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Abstract 

In this paper we study the impact on productivity of specific operating practices currently 
used by demand responsive transit (DRT) providers.  We investigate the effect of using a 
zoning vs. a no-zoning strategy and time-window settings on performance measures such as 
total trip miles, deadhead miles and fleet size.  It is difficult to establish closed form 
expressions to assess the impact on the performance measures of a specific zoning practice 
or time-window setting for a real transportation network.  Thus, we conduct this study 
through a simulation model of the operations of DRT providers on a network based on data 
for DRT service in Los Angeles County.  However, the methodology is quite general and 
applicable to any other service area.  Our results suggest the existence of linear 
relationships between operating practices and performance measures.  In particular we 
observe that for each minute increase in time-window size the service saves approximately 
2 vehicles and 260 miles driven and that a no-zoning strategy is able to satisfy the same 
demand by employing 60 less vehicles and driving 10,000 less total miles with respect to 
the current zoning strategy. 
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1 Introduction 

The passage of the Americans with Disabilities Act (ADA) has changed the 

landscape for demand responsive transit systems.  First, the demand for this type of transit 

service has experienced tremendous growth.  In Los Angeles County alone more than 5,000 

vans and 4,200 cabs provide service, generating 8 million trips per year.  Second, besides 

creating a larger demand, ADA also set strict guidelines for the providers on trip denials 

and on-time performance (Lewis, Evans and Koffman, 1998).  In essence, transit agencies 

today are expected to provide better services while experiencing increased usage for 

demand responsive transit systems. 

The National Transit Summaries and Trends (NTST) report for 2002 indicates that 

the average cost per passenger trip for DRT systems is $20.8 with fares ranging from 

$1.5-$3.00.  By way of contrast, the average cost per trip for fixed route lines is $2.4 with 

fares being roughly 25% of the cost.  Therefore, DRT services are still a highly subsidized 

service and it is imperative for agencies to analyze and investigate their current practices to 

identify possible cost reductions or productivity improvements. 

To measure productivity and cost of the DRT system we consider different 

performance measures, such as fleet size, total miles and deadhead miles.  The deadhead 

miles are defined as the empty trip miles driven by the vehicle between the drop-off point of 

a customer to the pick-up point of another customer.  Note that with ridesharing a vehicle 

may not be empty driving from a drop-off point to a pick-up point and the miles driven in 

these cases would not count as deadhead miles.  A reduction in deadhead miles can either 

cause a reduction in the total number of miles driven by a vehicle (hence reducing cost) or 

allow a vehicle to serve more customers on a given day (hence increasing productivity). 

Some studies outline the potential positive impacts of Advanced Public 

Transportation Systems (APTS) on productivity and cost (Stone, Nalevanko and Gilbert, 

1994; Goeddel, 1996; Ben-Akiva et al., 1996; Chira-Chavala and Venter, 1997; Wallace, 

1997; Schweiger and McGrane, 1999; Higgins, Laughlin and Turnbell, 2000; Stone, 

Ahmed and Nalevanko, 2000).  Palmer, Dessouky and Abdelmaguid (2004) show also how 

financial incentives and penalties can have a negative impact on productivity.  That is, 

providers may schedule in an inefficient manner in order to ensure that they are on time to 
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receive the incentive or avoid the penalty.  But there are other factors that have an influence 

on the performance of DRT systems and the objective of this research is to study the impact 

on productivity and cost of specific operating practices currently used by DRT providers.  

They are the time-window setting and the zoning. 

The length of the time-window that specifies the time range in which the provider 

must pick-up the customer is an important factor impacting productivity and cost.  For 

example, a time-window of 20 minutes and a scheduled pick-up time of 3:00 pm would 

mean that the vehicle must pick-up the passenger by 3:20 pm at the latest to be considered 

on-time.  Typically, providers have financial incentives or penalties for meeting on-time 

goals.  Naturally, customers prefer small time-windows.  However, in order to maintain 

small time-windows, transit agencies may have to decrease the ridesharing and increase 

their fleet size, contributing to increased cost and less productivity.  Therefore, the setting 

of the time-window size needs to balance customer service with the impact on productivity 

and cost.  Currently, Access Service Inc. (ASI), the agency responsible for coordinating 

paratransit DRT service in Los Angeles County, uses a 20 minute time-window whereas 

many other agencies use a 30 minute time-window. 

A number of DRT agencies divide their service area into regions contracting the 

service in each of them to a different provider to simplify the management of the service.  

This practice, known as zoning, is also motivated by the drivers’  preference to be assigned 

to a smaller region instead of the whole service area.  This is a common practice for DRT 

agencies (paratransit, taxi services, etc.) all over the U.S. especially when the service area is 

large.  We distinguish between a centralized vs. decentralized control depending upon the 

number of regions in the service area.  In centralized control, the service is aggregated into 

a single region; in decentralized control multiple regions are created.  For example, ASI 

utilizes a decentralized control strategy dividing its service area into six regions (see Figure 

1).  The pick-up location of the customer request determines the region and the 

corresponding provider responsible for the service.  It is not uncommon that the pick-up 

and drop-off locations of a request are in different regions.  In fact, according to the data 

provided by ASI, around 20% of the trips originating in the Northern region of Los Angeles 

County have a drop-off location outside that region.  Hence, the return trip will be done by 

a different provider regardless of the dwell time of the customer at their drop-off location 
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coming at the expense of a significant number of deadhead miles.  Furthermore, in this 

situation, the customer is required to make two different reservations, one for each 

provider.  In contrast, a hurdle toward implementing a more centralized strategy is that the 

computer aided dispatching (CAD) systems of the different providers need to efficiently 

communicate among themselves in order to effectively manage such a design. 

 

 

Figure 1 – Service regions in the Los Angeles County 

 

Although there is a significant body of work in the literature on scheduling and 

routing DRT systems (see e.g., Ioachim et al., 1995; Savelsbergh and Sol, 1995; Toth and 

Vigo, 1997; Borndörfer et al., 1999; Desaulniers et al., 2000; Diana and Dessouky, 2004; 

Lu and Dessouky, 2004), there has been no research performed comparing the performance 

of a centralized controlled DRT system with a decentralized one.  Diana, Dessouky, and 

Xia (2005) developed analytical equations to determine the fleet size as a function of the 

time-window for a square service area. However, no similar equations exist for general 

service areas and for estimations of the total and deadhead miles. Thus, the effect of the 

time-window size on productivity and cost in general has also not been quantified.  This 
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paper addresses this gap by studying the impact of these issues on the operations of a 

representative large-scale DRT service. 

Due to the difficulty of developing closed-form expressions between the operating 

practices and the performance measures, a simulation model is used in this study.  The 

simulation model is based on demand data provided by ASI for Los Angeles County.  We 

analyze the effect of varying the time-window size (from 10 to 45 minutes) and we 

compare the current decentralized approach with a centralized strategy where any vehicle 

can pick-up any customer regardless of the service region.  In addition we investigate the 

effect of centralizing only part of the service area, merging two regions together. 

Although the results of the simulation model pertain to the Los Angeles County 

network, the simulation methodology described here is quite general.  In fact, a similar 

study can be conducted for any DRT service with basic data (vehicle fleet, service 

parameters and description of demand), and therefore the methodology is easily adaptable 

and applicable to other service areas. 

In addition, the results of this study provide insights on the dependency between 

performance measures and operating practices for DRT services in general.  In fact, the 

geometry of the service area and the demand distribution of Los Angeles County utilized in 

this simulation model are quite standard as we describe later.  Most urban areas (especially 

in the US) serviced by DRT systems would have similar configurations and we do not 

expect major differences on the nature of the relationships between the performance 

measures and operating practices for a number of other DRT providers. 

Simulation tools are very powerful to evaluate systems’  performance and they have 

been extensively utilized in the literature in a variety of fields including transportation.  

Wilson et al. (1970) pioneered the use of simulation to compare different heuristics to 

assess the influence of the service area, the demand density, and the service quality on the 

fleet size requirements.  Regan et al. (1996) evaluate the performance of different load 

acceptance and assignment strategies for a dynamic distribution problem.  Larson et al. 

(2002) examines the impact of dynamism on the quality of the solution for the Partially 

Dynamic Traveling Repairman Problem.  Only a few applications are specifically 

concerned with paratransit systems.  Fu (2002) develops a simulation model to assess the 

potential effects of the latest advances in information technologies on dial-a-ride paratransit 



 5 

systems.  Deflorio, Dalla Chiara, and Murro (2002) propose a simulation model to evaluate 

the performance of a DRT system scheduled using the insertion algorithm by Jaw et al. 

(1986) when dealing with random events like late customers and not on-time vehicles.  

Lipmann et al. (2002) and Hauptmeier, Krumke and Rambau (2000) take traffic conditions 

into account to evaluate the performance of DRT systems.  Some studies (Feuerstein and 

Stougie, 2001; Bailey and Clark, 1987) have investigated changes of performance when the 

dial-a-ride system is run with various numbers of vehicles.  Haghani and Banihashemi 

(2002) address the relation between efficiency of vehicles and town size.  Shinoda et al. 

(2004) compare by simulation the performance of dial-a-ride system vs. a fixed-route 

system in urban areas varying various parameters.  Quadrifoglio and Dessouky (2004a) also 

perform a simulation study to test the efficiency of the insertion heuristic scheduling 

algorithm for Mobility Allowance Shuttle Transit (MAST) systems, a hybrid transit 

solution that merges the flexibility of DRT systems and the low cost operability of 

traditional fixed-route bus services.  The same authors (Quadrifoglio and Dessouky, 2004b) 

use simulation to perform a sensitivity analysis of the performance of a MAST system 

varying the shape of its service area.  Diana (2005) assesses by simulation the influence on 

the effectiveness of a DRT scheduling algorithm by Diana and Dessouky (2004) of typical 

dynamic parameters such as percentage of real time requests and interval between call-in 

time and requested pick-up time. 

The remainder of the paper is organized as follows.  In Section 2, we analyze the 

historical demand data of a representative large-scale agency (ASI).  In Section 3 we 

describe the simulation model used to represent the Los Angeles County DRT system. This 

simulation model is described in sufficient detail so that it can serve as a source for 

simulations on other DRT system environments.  Section 4 presents the results; finally the 

conclusions are outlined in Section 5. 

 

2 Data Analysis 

In this section we conduct statistical analysis of DRT system demand data provided 

by Access Services Inc. (ASI), the agency designated to coordinate paratransit service in 

the Los Angeles County.  Currently, local cities provide over 3.8 million annual paratransit 
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trips throughout the county.  ASI fills in the gaps and allows individuals to travel across the 

different regions within the service area of Los Angeles County.  ASI has over 37,000 

registered customers and divides the Los Angeles County in six regions; in each of them 

the paratransit service is contracted to a private operator; see Figure 1.  For the purpose of 

this study we consider only the Northern (N), Southern (S), Eastern (E) and West/Central 

(W) regions because Santa Clarita and Antelope Valley regions have very low demand 

compared to them (the daily average demand in each of these two regions is about 5% of 

the daily average demand in each of the four main regions).  In addition, there are very few 

trips traveling from one of the four main regions to the Santa Clarita or Antelope Valley 

regions.  Therefore we exclude them from the analysis. 

In the following subsections we present in detail the real demand data provided by 

ASI consisting of requests originated in the Northern region covering ten weekdays of 

service.  We describe the demand data through the following demand features: number and 

type of passengers per request, call-in time, requested pick-up time, pick-up/drop-off 

locations and travel distance.  The simulated demand will aim to match these features of the 

real demand. 

 

2.1 Type of request 

What defines the type of request are the number of passengers per trip and whether 

the customer(s) uses a wheelchair (W/C) or not (A = ambulatory).  Each request can result 

in either a trip that is regularly scheduled and performed, a “No-Show” (the vehicle reaches 

the pick-up location but not the drop-off location because customers do not show up; 

however, both points needed to be scheduled) or a cancellation (customers cancel their 

reservation well in advance with no need of scheduling).  There are a total of 12,842 

requests in the 10 day period considered (from September 29th 2003 to October 10th 2003), 

not including the cancelled requests (about 20% of the total amount).  Table 1 shows the 

daily average of requests with the standard deviation (given as a percentage of the average), 

the percentage of W/C requests and the percentage of “No-Shows” for the Northern region. 
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Table 1 – Daily requests, Northern region 

Daily avg # of Requests St. Dev. W/C No-Show 

1,284 5.6% 24.6% 9% 
 

ASI also provided the daily performed trips (not considering cancelled requests or 

“No-Shows”) for the West/Central, Eastern and Southern regions, but without any further 

details.  Table 2 shows those figures for the other regions. 

 

Table 2 – Daily avg. performed trips, other regions 

Region 
Daily avg # of Trips 

(not including No-Shows) 

West/Central 1,328 
Eastern 2,009 

Southern 1,541 
 

The distribution of the number of additional passengers for A and W/C requests is 

shown in Table 3. 

 

Table 3 - Distribution of additional passengers 

 
# of   request: 
additional 
passengers 

A W/C 

0 86.22% 65.15% 
1 13.32% 31.56% 
2 0.45% 3.07% 
3 0.01% 0.22% 

 

Furthermore, the probability that an additional passenger of a W/C request would also be 

on a wheelchair is 3.7%.  This is important because wheelchair accessible vehicles have a 

limited number of seats for wheelchair passengers depending on their capacity. 
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2.2 Call-in time 

Figure 2 plots the distribution of the call-in time.  The histogram shows that most 

calls occur in the morning with a peak between 6:00 am and 7:00 am; the frequency slowly 

decreases during the rest of the day with almost no calls during the night (10:00 pm-6:00 

am).  Several requests (about 35% of the total) did not have a valid recorded call-in time 

and have been excluded from this analysis.  This is mostly due to automatic scheduling of 

recurrent requests equally repeated for several days, but booked only once (known as 

“standing”  rides). 

 

Figure 2 – Distribution of call-in time 

 

2.3 Requested pick-up time 

The requested pick-up time distribution is shown in the following Figure 3.  The 

histogram clearly reveals that most of the rides are requested for daytime, between 6:00 am 

to 6:00 pm, with peaks between 8:00 am and 9:00 am and between 1:00 pm and 3:00 pm; a 

fewer amount of rides are requested for the evening and a very small percentage are needed 

for nighttime. 
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Figure 3 – Distribution of requested pick-up time 

 

2.4 Interval between call-in time and requested pick-up time 

The time interval between the call-in time and the requested pick-up time is shown 

in Figure 4.  The histogram shows that most requests are made well in advance with a time 

interval larger than 15 hours.  As noted earlier, a substantial amount of the requests (35%) 

did not have a valid recorded call-in time and have been excluded from this analysis.  

However, these requests are mostly the “standing”  rides that are booked once and are valid 

for several days, therefore made well in advance too.  We also note that the current policy 

of ASI guarantees scheduling of the service for all the requests made the day before or 

earlier; while the reservations made the same day are not guaranteed, but they may be 

accommodated into the current schedule when possible. 
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Figure 4 – Distribution of time interval call-in/pick-up 

 

2.5 Pick-up and drop-off locations 

The next figures show the distribution of the pick-up and drop-off locations.  In both 

Figure 5 and Figure 6 each square represents a one-square mile area. 

Since the demand analyzed corresponds to the demand faced by the Northern 

region, the pick-up locations (Figure 5) are all inside the Northern region (see Figure 1).  

The drop-off locations (Figure 6) are distributed along the whole Los Angeles County area 

as described also in the following Table 4. 
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Figure 5 – Distribution of pick-up locations (miles) 

Figure 6 – Distribution of drop-off locations (miles) 
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2.6 Travel distance 

Figure 7 shows the distribution of the travel distance between pick-up and drop-off 

locations.  Most of the trips have a distance not larger than 15 miles as most of the trips are 

within the pick-up region.  Statistics about the distribution are provided in the following 

Table 5. 

 

Figure 7 – Distribution of travel distance 
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distance closely matches the rectilinear distances calculated between the pick-up and 

drop-off locations of each request. 

 

3 Simulation Model 

In this section we explain how we generate random samples to emulate the demand, 

based on the distributions found in Section 2 in order to develop a simulation model that is 

representative of the area serviced by ASI.  We also describe the fleet size for each region, 

the service parameters used, and the scheduling algorithm. 

Our demand simulation assumptions can be separated into two categories: 

1. Assumptions required to address the fact that we lack detailed data for 

Los Angeles County area except for the Northern region.  These 

assumptions allow us to create a representative network which although 

is not exactly the Los Angeles County DRT system, it closely resembles 

the key features of it.  We will discuss them in Section 3.1. 

2. Assumptions needed to generate demand distributions that resemble the 

observed real demand features.  We will cover these issues in Section 3.2. 

 

3.1 Network assumptions 

The assumptions made to circumvent the lack of demand data on the whole LA 

County are particular to this study and are geared to obtain the missing demand 

information.  The ideal situation would be to obtain real demand data for the entire region 

and avoid these approximations. 

The key assumption is to consider the features of the demand distribution in each 

region be the same as the detailed demand information we have for the Northern region 

with a few caveats.  For example, total daily demand in each region is the corresponding 

average daily demand shown in Table 2.  In addition, the geographical shape of each region 

is carefully replicated as in Figure 1 and the distributions of the pick-up and drop-off 

locations are dependent on each region. 
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Note that the four regions are all adjacent to each other except the Northern and 

Southern regions.  We will use this adjacency property to make assumptions about the 

proportion of out-of-zone drop-offs. 

 

3.1.1 Daily requests per  region 

We assume that the total number of requests including “No-Shows” , but not 

cancelled requests, in a given simulated day is the daily average (rounded to the nearest 

hundred) according to the data provided by ASI.  Thus, for the Northern region we have 

1,300 customers/day rounded from the actual value of 1,284 (Table 1).  For the other 

regions the numbers of daily requests are obtained by first adding to the numbers in Table 2 

an assumed 10% of “No-Show” requests (rounded from the actual 9% for the Northern 

region, see Table 1) and then rounding these figures to the nearest hundred.  [i.e.: for the 

Eastern region we have 2,009 actual performed trips; we add a 10% of “No-Show”  

obtaining 2,009/0.9 � 2,232, rounded to 2,200] 

The following Table 6 summarizes those figures. 

 

Table 6 – Assumed number of daily requests 

Region 
Daily Requests 

(including “No-Shows”) 

Northern 1,300 
West/Central 1,500 

Eastern 2,200 
Southern 1,700 

 

3.1.2 Pick-up/drop-off locations per  region 

We derive the pick-up and drop-off locations distributions for regions W, E, and S 

by extrapolating the results from the Northern region in the following way. 

The demand data in Figure 5 and Figure 6 show that the pick-up locations 

distribution and the in-zone drop-off locations distribution for the Northern region are very 

similar.  We thus infer that in each region the pick-up and the drop-off locations 

distributions resemble each other closely.  Under this assumption we create the pick-up 
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location geographical distributions for the other three regions using as a template the 

out-of-zone drop-off locations distribution from the data of the Northern region. 

The drop-off locations distributions used when simulating the W, E and S regions 

are the same as the ones used for the Northern region. 

 

3.1.3 In-zone/Out-of-zone drop-off percentage 

Finally we need to determine the percentage of requests having in-zone and 

out-of-zone drop-offs.  For this we use the adjacency property mentioned earlier: from the 

probabilities shown in Table 4 for the N region we obtain the out-of-zone drop-off 

percentages in an adjacent region (W and E: 10.3% and 8% rounded to 10%) and a 

non-adjacent region (S: 2.2% rounded to 5%).  That is, we assume that the probability that 

a request would have the drop-off location in an adjacent region is 10%, while the 

probability of having a drop-off location in a non-adjacent region is 5%; the in-zone 

drop-off percentages for each region are the balance.  The following Table 7 summarizes 

the values used for the probability of the drop-off region for each pick-up location region. 

 

Table 7 – Drop-off region probabilities 

Drop-off 
Pick-up 

Northern West/Central Eastern Southern 

Northern 75% 10% 10% 5% 
West/Central 10% 70% 10% 10% 
Eastern 10% 10% 70% 10% 
Southern 5% 10% 10% 75% 

 

3.2 Demand Assumptions 

We now describe the simulation assumptions we make to generate demands that 

behave similar to the historic data on requests for service. 
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3.2.1 Type of request 

We decide by generating random numbers whether each request requires a W/C 

accessible vehicle (with a probability of 25%).  Then, we determine how many extra 

passengers there are based on the probabilities shown in the following tables. 

 

Table 8 – Probability of having additional passengers 

 
# of   request: 
additional 
passengers 

A W/C 

0 85% 65% 
1 13% 30% 
2 2% 4% 
3 0% 1% 

 

Furthermore, if the request requires a W/C accessible vehicle and there are extra 

passengers, we decide whether each extra passenger is a W/C as well with a probability of 

5%.  We also compute (with a probability of 10%) whether a request results in a 

“No-Show”. 

Note that the above probabilities are rounded values based on the sample 

probabilities in Section 2. 

 

3.2.2 Call-in time 

Since most of the requests are made well in advance (Figure 4), we assume a static 

environment and we suppose that all the requests for any given day of service are made at 

least one day in advance. 

 

3.2.3 Requested pick-up time 

In order to simulate the requested pick-up time for each request, we use a piecewise 

linear approximation of the actual cumulative distribution obtained by the data shown in 

Figure 3.  The following Figure 8 shows this actual cumulative distribution (dotted line) of 

the requested pick-up time and the piecewise linear approximation (solid line) used in our 
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simulation.  Most of the actual pick-up requests occur between 6:00 am and 6:00 pm.  The 

piecewise linear approximation assumes that 94% of the pick-up requests occur between 

6:00 am and 6:00 pm; only 6% of them occur before (3%) or after (3%) this interval.  As a 

result, the two cumulative distributions are very similar to each other.  Once a requested 

pick-up time is sampled, we rounded its value to the nearest multiple of 5 minutes (for 

example: 6:00, 6:05, 6:10, etc…). 

 

Figure 8 – Actual and simulated cumulative distribution of requested pick-up time 

 

3.2.4 Pick-up/drop-off locations 

The methodology to generate pick-up/drop-off locations must take into 

consideration two features of the demand: the actual locations visited by the vehicles to 
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we sample pick-up and drop-off locations from their distributions, the travel distance would 

be calculated as a dependent variable and could not be sampled from the actual distribution 

(Figure 7).  If pick-up and drop-off location distributions were to be statistically 

independent, then the calculated travel distance distribution could match the actual one 

exactly.  But this may not be the case due to the following dependencies among pick-up 

and drop-of locations of each request: 

 

I. Customers typically do not require a ride having the drop-off point very close 

to the pick-up point. 

II. When customers require a drop-off (pick-up) at high demand density locations 

(such as hospitals, malls, schools, parks, etc…) they would most likely choose 

the ones closest to their pick-up (drop-off) location (home, office, etc…). 

III. An existing fair amount of recurrent customers (such as the “standing”  rides) 

or standard itineraries creates strong links between some particular 

pick-up/drop-off pairs. 

 

The actual travel distance distribution is the result of the correlation between 

pick-up and drop-off locations explained by all the factors above (and possibly many 

others).  Ideally we would need to generate a different drop-off (or pick-up) location 

distribution for each pick-up (or drop-off) point in order to capture their actual dependency 

and replicate the actual demand in our simulation model.  Clearly this procedure would be 

very hard to implement. 

Therefore, in order to generate the pick-up and drop-off locations for each request 

we considered two methods and we evaluate them by comparing the resulting simulated 

distributions with the actual ones. 

 

• Option 1: Independently sample pick-up and drop-off locations from the 

distributions in Figure 5 and Figure 6. 

• Option 2: Separate demand data into four groups depending on the region of 

the drop-off location (N, E, W or S), thus obtaining four different pick-up 

location distributions.  Sample first the drop-off region visited based on 
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probabilities from Table 4.  Then sample pick-up and drop-off locations 

from the demand group selected. 

 

We also considered investigating a third option.  This procedure samples the 

pick-up from Figure 5 and the drop-off from Figure 6, but using them only to determine trip 

pick up and direction.  The travel distance is sampled from Figure 7.  This method will 

perfectly replicate the travel distance distribution while sacrificing the accuracy of the 

drop-off locations, which would be calculated as a dependent variable and could end up 

outside of the regions.  Since the main focus of this research is to analyze the impact of the 

deadhead miles mainly resulting from travel distances between an out-of-zone drop-off and 

the next in-zone pick-up, it is crucial that the drop-off locations (especially the out-of-zone 

ones) are correctly sampled.  Therefore we chose not to pursue this third option. 

Option 1 is the simplest sampling method, but it ignores potential shortcomings 

because of the above I, II and III.  Option 2 attempts to better represent the demand trying 

to capture their mutual dependency by separating it into four groups.  The issue that we 

want to investigate is how much Option 1 differs from the actual data and how much 

Option 2 better represents the real demand compared to Option 1. 

Figure 9 below shows a comparison between the actual travel distance distributions 

and the distributions generated by Option 1 and Option 2.  The statistics of the distributions 

are shown in the following Table 9. 
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Figure 9 – Comparison between actual and simulated travel distance distributions 

 

Table 9 – Travel distance distribution statistics (aggregate) 

 Actual Option 1 Option 2 
Average 10.2 12.24 12.03 
Median 7.9 10 10 
Standard Deviation 8.4 9.21 9.05 
Minimum 0.5 0 0 
Maximum 68.8 73 74 

 

Figure 9 and Table 9 show that the difference between Option 1 and the actual 

distribution is not very large overall.  However, the discrepancies are explained by the 

above points I, II and III.  In fact, the actual distribution does not have values around zero 

(point I).  The actual distribution is consistently more skewed towards shorter values (point 

II).  Finally, the presence of regular customers (point III), although is not observed in the 

cumulative distribution, can be seen from the demand data provided by ASI, where some 

“ typical”  trips are consistently repeated (“standing”  rides). 

Furthermore, the chart and the table indicate that Option 1 and Option 2 produce 

very similar results.  In fact, even though Option 2 is slightly closer to the actual 

distribution, the improvement over Option 1 is so small that it does not justify the demand 

grouping.  This result points out that there is no significant dependency between the 
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pick-up locations distributions and the drop-off region.  The demand would need to be 

divided in a much larger amount of groups (not only four) in order to observe a significant 

improvement and a closer match between the simulated and the actual distributions.  But 

since Option 1 does not differ very much from the actual distribution to begin with, the 

marginal improvement in quality of the generated demand does not justify the additional 

computational burden. 

Thus, since Option 1 and the actual distribution do not differ very much and the 

improvement obtained by Option 2 is not significant, we select Option 1 as a sampling 

methodology for pick-up and drop-off locations assuming therefore independency. 

In order to incorporate the assumptions discussed in Section 3.1 as well, the 

sampling procedure is therefore the following: for each region and for each request we first 

sample the pick-up location from its distribution in that region; then by generating a 

random number based on Table 7 we decide in which region the drop-off point will be 

located and we sample it from the corresponding drop-off locations distribution. 

 

3.3 Resources 

There are different vehicle types owned by ASI and used by the local operators to 

provide the service depending on the seat capacity for ambulatory (A) and wheelchair 

(W/C) passengers.  ASI provided its current fleet capacity for each region and type. This is 

summarized in Table 10. 

 

Table 10 – Fleet: # of vehicles of each type for each region 

vehicle type 
Region 

3 A + 
2 W/C 

8 A + 
2 W/C 

8 A + 
3 W/C 

11 A + 
6 W/C 

7 A + 
0 W/C 

Northern 100 3 10 2 15 
West/Central 88 12 1 1 0 
Eastern 123 7 0 0 0 
Southern 61 11 23 2 0 
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ASI also provided the locations of the four depots (one for each region).  Each 

private operator owns spare vehicles (not included in Table 10) in order to assure the 

service in case of need during high demand periods. 

 

3.4 Service parameters 

The parameters used in the simulation are the following: 

• Vehicles’  average speed: 25 miles/hour. 

• Service time at each boarding/disembarkment if there are no W/C 

customers: 30 seconds. 

• Service time at each boarding/disembarkment if there is at least one W/C 

customer: 10 minutes. 

• Maximum ride time factor: 2.5.  That is, the actual ride time from pick-up to 

drop-off points for each request should not exceed 2.5 times the direct ride 

time. 

• Time windows: 20 minutes as a base case (as provided by ASI).  As 

mentioned, we will perform sensitivity analysis over this parameter (Section 

4.1). 

 

3.5 Scheduling algor ithm 

After sampling the daily demand we utilized a sequential insertion algorithm to 

schedule the trips by assigning customers to vehicles according to the available fleet and 

the time-window constraints.  Insertion algorithms are common procedures used by DRT 

providers to schedule their service, as noted by Lu and Dessouky (2005) and Campbell and 

Savelsbergh (2004) because of their computational efficiency.  ASI and its regional 

providers conform to this common practice. 

We imposed a maximum total shift length of 12 hours.  Most of the shifts run 

approximately from 6:00 am to 6:00 pm.  In order to satisfy the nighttime demand, a few 

vehicles are scheduled for double shifts (with two drivers): approximately from 12:00 am to 
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12:00 pm and from 12:00 pm to 12:00 am.  These criteria are consistent with the data 

provided by ASI for the Northern region and assumed to be the same for all four regions. 

Vehicles begin and end their shifts at the depot of the corresponding region.  For 

each depot the algorithm fills up one vehicle at a time, starting with the ones with bigger 

capacity currently available.  The heuristic inserts in the current schedule the request, 

among the available and feasible ones, that minimizes the additional distance to be traveled.  

This procedure is carried out iteratively until the vehicle cannot accept any more requests 

because of time-window, capacity or time constraints.  Then the algorithm checks if smaller 

capacity available vehicles could be used for the schedule just built and, if so, the smaller 

capacity vehicle is assigned.  The vehicle does not have an assigned shift a priori, but this is 

determined during the insertion procedure: when and if an inserted request forces the 

schedule to begin before 6:00 am or to end after 6:00 pm, then this vehicle is used for a 

double shift (12:00 am/12:00 pm and 12:00 pm/12:00 am); otherwise the vehicle is used for 

a daytime shift (6:00 am/6:00 pm).  Additional vehicles are filled up until all the requests 

have been scheduled. 

 

4 Results 

In this section we describe the results obtained by our simulation analysis.  The 

performance measures used to evaluate the findings are the total number of vehicles used to 

satisfy the demand, the total miles driven, the deadhead miles driven, the passenger-miles 

and idle time.  The deadhead miles represent miles driven by the vehicles with no 

passengers onboard; the idle time is the total time spent by the vehicles while waiting idle 

for the next scheduled pick-up.  We illustrate the time-window size effect in Section 4.1 

and the zoning effect in Section 4.2. 

 

4.1 Time-window size effect 

This section quantifies how much the performance measures are affected by 

variations of the time-window size.  We performed again 30 replications of one day of 

service.  For each day we schedule the service varying the time-window size from 10 to 45 
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minutes, with steps of 5 minutes.  In the table we also include the figures for the asymptotic 

cases time-window settings of 0 and ∞.  For all these cases we always assumed a 

decentralized strategy (zoning).  The results are summarized in the following Table 11 in 

terms of averages and standard deviations given as a percentage of the average. 

 

Table 11 – Time-window effect 

Time-window 
minutes 

# of 
vehicles 

St. 
Dev. 

total 
miles 

St. 
Dev. 

deadhead 
miles 

St. 
Dev. 

passenger 
miles 

St. 
Dev. 

idle time 
(minutes) 

St. 
Dev. 

0 614 0.9% 125,400 0.6% 44.096 1.1% 172,060 0.9% 97,319 1.8% 
5 561 1.1% 120,410 0.8% 39,769 1.6% 180,621 0.9% 72,469 2.2% 
10 531 1.4% 117,107 1.0% 37,234 2.0% 185,611 0.9% 59,328 1.9% 
15 511 1.3% 114,739 0.9% 35,470 1.5% 189,769 0.8% 50,905 2.8% 
20 497 1.1% 113,021 0.9% 34,131 1.6% 193,011 0.8% 45,397 3.1% 
25 485 1.1% 111,650 0.8% 33,013 1.6% 196,220 0.7% 41,479 2.9% 
30 474 1.2% 110,308 0.9% 32,076 1.7% 198,386 0.6% 38,346 3.0% 
35 468 1.2% 109,445 0.8% 31,414 1.5% 200,415 0.8% 35,842 3.3% 
40 459 1.3% 108,514 0.9% 30,755 1.9% 202,674 0.8% 33,484 3.4% 
45 452 1.2% 107,532 0.9% 29,952 1.7% 205,062 0.9% 31,508 3.3% 
… … … … … … … … … … … 

∞ 252 0.7% 87,103 0.6% 18,133 0.4% 286,149 1.1% 7,723 0.8% 
 

The effect of widening the time-window size is evident in all the performance 

measures: lower number of used vehicles, less total miles, less deadhead miles driven, less 

idle time spent, and increased passenger-miles because more ridesharing is possible.  

Larger time-windows imply looser time constraints and a larger feasible solution set.  Thus 

more feasible options are available for the algorithm when building the schedules and the 

system can be solved more efficiently.  Of course all these improvements come at a cost for 

the customers that have to deal with undesired larger time-windows. 

The values in Table 11 show monotonic behaviors for all the performance measure.  

They begin with a specific value at the origin (time-window set to zero) and they reach 

asymptotic values for infinite time windows.  Their curves can therefore be approximated 

by exponential types of equations (such as b±ae-x).  However, in the operating interval 

considered (time-window from 10 to 45 minutes) the values show almost linear 

relationships between the independent variable (time-window size) and the dependent 

variables (performance measures).  In Figures 10-14 we plot the mean values of 
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performance measures versus time-window size and the linear regression model for each of 

them.  In each case we also present the R2 and the p-value corresponding to the slope of the 

relationship. 

 

Figure 10 - Linear regression: number of vehicles 

 

Figure 11 – Linear regression: total miles 
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Figure 12 – Linear regression: deadhead miles 

 

Figure 13 – Linear regression: passenger-miles 
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Figure 14 – Linear regression: idle time (minutes) 

 

In all the charts we note that the mean values seem to be part of a slightly convex 
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linear regressions can be used as good estimates, we are able to predict the savings for each 

performance measure per every minute added to the time-window size.  From the 

regression formulas we have approximately: 
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• 530 increase in the passenger-miles value 
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service.  If ASI were to increase the time-window size from the current 20 minutes to 30 

minutes, the improvement will be a saving of 20-25 vehicles and about 2,600 miles less to 

be driven (2,000 of which would be deadhead miles). 

 

4.2 Zoning effect 

The effect of a centralized strategy (zoning) vs. a decentralized strategy (no-zoning) 

is investigated in this section.  The variations in productivity and costs are measured in 

terms of the performance measures defined above.  We performed this analysis using a 

time-window size of 20 which is the current size that is being used by ASI. 

We performed 30 replications of one day of service.  For each day we schedule the 

service with four different policies: 

1. Zoning (N/W/E/S): each zone takes care of its own pickup requests (the 

current practice of ASI).  This is the decentralized strategy. 

2. Partial zoning (NW/ES): zones are merged together in groups of two regions 

and the requests are scheduled considering these two new formed larger 

regions. 

3. Partial zoning (NE/WS): analogous to point 2, but different grouping. 

4. No zoning (NWES): the Los Angeles area is considered as a unique region.  

This is the centralized strategy. 

We need to specify that the scheduling algorithm in case of no zoning or partial 

zoning is slightly modified because we have more than one depot to choose from.  

Therefore, before scheduling a new vehicle the algorithm decides which depot to consider 

by selecting the one with the minimum distance (depot �  pick-up �  drop-off �  depot) to 

its closest available request.  Then the algorithm proceeds as explained in Section 3.5. 

The following Table 12 summarizes the results in terms of the averages and 

standard deviations which are given as a percentage of the average of the data from the 30 

replications. 
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Table 12 – Zoning effect 

Zoning 
# of 

vehicles 
St. 

Dev. 
total 
miles 

St. 
Dev. 

deadhead 
miles 

St. 
Dev. 

passenger 
miles 

St. 
Dev. 

idle time 
(minutes) 

St. 
Dev. 

N/W/E/S 497 1.1% 113,021 0.9% 34,131 1.6% 193,011 0.8% 45,397 3.1% 
NW/ES 469 1.2% 109,388 1.0% 30,431 2.0% 193,931 0.6% 42,281 3.9% 
NE/WS 461 1.2% 107,358 0.9% 28,755 1.8% 193,896 0.8% 42,733 2.4% 
NWES 437 1.1% 102,675 0.8% 24,701 2.3% 194,165 0.8% 39,727 3.4% 

 

Comparing the results obtained from the zoning case (N/W/E/S) and the no-zoning 

case (NWES) the savings are evident in terms of deadhead miles and number of vehicles 

used to serve the same demand.  The NW/ES and NE/WS cases show intermediate 

outcomes and they are similar to each other.  The cost of zoning vs. no-zoning is of about 

60 extra vehicles to be employed that are needed because of the necessary extra deadhead 

miles (10,000) to be driven from the out-of-zone drop-off points to the next in-zone pick-up 

point.  By allowing a no-zoning policy, many of these deadhead miles are no longer 

necessary because the next pick-up point does not necessarily have to be located in-zone, 

but it can be located anywhere in the Los Angeles area and the scheduling algorithm would 

be able to choose a closer one to the last drop-off point. 

The differences in the total miles driven among the four cases are mostly due to the 

differences in the deadhead miles.  In fact, subtracting the deadhead miles from the total 

miles driven in all cases we obtain roughly the same numbers.  However we do observe a 

slight improvement in these numbers when comparing no-zoning vs. zoning.  Therefore the 

zoning effect, besides the obvious saving in deadhead miles, affects also the efficiency of 

the scheduling algorithm itself, even if very slightly.  Because without zoning constraints 

more feasible insertions (requests belonging to any region) are available to be chosen by the 

algorithm when scheduling a vehicle; thus the feasible solution set is bigger and better 

solutions could be found.  This larger “ freedom” in choosing the insertions allows the 

algorithm to fill up the vehicles’  schedules more densely, explaining the reduction in idle 

time, and with more ridesharing as shown by the slight increase in passenger-miles. 

The drastic reduction of the deadhead miles and the slight improvement of the 

algorithm efficiency explain the improvements in the figures.  The first effect is by far the 

most significant one and its importance is directly proportional to the amount of 
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out-of-zone drop-off points of the demand data; in this case about 20% of the total demand 

(see Table 4).  Clearly, with no out-of-zone drop-off points there will be no savings in 

deadhead miles when switching from a zoning to a no-zoning policy.  Conversely, the 

higher the out-of-zone drop-off points percentage, the more significant would be the 

improvement. 

As for the time-window size setting analysis, we can infer a linear dependency 

between the performance measures and the zoning choice.  To do so, we average together 

the results of the partial zoning cases (NW/ES and NE/WS) and we compute the gaps in 

each performance measure value while doubling the number of zones, namely going from a 

no-zoning to a partial zoning policy and from a partial zoning to a zoning policy as shown 

in the following Table 13: 

 

Table 13 – Gaps obtained by doubling the number of zones 

Policy 
# of 

vehicles 
total 
miles 

deadhead 
miles 

passenger 
miles 

idle time 
(minutes) 

a-Zoning (4 zones) 497 113,021 34,131 193,011 45,397 
b-Partial zoning (2 zones) 
(NW/ES-NE/WS avg.) 

465 108,373 29,593 193,914 42,507 

c-No-zoning (1 zone) 437 102,675 24,701 194,165 39,727 
Gap b→a 32 4,648 4,538 -903 2,890 
Gap c→b 28 5,698 4,892 -251 2,780 
 

The obtained gaps (b→a and c→b) for each performance measure are very similar 

showing again almost linear relationships between the zoning choice and the performance 

measures.  Only the passenger miles gaps are not comparable to each other, but they are 

also very small compared to the mean values showing a very low dependency on the zoning 

choice. 

The clear advantages of the no-zoning policy shown by the figures above need to be 

carefully balanced with the added complexity of managing a larger service area.  The local 

providers would need to closely work together.  In particular the Computer Aided 

Dispatching (CAD) systems of different providers would need to efficiently communicate 

among themselves in order to effectively manage the service. 
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5 Conclusions 

In this paper we quantified how much productivity and cost of Demand Responsive 

Transit (DRT) services are affected by two managerial practices: the time-window size 

setting and a centralized vs. decentralized strategy.  Access Services Inc. (ASI), which is 

the designated consolidated transportation service agency to coordinate paratransit service 

within the Los Angeles County, provided us with demand data to generate statistical 

distributions used for a simulation model for our analyses.  Although the results pertain to 

the network considered, the simulation methodology described here is quite general and 

easily applicable to any other large service area. 

The results of this study provide general insights on the dependency between 

performance measures and operating practices for large DRT services.  We identified 

quasi-linear relationships between the performance measures and the independent variable, 

either the time-window size or the zoning policy. 

For the time-window size effect, we built linear regression models and observed that 

for each minute increased in the time-window size the service saves approximately 2 

vehicles and 260 miles driven, while satisfying the same demand.  Increasing the 

time-window size would also lower the customer satisfaction, thus managers have to 

carefully balance these two effects while setting the size. 

About the zoning policy, we observed that a centralized strategy is able to satisfy 

the same demand by employing 60 less vehicles and driving 10,000 less total miles with 

respect to a decentralized strategy.  Most of the improvement is due to the drastic reduction 

of deadhead miles driven in the no-zoning (centralized) case.  This increased efficiency has 

to be carefully balanced with the added complexity arising while managing centralized 

systems. 

Future research would include using approximations in order to build analytical 

models to quantify the zoning and the time-window size effects and compare their findings 

with the ones from this simulation analysis. 
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