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This paper discusses the utility of scaling laws to Materials Informatics and presents algorithm 
SLAW (Scaling LAW) [1], useful to generate scaling laws from statistical data.  These laws can be 
used to extrapolate known materials property data to untested materials by using other more readily 
available information. This technique is independent of a characteristic length or time scale, so it is 
useful for a broad diversity of problems.  In some cases, SLAW can reproduce the mathematical 
expression that would have been obtained through an analytical treatment of the problem.  This 
technique has been originally designed for mining statistical data in materials processing and 
materials behavior at a system level, and it shows promise for the study of the relationship between 
structure and properties in materials. 

Introduction 

Materials Informatics is defined as “ the high speed robust acquisition, management, analysis, and 
dissemination of diverse materials data” [2].  This emerging field is a response to the needs for faster 
development times for new materials and to the unprecedented amount and complexity of materials 
information resulting from modern modeling and experimental techniques.  In this context, 
traditional techniques of analysis fall short and new approaches are being developed[3]; the 
technique presented here is one of them. 

Two main thrusts characterize the modeling efforts in Materials Informatics: “hard modeling”  and 
“soft modeling” [4].  Hard modeling encompasses computational strategies involving advanced 
discretization, parallel algorithms, and a software architecture for distributed computing systems.  
Among these approaches are atomistic models and ab-initio calculations, thermodynamic modeling, 
phase field simulation, and finite element modeling at a microstructural level.  Soft modeling has 
been originally introduced by the life sciences and organic chemistry community, and it relates to 
statistically based, model-independent approaches.  Among these approaches are the uses of 
regressions, neural networks, genetic algorithms, classification algorithms, principal component 
analysis, partial least squares, and other data mining techniques.  SLAW is a soft modeling 
approach that uses regressions. 



One of the goals of Materials Informatics is to make sense of the vast amounts of materials data 
available.  This “knowledge extraction”  includes the identification of outliers in the data, the 
development of models, pattern recognition, and forward and reverse data mapping[5].  Disciplines 
unrelated to Materials Informatics or its predecessors also faced similar problems, and developed 
appropriate tools.  One set of such tools includes dimensional analysis, scaling, and their related 
techniques, and has been applied with much success to the study of fluid mechanics and heat 
transfer problems, but has seen lesser use in the field of Materials in general.   

The use of tools related to dimensional analysis is not completely absent from Materials 
Informatics.  For example Cebon and Ashby [6] proposed the use of dimensionless groups for the 
correlations between materials properties and for data estimation.  One of the advantages of using 
dimensionless groups is that their form is very convenient for inverse mapping.  Geller et al. [7] 
proposed using a dimensionless group, the Rice-Thomson parameter, as a heuristic principle in their 
search of ductilizing elements in Mo alloys.  Hard modeling applications also involve dimensional 
considerations in the formulation of the constitutive equations and their mathematical treatment. 

A family of techniques 

Scaling laws, similarity, dimensional analysis, and other tools constitute a family of techniques that 
share in common an attention to the units of variables and parameters, and a reliance on power-law 
expressions. 

Fourier’s 1822 treatise on heat transfer[8] is usually considered the first clear appearance of 
dimensional analysis.  It was not until 1914 that Dimensional Analysis was formalized by 
Buckingham[9] with the renowned “Pi theorem.”   Currently dimensional analysis is a standard 
component of the curriculum on fluid mechanics and transport phenomena.  In essence, dimensional 
analysis reduces the number of parameters in a problem by considering their units.  For example, 
many fluid mechanics problems involve four parameters (viscosity, density, length, and, velocity), 
which can be reduced to a single dimensionless parameter (the Reynolds number) by using this 
technique.  Dimensional analysis can then significantly reduce the number of experiments necessary 
to characterize a system, and this has been used to much benefit in the fluid mechanics and heat 
transfer fields. 

When a problem involves many parameters, dimensional analysis typically yields many 
dimensionless groups.  Two systems are then considered “similar”  when all dimensionless groups 
have the same value.  Complete similarity is very difficult to achieve in physical models; also, as 
the number of dimensionless groups increases, the benefit of reducing the original number of 
parameters in the problem decreases.  Considering that real problems always involve more 
parameters than considered formally, complete similarity is impossible in practice.  Modeling of 
materials, whether their processing or the structure-properties relationship involves many more 
parameters than what is typical of other disciplines such as fluid mechanics; thus, a straight 
application of dimensional analysis is not expected to simplify the problem significantly.  This is 
consistent with the relatively small use of this technique in materials science and engineering. 



“Partial similarity”  is of great help in real situations.  A system is considered to have “partial 
similarity”  when not all dimensionless parameters are considered.  The concept of partial similarity 
is very useful, and very challenging to implement.  If the most relevant parameters are considered, 
complex problems can often be represented accurately in a simple and insightful form with data 
collapsing around a single curve.  Of course, if partial similarity is based on parameters of 
secondary importance; the same data becomes very difficult to interpret.  Partial similarity analysis 
can provide accurate results over a wide range of parameters, often spanning several orders of 
magnitude.  The range in which the results are valid relates to the range in which the discarded 
dimensionless groups are indeed negligible.  The subspace of problem parameters in which partial 
similarity is valid is called a “ regime.”   Within a regime, it is often possible to represent a complex 
problem in relatively simple terms.  At the limit between two regimes, no simple solution is valid.  
Complex materials problems involving many physical phenomena involve more regimes than 
simpler problems.  Different crystal structures can also act as different regimes, and statistical 
approaches in this case have been proposed by Le Page[10] and Fischer et al.[11].  Coupled 
problems, when properly treated, can still yield relatively simple solutions in each regime. 

The challenge of partial similarity is in the determination of the most relevant set of parameters.  
Dimensional analysis provides no guidelines regarding the construction or choice of dimensionless 
groups.  Techniques aiming at determining the most relevant dimensionless groups fall roughly 
within the “hard modeling”  and “soft modeling”  classification.  The hard modeling approach is 
based on the governing equations resulting from fundamental principles.  Prominent among these 
techniques is “ inspectional analysis”  or “ordering.”   Soft modeling approaches are based on 
statistical data, and involve iterative and artificial intelligence methods.  SLAW belongs to this 
second category. 

Inspectional analysis involves the construction of dimensionless groups from the governing 
equations.  This approach was briefly presented by Bridgman[12], made explicit by Ruark[13], and 
is included in classic textbooks on Transport Phenomena such as Geankopolis[14], Bird, Stewart, 
and Lightfoot[15], Bejan[16], and Szekely and Themelis[17].  More recently, authors devoted entire 
chapters or whole books to exploring deeper aspects of this technique, among them Denn[18] and 
Deen[19] devoted a whole chapter to scaling, Kline[20] devoted a whole book, and Dantzig and 
Tucker[21] put emphasis on scaling throughout their book on modeling of materials processing.  
Heuristic approaches were investigated by Sides[22], Chen[23], and Astarita[24], and Yip[25] 
proposed an artificial intelligence approach.  More recent additions to the field are the book by 
Krantz[26] and the computational implementation of[27]. 

Statistical approaches to the automatic detection of mathematical laws from data have been an 
active area of research in the Artificial Intelligence community.  Important examples of this 
research are the algorithm BACON by Bradshaw et al.[28], algorithms ABACUS[29] and 
COPER[30], and recent work by Washio and Motoda[31, 32].   Efforts to use dimensional analysis 
to reduce the number of adjustable parameters in regressions were pioneered by Li and Lee[33], 
Dovi et al.[34], and Vignaux [35-37].  The limitations of using regressions based on dimensionless 
groups have been discussed by Hicks[38] and Kenney[39].  SLAW differs from statistical 
approaches in that the dimensionless groups employed are generated by the algorithm instead of 
being postulated a priori, in that it does not require integer exponents in the scaling laws, in that it 
allows for datasets in which variables change value simultaneously, and in that it explicitly searches 
for the simplest predictive formulation.   

Dimensional analysis, similarity, and other techniques in this family generate results of the form a 
power-laws.  For this reason it is relevant to discuss them in depth. 



Scaling Laws, Power Laws, and Characteristic Values 

In the context of SLAW, scaling is a procedure to obtain the characteristic values for the unknown 
dependent variables.  The dependent variables depend on the independent variables and the problem 
parameters.  The independent variables vary within a given system, and are typically the time-space 
coordinates x, y, z, t, but can also include other magnitudes; for example, temperature in systems 
with temperature-dependent properties.  The parameters are constant for a given system, but vary 
across systems, such as viscosity in Newtonian fluids.  The characteristic value of a variable 
corresponds to the value unrelated to the independent variables, for example an integral over the 
domain, or the value at a particular point in the domain.  The characteristic values do not vary 
within a given system, and behave much like the problem parameters.  A typical choice of 
characteristic value is the maximum value in the domain.  Within this framework, the problem 
parameters act as “manifest variables,”  and combinations of parameters can act as “ latent 
variables.”   In physics and applied mathematics, scaling approaches occasionally relate the 
evolution of the dependent variables to the independent variables without using the concept of 
characteristic values[40, 41].   

Scaling approaches typically result in power-law expressions.  In the case of SLAW and other 
engineering approaches, the power law yields an estimation of a characteristic value as a function of 
the problem parameters raised to constant exponents.  If a is a numerical constant, and P, is a 
parameter, Pa is a scaling law, but aP is not.  If L is a characteristic value of length in the x direction, 
La is the type of scaling law within the scope of this paper, while xa is not.  In this work, scaling 
laws are the power laws resulting from the scaling process. 

Scaling laws are ubiquitous in the sciences.  They have been used in physics[42], biology[43-46], 
human behavior[47, 48], geophysics[49-51], networks and internet traffic [52, 53], economics[54-
56] and more. Some reasons for the wide applicability of power law models are: 1) The 
combination of units has the form of a power law[12], 2) the expressions of many physical 
phenomena have the form of power laws, 3) the representation of empirical regressions of data in 
log-log plots often results in a straight line, which corresponds to a power law, and 4) typically, 
physical magnitudes are distributed exponentially instead of linearly[57, 58].  Scaling laws clearly 
indicate trends and can yield accurate predictions over several orders of magnitude.  They also 
convey much intuitive meaning: the sensitivity of a power law to a given parameter is directly 
proportional to the exponent of the parameter; and dimensionless groups can be interpreted as a 
ratio between dominant forces. 

Scaling laws are of enormous utility during the early stages of design, when the freedom in defining 
a system is largest.  These laws are also useful for control systems and for decision-making 
algorithms, predicting the behavior of a system much faster than computationally intensive models.  
The design and interpretation of physical models such as surrogate materials, are based on scaling 
laws.  When experimental databases or numerical models exist, scaling laws can be used to 
generalize and extrapolate the results obtained.  Scaling laws provide design rules that can be used 
immediately by design engineers. 



An appealing feature of scaling laws for Materials Informatics is that they provide estimations for a 
whole family of systems.  A scaling law developed for a particular materials system is also 
applicable to all other materials within the same regime.  In this framework, outliers can be readily 
identified, and they indicate either errors, or physical phenomena that had been disregarded but that 
should be accounted for the outlier.  Another convenient feature of scaling laws is the simplicity of 
reverse mapping.  Because of their mathematical form, scaling laws are specially good for capturing 
non-linear phenomena. 

Algorithm SLAW 

SLAW is an algorithm designed to generate power laws from statistical data.  The power law is 
based on the problem parameters (which can be “manifest”  or “ latent”  variables), and estimates the 
characteristic value of an unknown dependent variable.  Its ultimate goal is to generate a 
mathematical expression that reproduces the data, has predictive capabilities, and can yield insight 
into the problem being analyzed.  SLAW focuses on problems where many parameters are present 
and a dominant subset of parameters must be identified.  To obtain the resulting power law, SLAW 
performs a sequence of multivariate linear regressions based on the logarithm of the parameters and 
target quantity.  A detailed description of the mathematical implementation of SLAW is included 
in[1], and a prototype algorithm can be downloaded from[59]. 

Iterations based on heuristic considerations are at the core of SLAW.  The first heuristic 
consideration is the hypothesis that the target quantity can be captured by a power law.  As 
discussed above, this is generally a good hypothesis.  This heuristic also requires that the data being 
analyzed belong to a single regime.  Data spanning more than one regime responds to more than 
one power law, and needs special considerations.  The implementation of SLAW is best explained 
through a simple example that can be followed step by step, although SLAW is capable of handling 
much larger data sets.   

As an example, consider the joining of a ceramic to a metal discussed in[60] and [1].  Figure 1 
shows the geometry of the problem, which consists of two long cylinders; one made of ceramic and 
the other of metal.  These two cylinders are joined at their circular bases at high temperature.  The 
temperature variation between the hot joining temperature and the cooler room temperature causes 
the ceramic and the metallic cylinder to decrease in size.  Typically, the metallic cylinder shrinks 
more than the ceramic cylinder, causing large stresses in the ceramic near the joint.  For failure 
modes associated to the ceramic, these stresses weaken the joint, so their estimation is essential. 

 

Figure 1: Schematic of ceramic to metal joint used to illustrate the implementation of SLAW 
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The numerical modeling of this problem was performed assuming an axisymmetric steady state 
problem at room temperature.  The independent variables are r and z (for cylindrical coordinates).  
The dependent variable is the strain energy u(r, z).  The problem parameters are known because 
they were identified during the construction of the numerical model; they are listed in Table 1.  
These parameters include all suspected to play a role in the problem in the regime corresponding to 
the set of observations.  Some parameters were not considered, such as strength of the ceramic or 
elastic limit of the metal.  Indeed, there is an unlimited number of parameters that could be 
included, and careful judgment must be employed in not leaving out a critical parameter for the 
regime in question.  The metric for the stresses in the ceramics is the “ total elastic strain energy”  U, 
which is the integral of the volumetric strain energy over the total volume of the ceramic cylinder.  
This characteristic value does not depend on the independent variables, and it is the target 
magnitude to be estimated. 

Table 1: Parameters involved in the ceramic to metal joining example 

Symbol  Units  Description 
U  Pa m3  total elastic strain energy in the ceramic 
Ec  Pa elastic modulus of the ceramic 
Em  Pa elastic modulus of the metal 
σY Pa yield stress of metal 
r m radius of cylinders 
εT  - differential thermal shrinkage 

 
In this example, all relevant parameters are included; thus, consideration of the units (listed in Table 
1) can help reduce the problem following the principles of dimensional analysis.  Dimensional 
considerations should not be implemented when the dataset is missing critical parameters; if so, 
they can lead to erroneous conclusions in the building of dimensionless groups.  Most soft modeling 
approaches do not take advantage of dimensional considerations.  The need for information about 
the units is unique to SLAW.  Table 2 summarizes the numerical simulations performed using 
ABAQUS, and it is all that is necessary to run SLAW.  An interesting aspect of this dataset is that 
the radius r was not varied in the different numerical experiments.   

Table 2: Dataset for the ceramic to metal joining example 

Ec Em σY r εT U ceramic metal 
 Pa   Pa   Pa   m   -   Pa m3  

Si3N4 Cu 3.04E+11 1.28E+11 7.58E+07 6.25E-03 6.85E-03 4.23E-03 
Si3N4 Ni 3.04E+11 2.08E+11 1.48E+08 6.25E-03 5.15E-03 1.52E-02 
Si3N4 Nb 3.04E+11 1.03E+11 2.40E+08 6.25E-03 2.10E-03 2.80E-02 
Si3N4 Inco600 3.04E+11 2.06E+11 2.50E+08 6.25E-03 5.15E-03 3.78E-02 
Si3N4 AISI304 3.04E+11 2.06E+11 2.56E+08 6.25E-03 7.10E-03 3.88E-02 
Si3N4 AISI316 3.04E+11 1.94E+11 2.90E+08 6.25E-03 7.00E-03 4.91E-02 
Al2O3 Ti 3.58E+11 1.20E+11 1.72E+08 6.25E-03 5.05E-04 1.04E-02 
Al2O3 Inco600 3.58E+11 2.06E+11 2.50E+08 6.25E-03 2.95E-03 3.00E-02 
Al2O3 AISI304 3.58E+11 2.00E+11 2.56E+08 6.25E-03 4.90E-03 3.16E-02 

 



The first step of the computer implementation of SLAW is to perform a linear regression of the data 
in logarithmic space using all parameters.  This corresponds to Iteration 1 in Table 3.  This iteration 
considers all five parameters plus a numerical constant.  The exponents of each parameter are listed 
in the corresponding column.  The power law resulting from this iteration is then 

U1 = e-0.43Ec
-1.15Em

0.19σY
1.78r2.19εT

0.13 (1) 

where U1 is the power law for estimating U resulting from the first iteration.  In this expression, the 
exponent of r was chosen arbitrarily by the software, for there was insufficient information to 
determine it.  The error considered in Table 3 is the square root of the average of the residuals 
squared; for small errors, it is equivalent to an average relative error.  The evolution of error and 
number of parameters considered is illustrated in Figure 2.  The power law from Iteration 1 has the 
minimum error; however, it does not result in the correct units, and its exponents do not seem to 
convey generality. 

Table 3: Iterations performed by SLAW in identifying a candidate model for the ceramic to metal 
joining example 

Iteration #parameters constant Ec Em σY r εT error 
1 5 -0.43 -1.15 0.19 1.78 2.19 0.13 2.6% 
2 5 -1.05 -0.95 0.17 1.78 3.00 0.14 2.8% 
3 4 -0.64 -0.82 0.00 1.82 3.00 0.18 4.0% 
4 4 0.00 -0.90 0.00 1.90 3.00 0.19 5.2% 
5 3 0.00 -1.04 0.00 2.04 3.00 0.00 16.9% 
6 2 0.00 0.00 0.00 1.00 3.00 0.00 772% 

 
Iteration 2 still considers all five parameters, but adds the constraint of dimensional homogeneity.  
Because of this additional constraint, the error of this iteration is slightly larger than for the previous 
one (2.8% vs. 2.6%).  This iteration illustrates a remarkable aspect of SLAW, which is the 
determination of the exponent of r as exactly 3, despite that r was not included in the sensitivity 
study.  This determination is possible because this value of the exponent is the only possibility for 
satisfying dimensional homogeneity. 

Iteration 3 is the first step of SLAW towards simplification of the power law, and it considers only 
four of the five parameters.  All possible eliminations of one parameter were considered, and the 
elimination of Em was the one that involved the smallest error (4%).  This approach of eliminating 
one parameter at a time is called “backward elimination.”  

Iteration 4 also explored all possible eliminations of one of the remaining parameters or the 
constant.  Because this iteration discarded the numerical constant the model still involves four 
parameters.  The elimination of the numerical constant is controversial, and future implementations 
of SLAW might no perform it.  While a mathematical expression without a constant is simpler, 
keeping the constant might enable the use of better error metrics.  Iteration 5 eliminates εT and 
considers only three parameters with a relatively small error of 16.9%. 

How far can the power law be simplified at a small cost in accuracy?  Iteration 6 provides the 
answer.  This iteration considers only two parameters, but now the error jumped to 772%.  Clearly, 
this simplification should not be adopted.  This significant jump in error can be used as a heuristic 
for determining when to stop the backward elimination process. 



Figure 2: Evolution of number of parameters considered and corresponding error for backwards 
elimination in the ceramic to metal joining example 

The sudden jump in error is not a coincidence of this example, but something to be expected.  As 
discussed above, if all the observations corresponded to the same regime, the system can typically 
be represented by a power law based on the dominant parameters.  As long as those dominant 
parameters are included in the iterations, the error associated to the power law should be small.  
This error will be associated to measurement or calculation errors and to the small effect of 
secondary parameters.  After all secondary parameters have been eliminated, the next iteration will 
eliminate a dominant parameter, making the estimation meaningless, and significantly increasing 
the error.  In essence, SLAW follows the maxim often attributed to Einstein that “everything should 
be made as simple as possible, but not simpler.”   Taking advantage of this sudden increase in error 
is a feature unique to SLAW.  When a dataset spans more than one regime, the error increase is not 
as sharp, and the determination of the point where to stop the backward elimination process 
becomes uncertain.  The power law obtained from Iteration 5 is the simplest accurate estimation, 
and its expression is 

U5 = Ec
-1.04σY

2.04r3 (2) 

The exponents of this expression are very close to round numbers, suggesting that the obtained 
power law is very close to what would have been obtained through an analytical approach to the 
problem.  Typically in this case, researchers assume that the exponent should actually be a round 
number, and that the difference is due to statistical error, a recent example of this approach is in 
[61].  The rounded expression of Iteration 5 has an error of 37% and has the following expression: 

U5rounded = Ec
-1σY

2r3 (3) 
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This is the same expression obtained by mathematical analysis of the problem in [60], and has an 
intuitive interpretation: the strain energy in the ceramic is due to the elastic loading induced by the 
plastic deformation of the metal at its yield stress.  It makes sense, then, that the elastic modulus of 
the metal or the amount of thermal strain are unimportant in this case.  Although SLAW performed 
its iterations blindly, the final result is insightful, in addition of predictive. 

The error of the rounded expression can be reduced by considering a ranked set of dimensionless 
groups.  Algorithm SLAW can be run again, but this time using U/U5rounded as the target variable.  If 
all parameters and a constant are considered in this case, the error is the same of Iteration 1, and if 
no parameters or constant are considered, the error is the same as that of the rounded expression.  
Each elimination of a parameter in this second round of SLAW defines a dimensionless group.  
Because the effect on error of the first dimensionless groups is small, these groups are secondary.  
The dimensionless groups eliminated in the later stages convey larger errors and are more relevant.  
In this case, the most relevant group is the numerical constant, yielding the final expression 

Uestimated = e0.33Ec
-1σY

2r3 (4) 

Figure 3 illustrates a comparison between Equation 4 and the values calculated using finite 
elements.  The good correspondence is remarkable, considering the broad range of metals and 
ceramic properties involved. 

Figure 3: Comparison between calculated strain energy using finite element analysis (horizontal 
axis) and estimated values using Equation 4 (vertical axis).  The points represent the ceramic to 
metal joints listed in Table 2. 
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Discussion 

The example presented here, and additional examples presented in[1] justifies the heuristic 
reasoning embodied in SLAW.  The systematic reduction of degrees of freedom in SLAW also 
helps avoid the problem of “overfitting”  in which the regressions reproduce the input data, but have 
a poor performance with new data[4, 62, 63]. 

SLAW shares some similarities with Principal Component Analysis (PCA)[64] in its goal of 
discriminating dominant variables from secondary ones.  A significant difference between SLAW 
and PCA is that the former simplifies the system by eliminating physical parameters, while in PCA 
each component can potentially involve all parameters.  For this reason, the simplifications from 
SLAW are not orthogonal in the sense of PCA.  The advantage of the approach followed by SLAW 
is that by eliminating physical parameters, less information is necessary to make estimation.  Once 
the dominant set of parameters has been established, estimations can be performed with very coarse 
knowledge about the secondary parameters, enabling the use of incomplete datasets.  The use of 
incomplete datasets is also a goal of other algorithms such as classification and regression trees[63].  
A minimum of knowledge of the secondary parameters is still necessary in SLAW to ensure that the 
intended estimations correspond to the proper regime.   

Because SLAW is based on constrained regressions, special attention must be paid to proper 
optimization issues and statistical issues.  From the point of view of optimization, the backward 
elimination procedure does not generate all possible linear regressions, since it sequentially removes 
one parameter at a time.  The procedure might actually not obtain the linear regression with smallest 
error; it is possible that a parameter that was eliminated in a previous iteration becomes dominant as 
other parameters are eliminated.  Alternative methods of scanning could help overcome this 
potential problem.  For instance, we could conduct an exhaustive search by considering all possible 
regressions, or use forward selection or stepwise regression.  In this case, each iteration would see a 
decreased error, with a sudden decrease when all dominant parameters are considered for the first 
time.  One advantage of this approach is that once an acceptable estimation is obtained, it is not 
necessary to keep iterating until all parameters are considered.  We are currently exploring this type 
of exhaustive algorithms. 



From the point of view of statistics, relevant considerations involve the choice of a metric for the 
quality of the estimations, the selection of a particular iteration to provide a model, and the rounding 
of the exponents.  The metric currently used by SLAW relates to the average relative error of the 
proposed power law.  This metric, however, can be misleading when the dataset involves small 
variations of some parameters.  There are indications that R2 or related statistical quantities could be 
more meaningful metrics.  In this case, the elimination of the numerical constant should not be 
allowed at any iteration.  The selection of a particular iteration to provide the chosen power law is 
more complex.  For problems with small error of measurement or calculation and within a single 
regime, a clear jump in the error makes the selection fairly obvious.  However, when a clear jump in 
the error is not evident, it cannot be discriminated whether the original data was of poor quality 
(measurement error) or if the measurements spanned multiple regimes.  Of course, there is also a 
possibility that the heuristic of imposing a power law form is not valid.  There is no reliable way yet 
of discriminating which of these possibilities might be occurring.  The rounding of the exponents is 
also related to statistical error; currently, SLAW rounds the exponents to the nearest third or quarter, 
regardless the quality of the input data.  Fortunately, analytical solutions seldom involve exponents 
with fractions finer than quarters or thirds.  It should be possible, however, to optimize the 
coarsening of the rounding of the exponents based on statistical considerations.  Another relevant 
statistical consideration is the use of regressions in a logarithmic space.  One of the requirements of 
regressions is that the error be distributed symmetrically around the mean.  This is not a problem if 
the symmetry occurs in the logarithmic space, which seems to be the case for most physical 
magnitudes[57, 58], or if the errors are small compared to the mean. 

SLAW takes advantage of dimensional homogeneity to reduce the number of degrees of freedom in 
the regressions.  Dimensional homogeneity requires that all relevant parameters be included, even 
those that are constant throughout the whole dataset.  Dimensional analysis also has the same 
stringent requirement.  When a “hard model”  is available, it can be used to determine the 
parameters that should be included in the dataset.  When there is uncertainty about having all 
relevant parameters included in the dataset, it is also possible to employ SLAW without concern for 
units.  In this case, the reduction of degrees of freedom based on dimensional considerations is not 
possible, and the estimations obtained are valid only as long as the unknown dominant parameters 
remain unchanged. 

The current implementation of SLAW requires that all observations in the dataset belong to a single 
regime.  This requirement can be difficult to fulfill.  A similar approach in which multiple scaling 
laws are pursued simultaneously might relax this requirement to systems spanning multiple 
regimes; such an approach has been pursued in the field of artificial intelligence by Kokar[65]. 

Summary 

Scaling laws have a proven track record of success in many scientific disciplines, and show much 
promise in the area of Materials Informatics.  Algorithm SLAW based on linear regressions 
constrained by dimensional homogeneity can provide scaling laws that are accurate, simple, and 
insightful.  In some cases, this approach can anticipate the results from analytical modeling.  
SLAW’s features have been valuable for the study of materials at a system level, and it could be an 
important tool in the study of the structure-property relationship in materials informatics. 

References 

1. Mendez, P.F. and Ordonez, F., Scaling Laws from Statistical Data and Dimensional 
Analysis. Journal of Applied Mechanics, 2005. 72(5): p. 648-657. 



2. Hunt, W.H., Materials Informatics: Growing from the Bio World. JOM, 2006. 58(7): p. 88-
88. 

3. Ferris, K.F., Peurrung, L.M., and Marder, J., Materials Informatics: Fast Track to New 
Materials. Advanced Materials & Processes, 2007. 165(1): p. 50-51. 

4. Liu, Z.K., Chen, L.Q., and Rajan, K., Linking Length Scales Via Materials Informatics. Jom, 
2006. 58(11): p. 42-50. 

5. Hull, C.W., Method for Production of Three-Dimensional Objects by Stereolithography. 
1990, 3D Systems, Inc: United States. 

6. Cebon, D. and Ashby, M.F., Engineering Materials Informatics. MRS Bulletin, 2006. 
31(12): p. 1004-1012. 

7. Geller, C.B., et al., A Computational Search for Ductilizing Additives to Mo. Scripta 
Materialia, 2005. 52(3): p. 205-210. 

8. Fourier, J.B., Théorie Analytique De La Chaleur. 1822. 
9. Buckingham, E., On Physically Similar Systems; Illustrations of the Use of Dimensional 

Equations. Physics Review, 1914. 4(4): p. 345-376. 
10. Le Page, Y., Data Mining in and around Crystal Structure Databases. MRS Bulletin, 2006. 

31: p. 991-994. 
11. Fischer, C.C., et al., Predicting Crystal Structure by Merging Data Mining with Quantum 

Mechanics. Nature Materials, 2006. 5 (8): p. 641-646. 
12. Bridgman, P.W., Dimensional Analysis. First ed. 1922, New Haven: Yale University Press. 

113. 
13. Ruark, A.E., Inspectional Analysis: A Method Which Supplements Dimensional Analysis. 

Journal of the Mitchell Society, 1935. 51: p. 127-133. 
14. Geankoplis, C.J., Transport Processes and Separation Process Principles: (Includes Unit 

Operations). 4th ed. 2003, Upper Saddle River, NJ: Prentice Hall Professional Technical 
Reference. xiii, 1026 p. 

15. Bird, B.R., Stewart, W.E., and Lightfoot, E.N., Transport Phenomena. First ed. 1960: John 
Wiley & Sons. 780. 

16. Bejan, A., Convection Heat Transfer. 3rd ed. 2004, Hoboken, N.J.: Wiley. xxxi, 694 p. 
17. Szekely, J. and Themelis, N.J., Chapter 16: Similarity Criteria and Dimensional Analysis, in 

Rate Phenomena in Process Metallurgy. 1971, John Wiley & Sons. p. 557-597. 
18. Denn, M.M., Process Fluid Mechanics. First ed. Prentice-Hall International Series in the 

Physical and Chemical Engineering Series, ed. Amundson, N.R. 1980, Englewood Cliffs, 
NJ: Prentice-Hall. 383. 

19. Deen, W.M., Analysis of Transport Phenomena. 1998, New York: Oxford University Press. 
xix, 597 p. 

20. Kline, S.J., Similitude and Approximation Theory. 1986, New York: Springer-Verlag. xix, 
229. 

21. Dantzig, J.A. and Tucker, C.L., Modeling in Materials Processing. 2001, Cambridge, 
England; New York: Cambridge University Press. xiii, 363 p. 

22. Sides, P.J., Scaling of Differential Equations. "Analysis of the Fourth Kind". Chemical 
Engineering Education, 2002(summer): p. 232-235. 

23. Chen, M.M., Scales, Similitude, and Asymptotic Considerations in Convective Heat 
Transfer, in Annual Review of Heat Transfer, Tien, C.L., Editor. 1990, Hemisphere Pub. 
Corp.: New York. p. 233-291. 

24. Astarita, G., Dimensional Analysis, Scaling, and Orders of Magnitude. Chemical 
Engineering Science, 1997. 52(24): p. 4681-4698. 



25. Yip, K.M.K., Model Simplification by Asymptotic Order of Magnitude Reasoning. Artificial 
Intelligence, 1996. 80(2): p. 309-348. 

26. Krantz, W.B., Scaling Analysis in Modeling Transport and Reaction Processes: A 
Systematic Approach to Model Building and the Art of Approximation. 2007, Hoboken, N.J.: 
John Wiley & Sons. 

27. Mendez, P.F. Advanced Scaling Techniques for the Modeling of Materials Processing. in 
Sohn Symposium. 2006. San Diego, CA. 

28. Bradshaw, G., Langley, P., and Simon, H.A. Bacon 4: The Discovery of Intrinsic Properties. 
in Third Nat. Conf. of the Canadian Society for Computational Studies of Intelligence. 1980. 
Victoria, BC, Canada. 

29. Washio, T. and Motoda, H. Extension of Dimensional Analysis for Scale-Types and Its 
Application to Discovery of Admissible Models of Complex Processes. in 2nd International 
Workshop on Similarity Method. 1999. 

30. Kokar, M.M., Determining Arguments of Invariant Functional Descriptions. Machine 
Learning, 1986(1): p. 403-422. 

31. Washio, T. and Motoda, H. Extension of Dimensional Analysis for Scale-Types and Its 
Application to Discovery of Admissible Models of Complex Processes. in 2nd Int. Workshop 
on Similarity Method. 1999. 

32. Washio, T., Motoda, M., and Niwa, Y. Enhancing the Plausibility of Law Equation 
Discovery. 2000. 

33. Li, C.C. and Lee, Y.C., A Statistical Procedure for Model-Building in Dimensional Analysis. 
International Journal of Heat and Mass Transfer, 1990. 33(7): p. 1566-1567. 

34. Dovi, V.G., et al., Improving the Statistical Accuracy of Dimensional Analysis Correlations 
for Precise Coefficient Estimation and Optimal- Design of Experiments. International 
Communications in Heat and Mass Transfer, 1991. 18(4): p. 581-590. 

35. Vignaux, G.A., Dimensional Analysis in Operations-Research. New Zealand Operational 
Research, 1986. 14(1): p. 81-92. 

36. Vignaux, G.A. and Scott, J.L., Simplifying Regression Models Using Dimensional Analysis. 
Australian \& New Zealand Journal of Statistics, 1999. 41(1): p. 31-41. 

37. Vignaux, G.A. Some Examples of Dimensional Analysis in Operations Research and 
Statistics. in 4th International Workshop on Similarity Methods. 2001. Stuttgart, Germany: 
University of Stuttgart. 

38. Hicks, B.B., Some Limitations of Dimensional Analysis and Power Laws. Boundary-Layer 
Meteorology, 1978. 14: p. 567-569. 

39. Kenney, B.C., On the Validity of Empirical Power Laws. Stochastic Hydrology and 
Hydraulics, 1993. 7: p. 179-194. 

40. Barenblatt, G.I., Scaling, Self-Similarity, and Intermediate Asymptotics. 1st ed. Cambridge 
Texts in Applied Mathematics. 1996, New York: Cambridge University Press. xv, 386. 

41. Barenblatt, G.I., Scaling. Cambridge Texts in Applied Mathematics. 2003, Cambridge: 
Cambridge University Press. xiv, 171 p. 

42. Taylor, M., et al., 100 Years of Dimensional Analysis: New Steps toward Empirical Law 
Deduction. Submitted to New Journal of Physics (IOP), 2007. arXiv:0709.3584v3 
[physics.class-ph]. 

43. Stahl, W.R., Dimensional Analysis in Mathematical Biology I. General Discussion. Bulletin 
of Mathematical Biology  (Springer), 1961. 23(4): p. 355-376. 

44. Stahl, W.R., Dimensional Analysis in Mathematical Biology. Ii. Bulletin of Mathematical 
Biology  (Springer), 1962. 24(1): p. 81-108. 



45. Kokshenev, V.B., Observation of Mammalian Similarity through Allometric Scaling Laws. 
Physica a-Statistical Mechanics and Its Applications, 2003. 322(1-4): p. 491-505. 

46. Azad, R.K., et al., Segmentation of Genomic Dna through Entropic Divergence: Power 
Laws and Scaling. Physical Review E, 2002. 65(5): p. art. no.-051909. 

47. Nakamura, T., et al., Universal Scaling Law in Human Behavioral Organization. Phys. Rev. 
Lett., 2007. 99: p. 138103. 

48. Brockmann, D., Hufnagel, L., and Geisel, T., The Scaling Laws of Human Travel. Nature, 
2006. 439: p. 462-465. 

49. FAUG, T., et al., Varying Dam Height to Shorten the Run-out of Dense Avalanche Flows: 
Developing a Scaling Law from Laboratory Experiments. Surveys in Geophysics, 2003. 24: 
p. 555-568. 

50. Arunachalam, V.M. and Muggeridge, D.B., Ice Pressures on Vertical and Sloping 
Structures through Dimensional Analysis and Similarity Theory. Cold Regions Science and 
Technology, 2003. 21(3): p. 231-245. 

51. Housen, K.R., Schmidt, R.M., and Holsapple, K.A., Crater Ejecta Scaling Laws - 
Fundamental Forms Based on Dimensional Analysis. Journal of Geophysical Research, 
1983. 88(B3): p. 2485-2499. 

52. Barabasi, A.-L. and Albert, R., Emergence of Scaling in Random Networks. Science. 286: p. 
509-5012. 

53. Carlson, J.M. and Doyle, J., Power Laws, Highly Optimized Tolerance and Generalized 
Source Coding. Physical Review Letters, 2000. 84(24): p. 56-59. 

54. Jong, F.J.d. and Quade, W., Dimensional Analysis for Economists. Contributions to 
Economic Analysis; 50. 1967, Amsterdam: North Holland Pub. Co. xiii, 223. 

55. Chave, J. and Levin, S., Scale and Scaling in Ecological and Economic Systems. 
Environmental and Resource Economics, 2003. 26: p. 527-557. 

56. Xu, Z. and Gencay, R., Scaling, Self-Similarity and Multifractality in Fx Markets. Physica 
A, 2003. 323: p. 578 - 590. 

57. Newcomb, S., Note on the Frequency of Use of the Different Digits in Natural Numbers. 
American Journal of Mathematics, 1881. 4: p. 39-40. 

58. Benford, F., The Law of Anomalous Numbers. Proceedings of the American Philosophical 
Society, 1938. 78(4): p. 551-572. 

59. Scaling Laws. Slaw Homepage, http://illposed.usc.edu/~pat/SLAW. 
60. Park, J.-W., Mendez, P.F., and Eagar, T.W., Strain Energy Distribution in Ceramic to Metal 

Joints. Acta Materialia, 2002. 50: p. 883-899. 
61. Huang, J., et al., Capillary Wrinkling of Floating Thin Polymer Films. Science, 2007. 317: p. 

650. 
62. Mazzatorta, P., et al., The Importance of Scaling in Data Mining for Toxicity Prediction. 

Journal of Chemical Information and Computer Sciences, 2002. 42(5): p. 1250-1255. 
63. Li, Y., Predicting Materials Properties and Behavior Using Classification and Regression 

Trees. Materials Science And Engineering A-Structural Materials Properties Microstructure 
And Processing, 2006. 433(1-2): p. 261-268. 

64. Rajan, K., Materials Informatics. Materials Today, 2005(October): p. 38-45. 
65. Kokar, M.M., A Procedure of Identification of Laws in Empirical Sciences. Systems 

Science, 1981. 7(1). 
 
 


