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Abstract

The distance between nodes in a wireless sensor network (WSN) is an important

factor in the performance that can be extracted from the network for many tasks.

However, the distance values are typically subject to uncertainty as they might

have been indirectly estimated through signal strength or have changed because

of node movement. In this paper we propose robust optimization models that

take this uncertainty into account for three operational problems in energy lim-

ited WSNs: maximizing the data extracted, minimizing the energy consumed, and

maximizing the network lifetime. In a robust optimization model the uncertainty

is represented by considering that the uncertain parameters belong to a bounded,

convex uncertainty set U . A robust solution is the one with best worst case objec-

tive over this set U . We show that solving for the robust solution in these problems

is just as difficult as solving for the problem without uncertainty. Our computa-

tional experiments show that as the uncertainty increases a robust solution for
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these problems provides a significant improvement in worst case performance at

the expense of a small loss in optimality when compared to the optimal solution

of a fixed scenario.

1 Introduction

In recent years, the rapid pace of improvements in micro-processor and wireless tech-

nology have enabled the rapid development of WSNs. Sensors network can remotely

monitor and track many objects in unfriendly physical environments such as remote

geographic regions or toxic urban locations [1-3]. These sensor networks are poised to

revolutionize information gathering and processing in many applications. Since sensors

have limited energy, it becomes important to identify efficient operating polices. This

has lead to research on a number of different problems, such as identifying the maximum

data that can be extracted for a given amount of energy, minimizing the energy con-

sumed to extract certain amount of data and maximizing network lifetime for a given

amount of data transfer.

For these problems, distance is an important factor that influences the consumption of

energy, and hence the efficiency with which the network operates. In many applications,

the distance measurements are subject to uncertainty as they might have been indirectly

estimated through signal strength or due to unfriendly conditions during the WSN’s de-

ployment or operation [6,18-19]. The effect of ignoring distance uncertainty in planning

the operations of a WSN can be varied, in particular optimized operating practices can

turn out to be inefficient if the problem parameters change. A more successful strategy

in a problem with uncertainty can be a solution that is less optimal for a particular

distance vector but obtains efficient solutions for all likely distance measurements.

In this paper, we discuss models of these problems that are robust with respect to the

distance uncertainty. The paper is organized as follows: we review related literature
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in Section 2. In Section 3 we provide some background on the WSN problems we

investigate in this work: the max data extraction problem, min energy consumption

problem, and max network lifetime problem. In Section 4 we introduce the robust

optimization methodology and build the robust counterpart of these problems under

distance uncertainty. We discuss performance criteria and present computational results

that assess what is the efficiency of a robust solution when compared to a deterministic

solution in Section 5. We finish the paper with concluding remarks in Section 6.

2 Related Work

Our work involves the use of robust optimization methods in wireless sensor networks

problems, therefore in this section we first review the relevant papers on robust opti-

mization methods and then discuss relevant literature on the wireless sensor network

problems considered in this paper. The robust optimization methodology that we use

in this work is presented in [4] for different convex optimization problems and various

uncertainty models. Since that work, a number of applications of robust optimization

have been studied, such as portfolio optimization [5], supply chain control [7], finite

Markov Decision Processes [8], and general network flow problems [9]. An important

conclusion of these works is that in many cases the robust solution is able to significantly

reduce the worst case performance while only suffering from a limited loss in optimal-

ity. This is a consequence of the reduced variability of the robust solution under the

uncertainty considered. To our knowledge, there is no research on robust or worst case

models for problems in WSNs. In particular we note that the network flow model in [9]

only considers uncertainty in the objective function coefficients.

In energy limited WSN the decisions of how to route information influence the amount

of energy consumed and thus the overall efficiency of the operation. In this paper we

focus on three optimization problems that involve the decision of routing information in
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a energy constrained system. A number of papers consider the problem of maximizing

the amount of data that can be outputted of an energy limited WSNs, see [2,3,10,21,22].

A closely related problem to max data extraction is the problem of determining the

minimum amount of energy to output a given amount of data. This problem is important

in designing WSNs to perform efficiently, see [10-11]. The problem of maximizing the

network lifetime studied in [12-17,23] maximizes the time until the first node depletes

its energy. Although these three problems have mathematical formulations that depend

on the distances between nodes, there is no wort to data that significantly addresses

optimal operating practices conditions when there is uncertainty in this distance.

3 PROBLEM DEFINITION

We consider a WSN with n fixed sensor nodes that gather data and send it to a sink

node, denoted as node n+1. Let Di
max be the total amount of the data (bytes) collected

by node i, and Ei
max be the total energy of node i. Let dij be the Euclidean distance

between nodes i and j. We denote by N the set of sensor nodes and A the set of

directed arcs (i, j) in the complete graph i ∈ N, j ∈ N∪{n+1}. The energy consumed in

transmitting data from one sensor node to another depends on the distance between them

according to the following radio model also used in [2,3,20]: We consider that a radio

dissipates 400nJ/byte to run the transmitter or receiver circuitry and 800pJ/byte/m2

for the transmitter amplifier. This means that the energy consumed in transmitting

k units of data from i to j is given by ETx(k, dij) = εeleck + εampkd2
ij where dij =√

(xi − xj)2 + (yi − yj)2. The energy consumed by sensor i in receiving a unit of data

is given by: ERx(k) = εeleck.

To simplify notation, we have normalized the energy in terms of receptions, that is to

say, each reception consumes a unit of energy, while each transmission from the node

i to the node j consumes 1 + βd2
ij, where β = εamp

εelec
. The amount of data that can be
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received and transmitted by a node is limited by the energy of the node, which leads to

the normalized energy value Ei = Ei
max

εelec
.

3.1 Maximum Data Extraction Problem

The problem of maximizing data output, where nodes have a limited energy and use

the above energy expenditure in transmissions and receptions, can be written as a linear

programming problem, see [2,3]. Let fij be the amount of the data transmitted from

node i to node j, we formulate the maximal data extraction problem as follows:

max
∑

{i,j=n+1|(i,j)∈A}

fij

s.t. ∑
{j|(i,j)∈A}

fij(1 + βd2
ij) +

∑
{j|(j,i)∈A}

fji ≤ Ei ∀i ∈ N

∑
{j|(i,j)∈A}

fij −
∑

{j|(j,i)∈A}

fji ≤ Di
max ∀i ∈ N

∑
{j|(i,j)∈A}

fij −
∑

{j|(j,i)∈A}

fji ≥ 0 ∀i ∈ N

fij ≥ 0 ∀(i, j) ∈ A

In this problem, the first constraint is the energy constraint. The amount of data

transmitted and received by a sensor is limited by the energy of the sensor. The second

and third constraints represent conservation of flow constraints. The difference of the

amount of data transmitted and received at each node must be less than or equal to the

amount of the data collected at that node, and also must be greater than or equal to

0. The last constraint states the non-negativity of flow. In the remainder of the paper

we represent the set of flows that satisfy the last three constraints as a polyhedron P ,

therefore we replace these constraints by f ∈ P .
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3.2 Minimum Energy Consumption Problem

Minimizing energy consumption problem is closely related to the problem of maximizing

data extraction in energy limited WSNs, and can also be written as a linear program-

ming problem, see [10]. The objective of the problem is to minimize the amount of

energy consumed to extract fmin information to the sink node. Our minimum energy

consumption model is given by the linear program below:

min
∑
i∈N

(
∑

j|(i,j)∈A

fij(1 + βd2
ij) +

∑
j|(j,i)∈A

fji)

s.t∑
(i,n+1)∈A

fi(n+1) ≥ fmin ∀i ∈ N

f ∈ P .

The information requirement can enforce, for example, that a given percentage p of the

available information must reach the sink. In this case we set fmin = p
∑

i D
i
max.

In this problem, the first constraint references the minimum data extraction constraint:

we should guarantee that at least fmin information is extracted to the sink node. The

polyhedral constraint represents the conservation of flow and non-negativity of flow

constraints, similar to the constraints in the maximum data extraction problem.

3.3 Maximum Lifetime Problem

The lifetime Ti of node i is defined as the expected time for the energy Ei to be exhausted,

where each node i has the limited energy Ei of node i to be exhausted. We define the

lifetime T of the system as the time when the first sensor i is drained of its energy, that

is to say, the system lifetime T of a sensor network is the minimum lifetime of all nodes

of the network, T = min{T1, T2, ..., Tn}. The problem of maximum network lifetime

of WSN is discussed in papers [12-17] and is described as the following optimization
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problem:

max T

s.t.∑
(i,n+1)∈A

fi(n+1) ≥ fmin ∀i ∈ N

T (
∑

j|(i,j)∈A

fij(1 + βd2
ij) +

∑
(j,i)∈A

fji) ≤ Ei ∀i ∈ N

f ∈ P

The constraints include the minimum data extraction constraint, energy constraints, and

the same polyhedral constraints representing conservation of flow and non-negativity.

Clearly, the problem above is not linear because of the products Tfij. It is natural only

to consider Ei > 0 for all i ∈ N , otherwise simply remove the node from the network.

This implies that T > 0 and we can obtain an equivalent linear program using a new

variable q = 1
T
. The objective function becomes to minimize q, and the non-linear

constraint can be equivalently written in linear form, yielding the linear program:

min q

s.t∑
(i,n+1)∈A

fi(n+1) ≥ fmin ∀i ∈ N

∑
j|(i,j)∈A

fij(1 + βd2
ij) +

∑
(j,i)∈A

fji ≤ qEi ∀i ∈ N

f ∈ P

4 Methodology and Uncertainty Set

4.1 Robust Optimization Methodology

We address the uncertainty in problems through the robust optimization methodology

introduced for convex optimization by Ben-Tal and Nemirovski [4]. The robust solution
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for an optimization problem under uncertainty is defined as the solution that has the

best objective value in its worst case uncertainty scenario. Attractive features of a robust

solution are that while it is only close to optimal for any specific scenario, it behaves well

over all likely uncertainty outcomes. To introduce the robust optimization methodol-

ogy, we consider the following optimization problem under uncertainty: min f(x, u) s.t.

g(x, u) ≤ 0 where u is an uncertainty parameter that belongs to a closed bounded and

convex uncertainty set u ∈ U . A robust solution is feasible for all u ∈ U and optimizes a

worst case objective function. In other words, the robust solution is obtained by solving

the following Robust Counterpart problem (RC):

minx maxu f(x, u)

s.t. g(x, u) ≤ 0 ∀u ∈ U
(1)

or equivalently

minx,γ γ

s.t. g(x, u) ≤ 0 ∀u ∈ U

f(x, u) ≤ γ ∀u ∈ U .

(2)

In many settings finding the robust solution is no harder than solving the deterministic

problem. The complexity of solving problem (RC) has been shown to be the same as

the complexity of solving the deterministic problem (fixed u ∈ U) for various problems

and uncertainty sets. For example, the robust counterpart of an LP is equivalent to an

LP when U is a polyhedron and to a quadratically constrained convex program when U

is a bounded ellipsoidal set; In addition, the size of the resulting RC problem is bounded

by a polynomial of the deterministic problem’s dimensions [4]. Thus given a certain

optimization problem the definition of the uncertainty set is key to be able to formulate

a robust counterpart that can be solved efficiently.
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4.2 Uncertainty Set

Distance measurements among nodes in sensor networks can suffer from uncertainty

due to a variety of reasons: distance measurement methods, unfriendly conditions, or

existence of arbitrary noise and rugged land surface. Here, we consider the uncertainty

in the vector d = (dij)(i,j)∈A of distances between nodes by allowing it to belong to an

uncertainty set d ∈ U . The set U defines distance vectors that are a given deviation from

a given estimate of the distance vector between nodes d0. We consider the following two

types of uncertainty sets in this paper, each used for different problems to obtain an

efficient solution procedure:

U1 ≡

{
d | d2

ij = (d0
ij)

2 + ξijR,
∑
i,j

ξij ≤ τM, ξ ≥ 0

}
(3)

or

U2 ≡

{
d | d2

ij = (d0
ij)

2 + ξijR,
∑

j

ξij ≤ τMi ∀i, ξ ≥ 0

}
. (4)

These sets consider that the square of every distance measurement can vary up-wards by

at most R. To exclude overly conservative distance measurements, the sets limit either

the total variation by τM or the variation out of every node by τMi, where τ ∈ [0, 1] is

a parameter that controls the size of the uncertainty set.

5 Robust Counterpart Problem

In this section we formulate robust counterpart problems, following the robust optimiza-

tion methodology, for the different problems of interest in WSNs data-centric networks:

maximum data extraction for a given amount of energy, minimum energy consumption

for a given amount of data transfer, and maximum network lifetime for a given data

transfer. We present three propositions in these WSNs problems and explain how to
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express the robust counterpart problem of each problem. We note that the robust coun-

terpart problem in each case is of the same form as the original problem, therefore the

complexity of solving for the robust solution is the same as the complexity of solving a

deterministic problem.

Proposition 1 Consider the maximum data extraction problem for a given amount

of energy with uncertainty distance, where d ∈ U given by equation (4). The robust

counterpart of this problem is equivalent to

max
∑

{i,j=n+1|(i,j)∈A}

fij

s.t.∑
{j|(i,j)∈A}

fij(1 + β(d0
ij)

2) + θiτMi +
∑

{j|(j,i)∈A}

fji ≤ Ei ∀i ∈ N

θi ≥ fijβR ∀(i, j) ∈ A,∀i ∈ N

θi ≥ 0 ∀i ∈ N

f ∈ P

Proof: The robust counterpart of the maximum data extraction is the problem of max-

imizing
∑

{i,j=n+1|(i,j)∈A}

fij under the robust energy constraints due to the distance uncertainty

∑
{j|(i,j)∈A}

fij(1+β((d0
ij)

2+ξijR))+
∑

{j|(j,i)∈A}

fji ≤ Ei , ∀
∑

{j|(i,j)∈A}

ξij ≤ τMi, i ∈ N, ξ ≥ 0 ,

and f ∈ P . Then, from strong LP duality we have that for every i ∈ N

max∑
j ξij ≤ τMi

ξij ≥ 0

∑
{j|(i,j)∈A}

fijβRξij

has the same optimal value as
min

θi ≥ fijβR,

θi ≥ 0

θiτMi
. Therefore we can express the inequal-
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ity constraint as the following system of inequalities∑
{j|(i,j)∈A}

fij(1 + β(d0
ij)

2) + θiτMi +
∑

{j|(j,i)∈A}

fji ≤ Ei,∀i ∈ N

θi ≥ fijβR,

θi ≥ 0 .

Considering f ∈ P , we prove Proposition 1.

Proposition 1 shows that the (RC) problem of a maximum data extraction problem

for a given amount of energy with U given by set (4) is similar to the deterministic

problem without uncertainty. Different from the deterministic problem, the (RC) has

n additional non-negative variables θi, |A| + n additional constraints θi ≥ fijβR, and

the energy is reduced to Ei − θiτMi for i ∈ N . But this (RC) problem is still a linear

programming problem, which also implies that solving the (RC) is just as difficult as

solving the deterministic problem.

Proposition 2 Consider the Minimum Energy Consumption Problem for a given amount

of data transfer with uncertainty distance, where d ∈ U given by equation (3). The robust

counterpart of this problem is equivalent to

min (
∑
i∈N

(
∑

j|(i,j)∈A

fij(1 + β(d0
ij)

2) +
∑

j|(j,i)∈A

fji) + θτM)

s.t∑
(i,n+1)∈A

fi(n+1) ≥ fmin ∀i ∈ N

θ ≥ fijβR ∀(i, j) ∈ A

θ ≥ 0

f ∈ P
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Proof: The (RC) problem of the minimum energy consumption model is:

min

∑
i∈N

 ∑
j|(i,j)∈A

fij(1 + β(d0
ij)

2) +
∑

j|(j,i)∈A

fji

 + max∑
i

∑
j ξij ≤ τM

ξij ≥ 0

∑
i∈N

∑
j|(i,j)∈A

fijβξijR


with the deterministic problem constraints. Then, from LP duality, we have that the

dual of

max∑
i

∑
j

ξij ≤ τM

ξij ≥ 0

∑
i

∑
j|(i,j)∈A

fijβξijR

is equivalent to minθ ≥ fijβR, θ ≥ 0 τMθ. So the objective function becomes

min

∑
i

 ∑
j|(i,j)∈A

fij(1 + β(d0
ij)

2) +
∑

j|(j,i)∈A

fij

 + min
θ≥fijβR,θ≥0

τMθ


Considering f ∈ P , we prove Proposition 2.

Proposition 2 also shows that the (RC) problem of a minimum energy consumption

problem for a given amount of data transfer with uncertainty set U given by (3) is

similar to the deterministic problem without uncertainty. Different from deterministic

problem without uncertainty, the (RC) has an additional non-negative variable θ, |A|

additional constraints θ ≥ fijβR, and the objective function has an extra term θτM .

But this (RC) problem is still a linear problem and this implies that solving the (RC)

is just as difficult as solving the deterministic problem.

Proposition 3 Consider the Maximum Lifetime Problem for a given amount of data

transfer with uncertainty distance, where d ∈ U given by equation (4). The robust

counterpart of this problem is equivalent to
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min q

s.t∑
(i,n+1)∈A

fi(n+1) ≥ fmin ∀i ∈ N

∑
j|(i,j)∈A

fij(1 + β(d0
ij)

2) + θiτMi +
∑

j|(j,i)∈A

fji ≤ qEi ∀i ∈ N

θi ≥ fijRβ ∀(i, j) ∈ A

θi ≥ 0 ∀i ∈ N

f ∈ P

Proof: Analogous to the proof of Proposition 1.

Proposition 3 shows that the (RC) problem of a maximum lifetime problem for a given

amount of data transfer with U given by set (4) is similar to the deterministic problem

without uncertainty. Different from deterministic problem, the (RC) has n additional

non-negative variables θi, |A| + n additional constraints θi ≥ fijβR, and the energy is

reduced to qEi − θiτMi for i ∈ N . But this (RC) problem is still a linear problem and

this implies that solving the (RC) is just as difficult as solving the deterministic problem.

The three propositions show robust counterpart problems in maximum data extraction

for a given amount of energy, minimum energy consumption for a given amount of data

transfer, and maximum network lifetime for a given data transfer are of the same form

as the original problem and imply the complexity of solving for the robust solution is

the same as the complexity of solving a deterministic problem without uncertainty.
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6 Computational Experiments

We conducted computational experiments that investigate the relative merit of the ro-

bust solution when compared to the deterministic solution of the problem without uncer-

tainty for all three type of problems considered. We present three types of experiments:

(1) we investigate the maximum protection that the robust solution can provide in the

worst case and at what cost, (2) we conduct a simulation to observe the practical per-

formance of a robust and deterministic solutions, and (3) we study the effect of varying

problem parameters on the robust and deterministic solutions.

6.1 Experimental Set Up

These experiments were coded in AMPL and are solved with CPLEX 8.1. In our sim-

ulation, there are 50 nodes randomly deployed in 0.5km × 0.5km area, the sink node

located at (0.25km, 0.5km). Each node has Ei = 250, 000 or Ei = 100, 000 units of

energy and Di
max = 10, 000 units of data. We use the R = 0.1 or 0.005, Mi = 2 or

1(∀i ∈ N), M = 50 p = 90% or 50% in the uncertainty set U .

We compare the performance of the robust solution to the deterministic solution ob-

tained for d0, some nominal (average estimate) of the uncertain distances. In case of a

minimization problem, we consider a pair of ratios that compare the robust and deter-

ministic solutions on their respective worst case and on the nominal data:

Rwc =
Dsol(dwc)−Rsol(d)

Dsol(dwc)
, Rac =

Rsol(d0)−Dsol(d0)

Dsol(d0)
,

where

14



• Dsol(d0): optimal value of deterministic solution

• Dsol(dwc): objective value of deterministic solution in its worst case scenario

• Rsol(d): optimal value of robust solution

• Rsol(d0): objective value of robust solution in the deterministic scenario

The first ratio Rwc measures the relative increase of the deterministic solution in the

worst case, while the second ratio Rac quantifies the relative loss of optimality of the

robust solution on the nominal data. Therefore the ratio Rwc measures the maximum

protection that a robust solution can provide, while Rac is the percent increase in cost

for this protection. Similar ratios are defined for a maximization problem simply by

flipping the signs.

For each problem, we solve the deterministic problems for the nominal distance scenario

d0 and robust problems with appropriate distance uncertainty sets to get the objective

value Dsol(d0) and Rsol(d). Obtaining the other values requires to solve related op-

timization problems in which: we fix the deterministic solution to determine its worst

distance case for Dsol(dwc) and compute the value of the robust solution in the deter-

ministic scenario in Rsol(d0). We compute the ratios above for 30 randomly generated

networks and report the mean ratio values.

We also present numerical results that illustrate the performance in practice of the robust

and deterministic solutions on a fixed network. Given a robust and deterministic routing

solutions, fR and fD respectively, we conduct the following simulation to compute their

practical performance. We randomly generate the uncertainty parameters ξij in the

uncertainty set (4) to obtain an actual sampled distance vector dij (where we fix d0
ij). The

robust and deterministic solutions are scaled, αfR and αfD respectively, to guarantee

feasibility and efficiency for the problem defined with the sampled distance values d.

We conduct 100 random experiments and report mean and standard deviation of these

simulations for the robust and deterministic solutions.
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In each of the next three subsections we present the results for each of the three problems

considered in this work: the maximum data extraction, the minimum energy consump-

tion, and the maximum lifetime problems. For each problem we present the three types

of experiments: a study of the trade-offs of the robust solution (ratios Rac and Rwc),

the simulated performance, and the sensitivity of the robust solution to changes in the

problem parameters.

6.2 Results for Maximum Data Extraction Problem

The trade-off between robust solutions and deterministic solutions through the compar-

ison of the ratios Rac and Rwc. In Fig.1 we present Rac and Rwc for different energy

E1i = 250, 000 and E2i = 100, 000. We observe that the robust solutions are able to

improve the worst case scenario with relatively little loss in optimality. With increasing

τ , we observe a faster increase in Rwc than Rac, which shows that the robust solu-

tions become more attractive as the distance uncertainty increases and can be able to

compensate for uncertainty while suffering small performance losses.

A comparison of the practical performance for robust solutions and deterministic solu-

tions for a given network under different uncertainty levels. Fig.2 presents the mean and

standard deviations for the robust solutions and deterministic solutions over the 100

samples of all uncertain distance values. Given a sampled vector of distances we scale

the robust and deterministic routing solutions so that they are feasible and maximize the

objective value. This plot shows that the mean value of the adjusted robust solution is

always better than the mean value of the adjusted deterministic solution. In addition we

note that the standard deviation, represented by the vertical segments is much smaller

for the robust solution. This shows that on a simulation the robust solution is observed

to perform better on average and with a smaller standard deviation than a deterministic

solution for any uncertainty level.
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Figure 1: The comparison of Rac and Rwc in maximum data extraction problems. E1i =

250000, E2i = 100000, Di
max = 10000, R = 0.005
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For the maximum data extraction problem we conduct a sensitivity analysis on the

available energy Ei and observe its effect on the trade-off ratios. Fig.3 shows the rate

values Rwc and Rac for τ1 = 0.1 and τ2 = 0.9 and different available energy E on each

node. Notice that Rwc is higher than Rac for any energy level, with most ratios remaining

below 5%, except for a middle range of energy. In this middle range the robust solution

appears more attractive as there is a bigger gap between Rwc and Rac. Note also that

the ratios Rwc and Rac are almost 0 when the available energy E is small or large. In

these two cases the levels of energy in the nodes encourage every node to route directly

to sink for both the deterministic and robust solutions. This occurs because, either the

node does not have enough energy to transmit someone else’s information or has enough

energy to transmit everything directly to the sink.
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Figure 3: The comparison of Rac and Rwc in maximum data extraction problems as a

function of the available energy E of each node. Di
max=10000, τ1=0.1, and τ2=0.9
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6.3 Results for Minimum Energy Consumption Problem

The trade-off between robust solutions and deterministic solutions through the compar-

ison of the ratios Rac and Rwc. In Fig.4 we present the ratios Rac and Rwc for different

information extraction requirements, fmin = p
∑

i∈N Di
max. We present the ratios Rac

and Rwc for p1 = 90% and p2 = 50%. The graph presents the ratios Rac and Rwc as a

function of τ . We observe that ratio Rwc is larger than Rac with this difference being

accentuated as τ increases. This shows that the robust solutions become more attrac-

tive as the distance uncertainty increases and can be able to compensate for uncertainty

while suffering small performance losses.
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Figure 4: The comparison of Rac and Rwc for objective value in minimum energy con-

sumption problems. p1 = 90%, p2 = 50%, Ei = 250000, Di
max = 10000, R = 0.1

The comparison of the practical performance for robust solutions and deterministic so-

lutions under different uncertainty levels. We present the mean and standard deviation

for these simulation results in Fig.5. We observe that, similarly to the maximal data
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extraction problem results showed in Fig.2, the mean value of the adjusted robust solu-

tion is always better than the mean value of the adjusted deterministic solution, also the

standard deviation of the simulation is smaller for the robust solution. This shows that

on a simulation the robust solution is observed to perform better on average and with a

smaller standard deviation than a deterministic solution for any uncertainty level.
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Figure 5: The mean and standard deviations of objective value for the deterministic

and robust solutions in minimum energy consumption problem for different uncertainty

level. Ei=250000, Di
max=10000, p=90%, Mi=2, R=0.1

We conduct a sensitivity analysis on the trade-off ratios, Rac and Rwc, as we vary the

minimal amount of information that must be sent. In Fig.6, we present the ratios Rac

and Rwc for different percentages p of the total information that must be sent to the

sink, fmin = p
∑

i∈N Di
max. We observe that Rwc is always higher than Rac for every level

of minimal amount of information, which means that the robust solutions are attractive

as they provide a higher protection in the worst case than additional cost on the nominal

21



data. Note also that the benefit of the robust solution increases for a larger uncertainty

τ .

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

5

10

15

20

25

The percentage P of the available data must sent to sink node

T
he

 R
at

e 
of

 R
ac

 a
nd

 R
w

c

Minimum Energy Consumption Problem: the comparison of the Rac and Rwc

Rac,t1

Rwc,t1

Rac,t2

Rwc,t2

Figure 6: The comparison of Rac and Rwc of the objective value in minimum energy

consumption problem on different percentage P of total data that must be sent to the

sink. Ei=250000, Di
max=10000, τ1=0.1, and τ2=0.9

6.4 Results for Maximum Lifetime Problem

The trade-off between robust solutions and deterministic solutions through the compar-

ison of the ratios Rac and Rwc. In Fig.7 we present the ratios Rac and Rwc for different

information extraction requirements. We plot the ratios Rac and Rwc for p1 = 90% and

p2 = 50%. The graph presents the ratios Rac and Rwc as a function of τ . The results

here mimic the results found in the other two examples, that is the robust solution can
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Figure 7: The comparison of Rac and Rwc for objective value q (q=1/T) in maximum

lifetime problems. p1 = 90%, p2 = 50%, Ei = 250000, Di
max = 10000, R = 0.1
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significantly reduce the worst case cost, as the uncertainty increases, while increasing

at a slower rate the loss of optimality of the robust solution in the nominal case, which

shows the robust solutions can be able to compensate for uncertainty while suffering

small performance losses.

The comparison of the practical performance for robust solutions and deterministic solu-

tions under different uncertainty levels. Fig.8 presents the mean and standard deviation

for these simulation results. We observe that, as it was with the previous two types of

problems, the robust solution outperforms the deterministic solution in mean value for

any uncertainty level, also the standard deviation of the objective function is smaller

for the robust solution. This shows that under a simulation the robust solution of the

maximum lifetime problem is observed to perform better on average and with smaller

standard deviation than a deterministic solution for any uncertainty level.

For the maximum lifetime problem, we study the sensitivity of the ratios Rac and Rwc to

the percentage p of total data that must be sent to the sink, fmin = p
∑

i∈N Di
max. Fig.9

shows that Rwc is much higher than Rac for problems with little uncertainty τ1 = 0.1.

However, the two ratios are comparable for large uncertainty sets, τ2 = 0.9, with Rac

beating Rwc for small percentages of information p ≤ 0.3. Therefore, for this problem

the benefits of a robust solution depend on the amount of uncertainty and amount of

information that is being sent to the sink. There are conditions where the robust solution

becomes overly conservative, costing in the nominal case more than the protection it can

provide in the worst case.

7 CONCLUSIONS

Many planning and operational problems on energy limited wireless sensor networks

must operate in conditions with significant uncertainty in distances between nodes. Op-
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timal solutions that do not take into consideration this uncertainty may be inefficient

solutions in practice. In this paper, we present robust optimization models to address

distance uncertainty for three optimization problems related to the operation of en-

ergy limited wireless sensor networks: the maximum data extraction, minimum energy

consumption, and maximum lifetime problems.

For these three problems we proved that computing the robust solution, i.e. the solution

with best worst case objective over the uncertainty set, is no harder than solving the de-

terministic version of the problem. The specific form of the uncertainty sets considered

is fundamental to be able to compute the robust solution efficiently. Our computational

experiments investigate whether a robust solution can be an attractive solution in prac-

tice. We find that the robust solution can provide significant worst case protection while

often incurring in a small additional expense over the optimal solution for a nominal

data instance. In addition we showed through simulations that a robust solution can

exhibit better mean objective value and smaller standard deviations, and that these

results hold for a wide setting of problem parameters.

This work showed that for a specific uncertainty set, the robust solution can be computed

efficiently and it can be an attractive solution in practice. Future work will study

what are representative models of the uncertainty faced by sensor networks in different

applications and develop the problem formulations and algorithms to compute the robust

solution efficiently. Our computational experiments also showed that for some problem

instances the robust solution could be overly conservative, incurring in a large cost over a

nominal optimal solution. An important future research direction is method to identify

when a robust solution will be competitive from the problem instance and uncertainty

set considered.
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