
Vol. 40, No. 4, July–August 2010, pp. 267–290
issn 0092-2102 �eissn 1526-551X �10 �4004 �0267

informs ®

doi 10.1287/inte.1100.0505
©2010 INFORMS

Software Assistants for Randomized Patrol Planning
for the LAX Airport Police and the Federal Air

Marshal Service

Manish Jain, Jason Tsai, James Pita, Christopher Kiekintveld,
Shyamsunder Rathi, Milind Tambe

Computer Science Department, University of Southern California, Los Angeles, California 90089
{manish.jain@usc.edu, jasontts@usc.edu, jpita@usc.edu, kiekintv@usc.edu, srathi@usc.edu, tambe@usc.edu}

Fernando Ordóñez
Department of Industrial and Systems Engineering, University of Southern California, Los Angeles, California 90089;

and Department of Industrial Engineering, University of Chile, 8330111 Santiago, Chile, fordon@usc.edu

The increasing threat of terrorism makes security at major locations of economic or political importance a major
concern. Limited security resources prevent complete security coverage, allowing adversaries to observe and
exploit patterns in patrolling or monitoring, and enabling them to plan attacks that avoid existing patrols. The
use of randomized security policies that are more difficult for adversaries to predict and exploit can counter
their surveillance capabilities. We describe two applications, ARMOR and IRIS, that assist security forces in
randomizing their operations. These applications are based on fast algorithms for solving large instances of
Bayesian Stackelberg games. Police at the Los Angeles International Airport deploy ARMOR to randomize the
placement of checkpoints on roads entering the airport and the routes of canine unit patrols within the airport
terminals. The Federal Air Marshal Service has deployed IRIS in a pilot program to randomize the schedules
of air marshals on international flights. This paper examines the design choices, information, and evaluation
criteria that were critical to developing these applications.

Key words : game theory: Stackelberg games; programming: integer, applications; programming: integer, theory.
History : This paper was refereed.

Protecting critical infrastructure and targets, such
as political figures and airports, historical land-

marks, and power generation facilities, is a challenging
task for police and security agencies worldwide. The
growing threat of international terrorism has exacer-
bated this challenge in recent years. Transportation
networks, such as buses, trains, and airplanes, carry
millions of people per day, also making them a prime
target for terrorists and extremely difficult for law
enforcement agencies to protect. In 2001, the 9/11
attack on the World Trade Center in New York City
via commercial airliners resulted in $27.2 billion of
direct short-term costs (Looney 2002) and almost 3,000
lives lost. The 2004 Madrid commuter train bombings
resulted in 191 lives lost and 1,755 people wounded;
its estimated cost was E212 million (Buesa et al. 2007).

In the 2005 London subway and bus bombings, 52 lives
were lost, 700 people were wounded, and the esti-
mated cost was £2 billion (Thornton 2005).

Measures for protecting potential target areas
include monitoring entrances or inbound roads,
checking inbound traffic, and adding patrols aboard
transportation vehicles. However, limited resources
typically make it impossible to provide full secu-
rity coverage. Furthermore, adversaries can observe
security arrangements over time and exploit pre-
dictable patterns to their advantage. One way to mit-
igate their ability to exploit patterns is the judicious
use of randomization in scheduling the actions of
security forces. We developed two software assis-
tants, Assistant for Randomized Monitoring Over
Routes (ARMOR) and Intelligent Randomization In
Scheduling (IRIS), that address many difficulties of

267

Jain et al.: Software Assistants for Randomized Patrol Planning
268 Interfaces 40(4), pp. 267–290, © 2010 INFORMS

randomization and provide an easy-to-use solution
for security forces.

An important issue that must be addressed in
randomizing security operations is how to weight
the security actions. An obvious approach is to use
a uniform random policy that treats all targets or
entry points the same. However, this approach fails
to consider that some targets are more attractive or
vulnerable than others. As a result, valuable secu-
rity resources might be used to protect relatively
unimportant targets. The defense strategy should
emphasize the protection of high-value targets. For
example, a sophisticated security policy could weight
the protection provided for each target based on that
target’s value. However, this weighted randomization
still fails to consider intelligent attackers who can alter
their strategies based on knowledge of the security
strategy.

Manually generating a random security policy is a
costly and labor-intensive process. Humans are not
skilled at generating truly random security sched-
ules (Wagenaar 1972, Treisman and Faulkner 1987)
and can easily fall into predictable patterns. Fur-
thermore, scheduling security forces in transporta-
tion networks and other security domains is a
prohibitively large problem, even if we do not con-
sider randomization.

ARMOR and IRIS address these difficulties by
using game-theoretic models and solution algo-
rithms to determine randomization strategies that con-
sider target values and assume intelligent adversary
responses to security measures. Game theory is a well-
established paradigm for addressing situations with
multiple self-interested decision makers (Fudenberg
and Tirole 1991). In our solutions, we model secu-
rity games as Stackelberg games (von Stackelberg
1934) between a defender (i.e., the security forces)
and an attacker (i.e., a terrorist adversary). Stackelberg
games are bilevel models (Bard 1999) that consider
an attacker’s ability to gather information about the
defense strategy before planning an attack. These
games specify different payoff values for both play-
ers in the event of an attack on every potential tar-
get. Extending these games to Bayesian Stackelberg
games (Conitzer and Sandholm 2006) allows us to
capture uncertainty about these payoffs in the game
model. Solutions to these games provide a random-

ized policy for the defense strategy, which can then be
used to generate specific schedules for security patrols.

ARMOR (Pita et al. 2008), which was developed for
the Los Angeles International Airport (LAX) police,
randomizes checkpoints on the roadways entering the
airport and the canine patrol routes within the air-
port terminals. The airport police have used it since
August 2007; as of January 2009, ARMOR-scheduled
checkpoints had inspected 285,589 vehicles. IRIS (Tsai
et al. 2009) was developed to assist the Federal Air
Marshal Service (FAMS) with randomly scheduling air
marshals on flights. FAMS has deployed it in limited
use since October 2009. Both are interactive software
assistants that allow domain experts to change domain
parameters when necessary. A model of the domain
as a Bayesian Stackelberg game and fast solution algo-
rithms for computing an optimal solution to the game
model underlie each tool. These algorithms use var-
ious techniques for exploiting structure in the secu-
rity domains to speed up the computation and enable
large real-world problem instances to be solved in rea-
sonable amounts of time (Paruchuri et al. 2006, 2007;
Kiekintveld et al. 2009).

Our approach of using Stackelberg games to model
real-world security problems is applicable in a wide
range of domains with similar attributes; these include
(1) intelligent players, (2) player strategies that are
observable by other players, (3) varying preferences
among targets, and (4) infeasibility of fully covering
all targets.

Some examples of similar security environments
include computer networks, checkpoints at subway
stations, inspections at ports, and monitoring of other
mediums of public transport. A deterministic strat-
egy is a weakness for the defender when coverage is
incomplete. Furthermore, because variations in target
values are ubiquitous in these domains, intelligent and
weighted randomization can provide a greater degree
of protection.

We have organized the remainder this paper as
follows. Related Work addresses game-theoretic and
non-game-theoretic literature in the security domain.
Methodology discusses Bayesian Stackelberg game
methodology, its formal definition, and the techni-
cal formulation of the security game. Modeling the
LAX and FAMS Domains describes the LAX and FAMS
domains. In Software Assistants, we present the system

Jain et al.: Software Assistants for Randomized Patrol Planning
Interfaces 40(4), pp. 267–290, © 2010 INFORMS 269

architecture of ARMOR and IRIS. In the Evaluation sec-
tion, we discuss assessments of the system. We con-
clude with a Summary section.

Related Work
Much of the related work in the game-theoretic and
non-game-theoretic literature that studies the security
domain is theoretical analysis of hypothetical scenar-
ios; however, our work focuses on developing tools for
use in real-world security operations. This requires us
to address many practical aspects of the problem that
arise only in the field.

The related work is in three main areas. The first
applies optimization techniques to model the secu-
rity domain; it does not address the strategic aspects
of the problem. Although these methods provide
a randomization strategy for the defender, they do
not consider the adversary’s ability to observe the
defender’s actions and accordingly adjust behavior.
Examples of such approaches include methods that
are based on learning, Markov decision processes
(MDPs), and partially observable MDPs, as Ruan et al.
(2005) and Paruchuri et al. (2006) discuss. As part of
this work, these authors model the patrolling problem
with varying incident rates in each location and solve
for optimal routes using an MDP framework. Another
example is the “hypercube queueing model” (Larson
1974), which is based on queueing theory and depicts
the detailed spatial operation of urban police depart-
ments and emergency medical services. Examples of
its application include police-beat design and alloca-
tion of patrolling time. Such frameworks can address
many of the problems we raise, including different tar-
get values and increasing uncertainty, by using many
possible patrol routes. However, they fail to consider
the intelligent attacker who can observe and exploit
patterns in the security policy. Because a policy that is
based on the historical frequency of attacks is essen-
tially reactive, an intelligent attacker will always be
one step ahead of a defender.

A second set of work uses Stackelberg games to
model a variety of security domains. Bier (2007)
strongly endorses this type of modeling. Game-
theoretic models have been applied in many home-
land security settings, including protecting critical
infrastructure (Brown et al. 2006, Pita et al. 2008,

Nie et al. 2007). Wein (2008) applies Stackelberg
games to screening visitors entering the United States.
These works model the US government as the leader
that specifies the biometric identification strategy to
maximize the detection probability using fingerprint
matching and the follower as the terrorist who can
manipulate the fingerprint’s image quality. They have
also been used for studying missile defense systems
(Brown et al. 2005a) and the development of an adver-
sary’s weapon systems (Brown et al. 2005b). Inspec-
tion games, a family of Stackelberg games, are closely
related to the security games; they include models
of arms inspections and border patrols (Avenhaus
et al. 2002). Other recent works address random-
ized security patrolling using Stackelberg games for
generic “police-and-robber” scenarios (Gatti 2008) and
perimeter patrols (Agmon et al. 2008). Our work dif-
fers in two main aspects. First, we use a new, more
efficient game representation and mixed-integer linear
program (MILP) for modeling and solving the Stack-
elberg games to enable us to scale systems to repre-
sent complex real-world situations. Second, we model
the game with defender actions that incorporate the
domain constraints (e.g., scheduling constraints) to
more accurately model the specific games in which we
are interested.

A third area of related work is the application of
game-theoretic techniques, which are not based on
Stackelberg games, to security applications. Security
problems ranging from computer network security
(Lye and Wing 2005, Srivastava et al. 2005) to terror-
ism (Sandler and Arce 2003) are increasingly being
studied using game-theoretic analysis. Babu et al.
(2006) used linear programming approaches to model
passenger security systems at US airports; however,
their objective was to classify the passengers into
various groups and then screen them based on the
group to which they belong. Thus, game theory has
been used in security domains; in contrast, our work
focuses on overcoming the challenges that arise from
its application in the real world.

Methodology
ARMOR and IRIS build on the game-theoretic foun-
dations to address multiple types of players—the
police force and the adversary—to provide a random-
ized security policy. The algorithms used build on

Jain et al.: Software Assistants for Randomized Patrol Planning
270 Interfaces 40(4), pp. 267–290, © 2010 INFORMS

several years of research reported in the Autonomous
Agents and Multiagent Systems (AAMAS) conference
main track and workshops (Paruchuri et al. 2005,
2006, 2007). Although the major developments in this
research are the new algorithms that are at the heart
of the ARMOR and IRIS systems, we first explain
how a security domain can be modeled as a Bayesian
Stackelberg game.

Stackelberg Equilibrium
We begin by defining a normal-form Stackelberg
game. A generic Stackelberg game has two players:
a leader, �, and a follower, � . These players could
be either individuals or groups, e.g., a police force
or terrorist organization, cooperating to execute a
joint strategy. Each player has a set of possible pure
strategies, which we denote as �� ∈ �� and �� ∈ �� .
A mixed strategy allows a player to play a probability
distribution over pure strategies, denoted as �� ∈ ��
and �� ∈�� . The payoffs for each player are defined
over the space of all possible joint pure-strategy out-
comes: ����� 	 �� × �� → � for the defender and
each attacker. The payoff functions are extended to
mixed strategies in the standard way by taking the
expectation over pure-strategy outcomes. The fol-
lower can observe the leader’s strategy and then act
in a way that optimizes its own payoffs. Stated for-
mally, the attacker’s strategy in a Stackelberg security
game becomes a function that selects a strategy for
each possible leader strategy: F� 	 �� →�� .

The most common solution concept in game theory
is a Nash equilibrium, which is a profile of strate-
gies for each player in which no player can gain by
unilaterally changing to another strategy (Osbourne
and Rubinstein 1994). Stackelberg equilibrium is a
refinement of a Nash equilibrium that is specific to
Stackelberg games. It is a form of subgame perfect
equilibrium in that it requires each player to select the
best response in any subgame of the original game
(where subgames correspond to partial sequences of
actions). The effect is to eliminate equilibrium pro-
files that are supported by noncredible threats off the
equilibrium path. Although subgame perfection is a
natural requirement, it does not guarantee a unique
solution in cases in which the follower is indifferent
among a set of strategies. The literature contains two
forms of Stackelberg equilibria that identify unique

outcomes, as Leitmann (1978) proposed, and are typ-
ically called “strong” and “weak” (Breton et al. 1988).
The strong form assumes that the follower will always
choose the optimal strategy for the leader in cases of
indifference; the weak form assumes that the follower
will choose the worst strategy for the leader. Unlike
the weak form, strong Stackelberg equilibria (SSEs)
are known to exist in all Stackelberg games (Başar
and Olsder 1999). A standard argument suggests that
the leader is often able to induce the favorable strong
form by selecting a strategy arbitrarily close to the
equilibrium, which causes the follower to strictly pre-
fer the desired strategy (von Stengel and Zamir 2004).
We use an SSE partly for these reasons and because
it is the most commonly used solution concept in
the related literature (Osbourne and Rubinstein 1994,
Conitzer and Sandholm 2006, Paruchuri et al. 2008).
Definition 1. A set of strategies ���� F� � forms an

SSE if the strategies satisfy the following constraints.
1. The leader plays a best response:

������ F� �����≥����′�� F� ��′��� ∀�′� ∈��
2. The follower plays a best response:

������ F� �����≥�������� � ∀�� ∈��� �� ∈��
3. The follower breaks ties optimally for the leader:

������ F������≥�������� � ∀�� ∈��� �� ∈�∗
� �����

where �∗
� ���� is the set of follower best responses, as

noted above.
Whether the Stackelberg leader benefits from the

ability to commit depends on whether commitment
to mixed strategies is allowed. Committing to a pure
strategy can be good or bad for the leader. In the
“rock, paper, and scissors” game (Gintis 2009), forc-
ing commitment to a pure strategy would guarantee
a loss; however, von Stengel and Zamir (2004) show
that the ability to commit to a mixed strategy always
weakly increases the leader’s payoffs in equilibrium
profiles of the game. In the context of a Stackelberg
security game, a deterministic policy is a liability for
the defender (the leader) and a credible randomized
security policy is an advantage. Our model allows the
defender to commit to mixed strategies.

The Bayesian extension to the Stackelberg game
allows multiple types of players; each type is asso-
ciated with its own payoff values. For the security

Jain et al.: Software Assistants for Randomized Patrol Planning
Interfaces 40(4), pp. 267–290, © 2010 INFORMS 271

games discussed in this paper, we assume only one
leader type (e.g., only one police force) but multi-
ple follower types (e.g., multiple adversary types try-
ing to infiltrate security). The set of follower types
is denoted by � and each type � is represented by
a payoff matrix. The leader does not know the fol-
lower’s type. The goal is to find the optimal mixed
strategy to which the leader can commit, given that
each follower type knows the mixed strategy of the
leader when choosing its own strategy. Payoffs for
each type are defined over all possible joint pure-
strategy outcomes: ��	 ��� ×�� →� for the defender
and similarly for each attacker type. The leader’s best
response is now a weighted best response to the fol-
lowers’ responses, where the weights are based on the
probability of occurrence of each type. The strategy
of each attacker type � becomes F �� 	 �� →��� , which
still satisfies constraints (2) and (3).

Security Game Representation
In a security game, a defender must perpetually
defend the site in question, whereas the attacker is
able to observe the defender’s strategy and attack
when success seems most likely. This fits the descrip-
tion of a Stackelberg game if we map the attackers to
the follower’s role and the defender to the leader’s
role (Avenhaus et al. 2002, Brown et al. 2006). The
actions for the security forces represent the action of
scheduling a patrol or checkpoint, e.g., a checkpoint
at the LAX airport or a federal air marshal scheduled
to a flight. The actions for an adversary represent an
attack at the corresponding infrastructure entity. The
strategy for the leader is a mixed strategy spanning
the various possible actions.

Using conventional methods to represent security
games in normal form has two major problems.
First, many solution methods require the use of a
Harsanyi transformation when dealing with Bayesian
games (Harsanyi and Selten 1972). The Harsanyi
transformation converts a Bayesian game into a
normal-form game; however, the new game may be
exponentially larger than the original Bayesian game.
Our compact representation avoids this Harsanyi
transformation; we directly operate on the Bayesian
game. This is possible in our model because the
evaluation of the leader strategy against a Harsanyi-
transformed game matrix is equivalent to its eval-
uation against each game matrix for the individual

follower types (see the appendix); Paruchuri et al.
(2008) provide additional detail.

The second problem is that the defender has many
possible resources to schedule. This can also lead
to a combinatorial explosion in a standard normal-
form representation. For example, if the leader has
m resources to defend n entities, then normal-form
representations model this problem as a single leader
with

(
n
m

)
rows, with each row corresponding to a

leader action of covering m targets with security
resources. However, in our compact representation,
the game representation would only include n rows,
with each row corresponding to whether the corre-
sponding target was covered. Such a representation
is equivalent to the normal-form representation for
the class of problems we address in this work; Kiek-
intveld et al. (2009) provide additional details. This
compactness in our representation is possible because
the payoffs for the leader in these games depend
on whether the attacked target was covered—not on
which other targets were covered (or not covered).
The representation we use avoids both potential prob-
lems by using methods similar to other compact rep-
resentations for games (Koller and Milch 2003, Jiang
and Leyton-Brown 2006).

We now introduce our compact representation for
security games. Let T = �t1� � tn� be a set of targets
that may be attacked, corresponding to pure strategies
for the attacker. The defender has a set of resources
available to cover these targets, R = �r1� � rm�; e.g.,
in the FAMS domain, targets could be flights and
resources could be federal air marshals. Table 1 shows
four payoffs that define the possible outcomes for
an attack on a target. When facing an adversary of
type �, the defender’s payoff is denoted U��u

� �t� for
an uncovered attack and U��c

� �t� for a covered attack.
Similarly, U��u

� �t� and U��c
� �t� are the payoffs of the

attacker.

Covered Uncovered

Defender 5 −20
Attacker −10 30

Table 1: The table illustrates payoffs for defender and attacker for an
attack on a target.

Jain et al.: Software Assistants for Randomized Patrol Planning
272 Interfaces 40(4), pp. 267–290, © 2010 INFORMS

A crucial feature of the model is that payoffs
depend only on the target attacked and whether
it is covered by the defender. The payoffs do not
depend on the remaining aspects of the schedule,
e.g., whether any unattacked target is covered or
which specific defense resource provides coverage.
For example, if an adversary succeeds in attacking
terminal 1, the penalty for the defender is the same
whether the defender was guarding terminal 2 or ter-
minal 3. Therefore, from a payoff perspective, many
resource allocations by the defender are identical.
We exploit this by summarizing the payoff-relevant
aspects of the defender’s strategy in a coverage vec-
tor C that gives ct , the probability that each target
is covered. The analogous attack vector A� gives the
probability of attacking a target by a follower of type
�. We restrict the attack vector for each follower type
to attack a single target with a probability of 1. This
is without loss of generality because an SSE solution
still exists under this restriction (Paruchuri et al. 2008).
Thus, the follower of type � can choose any pure
strategy ��� ∈ ��� , i.e., attack any one target from the
set of targets.

The payoff for a defender when a specific target
t is attacked by an adversary of type � is given by
U�
��t�C� and is defined in Equation (1). Thus, the

expectation of U�
��t�C� over t gives U�

� , which is the
defender’s expected payoff, given coverage vector C,
when facing an adversary of type � whose attack vec-
tor is A� . U�

� is defined in Equation (2). By replac-
ing � with � , the same notation applies for each
follower type. Thus, U�

� �t�C� gives the payoff to the
attacker when a target t is attacked by an adver-
sary of type �. U�

� �t�C� and U�
��t�C� are used in the

MILP discussed below and provided in detail in the
appendix. In Equation (3), we also define the useful
notion of the attack set ���C�, which contains all tar-
gets that yield the maximum expected payoff for the
attacker type �, given coverage C. This attack set is
used by the adversary to break ties when calculating
an SSE. Moreover, in these security games, exactly one
adversary is attacking in one instance of the game;
however, the adversary could be of any type and the
defender does not know the type of the adversary
faced.

U�
��t�C�= ctU ��c

� �t�+ �1− ct�U��u
� �t� (1)

U�
��C�A

��=∑

t∈T
a�t · �ct ·U��c

� �t�+ �1− ct�U��u
� �t�� (2)

���C�= �t	 U �
� �t�C�≥U�

� �t
′�C� ∀ t′ ∈ T � (3)

In an SSE, the attacker selects the target in the
attack set with maximum payoff for the defender. Let
t∗ denote this optimal target. Then the expected SSE
payoff for the defender when facing this adversary of
type � with probability p� is U�

��C�= U�
��t

∗�C�× p� ;
for the attacker, U�

� �C�=U�
� �t

∗�C�.

Modeling the LAX and FAMS Domains
In this section, we describe the LAX and FAMS
security domains in detail and discuss how we repre-
sent them using the framework of Stackelberg secu-
rity games.

Domain Description
The LAX and FAMS security scenarios share impor-
tant characteristics. In both, a leader–follower dynamic
exists between the security forces and terrorist adver-
saries because LAX and FAMS are both concerned
with surveillance and insider threats and have lim-
ited resources to protect a very large number of possi-
ble targets, making it impossible to provide complete
coverage. Finally, the targets in question clearly have
different values and vulnerabilities in each domain.
Therefore, Stackelberg games are an ideal model for
accurately capturing the interaction between security
forces and adversaries in both domains.

Our solutions must also consider differences in
these domains. The first difference is the scale of
the problem. LAX has eight terminals that must be
protected; the air marshals are responsible for pro-
tecting tens of thousands of commercial flights each
day. Second, domain experts for LAX must specify
a fairly small number of payoffs; FAMS must evalu-
ate the values of thousands of potential targets. This
leads us to consider different methods and interfaces
for constructing game models for each case. Finally,
the FAMS domain requires more complex reason-
ing about spatial and temporal constraints in how
resources are scheduled (e.g., a given marshal can-
not be assigned to two flights with overlapping time
schedules). We now describe each domain in detail.

Jain et al.: Software Assistants for Randomized Patrol Planning
Interfaces 40(4), pp. 267–290, © 2010 INFORMS 273

LAX Domain. LAX is the fifth busiest and the
largest destination airport in the United States; it
serves 60–70 million passengers per year (Los Ange-
les World Airports 2010, Stevens et al. 2006). LAX
is known to be a prime terrorist target on the west
coast of the United States; multiple plotters have been
arrested attempting to attack it (Stevens et al. 2006).
To protect LAX, airport police have designed a secu-
rity system that uses multiple rings of protection, e.g.,
vehicular checkpoints, police units patrolling the roads
to the terminals, canines patrolling inside the termi-
nals, passenger security screening, and bag checks.
Airport police use intelligent randomization within
two of these rings; they place vehicle checkpoints on
inbound roads that service the LAX terminals (Fig-
ure 1(a)) and schedule patrols for bomb-sniffing canine
units within the terminals (Figure 1(b)).

The numbers of available vehicle checkpoints and
canine units are limited by resource constraints; there-
fore, randomization is used to increase the effective-
ness of these resources while avoiding patterns in the
scheduled deployments.

The eight LAX terminals have different characteris-
tics. Some terminals serve international flights; others
serve only domestic flights. They also vary in physical
size, passenger loads, and levels of foot traffic. Thus,
to determine a security policy, each terminal must be
assessed based on its specific value and risk. In addi-
tion, airport police identified uncertainty about the
adversary as a major problem to address. For exam-
ple, attackers may be hard-line, well-funded interna-
tional terrorists or amateur individuals. The payoff
values for different attack scenarios may depend on
the attacker’s type and capabilities.

FAMS Domain. To dissuade potential aggressors
and prevent attacks (Transportation Security Admin-
istration 2008), FAMS places undercover law enforce-
ment personnel aboard flights originating in and
departing from the United States. It does not disclose
the exact methods it uses to evaluate the risks that
terrorists pose on individual flights; however, we can
identify many factors that might influence such an
evaluation. Flights vary in their numbers of passen-
gers; some fly over densely populated areas and others
do not, and international flights serve different coun-
tries, some of which pose higher risks.

(a) LAX checkpoint

(b) Canine patrol

Figure 1: The pictures illustrate the deployment of security checkpoints
and canine patrols at LAX.

The scale of the domain is massive. Tens of thou-
sands of commercial flights are scheduled each day,
and public records indicate that FAMS employs thou-
sands of air marshals who must be scheduled on tours
of flights that obey various constraints (e.g., the time
required to board, fly, and disembark). Determining
air marshal schedules that meet all these constraints
is a computational challenge. The task is especially
difficult because it must also consider the values of
each flight.

Game Models
We now describe the instantiation of each domain
using a specific Stackelberg game model. This
involves specifying the possible targets that could be
attacked, the defense resources and constraints on
how they may be scheduled, and the payoffs that

Jain et al.: Software Assistants for Randomized Patrol Planning
274 Interfaces 40(4), pp. 267–290, © 2010 INFORMS

describe the outcomes of attacks on each target for
both the defender and the attacker. We rely on domain
experts to provide the values necessary to specify
these game models. Because these values can change
over time, we provide interfaces to allow the domain
experts to enter key parameters, which we then use to
populate the game model at run time. Once we have
a game model, we compute a solution using the Effi-
cient Randomized Allocation of SEcurity Resources
with Constraints (ERASER-C) method described in
the appendix. This model returns optimal coverage
probabilities for each target. By sampling based on
these probabilities, we obtain an explicit schedule for
the security forces (i.e., checkpoints or air marshals).

LAX Game Model. We modeled the problem of
scheduling vehicle checkpoints at the LAX airport as
a Bayesian Stackelberg game; we omitted the canine
model because it is similar to modeling checkpoints.
LAX has several inbound roads at which police can
set up checkpoints. The adversary chooses to attack
through one of these roads or “none,” and the police
place up to m< n checkpoints on these roads. Thus,
we define the set of actions for the police, ��, to be
this set of n roads.

We model � types of attackers with different pay-
off functions, representing different capabilities and
preferences for the attacker. If an adversary of type
� ∈ � attacks road i and the LAX police have not
placed a checkpoint on road i, the police receive a
payoff of Uu��

� �i� and the adversary receives a payoff
of Uu��

� �i�. If there is a checkpoint on road i, the police
receive a payoff of Uc��

� �i� and the adversary receives
a payoff of Uc��

� �i�. The payoff values used in the
model depend on several factors: (1) the likelihood
of a LAX police checkpoint intercepting an adversary
crossing that checkpoint (which may depend on traf-
fic volume); (2) the damage the adversary can cause
if it attacks via a particular inbound road; and (3) the
type of adversary, i.e., adversary capability. These fac-
tors, which domain experts provide as system inputs,
are used to calculate the payoff values for each road.
However, the game is not necessarily zero-sum. Even
an adversary who is caught might derive some bene-
fit, e.g., publicity. Ideally, we would be able to obtain
estimates of the adversaries’ payoffs directly from
these players. Because this is impossible in practice,

we rely on the domain experts to provide the most
informed estimates based on intelligence information.

The attacker types in the Bayesian model represent
distinct groups of adversaries. For example, a hard-
core, well-financed adversary could inflict significant
damage on LAX; therefore, the payoff values for an
attack by this adversary type have a greater mag-
nitude than the payoffs for an amateur attacker. In
addition to specifying the payoff functions for each
attacker type, we also require a probability distribu-
tion over the possible types. For example, if the LAX
police are facing only these two types of adversaries,
the probability that they are facing a hard-core adver-
sary is 20 percent, and the probability they are facing
an amateur attacker is 80 percent, we would represent
these probabilities in our model by a 20–80 split.

FAMS Game Model. We can model the FAMS
domain as a Stackelberg game. The targets in this
domain are n flights, one of which the attacker
chooses to attack. FAMS has m< n air marshals who
may be assigned to protect these flights. However,
the schedules that the air marshals can actually fly
are subject to logistical constraints; e.g., an air mar-
shal in Los Angeles can only leave on flights that
are outbound from this area. Similarly, timing con-
straints must be modeled. A single air marshal cannot
be scheduled to fly on two flights with overlapping
times (plus a window before and after the actual flight
time).

We model the air marshal assignment constraints
by introducing the concepts of schedules and resource
types into the game model. Each air marshal can
cover one schedule, consisting of a legal tour of flights
that returns to the origin city; each air marshal type
can cover a different set of schedules. The appendix
gives additional details about schedules and resource
types. The user can enter various parameters that
define which schedules are legal, how many marshals
are available, and what schedules the marshals can
fly. During a preprocessing phase, these parameters
are translated into the specific constraints in the game
model.

The payoffs for the FAMS game, which are defined
similarly to those for the ARMOR game, are based on
whether a marshal is on flight i, which the adversary
attacks. As we discussed in FAMS Domain, the exact

Jain et al.: Software Assistants for Randomized Patrol Planning
Interfaces 40(4), pp. 267–290, © 2010 INFORMS 275

methods used to arrive at these values are confiden-
tial. However, we can use many intuitive factors to
estimate payoff values, including information about
the flight and the capabilities of the air marshals and
potential adversaries. The relevant parameters were
defined in discussions with domain experts; they pro-
vide the specific values as input in the scheduling
process.

Software Assistants
We now describe the system architecture for each soft-
ware assistant, focusing primarily on ARMOR but
providing some discussion of IRIS as a comparison.
During the development process, we paid particular
attention to organizational acceptance. ARMOR and
IRIS must be simple enough so that users (i.e., secu-
rity officers) are comfortable using them regularly.
Therefore, we designed them to hide as much of the
complexity of the game-theoretic models as possible
while still giving security officers enough flexibility
to enter parameters that change frequently. Build-
ing functionality into IRIS to allow security officers
to import data from other systems to facilitate data
entry (e.g., importing flight information from exist-
ing databases) was also important. Finally, we had
to present the schedules that the system produces in
an easy-to-understand format and provide tools that
allow modifications.

Both ARMOR and IRIS are stand-alone desktop
applications. ARMOR was developed using the
Microsoft .NET framework; IRIS is a stand-alone Java
application. Because of security concerns, both sys-
tems run on machines that are not connected to any
network. The underlying solution methods use the
open source GNU Linear Programming Kit (GLPK) to
solve the mixed-integer programs. Additional infor-
mation on GLPK is available at its website, http://
www.gnu.org/software/glpk/. The core architecture
of the two applications (Figure 2) can be divided into
these three modules.

1. Input: The input module includes an interface
that allows the user to enter parameters and domain
information.

2. Back-end: User inputs are translated into a game
model that is passed to the Bayesian Stackelberg game
solver and then to a final process that generates a
sample schedule based on the computed probabilities.

3. Display: The final schedule is presented to the
user with options to modify the output, if necessary.

User Input
We rely on the security officers and other domain
experts to provide the knowledge required to specify
the game model. Some elements of the model do not
change over time; however, because other elements
change frequently, we must provide the officers with
a convenient way to enter the necessary values. The
basic input parameters that both ARMOR and IRIS
require are in four categories: (1) number of avail-
able resources and their capabilities; (2) set of targets;
(3) payoff values for each target; and (4) supplemental
data to improve the user experience (e.g., names and
labels). Both applications allow officers to save and
reuse this information across multiple executions.

ARMOR and IRIS differ in the information that is
preprogrammed (i.e., “hardcoded”) and the informa-
tion that the user must enter. For example, the set of
targets is preprogrammed because the number of LAX
terminals is fixed. However, the IRIS user must enter
the flight information because it can change each time
the system is run. Determining which parameters the
officers had to set was a significant task; we modi-
fied and ran both systems multiple times before the
domain experts and security officers were satisfied
that we had achieved the right balance between the
complexity of the input parameters and the flexibility
of the systems to capture the necessary information.

ARMOR. The interface for the ARMOR canine
program (Figure 3(a)) consists of a file menu, options
for varying the number of available teams per day of
the week, an option to change the number of days for
which to create a schedule, and a monthly calendar—
the parameters that the LAX police desired to edit on
a daily basis. We made a special effort to develop an
intuitive and user-friendly interface. When the user
presses the “Generate Schedule” button, the system
takes the input parameters, generates the underlying
game model, and returns a schedule for the user to
view. The example shown schedules six canines each
morning and evening for seven days.

The interface for the ARMOR checkpoint program
(Figure 3(b)) is similar; it also provides a monthly
calendar and options for the number of available

Jain et al.: Software Assistants for Randomized Patrol Planning
276 Interfaces 40(4), pp. 267–290, © 2010 INFORMS

Input module

Resource data
Target

definition

Target data

Supplemental
data

Value/risk data

Schedule
display

Schedule
output

Sample schedule
Randomized

schedule

ERASER-C

Payoffs
Stackelberg
game model

Resample

S
av

e/
lo

ad
 in

pu
ts

D
is

pl
ay

/o
ut

pu
tm

od
ul

e

Back-end module

Figure 2: The figure illustrates the general structure of the security assistants.

resources, number of days for which to create a sched-
ule, and time slots to schedule. A spreadsheet dis-
plays the proposed schedule and provides additional
opportunities for the security officers to modify the
schedules in a mixed-initiative setup. Three options
allow the user to alter the time-scheduling actions:
(1) number of checkpoints allowed during a partic-
ular time slot, (2) time interval of each time slot,
and (3) number of days to schedule. Three options
also restrict specific actions in the generated schedule:
(1) forced checkpoint, (2) forbidden checkpoint, and
(3) at least one checkpoint. These constraints, which
are intended to be used sparingly, accommodate sit-
uations in which a user is faced with exceptional cir-
cumstances or has specific knowledge and wishes to
influence the game’s output. The spreadsheet uses a
different color to represent each restriction.

ARMOR generates a different game for each time
slot on each day. The number of defender resources
in the model is the number of canine units and

checkpoints specified by the user. The number of tar-
gets is the number of terminals for the canine system
and the number of inbound roads for the checkpoints
system. Generating the game matrix also requires val-
ues for the payoffs associated with each possible tar-
get. These values depend on a variety of conditions,
including passenger loads, cost of the infrastruc-
ture, and publicity to the adversary. Domain experts
provided us with formulae, which we encoded in
ARMOR, to automatically generate payoff values for
all possible combinations of such conditions. Esti-
mates of passenger load and other elements are also
entered into ARMOR (details of these formulae and
tools are confidential). For any given day, ARMOR
can use that day’s conditions to select appropriate
payoff values for the targets, making it unnecessary
for LAX police officers to manually enter these values
and generate each schedule—a time-consuming and
error-prone process. The system still retains a high
degree of flexibility because values are precomputed
and stored for a wide range of possible conditions.

Jain et al.: Software Assistants for Randomized Patrol Planning
Interfaces 40(4), pp. 267–290, © 2010 INFORMS 277

(a) Canine interface

(b) Checkpoint interface

Figure 3: The screenshots show the ARMOR canine (a) and checkpoint (b) interfaces.

Jain et al.: Software Assistants for Randomized Patrol Planning
278 Interfaces 40(4), pp. 267–290, © 2010 INFORMS

Intelligence information can be incorporated in
ARMOR in several ways, depending on its nature.
For example, if the security forces believe that there
is a high probability that an attack will be attempted
on a particular target, they can increase its payoff
value in the game matrix, causing the deployment
of more security resources to protect that target. If
they learn of a new adversary type with a differ-
ent set of values for the targets, they can use the
Bayesian framework to add a new attacker type. Prob-
abilities of each adversary type can also be changed
to incorporate intelligence information. In addition,
ARMOR’s mixed-initiative interface allows security
forces to manually add constraints to incorporate
additional information.

IRIS. The FAMS domain is considerably larger
than ARMOR’s domain and the information required
to build its game model changes more frequently.
Therefore, the FAMS user interface and the mech-
anisms required to enter all necessary information
are considerably more complex than ARMOR’s. This
additional complexity is necessary to accurately cap-
ture the environment and provide all the functionality
requested by the security officers. However, it places
a greater burden on the officers to learn the system;
in addition, scheduling is more time-consuming than
in ARMOR. As with ARMOR, finding the right level
of complexity was an iterative process that involved
many discussions with the security officers and other
domain experts.

In the FAMS domain, we require information about
the available air marshals, their scheduling con-
straints, the possible flights, and the risks and val-
ues to associate with each flight. The data about
resources include information about the number and
location of air marshals and the conditions that define
legal flight schedules. Flight information includes var-
ious data about each flight, e.g., flight number, car-
rier, origin, destination, and aircraft type. Finally, to
improve usability, we collect some information that
is not strictly necessary for the game-theoretic anal-
ysis. This includes naming schemes for airports and
airlines and other information that allows the system
to generate schedules with a more usable format or
to interface easily with other systems.

Specifying the payoff values for every possible
flight is a particular challenge in this domain because

we must consider thousands of flights. To elicit these
values, we use an attribute-based system that is based
on the threat, vulnerability, and consequence (TVC)
model for estimating terrorism risk (Willis et al. 2005).
By eliciting values for attributes of flights rather than
specific flights, we dramatically reduce the number
of entries that the user must enter. Each flight is
given an aggregate value based on these attributes
(the specific calculations used to determine flight risk
are confidential). The values of the attributes for each
flight can be populated automatically from existing
databases. To allow for specific intelligence or excep-
tional circumstances, the user can also edit individual
payoff values for any flight; however, this is rarely
necessary and most of the analysis can be automated.

This preference elicitation system in IRIS has sub-
stantially reduced the number of values that the user
must enter. During a restricted test run on real data,
the attribute-based approach required the user to
enter 114 values—regardless of the number of flights.
By contrast, the non-attribute-based system required
10,284 user-entered values—2,571 valid flights over a
week, each of which required four payoff values. The
attribute-based approach clearly requires far fewer
input parameters and remains constant as the num-
ber of flights increases, allowing for excellent scala-
bility as we deal with larger sets of flights. Equally
important, attribute-based risk assessment is an intu-
itive and highly scalable method that can be used
in any problem in which people must distill numer-
ous attributes of an environment into a single value
for a large number of situations that share the same
attributes.

Game Generation and Solution
This module, which builds a specific instance of a
Bayesian Stackelberg game, is based on all data pro-
vided by domain experts and entered by security offi-
cers through the graphical user interfaces (GUIs). The
specifics (insofar as we are allowed to discuss them)
of how the input parameters and domain knowledge
are mapped into the underlying game models are
described in the Game Models and User Input sections
and in the appendix.

When an explicit game model has been gener-
ated, it is passed as input to the ERASER-C mixed-
integer program. This model can be solved using any

Jain et al.: Software Assistants for Randomized Patrol Planning
Interfaces 40(4), pp. 267–290, © 2010 INFORMS 279

standard solution package; we use the GLPK open-
source solver. ERASER-C returns an optimal mixed
strategy for the defender—a probability distribution
over the defender’s actions—that represents a ran-
domized policy for allocating the security resources
of either LAX or FAMS. From the randomized sched-
ule, we generate a sample schedule for the security
forces. This sample schedule specifies exactly where
and when each resource should be assigned to each
target. If necessary, it is also possible to “resample”
from the randomized schedule to generate another
specific schedule; however, this capability is used
rarely. The final schedules conform to the user-entered
domain constraints. In particular, any specific con-
straints given in ARMOR, e.g., forbidden checkpoint
mentioned in the ARMOR subsection above, are con-
sidered when final schedules are sampled.

Output Module
The output module presents the generated schedule
to the user. The user can accept it or add additional
constraints and run the scheduling program again.

ARMOR. The generated schedule of checkpoints
and canines is presented to the user via a spreadsheet.
Each row in the spreadsheet corresponds to one hour,
each column corresponds to a terminal, and each
entry represents a schedule generated by ARMOR.
The familiarity of the police officers with spreadsheets
was instrumental in their quick acceptance of the
ARMOR schedules.

If a schedule includes any alerts (e.g., if ARMOR
believes that user constraints are causing a very low-
likelihood checkpoint to be scheduled), the user may
alter the schedule by modifying the forbidden or
required checkpoints or by directly modifying the
schedule. If the user adds or removes constraints,
ARMOR can create a new schedule. When the sched-
ule has been finalized, it can be saved for actual use,
thus completing the system cycle.

IRIS. The generated schedules are presented to the
user via the application window. The user can view
more detailed information about each target or can
save the schedule in a file and use that file to ana-
lyze the schedule in more detail. FAMS could actu-
ally use the sample assignment of federal air marshals
to flight schedules. The scheduling assistant allows

the security officers to create numerous sample sched-
ules based on the same optimal mixed strategy or
manually change the assignment of federal air mar-
shals to flight schedules to create a final schedule
that meets FAMS needs. The user can also adjust any
parameter entered and solve the game again. The IRIS
output has the same format as the existing systems
that FAMS officers use (we do not discuss IRIS output
because of security concerns).

Lessons Learned
We learned some important lessons as we designed
and deployed ARMOR and IRIS. First, a critical
need for randomization in security operations exists.
Security officials are aware that requiring humans
to generate randomized schedules is unsatisfactory
because, as psychological studies show (Wagenaar
1972, Treisman and Faulkner 1987), humans have dif-
ficulty in randomizing and can fall into predictable
patterns. Game-theoretic randomization that appro-
priately weighs the costs and benefits of different
actions improves randomization results. Therefore,
security officials received our research enthusiastically
and were eager to apply it in their practices.

Second, organizational acceptance is critical. We
must be cognizant of the security officer’s ease (or dif-
ficulty) in adopting a solution. Instead of asking offi-
cers to make numerous and sometimes unnecessary
changes, minimizing these differences and complex-
ities can help ensure a successful implementation.
For example, tweaking the GUI to achieve a look
and feel that is familiar to the user can help that
user to more easily understand the system. Similarly,
because changes to the infrastructure are often costly
and (or) time-consuming, ease of incorporating the
changes into their daily routine is essential. For exam-
ple, using input parameters and creating outputs that
use the same format as existing protocols minimized
the additional work that our assistants would create
for the security officers and led to faster acceptance.

Third, providing the security officers with opera-
tional flexibility is important. When we initially gen-
erated schedules for canine patrols and created a very
detailed schedule in which we micromanaged the
patrols, the officers responded negatively; however,
when we created schedules that afforded them some
flexibility to respond to situations on the ground, they
responded more positively.

Jain et al.: Software Assistants for Randomized Patrol Planning
280 Interfaces 40(4), pp. 267–290, © 2010 INFORMS

Evaluation
In security applications, safety usually trumps costs;
therefore, quantifying the cost is difficult. Security and
ethical concerns also exist. Taylor et al. (2009, 2010)
discuss the difficulties in making such evaluations.

To illustrate these difficulties, consider an evalua-
tion of a security system that involves a long-term
study requiring prolonged periods (e.g., six months
to a year) of creating schedules by alternatively
using the previous methods and our game-theoretic
methods. During this time, all other variables that
are relevant to security (e.g., number and behavior
of adversaries, economic conditions, geopolitics, and
number of travelers) must remain constant. In addi-
tion, we assume that the adversaries’ actions are influ-
enced by the security measures they observe over a
given period. A security strategy that changes dur-
ing this observation would generate different actions
from the adversaries than would be observed in an
actual deployment. Therefore, we did not conduct
such a long-term study of the proposed security
strategies in the real world.

Instead, we provided a multifaceted evaluation that
combines evidence from as many sources as possi-
ble, including expert evaluations, data from the LAX
deployment, and data from various computer simu-
lations. Perhaps the most conclusive evidence of our
software assistants’ merits is their adoption and con-
tinued use by the security forces at LAX and FAMS.
In Adoption and Evaluation below, we describe some
reasons for their adoption and present arrest-record
data and feedback from domain experts based on
ARMOR’s actual use at LAX. We use simulations to
evaluate various features of ARMOR and IRIS; we
also use real application data, which we modified
for security reasons. We describe these experiments
in Simulation Results and include comparisons of the
game-theoretic schedules with both a uniform ran-
dom benchmark and benchmarks that reflect previous
LAX scheduling practices.

The evaluations we discuss in this paper do
not include all the analysis that has been done
on ARMOR. For example, Pita et al. (2009) test
the scheduling methods that ARMOR uses against
human adversaries in a controlled laboratory setting.
The results generally show that ARMOR’s schedules
perform very well (although the potential for new

methods that exploit certain predictable patterns in
the responses of adversaries seems to exist).

Adoption and Evaluation
FAMS conducted a quantitative and qualitative inter-
nal evaluation of IRIS and determined that the system
meets its requirements. Although it would not dis-
close any details of this evaluation, FAMS informed
us that because of this evaluation, it has begun
scheduling federal air marshals in flights in a pilot
phase.

ARMOR has been in use for more than two years.
Hence, in this section, we present a more extensive
evaluation of ARMOR by discussing three sources
of evidence that prove ARMOR’s value to LAX in
its real-world deployment: arrest data, domain expert
evaluation, and ease of use.
Arrest Data. We received summarized and actual

reports from the LAX police showing the number of
violations detected at checkpoints in 2007, 2008, and
January 2009. The violations listed in the January 2009
report are as follows:

1. January 3, 2009: Loaded 9-millimeter (9mm) pis-
tol discovered;

2. January 3, 2009: Loaded 9mm handgun discov-
ered (no arrest);

3. January 9, 2009: 16 handguns, four rifles, one
pistol, and one assault rifle discovered (some fully
loaded);

4. January 10, 2009: Two unloaded shotguns dis-
covered (no arrest);

5. January 12, 2009: Loaded 22-calibre (22cal) rifle
discovered;

6. January 17, 2009: Loaded 9mm pistol discovered;
7. January 22, 2009: Unloaded 9mm pistol discov-

ered (no arrest).
In Figure 4, we tabulate the number of violations

for the 15 months prior to ARMOR’s deployment
and for 2008 when ARMOR was in use for the
full year. The x-axis shows the types of violations;
the y-axis shows the numbers of violations detected,
which are substantially higher at LAX after ARMOR’s
deployment than in the preceding period. For exam-
ple, 30 drug-related offenses were detected follow-
ing ARMOR’s deployment; only 4 such offenses were
detected before its deployment. We must be care-
ful not to draw too many conclusions from these

Jain et al.: Software Assistants for Randomized Patrol Planning
Interfaces 40(4), pp. 267–290, © 2010 INFORMS 281

Firearm
violations

Drug-related
offenses

Total

4/17/2006 to 7/31/2007

1/2/2008 to 12/31/2008

70

60

50

40

30

20

10

0
Miscellaneous

Figure 4: This graph shows a comparison of the number of violations
detected at LAX checkpoints before and after ARMOR’s deployment.

data because of the large number of uncontrolled
variables (e.g., the number of checkpoints was not
consistent during this period); however, the ARMOR
checkpoints appear to be effective.
Domain Expert Evaluation. No security system—

ARMOR and IRIS included—can provide 100 percent
security; however, it can aid security forces in mak-
ing the best possible use of the resources at their
disposal. Qualitative internal and external security
reviews indicate that ARMOR is both effective and
highly visible. Director James Butts of the LAX police
force reports that ARMOR “makes travelers safer”
and gives “a greater feeling of police presence” (Murr
2007). Erroll Southers, Assistant Chief of LAX Airport
Police, told a Congressional Committee hearing that
“LAX is safer today than it was eighteen months ago,”
due in part to ARMOR (Committee on Homeland
Security 2008). A recent external study by interna-
tional transportation security experts concluded that
ARMOR is a key component of the LAX defensive
setup. The ARMOR team has also been awarded let-
ters of commendation from the City of Los Angeles
in recognition of its efforts toward securing the Los
Angeles International Airport (University of Southern
California 2009).

Thus, the domain experts have been highly sup-
portive of ARMOR. Although such studies are
not very useful for quantifying ARMOR’s benefits,
they suggest that the domain experts believe that

ARMOR generates better schedules than their previ-
ous approaches.
Ease of Use. ARMOR has been instrumental in

aiding police forces to efficiently and more conve-
niently generate schedules to deploy additional units.
For example, consider a situation in which only two
canines need to be scheduled for two hours each
over any of the seven terminals. Each canine could
be assigned to any of the seven terminals each hour,
making the search space as large as 74 �2�401� combi-
nations. This search space grows exponentially with
the number of canines and the number of hours for
which the schedule must be generated, making it
impractical for human schedulers to generate.

ARMOR has played a significant role in reducing,
if not completely eliminating, the tasks of the security
officers to manually construct patrolling schedules.
In addition, its use has allowed them to modify the
generated schedules. Furthermore, although ARMOR
was designed as a mixed-initiative system, security
officers have chosen not to modify its schedules and
domain experts have chosen not to tweak its deci-
sions, suggesting that they view the output schedules
as high quality.

Simulation Results
To better quantify the benefits of the game-theoretic
schedules produced by ARMOR and IRIS, we look at
simulation results in more controlled settings. In the
following subsections, we compare the achieved qual-
ity (or the defender reward) of our strategy against
uniformly random and other strategies that reflect
the strategies that human schedulers use. We also
present run-time results in the Run-Time Comparisons
subsection, comparing the ERASER-C run times with
the previous fastest solvers for Stackelberg games—
DOBSS (Paruchuri et al. 2008) and Multiple-LP ap-
proaches (Conitzer and Sandholm 2006); ERASER-C is
significantly faster than either approach. To compare
our solution quality with that of other approaches, we
describe three sets of simulation results below.
Comparison with Uniform Random Policy. A uni-

form random policy is the most obvious alterna-
tive for randomization. In this policy, each defender
action has equal probability, regardless of payoff.
We measure solution quality by calculating the high-
est expected payoff attainable by the defender and

Jain et al.: Software Assistants for Randomized Patrol Planning
282 Interfaces 40(4), pp. 267–290, © 2010 INFORMS

Game 1

6

5

4

3

2

D
ef

en
de

r
re

w
ar

d

1

0

–1

–2
Game 2 Game 3 Game 4

ERASER-C (3 canines) ERASER-C (5 canines)

Uniform (6 canines)ERASER-C (6 canines)

Figure 5: In this graph, we show a comparison of an ARMOR solution and
a uniformly random solution for canine patrols.

use the SSE assumption that the attacker chooses
an optimal response and breaks ties in favor of the
defender. We ran the experiments using data from the
deployment of canines in the LAX domain. Figure 5
shows the differences in defender reward obtained
by scheduling canine units at LAX using ERASER-C
and scheduling them using a uniform random strat-
egy. The simulations used the actual game models
for the ARMOR canine problems. In the uniform
random strategy, canines are randomly assigned to
terminals with equal probability. The x-axis repre-
sents games with different payoffs, and the y-axis
represents the reward obtained. ERASER-C clearly
performs better using three canine units than the uni-
form random strategy does using six canine units.
For example, the reward of a uniformly random strat-
egy with six canine units is −1.47 on average across
the four games; the reward of three, five, and six
canines with ERASER-C is 1.11, 3.38, and 4.41, respec-
tively. Thus, ERASER-C randomization provides bet-
ter results using fewer resources than uniformly
random strategies in the same domain.

We ran similar tests using data from the FAMS
domain. We used one week of real flight data for
subregions of a region that we called Region A, three
separate sets of hypothetical FAMS home-city data
that vary the number of federal air marshals avail-
able, and hypothetical payoffs. Region A, which we
show as anonymous because of security concerns,
comprises five large countries that we have desig-
nated 1–5 and a few small countries. Table 2 shows

Region Flights Flight schedules

1 873 1�181
1, 2 1�147 1�403
1–3 1�528 1�660
1–4 1�845 1�975
1–5 2�033 2�114
Region A 2�571 2�416

Table 2: This table shows the number of flights and flight schedules
related to different regions used for FAMS experiments.

data on the number of flights and flight schedule for
each region. We created random values for the other
input parameters and held them constant throughout
our testing.

In Figure 6, the y-axis represents the normalized
defender reward for both strategies; all payoffs are
normalized to the maximum expected defender’s
payoff achievable under the strategy generated by our
method. Across the x-axis, we show different regions
such that the number of flights and flight sched-
ules increase from left to right. Thus, the rightmost
group of bars, from left to right, represents the max-
imum expected defender’s payoff achievable under
ERASER-C as 100 percent and under the uniform
randomization strategy as 81 percent (i.e., 19 percent
worse than ERASER-C). ERASER-C’s solution is supe-
rior to the uniformly random solution in every region
we tested.
Comparisons with Previous Scheduling Methods.

The LAX security officers informed us that they had
previously generated checkpoint schedules based on

1 1,2

ERASER-C
Uniform

110

105

100

95

90

85

80

D
ef

en
de

r
re

w
ar

d
(%

)

1–3 1–4 1–5 Region A

Region

Figure 6: In this graph, we compare the ERASER-C solution quality with
the uniform random solution quality.

Jain et al.: Software Assistants for Randomized Patrol Planning
Interfaces 40(4), pp. 267–290, © 2010 INFORMS 283

a cyclic strategy with random perturbations. A study
of their previous schedules showed clear patterns
despite these random perturbations—no checkpoint
was repeated for two consecutive days. Therefore,
we also compared the ERASER-C strategy against
two strategies: (1) a “cyclic” strategy, in which the
checkpoints were scheduled in a cyclic order on all
inbound roads, and (2) a “restricted uniform” strat-
egy, which was a uniformly random strategy with the
additional restriction that no checkpoint was repeated
on two consecutive days.

We performed our tests using the same setup that
the LAX police used in ARMOR—police officers place
one checkpoint on any of the five inbound roads and
the rewards of the terminals are randomly chosen as
numbers between 1 and 10. We varied the duration
for which the adversary can make observations from
0 to 100 days in increments of 25 days and averaged
our results over 100 trials. In these simulations, we
assumed that the adversary can use simple pattern
recognition techniques to recognize patterns in the
checkpoint schedules. In detail, the adversary main-
tains a history of observed checkpoints and generates
confidence intervals over sequences of observations.

Figure 7 shows our results. The x-axis repre-
sents the number of observations available to the
adversary, and the y-axis represents the average
defender reward. In comparison with Figure 5, the
expected defender reward is mostly negative because
we are focusing on a single checkpoint consis-
tent with previous scheduling approaches—not on

DOBSS

Cyclic
strategy

Restricted
uniform

0

–1

–2

–3

–4

–5

25 days 50 days 75 days 100 days

–6

D
ef

en
de

r
re

w
ar

d

Figure 7: In this graph, we compare the defender reward for the ARMOR
strategy and policies representative of previous methods.

the multiple canines used for scheduling in Fig-
ure 5. The ERASER-C strategy has a higher aver-
age defender reward compared with the other two
strategies because the adversary can better predict the
defender–action cyclic and restricted uniform strate-
gies than it can predict the ERASER-C strategy. There-
fore, simple pattern recognition techniques are suf-
ficient for the adversary to exploit the patterns in
the cyclic and restricted uniform strategies. Although
these patterns can be avoided by using uniformly
random strategies, such strategies do not consider
the different preferences over targets of the defender.
ARMOR provides weights for the targets such that
the average defender reward is highest when com-
pared with both cyclic and restricted uniform strate-
gies. In addition, ARMOR strategies are not only
weighted random; they also consider that the adver-
sary observes the defender’s strategy and then makes
an informed, rational choice.
Solution Quality in the Bayesian Case. We

also tested the performance of our algorithms in
the Bayesian case, i.e., when multiple security
resources were faced with multiple adversary types.
Figures 8(a), 8(b), and 8(c) show the results of
these experiments, which we conducted using the
LAX domain. We considered a scenario in which
one, two, or three security units had to defend
10 targets against two types of adversaries. The
x-axis represents the probabilities of occurrence for
type 1 and type 2 adversaries. The x-axis shows the
probability p of adversary type 2 (the probability of
adversary type 1 is then 1 − p). The y-axis represents
the reward obtained by the defender. Figure 8(a)
shows the comparison when one resource (check-
point) is placed. For example, when adversary type
1 occurs with a probability of 0.1 and type 2 occurs
with a probability of 0.9, the reward obtained by the
ERASER-C strategy is −172 and the reward obtained
by a uniform random strategy is −2112. Note that the
reward of the ERASER-C strategy is strictly greater
than the reward of the uniform random strategy for
all probabilities of occurrence of the adversaries.

Figure 8(b) shows the probability distribution on the
x-axis and the reward obtained on the y-axis. It also
shows the difference in the reward obtained when two
resources (checkpoints) are available—the reward of
the ERASER-C strategy is greater than the reward of

Jain et al.: Software Assistants for Randomized Patrol Planning
284 Interfaces 40(4), pp. 267–290, © 2010 INFORMS

(a) One checkpoint

0

–0.5

–1.0

–1.5

–2.0

–2.5

–3.0

–3.5

1.5

1.0

0.5

0

–0.5

–1.0

–1.5

–2.0

1.6

1.4

1.2

1.0

0.8

0.6

0.4

0.2

0

0 0.1 0.2 0.3 0.4 0.5

Probability of adversaries (type 2)

D
ef

en
de

r
re

w
ar

d
D

ef
en

de
r

re
w

ar
d

D
ef

en
de

r
re

w
ar

d

0.6 0.7 0.8 0.9 1.0

0 0.1 0.2 0.3 0.4 0.5

Probability of adversaries (type 2)
0.6 0.7 0.8 0.9 1.0

0 0.1 0.2 0.3 0.4 0.5

Probability of adversaries (type 2)
0.6 0.7 0.8 0.9 1.0

(b) Two checkpoints

(c) Three checkpoints

ERASER-C
Uniform

Figure 8: In these graphs, we compare the ERASER-C’s solution quality
with that of the uniform random strategy in the Bayesian case.

the uniform random strategy. In the two-resource sit-
uation, the type 2 adversary chooses the action none
(to not attack). We observe that the rewards of the
ERASER-C and the uniform strategies are the same

when only the type 2 adversary is present. Figure 8(c)
presents the case of three resources (checkpoints). The
reward values obtained by ERASER-C in such a case
are always positive because the chances of catching
the type 1 adversary improve significantly with three
checkpoints. The reward of ERASER-C decreases as
the probability of occurrence of the type 1 adversary
decreases. Note that the type 2 adversary, as in the
case of two resources, decides none; hence, the reward
of the ERASER-C strategy and the uniformly random
strategy are the same when only the type 2 adversary
is present.
Run-Time Comparisons. For ARMOR and IRIS to

be useful, their solution algorithms must be able
to solve very large problem instances in a reason-
able amount of time. To demonstrate the scalabil-
ity of our algorithms, we conducted experiments in
which we scaled three different parameters of the
domain: the number of targets, the number of available
resources, and the number of adversaries. In each case,
ERASER-C was more scalable than DOBSS (Paruchuri
et al. 2008) and Multiple-LPs (Conitzer and Sandholm
2006). In Figures 9 through 12, we show results for
a large realistic game with thousands of targets and
hundreds of resources from the FAMS domain; these
games can be solved in less than 15 minutes.
Scaling the Number of Targets. We first present

the results of increasing the number of targets from
25 to 200, fixing both the number of resources and
adversary types to 1 (Figure 9). The x-axis shows

25

R
un

 ti
m

e
(in

 lo
g-

sc
al

e
in

 s
ec

)

100

10

1

0.1

0.01
50 75

ERASER-C
DOBSS
Multiple-LPs

100 125

Number of targets
150 175 200

Figure 9: In this graph, we compare the run times of ERASER-C with pre-
vious methods as we increase the number of targets.

Jain et al.: Software Assistants for Randomized Patrol Planning
Interfaces 40(4), pp. 267–290, © 2010 INFORMS 285

R
un

 ti
m

e
(in

 lo
g-

sc
al

e
in

 s
ec

)

10

1

0.1

0.01

ERASER-C
DOBSS
Multiple-LPs

Number of resources
1 2 3 4 5 6 7

Figure 10: In this graph, we compare the run times of ERASER-C with pre-
vious methods as we increase the number of resources.

the number of targets; the y-axis shows the run
time in seconds on a logarithmic scale. For exam-
ple, for 100 targets, the run times of ERASER-C,
DOBSS, and Multiple-LPs are 0.673, 13.84, and
4.89 seconds, respectively. We averaged the results
over 30 trials with different randomly generated
game matrices. ERASER-C is considerably faster than
either algorithm. Note also that when the num-
ber of resources is scaled proportionately with the
number of targets, this effect is even more dra-
matic (Kiekintveld et al. 2009).
Scaling the Number of Resources. In this experi-

ment, we vary the number of resources from 1 to 7,
using 15 targets and one adversary type (Figure 10).
The x-axis shows the number of resources; the y-axis
shows the run times in seconds on a logarithmic
scale. For example, for five resources, the run times of
ERASER-C, DOBSS, and Multiple-LPs are 0.044, 11.74,
and 3.06 seconds, respectively. When we averaged the
results over 30 trials with different randomly gener-
ated game matrices, we again found that ERASER-C
was much faster than either algorithm. The effect of
the combinatorial set of possible assignments that is
enumerated by both DOBSS and Multiple-LPs is also
clear in this plot. ERASER-C solution times are con-
stant on the log scale as the number of resources
increases; however, the other algorithms show sub-
stantial increases—even on the log scale.
Scaling the Number of Adversaries. We increased

the number of adversaries from 1 to 5 (Figure 11)
using 10 targets and one resource. The x-axis shows

R
un

 ti
m

e
(in

 lo
g-

sc
al

e
in

 s
ec

)

Number of adversary types
1

1,000,000

100,000

10,000

1,000

100

10

1

0

0
2 3 4 5

ERASER-C
DOBSS
Multiple-LPs

Figure 11: In this graph, we compare the run times of ERASER-C with pre-
vious methods when the number of adversary types is increased.

the number of adversaries; the y-axis shows run times
in seconds on a logarithmic scale. For example, for
four adversaries, ERASER-C and DOBSS took 0.244
and 0.524 seconds, respectively; Multiple-LPs was the
slowest, taking 5,138.0 seconds. When we averaged
all results over 30 trials, we found that ERASER-C
was also the fastest, although DOBSS scaled similarly
with a single resource. The Multiple-LPs method uses
the Harsanyi transformation, which results in much
slower solution times as we increase the number of
adversary types.
Scaling to Large Games. Finally, we present results

on a real data set for the FAMS domain to show
that ERASER-C is capable of solving these games
in a reasonable amount of time. We show the run
time for ERASER-C to generate a schedule for dif-
ferent numbers of possible defense resources. The
targets are defined using actual flight data from sev-
eral (unnamed) regions of various sizes; all flights are
between the United States and the given regions dur-
ing a one-week period (Figure 12).

In Figure 12, the y-axis represents the time required
for generating a schedule in minutes, and the x-axis
shows the region from which the flight data was
taken. We used the same game-size region informa-
tion from Figure 6 and as Table 2 shows. Our tests
included 100, 200, and 500 air marshals in three sepa-
rate sets, respectively, as the x-axis in Figure 12 shows;
for security reasons, the actual number of federal air
marshals is unavailable to us. The first bar (in dark
gray) on the left represents an average run time of 3.65

Jain et al.: Software Assistants for Randomized Patrol Planning
286 Interfaces 40(4), pp. 267–290, © 2010 INFORMS

14

12

10

8

6

4

T
im

e
(m

)

2

100 air marshals
200 air marshals
500 air marshals

0

1

1,
2

1–
3

1–
4

1–
5

R
eg

io
n

A 1

1,
2

1–
3

1–
4

1–
5

R
eg

io
n

A 1

1,
2

1–
3

1–
4

1–
5

R
eg

io
n

A

Figure 12: In this graph, we show the run-time results for realistic FAMS problems.

minutes to create a schedule for all flights to coun-
try 1 within a one-week period over 20 trials. The
first bar on the left (in light gray) represents the same
experiment; however, we ran it using a medium num-
ber of federal air marshals. All the game instances
were completed in less than 15 minutes, which is well
within FAMS’ time requirements for these problems.

Summary
Monitoring and patrolling are key components of law
enforcement in security domains. In generating sched-
ules for these patrols, it is important to consider the
varying weights of the targets being protected and
to also realize that potential attackers often observe
the procedures being used. This paper describes two
scheduling assistants, ARMOR for the LAX police
and IRIS for FAMS; each provides game-theoretic
solutions to this problem. They assist the security
forces in generating randomized patrols and ensure
that differences in the value of individual targets are
considered.

ARMOR and IRIS use algorithmic advances in mul-
tiagent systems research to solve the class of mas-
sive security games with complex constraints, which
were not previously solvable in realistic time frames.
Thus, although our applications were designed to be
deployed at LAX and FAMS, they also provide a
general framework for solving patrolling scheduling
problems in other domains.

Our game-theoretic framework could also be
applied directly to the randomization of security

procedures that the Transportation Security Admin-
istration (TSA) conducts. TSA directs individual air-
ports in the daily screening of passengers and bags
on local flights, handles customs and border pro-
tection, and conducts random employee screenings.
Our game-theoretic model could give TSA an intelli-
gent method of selecting and scheduling these secu-
rity procedures. Other examples of potential domains
include patrolling at ports and subway systems.

In summary, ARMOR and IRIS represent successful
transitions of game-theoretic advances to applications
that are valuable in the real world.

Appendix

Solution Method
The Efficient Randomized Allocation of SEcurity
Resources with Constraints (ERASER-C) algorithm
takes as input a security game in the compact form
described in the Security Game Representation section
and solves for an optimal coverage vector correspond-
ing to an SSE strategy for the defender. We allow
resources to be assigned to schedules covering multiple
targets. The set of legal schedules, S = �s1 sl�, is a
subset of the power set of the targets, with restrictions
on this set representing scheduling constraints. We
define the relationship between targets and schedules
by using the function M	 S×T → �0�1�, which evalu-
ates to 1 if and only if t is covered in s. The defender’s
strategy is now an assignment of resources to sched-
ules, rather than targets. Another important notion is

Jain et al.: Software Assistants for Randomized Patrol Planning
Interfaces 40(4), pp. 267–290, © 2010 INFORMS 287

the presence of resource types, � = �*1� �*v�, each
with the capability to cover a different subset of S.
The number of available resources of each type is
given by the function ��*�. Coverage capabilities for
each type are given by the function �	 S×�→ �0�1�,
which is one if the type can cover the given sched-
ule and zero otherwise. Our current implementation
uses complete matrices to represent M and �, but
sparse representations could offer additional perfor-
mance improvements.

The combination of schedules and resource types
captures key elements of the security domains. For
example, in FAMS, federal air marshals are resources,
flights are potential targets, and payoff values are
defined by risk analysis of the flight. However, a
marshal cannot be on all possible flights because of
location and timing constraints; e.g., a marshal in
New York cannot board a flight out of Los Angeles.
Legal schedules can be used to define the set of pos-
sible flights that a federal air marshal could feasibly
fly, given these constraints. Resource types are used
to define the initial state (i.e., location) of a marshal,
which defines a subset of legal schedules that deter-
mine the flights that any given marshal could fly.

The effect of adding scheduling and resource cov-
erage constraints is to constrain the space of feasible
coverage vectors. Consider an example with a single
federal air marshal defending three flights. Suppose
that two legal schedules cover targets �1�2� and �2�3�.
Given only these schedules, it is impossible to imple-
ment a coverage vector that places 50 percent prob-
ability on both targets 1 and 3, with no coverage of
target 2.

The algorithm is an MILP, which we present in
Equations (4)–(15). Table A.1 shows the notations for
the symbols we use in the MILP. Equations (5) and (9)
force the attack vector to choose a single target with
a probability of 1. Equation (6) restricts the cover-
age vector to probabilities in the range ,0�1-, and
Equation (12) constrains the coverage by the number
of available resources. The coverage of each sched-
ule must sum to the contributions of the individual
resource types, as Equation (10) specifies. The map-
ping between the coverage of schedules and coverage
of targets is enforced in Equation (11). Equation (12)
restricts the schedule so that only the available num-
ber of resources of each type is used. No probabil-
ity may be assigned to disallowed schedules for each

Symbol Meaning

d� Reward of defender against adversary of type �
k� Reward of adversary type �
p� Probability of occurrence of adversary of type �
� Set of adversary types
T Set of targets
A� Attack vector for the adversary of type �
a
�
t Probability of adversary of type � attacking target t

C Coverage vector of the defender
ct Probability of defender covering target t
h�s��� Probability of coverage of schedule s by defender type �
qs Total coverage probability over schedule s
S Set of valid schedules
� Set of resource types
��s��� Capability: 1 if type � can cover schedule s; 0 otherwise
���� Number of available resources of type �
M�s� t� Mapping: 1 if schedule s covers target t ; 0 otherwise
Z Huge positive constant
U

�
��t� C� Utility of the defender when facing

adversary type � who attacks target t
when defender coverage is C

U
�
� �t� C� Utility of the adversary of type � when target t

is attacked and defender coverage is C

Table A.1: In this table, we describe the notation used in Equations
(4)–(15).

resource type, which Equation (13) enforces explicitly.
Equation (14) defines the defender’s expected pay-
off, contingent on the target attacked in A� , where
� is the follower type. The objective maximizes d� ;
therefore, for any optimal solution, d� = U�

��C�A
��.

This also implies that C is maximal, given A� for any
optimal solution because d� is maximized. Similarly,
Equation (15) forces the attacker to select a strategy
in the attack set of C. If the attack vector specifies a
target that is not maximal, this constraint is violated.
Therefore, taken together, the objective and Equations
(14) and (15) imply that C and A� are mutual best
responses for the defender and the adversary in any
solution. Thus, the defender mixed-strategy C and the
adversary attack vector A� for each adversary type �
form an SSE of the security Stackelberg game.

max
a� c� q�h�d�k

∑

�∈�
d�p� (4)

a�t ∈ �0�1� ∀ t ∈ T � � ∈ �� (5)

ct ∈ ,0�1- ∀ t ∈ T � (6)

qs ∈ ,0�1- ∀ s ∈ S� (7)

hs�* ∈ ,0�1- ∀ s� * ∈ S×�� (8)

Jain et al.: Software Assistants for Randomized Patrol Planning
288 Interfaces 40(4), pp. 267–290, © 2010 INFORMS

∑

t∈T
a�t = 1 ∀� ∈ �� (9)

∑

*∈�
hs�* = qs ∀ s ∈ S� (10)

∑

s∈S
qsM�s� t�= ct ∀ t ∈ T � (11)

∑

s∈S
hs�*Ca�s�*�≤��*� ∀* ∈�� (12)

hs�* ≤Ca�s�*� ∀ s� * ∈ S×�� (13)

d� −U�
��t�C�≤ �1− a�t � ·Z ∀ t ∈ T � � ∈ �� (14)

0≤ k� −U�
� �t�C�≤ �1− a�t � ·Z ∀ t ∈ T � � ∈ � (15)

The payoff values, U�
��t�C� and U�

� �t�C�, are cal-
culated based on Equations (1) and (2). The values of
U��c
3 and U��u

3 used in these equations are the pay-
off values to the defender when a target is covered
and uncovered, respectively. The domain experts pro-
vided these values (see Software Assistants). Similarly,
they provided the payoff values for the adversaries.

The values of other model parameters are calcu-
lated based on user input and the game specifica-
tion. Police officers and canines are the resources for
ARMOR for both checkpoints and canines. ARMOR
does not differentiate between resources (e.g., all
canines are assumed to be equally capable); hence,
there is exactly one resource type �. The user enters
the number of resources �, i.e., checkpoints or
canines. In ARMOR, the set of legal schedules is an
assignment of a checkpoint to an inbound road; the
system automatically generates it because ARMOR is
aware of the airport’s road map. Its capability matrix
Ca consists of all ones because any resource could
be assigned to any target; e.g., any canine could be
assigned to any terminal.

Similarly, all model parameters in IRIS are defined
based on user input and domain constraints. The fed-
eral air marshals are its resources; the FAM offices
form the resource types—information supplied to
IRIS by the domain experts. The security officers enter
the number of resources of each type �, i.e., the num-
ber of federal air marshals in each office, into IRIS.
FAMS provides the set of legal schedules S as input
to the system. Each schedule is a sequence of flights
that a federal air marshal can take to complete a tour.
In IRIS, the capability matrix Ca is defined based
on resource types; e.g., federal air marshals at the

Los Angeles FAM office can only cover schedules fly-
ing out of Los Angeles. Hence, only those schedules
would have their capabilities set to one. The system
also calculates the mapping M based on the domain
specifications. For example, in IRIS, if schedule s spec-
ifies taking flight f1 followed by flight f2, then the
row in M corresponding to s would have ones only
in columns corresponding to f1 and f2.

The ERASER-C MILP corresponds to an SSE of the
security game. The proof is based on the following
two claims: (1) the coverage probability of the leader
and the attack set of the follower are mutual best
responses by the construction of the MILP, and (2) the
coverage probability of the leader gives the leader the
optimal utility. The complete details of the proof can
be found in Kiekintveld et al. (2009).

Acknowledgments
The development of ARMOR and IRIS has been successful
because of the exceptional collaboration of the Los Angeles
Airport Police and the United States Federal Air Marshal
Service. This research was supported by the United States
Department of Homeland Security through the Center for
Risk and Economic Analysis of Terrorism Events (CREATE)
under Grant 2007-ST-061-000001. However, any opinions,
findings, conclusions, or recommendations in this document
are those of the authors and do not necessarily reflect the
views of the United States Department of Homeland Secu-
rity. F. Ordóñez would also like to acknowledge the support
of FONDECYT through Grant 1090630.

References
Agmon, N., V. Sadov, G. A. Kaminka, S. Kraus. 2008. The impact

of adversarial knowledge on adversarial planning in perime-
ter patrols. Proc. 7th Internat. Conf. Autonomous Agents Multia-
gent Systems, Vol. 1. International Foundation for Autonomous
Agents and Multiagent Systems, Richland, SC, 55–62.

Avenhaus, R., B. von Stengel, S. Zamir. 2002. Inspection games. R. J.
Aumann, S. Hart, eds. Handbook of Game Theory with Economic
Applications, Vol. 3. North-Holland, Amsterdam, 1947–1987.

Babu, V. L. L., R. Batta, L. Lin. 2006. Passenger grouping under
constant threat probability in an airport security system. Eur.
J. Oper. Res. 168(2) 633–644.

Bard, J. F. 1999. Practical Bilevel Optimization: Algorithms and Applica-
tions �Nonconvex Optimization and Its Applications�. Kluwer Aca-
demic Publishers, Norwell, MA.

Başar, T., G. J. Olsder. 1999. Dynamic Noncooperative Game Theory,
2nd ed. Academic Press, San Diego.

Bier, V. M. 2007. Choosing what to protect. Risk Anal. 27(3) 607–620.
Breton, M., A. Alj, A. Haurie. 1988. Sequential Stackelberg equilibria

in two-person games. Optim. Theory Appl. 59(1) 71–97.
Brown, G., M. Carlyle, J. O. Royset, R. K. Wood. 2005a. On the

complexity of delaying an adversary’s project. B. L. Golden,

Jain et al.: Software Assistants for Randomized Patrol Planning
Interfaces 40(4), pp. 267–290, © 2010 INFORMS 289

S. Raghavan, E. A. Wasil, eds. The Next Wave in Comput-
ing, Optimization and Decision Technologies. Springer, New York,
3–17.

Brown, G., M. Carlyle, J. Salmeron, K. Wood. 2006. Defending crit-
ical infrastructure. Interfaces 36(6) 530–544.

Brown, G., M. Carlyle, D. Diehl, J. Kline, K. Wood. 2005b. A two-
sided optimization for theater ballistic missile defense. Oper.
Res. 53(5) 745–763.

Buesa, M., A. Valiño, J. Heijs, T. Baumert, J. González Gómez. 2007.
The economic cost of March 11: Measuring the direct economic
cost of the terrorist attack on March 11, 2004 in Madrid. Terror-
ism Political Violence 19(4) 489–509.

Committee on Homeland Security. 2008. The resilient homeland—
Broadening the homeland security strategy. Hearing (May 6),
United States House of Representatives, Washington, DC.
http://homeland.house.gov/Hearings/index.asp?ID=134.

Conitzer, V., T. Sandholm. 2006. Computing the optimal strategy to
commit to. Proc. 7th ACM Conf. Electronic Commerce, Ann Arbor,
MI, ACM, New York, 82–90.

Fudenberg, D., J. Tirole. 1991. Game Theory. MIT Press, Cam-
bridge, MA.

Gatti, N. 2008. Game theoretical insights in strategic patrolling:
Model and algorithm in normal-form. Proc. 18th Eur. Conf. Arti-
ficial Intelligence (ECAI 2008), Ios Press, Amsterdam, 403–407.

Gintis, H. 2009. Game Theory Evolving: A Problem-Centered Introduc-
tion to Modeling Strategic Interaction, 2nd. ed. Princeton Univer-
sity Press, Princeton, NJ.

Harsanyi, J. C., R. Selten. 1972. A generalized Nash solution for
two-person bargaining games with incomplete information.
Management Sci. 18(5, Part 2) 80–106.

Jiang, A. X., K. Leyton-Brown. 2006. A polynomial-time algorithm
for action-graph games. Proc. 21st Natl. Conf. Artificial Intelli-
gence, AAAI Press, Menlo Park, CA, 679–684.

Kiekintveld, C., M. Jain, J. Tsai, J. Pita, F. Ordóñez, M. Tambe.
2009. Computing optimal randomized resource allocations
for massive security games. Proc. Eighth Internat. Conf.
Autonomous Agents Multiagent Systems, International Foun-
dation for Autonomous Agents and Multiagent Systems,
Richland, SC, 689–696.

Koller, D., B. Milch. 2003. Multi-agent influence diagrams for repre-
senting and solving games. Games Econom. Behav. 45(1) 181–221.

Larson, R. C. 1974. A hypercube queueing model for facility loca-
tion and redistricting in urban emergency services. J. Comput.
Oper. Res. 1(1) 67–95.

Leitmann, G. 1978. On generalized Stackelberg strategies. J. Optim.
Theory Appl. 26(4) 637–643.

Looney, R. 2002. Economic costs to the United States stemming
from the 9/11 attacks. Strategic Insights 1(6), http://www.
ciaonet.org/olj/si/si_1_6/si_1_6_lor01.pdf.

Los Angeles World Airports. 2010. LAX—Airport informa-
tion: General description—Just the facts. Retrieved April 1,
http://www.lawa.org/welcome_LAX.aspx?id=44.

Lye, K., J. M. Wing. 2005. Game strategies in network security. Inter-
nat. J. Inform. Security 4(1–2) 71–86.

Murr, A. 2007. The element of surprise. Newsweek (September 28),
http://www.newsweek.com/id/41845.

Nie, X., R. Batta, C. Drury, L. Lin. 2007. Optimal placement of sui-
cide bomber detectors. Military Oper. Res. 12 65–78.

Osbourne, M. J., A. Rubinstein. 1994. A Course in Game Theory. MIT
Press, Cambridge, MA.

Paruchuri, P., M. Tambe, F. Ordóñez, S. Kraus. 2006. Security in
multiagent systems by policy randomization. Proc. Fifth Inter-
nat. Conf. Autonomous Agents Multiagent Systems, ACM, New
York, 273–280.

Paruchuri, P., D. Dini, M. Tambe, F. Ordóñez, S. Kraus. 2005. Safety
in multiagent systems by policy randomization. Proc. SASE-
MAS Workshop, AAMAS 2005, Utrecht, The Netherlands.

Paruchuri, P., J. P. Pearce, M. Tambe, F. Ordóñez, S. Kraus. 2007. An
efficient heuristic approach for security against multiple adver-
saries. Proc. Sixth Internat. Conf. Autonomous Agents Multiagent
Systems, ACM, New York, Article 181.

Paruchuri, P., J. P. Pearce, J. Marecki, M. Tambe, F. Ordóñez,
S. Kraus. 2008. Playing games with security: An efficient exact
algorithm for Bayesian Stackelberg games. Proc. Seventh Inter-
nat. Conf. Autonomous Agents Multiagent Systems, International
Foundation for Autonomous Agents and Multiagent Systems,
Richland, SC, 895–902.

Pita, J., M. Jain, F. Ordóñez, M. Tambe, S. Kraus, R. Magori-Cohen.
2009. Effective solutions for real-world Stackelberg games.
Proc. Eighth Internat. Conf. Autonomous Agents Multiagent Sys-
tems, International Foundation for Autonomous Agents and
Multiagent Systems, Richland, SC, 369–376.

Pita, J., M. Jain, J. Marecki, F. Ordóñez, C. Portway, M. Tambe,
C. Western, P. Parachuri, S. Kraus. 2008. Deployed ARMOR
protection: The application of a game theoretic model for secu-
rity at the Los Angeles International Airport. Proc. Seventh
Internat. Conf. Autonomous Agents Multiagent Systems, Inter-
national Foundation for Autonomous Agents and Multiagent
Systems, Richland, SC, 125–132.

Ruan, S., C. Meirina, F. Yu, K. R. Pattipati, R. L. Popp. 2005.
Patrolling in a stochastic environment. Proc. 10th Internat.
Command Control Res. Tech. Symp., McLean, VA. http://www.
dodccrp.org/events/10th_ICCRTS/CD/papers/278.pdf.

Sandler, T., D. G. M. Arce. 2003. Terrorism and game theory. Simu-
lation Gaming 34(3) 319–337.

Srivastava, V., J. Neel, A. B. MacKenzie, R. Menon, L. A. DaSilva,
J. E. Hicks, J. H. Reed, R. P. Gilles. 2005. Using game the-
ory to analyze wireless ad hoc networks. IEEE Comm. Surveys
Tutorials 7(1–4) 46–56.

Stevens, D., T. Hamilton, M. Schaffer, D. Dunham-Scott, J. J. Medby,
E. W. Chan, J. Gibson et al. 2006. Implementing security
improvement options at Los Angeles International Airport.
RAND, Santa Monica, CA. Retrieved November 1, 2009,
http://www.rand.org/pubs/documented_briefings/2006/RAND_
DB499-1.pdf.

Taylor, M. E., C. Kiekintveld, C. Western, M. Tambe. 2009. Is
there a chink in your ARMOR? Towards robust evaluations
for deployed security systems. Retrieved April 1, 2010, http://
teamcore.usc.edu/QRASA-09/SubmissionsFinal/Paper_1.pdf.

Taylor, M. E., C. Kiekintveld, C. Western, M. Tambe. 2010.
A framework for evaluating deployed security systems:
Is there a chink in your ARMOR? Presentation, Work-
shop on Quantitative Risk Analysis for Security Appli-
cations, Los Angeles. http://teamcore.usc.edu/papers/2010/
TaylorEtAl_PInformatica.pdf.

Thornton, P. 2005. Economic cost of attacks estimated at £2bn.
Independent.co.uk (July 18), http://www.independent.co.uk/
news/business/news/economic-cost-of-attacks-estimated-at-1632bn-
499281.html.

Transportation Security Administration. 2008. Federal air
marshals. Retrieved April 1, 2010, http://www.tsa.gov/
lawenforcement/programs/fams.shtm.

Treisman, M., A. Faulkner. 1987. Generation of random sequences
by human subjects: Cognitive operations or psychological pro-
cess? J. Experiment. Psych: General 116(4) 337–355.

Tsai, J., S. Rathi, C. Kiekintveld, F. Ordóñez, M. Tambe. 2009. IRIS—
A tool for strategic security application in transportation net-
works. Proc. Eighth Internat. Conf. Autonomous Agents Multia-
gent Systems, International Foundation for Autonomous Agents
and Multiagent Systems, Richland, SC, 37–44.

Jain et al.: Software Assistants for Randomized Patrol Planning
290 Interfaces 40(4), pp. 267–290, © 2010 INFORMS

University of Southern California. 2009. LAXPD bestows LA hon-
ors on Viterbi School security system builders. Retrieved
April 1, 2010, http://viterbi.usc.edu/news/news/2009/laxpd-
honors-viterbi.htm.

von Stackelberg, H. 1934. Marktform und Gleichgewicht. Springer,
Vienna.

von Stengel, B., S. Zamir. 2004. Leadership with commitment to
mixed strategies. Technical Report LSE-CDAM-2004-01, Centre
for Discrete and Applicable Mathematics, London School of
Economics and Political Science, London.

Wagenaar, W. A. 1972. Generation of random sequences by human
subjects: A critical survey of literature. Psych. Bull. 77(1)
65–72.

Wein, L. M. 2008. Homeland security: From mathematical models
to policy implementation: The 2008 Philip McCord Morse Lec-
ture. Oper. Res. 57(4) 801–811.

Willis, H. H., A. R. Morral, T. K. Kelly, J. J. Medby. 2005. Estimating
Terrorism Risk. RAND, Santa Monica, CA.

Erroll G. Southers, Assistant Chief Airport Police,
Office of Homeland Security and Intelligence, 9841
Airport Boulevard, Los Angeles, CA 90045, writes:
“This letter is to verify that the ARMOR (Assistant
for Randomized Monitoring Over Routes) system has
indeed been successfully deployed at the Los Angeles
International Airport (LAX). It is being utilized by
the Los Angeles World Airports (LAWA) Police Divi-
sion, for randomized scheduling of both vehicle
checkpoints on inbound roads inbound to LAX and
our explosives detection canine teams. ARMOR is
a result of collaboration between LAWA police and
researchers at the Department of Homeland Security
Center for Risk and Economic Analysis of Terror-
ism Events (CREATE) at the University of Southern
California. In addition to my position as Chief of
Homeland Security and Intelligence, I am also the
Associate Director of Special Programs at CREATE.

“ARMOR was originally deployed in August 2007
and is now an essential element of our counter-
terrorism strategy at LAX. The ARMOR system pro-
vides numerous benefits which include but are not
limited to the following: (a) randomized scheduling
to avoid deterministic scheduling policies which can
be exploited by vigilant adversaries; (b) appropri-
ately weighted randomization so that certain quality

constraints in scheduling may be met; (c) a method
for scheduling that is both fast and economical, thus
alleviating the scheduling task from LAWA officers;
(d) a method of randomization that has the potential
for increased security with less resources.

“Since its inception, the ARMOR system has
achieved international recognition and helped facili-
tate the detection and subsequent arrest of persons
attempting to bring weapons and narcotics into the
airport. In one well documented incident, an individ-
ual was arrested, transporting more than 16 weapons,
including loaded assault rifles and more than 1,000
rounds of ammunition in his vehicle when identified
at our checkpoint.

“ARMOR is living proof of the benefits of an inter-
disciplinary approach to the evolving threat of ter-
rorism. We continue to seek new and innovative
solutions to enhance the protection of one of the
regions’ most important critical infrastructures.”

James B. Curren, Special Assistant, Office of Flight
Operations, Federal Air Marshal Service, U.S. Depart-
ment of Homeland Security, 601 South 12th Street,
Arlington, VA 22202-4220, writes: “This letter is to
verify that the IRIS (Intelligent Randomization in
Scheduling) system is indeed under testing by the
Federal Air Marshal Service (FAMS) in assisting with
the process of assigning Air Marshals on commer-
cial airline flights. IRIS is the result of collaboration
between the FAMS and researchers at the University
of Southern California.

“An initial version of IRIS was originally deliv-
ered to the FAMS in December 2008 and has since
gone through two major updates, the latest of which
was delivered in April 2009. The IRIS system pro-
vides numerous benefits which include but are not
limited to the following: (i) randomized scheduling
to avoid deterministic scheduling policies which can
be exploited by vigilant adversaries; (ii) appropriately
weighted randomization so that certain quality con-
straints in scheduling may be met; and (iii) a method
for scheduling that is both fast and economical, thus
reducing the need for manual intervention by FAMS
schedulers.”

