutions 

however do not translate well for large-scale emergencies.  The tremendous magnitude and low 

frequency of the large-scale emergencies require a modification in the definition of facility 
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coverage to allow for redundant facility placements and tiered facility services to ensure an 

acceptable form of coverage of all demand areas in case of a large-scale emergency.  

 

Our research aims to determine the optimal emergency medical service (EMS) facility locations to 

address the needs generated by large-scale emergencies.  Although facility location models are 

used to place any type of service in a network, from hospitals to fire stations to triage areas, in this 

work we discuss only the problem of locating medical supplies for large-scale emergencies.  In 

particular, we concentrate on the problem of where to deploy local medical stocks such as the 

protective equipment and antidotes against a dirty bomb attack, and the problem of how to position 

local staging centers to receive, repackage and distribute the medical supplies from the strategic 

national stockpiles (SNS) for a major natural disaster or a bioterrorist attack. 

  

In general, facility location problems of large-scale emergency medical services (LEMS) have to 

decide the number and location of facilities.  Moreover, due to the low frequency and large 

potential impact of these events, these models should also consider:  

• the appropriate strategies for the facility deployment (facility location objective), 

• the number of facilities assigned to each demand point (facility quantity), and  

• the distance up to which a facility should service a demand point (service quality).   

The reason for ambiguity in the facility location objective is that a large-scale emergency is bound 

to impact lives regardless of the solution.  Therefore care should be taken in prioritizing one 

solution over another.  Another important aspect of a large-scale emergency solution is that 

resources in nearby areas can be pooled to address a need.  Thus, further coordination of the local 

stocks should be allowed. 

  

The objectives of this paper are to: (1) review the literature related to the EMS facility location 

problems for regular emergency situations, and (2) formulate a LEMS facility location model that is 

suited for large-scale emergency situations.  The rest of the paper is organized as follows: Section 

2 classifies traditional facility location models.  In Section 3, we present a literature review of 

location models for EMS and other emergency services.  This section is separated according to 

three different problem objectives that are used in traditional facility location models: covering, 

minsum (P-median), and minmax (P-center).  In Section 4, we analyze the characteristics of 

large-scale emergencies and propose a general LEMS facility location model.  In Section 5, we 

present examples that illustrate the use of the proposed model for different large-scale emergency 

scenarios.  The problem parameters are first specified, and then the proposed model is used to 

solve the problems.  We then compare solutions based on the proposed model and the traditional 

model that show the benefits of the proposed model in reducing the life-loss and economic loss 

during the large-scale emergencies.  We finish with conclusions and directions for future work in 

Section 6.       
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2. Model Classification  

 

2.1 Classification of Traditional Facility Location Models 

 

Facility location models can be classified according to their objectives, constraints, solutions, and 

other attributes.  Different classifications of facility location models for distribution systems have 

been proposed in the literature, for example by Klose and Drexl (2004).  In what follows, we 

extend their discussion and present eight of the most common criteria that are used to classify the 

traditional facility location models.  

 

(1) Topological characteristics.  Topological characteristics of the facility and demand sites 

lead to different location models including continuous location models (Plastria, 1987), 

discrete network models (Daskin, 1995), hub connection models (Campbell, 1994), etc.  In 

each of these models, facilities can only be placed at the sites where it is allowed by 

topographic conditions.  

 

(2) Objectives.  The objective is an important criteria to classify the location models.  

Covering models aim to minimize the facility quantity while providing coverage to all 

demand nodes or maximize the coverage provided the facility quantity is pre-specified 

(Chung, 1986).  P-center models have an objective to minimize the maximum distance (or 

travel time) between the demand nodes and the facilities (Chen and Handler, 1993).  They 

are often used to optimize the locations of facilities in the public sector such as hospitals, 

post-offices and fire stations.  P-median models attempt to minimize the sum of distance 

(or average distance) between the demand nodes and their nearest facilities (Rosing et al., 

1979).  Companies in the private sector often use P-median models to make facility 

distribution plans so as to improve their competitive edge.  

 

(3) Solution methods.  Different solution methods result in different location models such as 

optimization models and descriptive models.  Optimization models use mathematical 

approaches such as linear programming or integer programming to seek alternative 

solutions which trade off the most important objectives against one another.  Descriptive 

models, in contrast, use simulation or other approaches to achieve successively enhanced 

location pattern until a solution with desired degree is achieved.  Combined solution 

methods have also been developed by extending the descriptive models with optimization 

techniques to address dynamic and interactive location problems (e.g. mobile servers) 

which preclude the applications of traditional location models (Larson, 1974; Larson, 1975; 

Brandeau and Larson, 1986).   

 

(4) Features of facilities.  Features of facilities also divide location models into different kinds. 
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For instance, facility restrictions can lead to models with or without service capacity (Pirkul 

and Schilling, 1991); and facility dependencies can result in models that take into account 

the facility cooperation or neglect it (Batta and Berman, 1989).  

 

(5) Demand patterns.  Location models can also be classified based on the demand patterns 

(Plastria, 1997).  If a model has elastic demand, then the demand in an area will vary 

(either increase or decrease) with different facility location decisions; while a model with 

inelastic demand will not vary the demand pattern due to the facility location decisions.  

 

(6) Supply chain type.  Location models can be further divided by the type of supply chain 

considered (i.e. single-stage model vs. multi-stage model).  Single-stage models focus on 

service distribution systems with only one stage, whereas multi-stage models consider the 

flow of service through several hierarchical levels (Gao and Robinson, 1994).  

 

(7) Time Horizon.  Time horizon categorizes location models into static models and dynamic 

models. Static models optimize the system performance deciding all variables 

simultaneously.  In contrast, dynamic models consider different time periods with data 

variation across these periods, and give solutions for each time period adapting to the 

different conditions (Erlenkotter, 1981).  

 

(8) Input parameters.  Another popular way to classify the location models is based on the 

features of the input parameters to the problems.  In deterministic models, the parameters 

are forecast with specific values and thus the problems are simplified for easy and quick 

solutions (Marianov and ReVelle, 1992).  However, for most real-world problems, the 

input parameters are unknown and stochastic/probabilistic in nature.  

Stochastic/probabilistic location models capture the complexity inherent in real-world 

problems through probability distributions of random variables or considering a set of 

possible future scenarios for the uncertain parameters (Owen and Daskin, 1998).   

 

Location models can also be distinguished based on other attributes such as single- vs. 

multi-product models, or pull vs. push models.  Readers interested in further details are referred to 

the recent review papers by Hamacher and Nikel (1998) and Klose and Drexl (2004). 

 

 

3 Review of Facility Location Models for  Emergency Services 

 

Although large-scale emergencies have many unique characteristics, they also share similarities 

with regular emergencies.  In this section, we review the literature on facility location problems for 

regular emergency situations.  This review is separated into three sections depending on the 
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objective function of the location models, and this leads to: covering models, P-median models, 

and P-center models.   

 

3.1 Cover ing Models for  Emergency Services 

 

Covering models are the most widespread location models for formulating the emergency facility 

location problems.  The objective of covering models is to provide “coverage”  to demand points.  

A demand point is considered as covered only if a facility is available to service the demand point 

within a distance limit.  The literature on covering problems is divided into two major parts: the 

location set covering problem (LSCP) and the maximal covering location problem (MCLP).  

 

LSCP is an earlier statement of the emergency facility location problem by Toregas et al. (1971) 

and it aims to locate the least number of facilities that are required to cover all demand points.  

Since all the demand points need to be covered in LSCP, regardless of their population, remoteness, 

and demand quantity, the resources required for facilities could be excessive.  Recognizing this 

problem, Church and ReVelle (1974) and White and Case (1974) developed the MCLP model that 

does not require full coverage to all demand points.  Instead, the model seeks the maximal 

coverage with a given number of facilities.  The MCLP, and different variants of it, have been 

extensively used to solve various emergency service location problems.  A notable example is the 

work of Eaton et al. (1985) that used MCLP to plan the emergency medical service in Austin, 

Texas.  The solution gives a reduced average emergency response time even with increased calls 

for service.  Schilling et al. (1979) generalized the MCLP model to locate emergency fire-fighting 

servers and depots in the city of Baltimore.  In their model, known as FLEET (Facility Location 

and Equipment Emplacement Technique), two different types of servers need to be located 

simultaneously.  A demand point is regarded as “covered”  only if both servers are located within a 

specified distance.  

 

The preceding models do not consider the system congestion and unavailability of the facilities.  

Many covering models have also been developed to address the possible congestion condition by 

providing redundant or back-up coverage.  Daskin and Stern (1981) formulated a hierarchical 

objective LSCP for emergency medical service in order to find the minimum number of vehicles 

that are required to cover all demand areas while simultaneously maximizing the multiple coverage.  

Bianchi and Church (1988) proposed an EMS facility model in which they restricted the number of 

facilities but allowed more than one server at each facility site.  Benedict (1983), Eaton et al. 

(1986), and Hogan and ReVelle (1986) developed MCLP models for emergency service that has a 

secondary “backup-coverage”  objective.  The models ensure that a second (backup) facility could 

be available to service a demand area in case that the first facility is unavailable to provide services.  

The backup coverage models have been popularly called as BACOP1 (Backup Coverage Problem 

1).  Since the models of BACOP1 require each demand point to have first coverage which is not 
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necessary for many location problems, Hogan and ReVelle (1986) further formulated the BACOP2 

model which is able to respectively maximize the population that achieve first and second 

coverage.   

    

Research on emergency service covering models has also been extended to incorporate the 

stochastic and probabilistic characteristics of emergency situations so as to capture the complexity 

and uncertainty of these problems.  Examples of these stochastic models can be found in recent 

papers by Goldberg and Paz (1991), ReVelle et al. (1996), and Beraldi and Ruszczynski (2002).  

There are several approaches to model stochastic emergency service covering problems.  The first 

approach is to use chance constrained models (Chapman and White, 1974).  Daskin (1983) used an 

estimated parameter (q) to represent the probability that at least one server is free to serve the 

requests from any demand point.  He formulated the Maximum Expected Covering Location 

Problem (MEXCLP) to place P facilities on a network with the goal to maximize the expected 

value of population coverage.  ReVelle and Hogan (1986) later enhanced the MEXCLP and 

proposed the Probabilistic Location Set Covering Problem (PLSCP).  In the PLSCP, an average 

server busy fraction (qi) and a service reliability factor (� ) are defined for the demand points.  Then 

the locations of facilities are determined such that the probability of service being available within 

a specified distance is maximized.  The MEXCLP and PLSCP later were further modified to tackle 

other EMS location problems by ReVelle and Hogan (MALP) (1989a), Bianchi and Church 

(MOFLEET) (1988), Batta et al. (AMEXCLP) (1989), Goldberg et al. (1990), and Repede and 

Bernardo (TIMEXCLP) (1994).  A summary and review to the chance constrained emergency 

service location models can be found in ReVelle (1989).  

 

Another approach to modeling stochastic EMS covering problems is to use scenario planning to 

represent possible values for parameters that may vary over the planning horizon in different 

emergency situations.  A compromise decision is made to optimize the expected/worst-case 

performance or expected/worse-case regret across all scenarios.  For example, Schilling (1982) 

extended the MCLP by incorporating scenarios to maximize the covered demands over all possible 

scenarios.  Individual scenarios are respectively used to identify a range of good location 

decisions.  A compromise decision is made to the final location configuration that is common to all 

scenarios in the horizon.  

  

One important thrust and cornerstone in location theory is the development and application of the 

queuing approach in solving EMS location problems. The most well known queuing models for 

emergency service location problems are the hypercube and approximated hypercube by Larson 

(1974, 1975), which consider the congestions of the system by calculating the steady-state busy 

fractions of servers on a network.  The hypercube model can be used to evaluate a wide variety of 

output performance such as vehicle utilization, average travel time, inter-district service 

performance, etc.  Particularly important in the hypercube models is the incorporation of 
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state-dependent interactions among facilities (mobile servers) that preclude applications of 

traditional location models.  Larson (1979) and Brandeau and Larson (1986) later further extended 

and applied the hypercube models with locate-allocate heuristics for optimizing many realistic 

EMS systems.  For example, these extended models have been successfully used to optimize the 

ambulance deployment problems in Boston and the EMS systems in New York. Based on the 

hypercube queuing model, Jarvis (1977) developed a descriptive model for operation characteristics 

of an EMS system with a given configuration of resources and a location model for determining the 

placement of ambulances to minimize average response time or other geographically based 

variables.  Marianov and ReVelle (1996) created a realistic location model for emergency systems 

based on results from queuing theory.  In their model, the travel times or distances along arcs of 

the network are considered as random variables.  The goal is to place limited numbers of 

emergency vehicles, such as ambulances, in a way as to maximize the calls for service.  Queueing 

models formulating other various theoretical and practical problems have also been reported by 

Berman and Larson (1985), Batta (1989), and Burwell et al. (1993). 

  

3.2 P-Median Models for  Emergency Services 

 

Another important way to measure the effectiveness of facility location is by evaluating the average 

(total) distance between the demand points and the facilities.  When the average (total) distance 

decreases, the accessibility and effectiveness of the facilities increases.  This relationship applies 

to both private and public facilities such as supermarkets, post offices, as well as emergency service 

centers, for which proximity is desirable.  The P-median problem, introduced by Hakimi (1964), 

takes this measure into account and is defined as: determine the location of P facilities so as to 

minimize the average (total) distance between demands and facilities.  Later ReVelle and Swain 

(1970) formulated the P-median problem as a linear integer program and used a branch and bound 

algorithm to solve the problem. 

 

Since its formulation the P-median model has been enhanced and applied to a wide range of 

emergency facility location problems.  Carbone (1974) formulated a deterministic P-median 

model with the objective of minimizing the distance traveled by a number of users to fixed public 

facilities such as medical or day-care centers.  Recognizing the number of users at each demand 

node is uncertain, the author further extended the deterministic P-median model to a chance 

constrained model.  The model seeks to maximize a threshold and meanwhile ensure the 

probability that the total travel distance is below the threshold is smaller than a specified level α.  

Calvo and Marks (1973) constructed a P-median model to locate multi-level health care facilities 

including central hospitals, community hospitals and local reception centers.  The model seeks to 

minimize distance and user costs, and maximize demand and utilization.  Later, the hierarchical 

P-median model was improved by Tien et al. (1983) and Mirchandani (1987) by introducing new 

features and allowing various allocation schemes to overcome the deficient organization problem 
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across hierarchies.  Paluzzi (2004) discussed and tested a P-median based heuristic location model 

for placing emergency service facilities for the city of Carbondale, IL.  The goal of this model is to 

determine the optimal location for placing a new fire station by minimizing the total aggregate 

distance from the demand sites to the fire station.  The results were compared with the results from 

other approaches and the comparison validated the usefulness and effectiveness of the P-median 

based location model. 

 

One major application of the P-median models is to dispatch EMS units such as ambulances during 

emergencies.  Carson and Batta (1990) proposed a P-median model to find the dynamic 

ambulance positioning strategy for campus emergency service.  The model uses scenarios to 

represent the demand conditions at different times.  The ambulances are relocated in different 

scenarios in order to minimize the average response time to the service calls.  Berlin et al. (1976) 

investigated two P-median problems to locate hospitals and ambulances.  The first problem has a 

major attention to patient needs and seeks to minimize the average distance from the hospitals to 

the demand points and the average ambulance response time from ambulance bases to demand 

points.  In the second problem, a new objective is added in order to improve the performance of 

the system by minimizing the average distance from ambulance bases to hospitals.  Mandell (1998) 

developed a P-median model and used priority dispatching to optimally locate emergency units for 

a tiered EMS system that consists of advanced life-support (ALS) units and basic life-support (BLS) 

units.  The model can also be used to examine other system parameters including the balance 

between ALS and BLS units, and different dispatch rules. 

 

Uncertainties have also been considered in many P-median models.  Mirchandani (1980) 

examined a P-median problem to locate fire-fighting emergency units with consideration of 

stochastic travel characteristics and demand patterns.  The author took into account the situations 

that a facility may not be available to serve a demand and used a Markov process to create a system 

in which the states were specified according to demand distribution, service and travel time, and 

server availability.  Serra and Marianov (1999) implemented a P-median model and introduced the 

concept of regret and minmax objectives when locating fire station for emergency services in 

Barcelona.  The authors explicitly addressed in their model the issue of locating facilities when 

there are uncertainties in demand, travel time or distance.  In addition, the model uses scenarios to 

incorporate the variation of uncertainties and seeks to give a compromise solution by minimizing 

the maximum regret over the scenarios.  

 

P-median models have also been extended to solve emergency service location problems in a 

queuing theory context.  An example is the stochastic queue median (SQM) model due to Berman 

et al. (1985).  The SQM model seeks to optimally dispatch mobile servers such as emergency 

response units to demand points and locate the facilities so as to minimize average cost of response. 
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3.3 P-Center  Models for  Emergency Services  

 

In contrast to the P-median models which concentrate on optimizing the overall (or average) 

performance of the system, the P-center model attempts to minimize the worst performance of the 

system and thus addresses situations in which service inequity is more important than average 

system performance.  In location literature, the P-center model is also referred to as the minimax 

model since it minimizes the maximum distance between any demand point and its nearest facility.  

The P-center model considers a demand point is served by its nearest facility and therefore full 

coverage to all demand points is always achieved.  However, unlike the full coverage in the set 

covering models, which may lead to excessive number of facilities, the full coverage in the 

P-center model requires only a limited number (P) of facilities.   

 

The center problem was first posed by Sylvester (1857) more than one hundred years ago.  The 

problem asks for the center of a circle that has the smallest radius to cover all desired destinations.  

In the last several decades, the P-center model and its extensions have been investigated and 

applied in the context of locating facilities such as EMS centers, hospitals, fire station, and other 

public facilities. 

 

In order to locate a given number of emergency facilities along a road network, Garfinkel et al. 

(1977) examined the fundamental properties of the P-center problem.  He modeled the P-center 

problem using integer programming and the problem was successfully solved by using a binary 

search technique and a combination of exact tests and heuristics.  ReVelle and Hogan (1989b) 

formulated a P-center problem to locate facilities so as to minimize the maximum distance within 

which EMS service is available with α reliability.  System congestion is considered and a derived 

server busy probability is used to constrain the service reliability level that must be satisfied for all 

demands.  Stochastic P-center models have also been formulated for EMS location problems.  

For example, Hochbaum and Pathria (1998) considered the emergency facility location problem 

that must minimize the maximum distance on the network across all time periods.  The cost and 

distance between locations vary in each discrete time period.  The authors used k underlying 

networks to represent different periods and provided a polynomial time 3-approximation algorithm 

to obtain the solution for each problem.  Talwar (2002) utilized a P-center model to locate and 

dispatch three emergency rescue helicopters to serve the growing EMS demands from accidents of 

tourist activities such as skiing, hiking and climbing at the north and south of Alpine mountain 

ranges.  One of the model’s aims is to minimize the maximum (worst) response times and the 

author used effective heuristics to solve the problem.   

 

There are still many other applications and analyses to various P-center models.  Readers 

interested in these applications and their mathematical formulations are referred to Handle (1990), 

Brandeau et al. (1995), Daskin (2000), and Current et al. (2004).  
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4 LEMS Facility Location Models 

 

In this section we analyze the unique characteristics that are inherent in the large-scale emergency 

situations.  We then propose a LEMS facility location model that is suited for large-scale 

emergencies.     

 

4.1 Character istics of Large-scale Emergency Situations 

 

A major distinction of large-scale emergencies from other regular emergencies is the sudden and 

tremendous demands for EMS, which overwhelms first responders.  Another significant difference 

is the low frequency of large-scale emergencies, as opposed to other regularly occurring 

emergencies such as fires and vehicle accidents.  The high demand and low frequency features of 

the large-scale emergencies require redundant and dispersed placement of EMS facilities so that 

more medical supplies could be mobilized during emergencies to reduce mortality and morbidity.  

A dispersed and redundant facility location pattern also helps improve the serviceability and 

survivability of the facilities because large-scale emergencies such as earthquakes are likely to 

cause malfunction of some facilities due to road impediment or facility destruction.   

 

Potential demand areas for LEMS need to be categorized in a way different from other regular 

emergencies.  Each demand area has distinct attributes such as population density, economic 

importance, geographical feature, weather pattern, etc.  Therefore, the likelihood for a certain type 

of large-scale emergency occurring in one area, as well as the corresponding impact level, are 

different from the other areas.  For example, a large seaport may have a relatively high likelihood 

to receive a dirty bomb terrorist attack since explosives and radioactive materials can be easily 

hidden in the cargo of a ship; while an upwind district of a populous downtown area may be more 

likely to receive a biological terrorist attack because winds could spread the biological agents 

towards a large part of the community.  Therefore the facility location pattern should take into 

account the unique attributes of each demand area and classify the likelihood for a particular 

emergency to occur in each area.   

 

Another important aspect of LEMS facility locations is the fact that given the occurrence of an 

emergency at a location, the resources of a number of facilities will be applied to quell the impact 

of the emergency, not only those that are located closest to the emergency site.  This implies that 

in fact there are different types of coverage, or quality of coverage, which can be classified in terms 

of the distance (time) between each facility and demand point.  Thus a facility that is close to a 

demand point provides a better quality of coverage to that demand point than a facility located far 

from that demand point.  When locating LEMS it is important to consider adequate location of 
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facilities of various qualities for each demand point.  In addition since we are considering a 

capacitated problem, the number or quantity of facilities of each quality that are located near to 

each demand point is also important.  Furthermore, because the attributes associated to each 

demand point are distinct, different requirements of facility quantity and quality should be assigned 

for each demand point.  We note there has been some limited work for developing location models 

that consider the backup (redundant) coverage (Benedict, 1983; Hogan and ReVelle, 1986).  

However the prior models only allow for at most double coverage of each demand point, which are 

considered to have identical attributes. As a result the facility quantity and quality of each demand 

point in these models are limited and uniform.  Our modeling framework generalizes the earlier 

work by allowing for multiple types of facility quantity and quality.   

 

Care should also be taken in dealing with large-scale emergencies that are distinct in nature and 

thus require different facility deployment strategies.  The facility deployment strategies can be 

generally categorized as two types: (1) proactive facility deployment, and (2) reactive facility 

deployment.  Proactive facility deployment means to pre-position the facilities as well as the 

medical supplies before an emergency has occurred.  This strategy is suited for emergencies that 

need instantaneous EMS response.  For example, a dirty bomb terrorist attack emergency usually 

leads to incidents of severe contamination.  This type of terrorist attack is overt and the people and 

environment that are affected need to be treated and decontaminated as soon as possible.  

Therefore medical supplies should be inventoried a priori at local/regional facilities so that they can 

be delivered quickly to the demand points.  In contrast, a reactive facility deployment does not 

store large volumes of medical supplies at possible demand points prior to the emergency.  Instead, 

during an emergency the SNS will be called to supply local EMS.  The facility location problem 

thus involves determining local staging centers to receive, repackage and distribute the medical 

supplies from SNS to the demand points.  The reactive facility deployment strategy is particularly 

applicable to emergencies that have delayed effects and require continuous and large amounts of 

medical supplies.  For example, an anthrax biological warfare agent usually has no immediate 

warning signs upon release and the lack of warning may lead to continuous and widespread 

infection of people.  A large amount of antibiotics and vaccines may be required to cure and 

immunize the infected population during such an emergency.  However an anthrax terrorist attack 

has a low occurrence frequency and it is very expensive for any local region to maintain massive 

medical supplies for such a rare event.  A better strategy thus for this emergency is to call SNS and 

use local staging centers to receive, repackage and distribute the SNS supplies to local areas.  

There are also emergencies that require a hybrid (both proactive and reactive) facility deployment 

strategy.  For these emergencies, local supplies are needed for immediate use while the SNS is 

needed to address the massive demand increase for medical supplies.     

 

Moreover, the facility location objective for large-scale emergencies should be carefully defined.  

A large-scale emergency is bound to impact lives regardless of the solution.  Thus care should be 
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taken in prioritizing one solution over another.  In this paper we consider different objectives in 

order to minimize unmet demands and life-loss for different large-scale emergencies.   

 

Finally, the selection of eligible facility sites for large-scale emergencies must consider a different 

set of criteria that are used for regular emergencies.  For instance, the facilities should have easy 

access to more than one major road/highway including egress and ingress.  The sites should be 

secure and insusceptible from damages caused by the emergencies.  In this paper we consider 

eligible facility sites as given.  

 

4.2 The General LEMS Facility Location Problem 

 

In this section, we propose a general LEMS facility location model that takes into account the 

characteristics of the large-scale emergencies.  The proposed model can be cast as a generalization 

of the covering, P-median, and P-center models that have been developed for regular EMS facility 

locations.  We consider a set I of demand points and a set J of possible facility locations.  Indexed 

on these sets we define three types of integer variables: 

Decision variables: 
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The demand for LEMS is uncertain and depends on various factors including the emergency 

scenario, the impact of the emergency, and the likelihood of the emergency to affect a demand 

point.  To represent the uncertain demand we make use of discrete scenarios from a set K of 

possible emergency situations.  In addition we make use of two parameters: βik to represent both 

the likelihood that a certain emergency situation k affects demand point i, and eik the impact that the 

emergency situation will have on the population of demand point i, Mi.  The likelihood parameter 

captures the geographical effect of emergency situation k due to location of event, prevailing winds, 

etc.  These likelihoods do not sum to one over all demand points since (1) there can be more than 

one emergency occurring at the same time, and (2) there can be multiple demand points 

simultaneously affected by an emergency (e.g. a biological terrorist attack). 

Demand parameters: 

Mi = the population of demand point i; 

eik = the impact coefficient for demand point i under large-scale emergency situation k; 

βik = the likelihood for demand point i to have a large-scale emergency situation k; 

if demand point i is covered; 

otherwise. 

if a facility j services demand point i; 

otherwise. 

if a facility is placed at j; 

otherwise. 
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With these parameters, the demand at point i under emergency situation k is represented by 
�

ik×eik×Mi; this value is also the weight of demand point i in our location models. 

 

Since the different location models (covering, P-median, and P-center) are defined in part by the 

objective function used, for the moment we represent all models as setting the integer variables xj, 

zij ,and ui so as to optimize a function that represents the efficiency in covering the uncertain 

demand.  We denote this function as ( )iikikiijj Meuzx ,,;,, βσ .   

 

In addition we consider the following problem parameters: 

Input: 

Qi = the minimum number of facilities that must be assigned to demand point i to consider i covered; 

pjk = reduction in service capability of facility j under emergency scenario k; 

P = the maximal number of facilities that can be placed in J; 

 

We can now formulate the general LEMS location model to locate P facilities to address 

emergency scenario k, requiring that Qi facilities service demand point i with the same quality.  

We also consider that the capability of a facility to provide EMS services may be disrupted during a 

large-scale emergency due to road impediment and/or the destruction of the facility; hence we use 

the parameter pjk, a value between 0 and 1, to represent the degree of disruption of facility j under 

emergency scenario k. 

Max / Min  ( )iikikiijj Meuzx ,,;,, βσ     (1)     

Subject to:  

�
∈

≤
Jj

j Px          (2)       

{ } ,1,0 Jjx j ∈∀∈        (3) 

,ij jk i i
j J

z p Qu i I
∈

≥ ∀ ∈�      (4)  

,, JjIixz jij ∈∈∀≤      (5)    

{ } ,,1,0, JjIiuz iij ∈∈∀∈      (6) 

Here constraints (2) and (3) are used to represent that there are P facilities to be located in a set J of 

possible locations.  Constraint (4) indicates that demand point i is considered as covered only if 

there are more than the required quantity (Qi) of facilities servicing it.  Note that the reduced 
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service capability in each facility has been considered by multiplying zij by pjk.  Finally, constraint 

(5) shows that a demand point i can only be serviced from facilities j that have been opened; and 

constraint (6) enforces the integrality of variables zij and ui.  Note that scenario k is given in the 

problem above.  Thus the solution optimizes the location problem for that particular scenario.  If a 

global solution is desired across multiple scenarios, for instance for a proactive facility deployment, 

then a regret function defined across all scenarios can be optimized.  This concept is illustrated 

below in Section 4.3.  In the rest of this section we show how the covering, P-median, and 

P-center models are derived from this general LEMS facility location model with appropriate 

objective function and linear constraints on zij and ui.  

 

Consider now the problem with multiple quality-of-coverage requirements at each demand point.  

Let us assume that at demand point i we must have Qi
1, Qi

2,…, Qi
q, facilities for each quality from 1 

to q, where quality Qi
1 represents the facilities that are closest to demand point i, Qi

2 are the 

facilities located farther than those of quality 1, and so on.  If we consider that a facility of quality 

r is also of quality r+1,…,q since it is closer than required for larger quality of coverage, we must 

have that the requirements satisfy Qi
 r �  Qi

 r+1 for all qualities r =1,…,q-1.  Thus the general LEMS 

facility location model is modified only on constraint (4) with the following group of constraints:  

, 1,...r
ij jk i i

j J

z p Q u i I r q
∈

≥ ∀ ∈ =�      (4’ )  

 

Below we show how the general LEMS facility location problem leads to covering, P-median, and 

P-center problems only for the single quality-of-coverage case.  The generalization for the 

multiple quality case is straightforward from the construction above and is left to the reader. 

 

4.3 A Cover ing Model for LEMS 

 

A covering model is in essence a feasibility problem.  Given certain requirements for the quality 

of coverage we are interested in covering the greatest amount of the demand that can be generated 

by an emergency.  Given that we know emergency scenario k occurred the coverage of the demand 

is given by �
∈Ii

iiikik uMeβ .  Therefore the objective of the covering model is defined as  

Maximize ( ) �
∈

=
Ii

iiikikiikikiijj uMeMeuzx ββσ ,,;,, .  

 

This objective finds an optimal facility location solution (Sk) with value Vk for emergency scenario 

k.  Since different emergency scenarios have different optimal location solutions, a globally 

optimal location solution ( S) is needed and it can be obtained by minimizing the regret across all 

emergency scenarios ( �
∈Kk

kRMinimize ), where the regret associated with scenario k is defined 
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by
k

Ii
iiikikk VuMeR −= �

∈

β .  Note that in this regret function, a uniform weight is assigned to all 

emergency scenarios.  Given the fact that the occurrence probabilities and the impact levels of 

various emergency situations are different, distinct weights (wk) should be assigned to different 

emergency scenarios so that more attention could be given to the large-weighed, most likely, 

emergency situations.  Thus the regret function can be re-defined as 
k k

k K

Minimize w R
∈
� . 

 

Covering models include constraints that limit when a facility can service a demand point.  For 

example, a covering model might allow only facilities located within distance Di from demand 

point i to service the demand generated at i.  If dij represents the shortest distance between demand 

point i and facility location j, then these requirements are represented by the constraints 

 

zij = 0  if  dij > Di.  ., JjIi ∈∈∀   

 

Let the set { }iiji DdjN ≤= |  be the set of eligible facility sites that can service demand point i. 

Note that 0=ijz  for any iNj ∉ , then it is straightforward to show that the LEMS covering 

problem for a given scenario k is given by 

Maximize �
∈Ii

iiikik uMeβ       (7)     

Subject to:  

,
i

j jk i i
j N

x p Qu i I
∈

≥ ∀ ∈�      (8)  

�
∈

≤
Jj

j Px          (9)       

{ }, 0,1 , ,j ix u i I j J= ∀ ∈ ∈      (10) 

 

4.4 A P-Median Model for LEMS 

 

Both the P-median and P-center problems consider relaxed quality requirements for coverage and 

seek the facility location solution which achieves the minimum demand-weighted distance between 

the opened facilities and demand points.  This objective is based on the idea that the accessibility 

and effectiveness of EMS facilities in response to an emergency situation will increase if the 

distance from the facilities to the demand points decreases.  Therefore, since the service distance 

to demand point i is defined as the sum of distances from demand point i to its servicing facilities, 

the objective function is simply the sum of the service distances for all demand points, i.e.  
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Minimize ��
∈∈ Jj

ijijiikik
Ii

zdMeβ . 

 

Although we have relaxed the quality requirements, (i.e. the variables zij have no constraints), we 

do require that each demand point be serviced.  In other words, for each demand point i, Qi 

facilities are assigned to service it.  This is achieved through the constraints 

.1 Iiui ∈∀=  

 

The P-median problem for a given scenario k can then be stated as 

 

Minimize ��
∈∈ Jj

ijijiikik
Ii

zdMeβ      (11) 

 

Subject to: 

�
∈

≤
Jj

j Px          (12) 

,i j jk i
j J

z p Q i I
∈

= ∀ ∈�       (13) 

,, JjIixz jij ∈∈∀≤      (14) 

}{ ,,1,0, JjIizx ijj ∈∈∀=      (15) 

 

4.5 A P-Center  Model for LEMS 

 

In the following, a P-center model is formulated by using the objective of minimizing the 

maximum service distance for all demand points.  The service distance for demand point i is 

defined as the average distance from demand point i to its nearest Qi facilities.  The P-center 

model for a given scenario k can be written as the following integer linear program: 

 

Minimize  L         (16) 

 

Subject to: 

�
∈

≤
Jj

j Px          (17) 

,i j jk i
j J

z p Q i I
∈

= ∀ ∈�       (18) 

,, JjIixz jij ∈∈∀≤      (19) 
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,, KkIi
Q

zdMe

L
i

Jj
ijijiikik

∈∈∀≥
�
∈

β
   (20) 

{ } ,,1,0, JjIizx ijj ∈∈∀=      (21) 

The only difference with the P-median problem comes from the maximum distance objective, 

which is represented by objective function (16) and constraint (20).  

 

Note that the P-median and P-center models introduced above consider the case of single quality of 

coverage.  A slight modification in the objective and constraints is needed for the case of multiple 

quality of coverage.  For instance, to formulate the P-center model with two qualities of coverage, 

the objective (16) and constraints (20) can be re-stated as: 

 

Minimize  L1 + L2         (16’ ) 

, , 1,2

r
ik ik i ij i j

j J
r r

i

e M d z

L i I k K r
Q

β
∈≥ ∀ ∈ ∈ =
�

  (20’ ) 

    

 

5 I llustrative Examples 

 

In this section we give illustrative examples to show how the proposed models can be used to 

optimize the facility locations for different large-scale emergencies.  The covering model, P-center 

model and P-median model are respectively used to formulate the location problems for the 

emergencies including dirty bomb, anthrax and smallpox terrorist attacks.  A single quality of 

coverage is considered in these examples, and furthermore we assume that the reduction of facility 

service capability caused from these emergencies can be ignored (i.e. pjk = 1).  Note that although 

merely a single quality coverage is considered, each demand point is required to be covered by a 

multiple (different) quantity of facilities (based on the weights of the demand points) in order to 

receive adequate medical supplies. We also compare the solutions obtained by our proposed model 

with the solution to the classic facility location problem. 

 

The area in which we consider to locate facilities is Los Angeles (LA) County (Figure 1).  We grid 

the area into square zones using the center of each zone as an aggregated demand point.  In this 

example, we only consider seven demand points (zones), and they are West Hollywood, Downtown, 

LAX airport, Port of Long Beach, Port of LA, Disneyland, and Rowland Heights.   

 

Furthermore, a number of eligible sites in which the EMS facilities could be placed are identified.  

We assume that resource limitation allows only 4 local facilities or staging centers to be opened and 



 18 

they can be placed at any of 7 possible eligible facility sites.  Table 1 gives the roadway distances 

between each demand point and each eligible facility site.   

 

Figure 1. Los Angles County, California 

 

Table 1. Roadway distances between demand points and eligible facility sites 

Distances 

(M iles) 
West Hollywood Downtown LAX airpor t Port of LA 

Por t of 

Long Beach 
Disneyland 

Rowland 

Heights 

Site 1 5 4 10 25 27 33 33 

Site 2 11 5 5 14 12 16 24 

Site 3 4 5 10 31 30 33 35 

Site 4 27 13 20 33 27 16 10 

Site 5 28 18 10 4 4 20 36 

Site 6 20 12 7 7 4 14 32 

Site 7 30 20 17 12 8 8 27 

 

5.1 A Dir ty Bomb Attack 

 

The first emergency we consider is a dirty bomb terrorist attack, which could have a severe local 

impact (e.g. radiological contamination of the population and environment).  A proactive facility 

deployment strategy is appropriate for this emergency as EMS supplies such as protective 

equipment and anti-radioactive drugs need to be stored at local facilities.  To be better prepared for 

such an emergency, it is desirable that as much of the population as possible be covered with the 

Dpt-2: Downtown 

Dpt-6: Disneyland 

Eligible facility site 4 Eligible facility site 3 

Dpt-3: LAX airport 

Dpt-4: Port of long beach 

Dpt-5: Port of LA 

Eligible facility site 1 

Dpt-1: West Hollywood 

Eligible facility site 7 Eligible facility site 5 

Demand points Eligible facility sites 
Eligible facility site 6 

Eligible facility site 2 

Dpt-7: Rowland Heights 
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required facility quantity and quality.  As such in what follows we use the covering model to 

formulate this facility location problem.  Note that in a proactive facility deployment there is no 

certainty of which emergency scenario will occur, thus the problem should consider a regret 

objective.  However in this illustrative example we simply assume that we know the emergency 

scenario (for instance the most likely) and prepare for it.  

 

To provide the input parameters for the model, we first characterize the attributes of each demand 

point including the emergency occurrence likelihood (
�

), population (M) and impact coefficient (e).  

Then the weight (
�

×e×M) of each demand point is calculated and based on the weight we further 

derive the parameters of required facility quantity and quality for each demand point (see Table 2).  

Note that a demand point with a larger weight indicates that it is of relatively high susceptibility to 

the emergency and thus needs to be covered by more facilities within a short distance.  For 

example, the demand point of the Downtown area has a larger weight, in comparison to the demand 

point of Disneyland, and therefore it has been assigned with more facilities that are of a better 

quality.  

  

Table 2. Demand point characterization for dirty bomb emergency 

Demand point 

(I) 

Population 

(M) 

Dir ty bombing 

occur rence likelihood 

(� ) 

Impact 

coefficient 

(e) 

Weight 

(� eM) 

Required facility 

quantity (Q) 

Required facility 

quality/distance 

(D) 

West Hollywood 76k Intermediate – high (0.7) 0.7 37.2 2 9 miles 

Downtown 94k High (0.85) 0.8 64.0 3 8 miles 

LAX airport 56k High (0.9) 0.9 45.4 3 10 miles 

Port of LA 32k High (0.9) 0.8 23.0 2 10 miles 

Port of Long Beach 28k High (0.9) 0.8 20.2 2 12 miles 

Disneyland 34k Intermediate (0.5) 0.5 8.5 1 15 miles 

Rowland Heights 8k Low (0.3) 0.3 0.72 1 15 miles 

 

Based on these input parameters, the covering model proposed in Section 4.3 could be applied to 

determine the facility locations for medical supply storage.  We optimally solve the problem using 

CPLEX (a commercially available optimization software package) and the result suggests the 

facilities should be placed at sites 1, 2, 3, and 6.  This result is reasonable since the demand points 

with large weights including West Hollywood, Downtown, LAX airport, and Port of Long Beach 

are covered by sufficient facilities that are of the required quality.  The population that has been 

protected with the required facility quantity and facility quality accounts for 88 percent of the 

population considered.   

 

5.2 An Anthrax Terror ist Attack 
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The second emergency we consider is an anthrax terrorist attack.  Anthrax is an acute infectious 

disease caused by the spore-forming bacterium.  There are several types of anthrax infections 

(cutaneous, inhalation, and gastrointestinal) and each requires different vaccines and antibiotics to 

cure infected people and immunize the high-risk population.  During an anthrax emergency, the 

federal government needs to carefully investigate the specific anthrax infection and then deploy the 

appropriate SNS supplies for local EMS services.  Therefore in this example we use a reactive 

facility deployment strategy to optimize the locations of facilities (local staging centers) for 

receiving, repackaging, and distributing the medical supplies from the SNS.  We assume that the 

eligible facility sites in Figure 1 represent the sites that can be used as the staging areas.  Another 

important feature of anthrax is that it does not transmit through person-to-person contact, and hence 

terrorists may send infectious materials to multiple places to increase the threats (one example is 

the anthrax emergency after September 11).  Since it is difficult to predict where the infectious 

material will be sent to, we use the P-center model in this example to determine the facility 

locations with the objective that the worst case can be avoided, i.e. the maximum demand-weighted 

distance between the staging centers and the demand points can be minimized.  It is important to 

note that although anthrax does not transmit from person to person, the delayed detection and the 

movement of the infected people may still cause a rapid spread of the emergency from the local 

incident site(s) to a much larger area.  If many different demand points during an anthrax 

emergency need to be simultaneously serviced by the medical supply facilities, the P-median model 

may be more appropriate since it could optimize the overall medical service performance by 

minimizing the total distance from all demand points to the facilities.  

 

Similar to the preceding example, we first categorize the attributes of the demand points and 

calculate the weight for each point.  Based on the weight a required facility quantity is specified 

for each demand point, as shown in Table 3.  In both the P-center and P-median problems a 

demand point is serviced by the nearest required quantity of facilities. Hence, we do not explicitly 

assign a facility quality requirement at each demand point.   

Table 3. Demand point characterization for anthrax emergency 

Demand point  

(I) 

Population 

(M) 

Anthrax Bioter ror ism 

occur rence likelihood (� ) 

Impact coefficient 

(e) 

Weight  

(� eM) 

Required facility 

quantity (Q) 

West Hollywood 76k High (0.8) 0.6 36.4 2 

Downtown 94k High (0.85) 0.6 48.0 3 

LAX airport 56k High (0.8) 0.7 31.4 2 

Port of LA 32k Low (0.4) 0.3 3.8 1 

Port of Long beach 28k Low (0.4) 0.3 3.4 1 

Disneyland 34k Intermediate (0.6) 0.5 10.2 1 

Rowland Heights 8k Low (0.3) 0.3 0.72 1 
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With these input parameters, the P-center model proposed in Section 4.4 is used to determine the 

facility locations for the anthrax emergency.  The result obtained from the model suggests the 

selection of sites 1, 2, 3, and 7 as the facility locations.  Similar to the preceding example, the 

solution also gives emphasis to the large-weighted demand points (Downtown, West Hollywood, 

Airport, etc.) by placing the facilities at sites 1, 2, and 3, which are near to these demand points.  

However, different from the solution in the preceding example, the P-center model selects site 7, 

instead of site 6, as one facility location.  This is because site 7 is relatively close to the 

light-weighted demand points (Disneyland and Rowland Heights).  The placement of a facility at 

site 7 could improve the facilities’ worst performance and the light-weighted demand points can 

also be better serviced.  In this solution, the maximal weighted distance from the demand points to 

its required quantity of serving facilities is at the demand point of LAX airport.  The average 

distance from this demand point to its servicing facilities (facilities 2 and 3) is 7.5 miles and the 

weighted distance is 7.5×31.4.  

 

5.3 A Smallpox Terror ist Attack 

 

The third emergency we consider is a smallpox terrorist attack.  The smallpox disease is different 

from anthrax in that it can be transmitted through person-to-person contact, and thus it can spread 

much faster than the anthrax disease.  First responders (e.g. fire, police, medical personnel, etc.) 

need instantaneous vaccination once a smallpox emergency is detected to remain effective during 

the emergency.  Therefore medical supplies need to be stored at local facilities for immediate use 

by the first responders.  Furthermore, during a smallpox emergency mass vaccination is often 

necessary, which requires tremendous medical supplies, hence the SNS would be requested to meet 

this massive demand.  As such a hybrid facility deployment strategy is suitable for a smallpox 

emergency.  The locations of facilities need to be determined not only for storing the medical 

supplies at a local level but also for receiving and distributing the SNS from the federal 

government.   

 

The locations of local medical supply storages for the first responders can be determined by using 

the P-center model, which has been illustrated in the preceding example.  We will next concentrate 

on the determination of the local staging areas for the distribution of the SNS.  Because the 

medical supplies need to be distributed to all demand points, the P-median model proposed in 

Section 4.5 is appropriate since its objective is to minimize the total distance between all the 

demand points and their service staging centers.  To provide the input parameter to the model, the 

attributes and the required facility quantity for each demand point are characterized in Table 4.  

Note that the emergency occurrence likelihood and the impact coefficient for all demand points 

have been set to 1 because all the population at every demand point must be serviced.   
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Table 4. Demand point characterization for smallpox emergency 

Demand point  

(I) 

Population 

(M) 

Smallpox occur rence 

likelihood (� ) 

Impact 

coefficient (e) 

Weight  

(� eM) 

Required facility 

quantity (Q) 

West Hollywood 76k 1 1 76 3 

Downtown 94k 1 1 94 4 

LAX airport 56k 1 1 56 3 

Port of LA 32k 1 1 32 2 

Port of Long beach 28k 1 1 28 2 

Disneyland 34k 1 1 34 2 

Rowland Heights 8k 1 1 8 1 

 

Based on these parameters the proposed P-median model is used to determine the locations of the 

local staging centers.  The obtained result selects sites 1, 2, 3, and 6.  Similar to the last two 

examples, the sites 1, 2 and 3 are selected because they are close to the large-weighted demand 

points and thus contribute to the objective optimization.  Note that site 6 is reselected this time 

(site 7 is selected in the anthrax example) and this is because site 6 is closer to the demand points of 

LAX airport and the Ports of LA and Long Beach.  Therefore the total distance can be shortened 

by selecting site 6 instead of site 7.  Also note in this solution the demand points of Disneyland 

and Rowland Heights are relatively weakly serviced, but the population of these two demand points 

accounts for only 12 percent of the considered population.  The optimal objective value, i.e. the 

weighted total distance between all demand points and their required quantity of serving facilities, 

is 7528 miles.   

 

 

5.4 Solution Compar ison with Traditional Facility Location Models 

 

We now compare the solutions obtained by the proposed models with the solutions obtained by the 

traditional facility location problems which do not consider the multiple quantity requirement for 

coverage.  We solve each of the large-scale emergency examples with the corresponding 

traditional facility location problem which is solved to optimality using CPLEX.  For the 

traditional models, we use the models by Toregas et al. (1971) for covering, ReVelle and Swain 

(1970) for P-median, and Garfinkel et al. (1977) for P-center.  The comparison of the solutions 

between the traditional model and the proposed model is given in Table 5.  
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Table 5. Solution comparison 

Traditional model Proposed model 

Objective value Objective value 

 

Solution 

(Site selection) Fir st coverage 
Multiple 

coverage 

Solution 

(Site selection) Fir st coverage 
Multiple 

coverage 

Dir ty bomb 

emergency 

(Cover ing) 

1, 4, 6, and 7 

Covered 

population: 

100% 

Covered 

population: 

21% 

1, 2, 3, and 6 

Covered 

population: 

97.5% 

Covered 

population: 

88% 

Anthrax 

emergency 

(P-center ) 

1, 2, 5, and 6 

Maximal 

weighted 

distance: 

4×48 

Maximal 

weighted 

distance: 

7× 48 

1, 2, 3, and 7 

Maximal 

weighted 

distance:  

4×48 

Maximal  

weighted  

distance:  

7.5× 31.4 

Smallpox 

emergency 

(P-median) 

1, 2, 5, and 7 

Weighted total 

distance: 

1740 miles 

Weighted total 

distance: 

11018 miles 

1, 2, 3, and 6 

Weighted total 

distance: 

2040 miles 

Weighted total 

distance: 

7528 miles 

 

For the dirty bomb emergency, the optimal result based on the traditional (covering) model suggests 

to place facilities at sites 1, 4, 6 and 7.  This solution ensures 100 percent population to have the 

first facility coverage.  However, if the multiple-facility-coverage requirement is considered, only 

21 percent population would be sufficiently covered.  The solution based on the proposed model 

provides 97.5 percent of the population with the first facility coverage, and covers a significant 

percentage (88 percent) more of the multiple-facility coverage requirement.  This result implies 

that the solution based on the proposed model provides a significant improvement in the amount of 

the population covered with the required quantity of facilities while incurring only a minor less 

amount of primary coverage.  

 

For the anthrax emergency, the optimal solution based on the traditional (P-center) model suggests 

to select facilities 1, 2, 5 and 6.  Compared to the solution from the proposed model, this solution 

has the same maximal weighted service distance (4×48) for the first facility coverage.  However, 

if multiple-facility-coverage requirement is considered, the maximal weighted distance (7×48) of 

this solution is 42.7 percent larger than the distance (7.5×31.4) of the optimal solution from the 

proposed model.  This implies that if the solution based on the traditional model is used, the 

demand points will be covered by the facilities in a much more unbalanced manner.  Such an 

unbalanced coverage could result in more life and economic loss during an anthrax emergency, 

particularly at the weakly protected demand points. 

 

For the smallpox emergency, the optimal solution based on the traditional (P-median) model 

suggests to place the facilities at sites 1, 2, 5 and 7.  The weighted total distance of this solution for 

Emergencies 

Models/ 

Solutions 
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the first facility coverage is 1740 miles, which is 14.7 percent less than the weighted total distance 

(2040 miles) of the solution from the proposed model.  However, if this solution is applied with 

the consideration of the multiple-facility-quantity coverage requirement, the weighted total distance 

increases to 11018 miles, which is more than 46.4 percent larger than the distance (7528 miles) of 

the solution from the proposed model.   

 

 

6 Conclusions and Future Work 

 

In the past, there has been little attention to the LEMS location problems in the research community.  

This paper has two primary goals.  The first is to review different location models that are 

commonly used to optimize the facility locations for regular emergencies such as hospitals, fire 

stations, ambulances, EMS centers, etc.  Different models including covering, P-median, and 

P-center are reviewed.  The second goal is to analyze the characteristics of large-scale 

emergencies and propose tailored location models that take into account the unique characteristics 

of these emergencies.  LEMS location models with different objectives have been formulated.  

Illustrative examples have been given to show how the proposed models can be used to determine 

the LEMS facility locations for different large-scale emergencies.  Compared with the traditional 

location model, the proposed LEMS location models are able to provide advantageous solutions in 

reducing the life loss and economic loss for the different emergency scenarios considered. 

 

The illustrative examples developed in this paper were of relatively small size so optimal solutions 

could be readily found using commercially available optimization software.  However, for 

modeling more realistic and larger scenarios, the problem size of the model will increase 

significantly so that it becomes computationally prohibitive to obtain an optimal solution.  For 

example, dividing the Los Angeles County area into 5 by 5 square miles zones would result in over 

200 demand points.  In this case, heuristics are required to obtain a near optimal solution.  Our 

future research direction will focus on developing efficient heuristics which can identify near 

optimal solutions.    
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