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Abstract

Despite significant recent advances in decision theoretic frameworks for reasoning about mul-
tiagent teams, little attention has been paid to applying such frameworks in adversarial domains,
where the agent team may face security threats from other agents. This paper focuses on domains
where such threats are caused by unseen adversaries whose actions or payoffs are unknown. In
such domains, action randomization is recognized as a key technique to deteriorate an adversarys
capability to predict and exploit an agent/agent teams actions. Unfortunately, there are two key
challenges in such randomization. First, randomization can reduce the expected reward (quality)
of the agent team’s plans, and thus we must provide some guarantees on such rewards. Second,
communication within an agent team can help in alleviating the miscoordination that arises due
to randomization, but communication is a scarce resource in most real domains. To address these
challenges, this paper provides the following contributions. First, we recall the Multiagent Con-
strained MDP (MCMDP) framework that enables policy generation for a team of agents where
each agent may have a limited (communication) resource. Second, since randomized policies gen-
erated directly for MCMDPs lead to miscoordination, we introduce a transformation algorithm that
converts the MCMDP into a transformed MCMDP incorporating explicit communication actions.
Third, we develop a non-linear program with non-convex constraints for the transformed MCMDP
that randomizes team policy while attaining a threshold reward without violating the communica-
tion constraints. Finally, we experimentally illustrate the benefits of our work.

1 Introduction

Decision-theoretic models like the Multiagent Markov Decision Problem’s (MMDPs) [7], Decentral-
ized Markov Decision Problem’s (Dec-MDPs) [5] and the Decentralized Partially Observable MDP’s
(Dec-POMDPs) [18] have been successfully applied to build agent-teams acting in uncertain environ-
ments. However, these teams must often work in an adversarial environment. For example, when
patrolling, UAV (Unmanned Air Vehicles) teams might often be watched by adversaries such as unob-
served terrorists [22] or robotic patrol units trying to detect intruders in physical security sites [8, 16].



Security, commonly defined as the ability of the system to deal with intentional threats from other
agents [1], becomes a critical issue for these agent teams acting in such adversarial environments. In
many realistic domains the agents cannot even explicitly model the adversary’s actions and capabil-
ities or its payoffs. However, the adversary can observe the agents’ actions and exploit any action
predictability in some unknown fashion. Consider the team of UAVs [3] monitoring a region undergo-
ing a humanitarian crisis. Adversaries may be humans intent on causing some significant unanticipated
harm — e.g. disrupting food convoys, harming refugees or shooting down the UAVs — the adversary’s
capabilities, actions or payoffs are unknown and difficult to model explicitly. However, the adversaries
can observe the UAVs and exploit any predictability in UAV surveillance, e.g. engage in unknown
harmful actions by avoiding the UAVs’ route.

Given our assumption that the agent team acts in an adversarial domain where the adversary cannot
be explicitly modeled, policy randomization becomes crucial for the teams to avoid the action pre-
dictability [22]. We also assume that the agent team is acting in accessible environments and hence
can be modeled using MMDPs. We further make the following three assumptions about the adversary
in our work. First, we assume that the adversary can also observe the agents’ state exactly. The second
assumption is that the adversary knows the agents policy, which it may do by learning over repeated
observations. Policy randomization would then ensure that even if the adversary knows the agents’
state exactly at each instant and also the agents’ policy from that state, the adversary would still be
unable to predict the agent’s action correctly and hence significantly cut down the chances of unantic-
ipated harm. The third assumption is that communication is encrypted and also communication being
a private resource for the team, is unobservable for the adversary i.e. communication is safe. Even if
the communication is observable it can be easily masked by using simple deception techniques like
sending some meaningless data for non-communication acts, thus making it safe [26].

Although policy randomization avoids action predictability, simply randomizing an MDP policy as
mentioned above can degrade the expected team reward significantly and hence we face a randomization-
reward tradeoff. The difficulty in generating randomized policies that provide the appropriate randomization-
reward tradeoff is further exacerbated by the fact that randomization creates miscoordination in team
settings. Furthermore, for real world teams, resources are severely limited and teams must often adhere
to certain resource constraints, e.g., when communicating, the UAV team must consume only limited
communication bandwidth [21] allocated for it. Constraints involving averaging a quantity, in general,
are soft constraints because as long as the average is maintained, there is no hard bound on the resource
amount to be used at each timestep [25, 9]. In our example, we model bandwidth as a soft constraint
[21] because exceeding bandwidth in any single run is not a disaster; but if the team consumes more
than its bandwidth limit on an average, it jeopardizes the communications of other agents on the same
network. The importance of such soft constraints is seen by continued work in operations research
literature on constrained MDPs (CMDPs) that reason about expected resource consumption [2].

Our work focuses on increasing security using policy randomization for agent teams with bandwidth
constraints while ensuring fixed reward thresholds. Although, such randomized policies have occurred
as side effect [2] and turn out to be optimal in some stochastic games [17], work on intentional
policy randomization has received focus only recently. For example, [22] intentionally randomizes
MDP/POMDP policies for increasing security but their work provides solution for a specific case
where there is no communication. Work that has been done on developing agent teams with resource
constraints [2, 21, 10] has not paid attention to the issue of security in such teams. To address these



concerns, we therefore solve a multicriterion problem that maximizes the team policy randomization
while ensuring that the average bandwidth consumption is below a threshold and the team reward is
above a threshold. The problem we solve is general enough and other soft resource constraints can be
considered without any modifications to the structure of the problem.

This paper provides three key contributions to solve the problem described. First, we recall MCMDP
as multiagent MDP framework where agents reason not only about their rewards but also about re-
source constraints. We then introduce the entropy metric to quantify policy randomization for MCMDP
and formulate a nonlinear program that maximizes policy randomization while ensuring threshold re-
wards. We then identify a novel coordination challenge that occurs due to randomized policies in
multiagent settings, i.e agents miscoordinate if there are randomized policies in team settings. Sec-
ond, we provide a novel polynomial time transformation algorithm that converts the MCMDP into a
transformed MCMDP incorporating explicit communication actions to alleviate such miscoordination.
Third, we developed a non-linear program with non-convex constraints for the transformed MCMDP
that randomizes team policy while attaining a threshold reward without violating the communication
constraints. We further show that the value of entropy for MCMDP and the transformed MCMDP
remains the same for the same policy, thus showing that our transformation is correct. In our exper-
imental section, we show results after evaluating the new non-linear program we developed for the
transformed MCMDP. The rest of the paper begins with MCMDP and a non-linear program for it that
captures policy randomization. An automated method of transformation is provided that converts this
MCMDP to a transformed MCMDP. We then provide our solution approach to solve this new model.
We then briefly describe the various transformations possible. Lastly, we provide experimental re-
sults that clearly show the interdependence between the important factors of our domain namely policy
randomization, reward and bandwidth.

2 Randomization: MCMDP

MCMDP is a useful tool for users, providing a layer of abstraction to model agent-teams with resource
constraints in uncertain domains. For purposes of this paper, the only resource being modeled is the
bandwidth. We first recall a 2-agent MCMDP for expository purposes. A 2-agent MCMDP is defined
as a tuple,〈S, A, P,R, C1, C2, T1, T2, N,Q〉 where:S is a finite set of states. Given two individual
actions al and am of the two agents in our team, the team’s joint actionâ = (al, am) ∈ A i.e A
represents the set of all possible joint actions.P = [pâ

ij](≡ p(i, â, j)) is the transition matrix, providing
the probability of transitioning from a source state i to a destination state j, given the team’s joint action
â, R = [riâ] is the vector of joint rewards obtained when an actionâ is taken in state i.C1 = [c1iâk] is
the vector to account for cost of resource k when actionâ is taken in state i by agent 1 i.e it models cost
for individual resource of agent 1. (C2 is similarly defined.)T1 = [t1k] andT2 = [t2k] are vectors of
thresholds on the availability of the individual resources k for agents 1 and 2 respectively.N = [niâ]
is the vector of joint communication costs incurred by the agents when an actionâ is taken in state i.
Q is a threshold on communication costs that can be used by the team of agents. A MCMDP is thus
similar to a CMDP [2] with multiple agents.



2.1 Randomization due to resource constraints

The goal in a MCMDP is to maximize the total expected reward, while ensuring that the expected
resource (bandwidth here) consumption is maintained below threshold. Formally, this requirement can
be stated as a linear program, extending the linear program for CMDPs [9] to a two agent case, as
shown below.xiâ is the expected number of times an actionâ is executed in state i andαj is the initial
probability distribution over the state space.
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â
ij = αj ∀j ∈ S∑

i

∑
â
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â
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xiâniâ ≤ Q, xiâ ≥ 0 ∀i ∈ S, â ∈ A

(1)

If x∗ is the optimal solution to (1), optimal policyπ∗ is given by (2) below, whereπ∗(s, â) is the
probability of taking action̂a in state s.

π∗(s, â) =
x∗(s, â)∑

â∈A x∗(s, â)
. (2)

It turns out thatπ∗ is a randomized policy in the above case due to the resource constraints. Since,
bandwidth is the only resource under consideration and is modeled as a team resource we set the
individual resources and their thresholds i.e.,C1, C2, T1, T2 to zero. Such randomization leads to
miscoordination in team settings as shown in section 2.2. Further, the randomization occurred as
sideeffect due to the communication constraint and hence not optimized for policy randomness as
needed by our domain.

2.2 Miscoordination: Effect of Randomization in Team Settings

For illustrative purposes, Figure 1 shows a 2 state MCMDP with two agents A and B with actions
a1, a2 and b1, b2 respectively, leading to joint actionŝa1 = (a1, b1), â2 = (a1, b2), â3 = (a2, b1),
â4 = (a2, b2). We also show the transition probabilities, rewards and communication costs for each of
the actions. The optimal policy for this MCMDP is to take joint actionsâ1 andâ4 with 0.5 probability.
Suppose, agent A chooses its own actions such thatp(a1) = .5 andp(a2) = .5, based on the joint
actions. However, when A selectsa1, there is not guarantee that agent B would chooseb1. In fact, B can
chooseb2 due to its own randomization. Thus, the team may jointly executeâ2 = (a1, b2), even though
the policy specifies p(̂a2) = 0. Therefore, a MCMDP, a straightforward generalization of a CMDP
to a multiagent case, results in randomized policies, which a team cannot execute without additional
coordination. One simple solution is to add a communication action before each joint action. However,
forcing a communication action before every single action can violate communication constraints,
since communication itself consumes resources. Thus, a solution that limits communication costs is
essential. Further, equation 1 maximizes the expected reward obtained for the MCMDP while we are



interested in maximizing the randomness of our policy. Below, we first introduce an entropy measure
to quantify randomness and then develop an algorithm that maximizes the measure while we threshold
on reward and constrain the communication. However, the problem of miscoordination still remains
which we solve in section 3.

Figure 1: Simple MCMDP [(a1b1:100:2)- Action a1b1 gives reward 100 with communication cost 2]

2.3 Randomness of a policy

For a discrete probability distributionp1, p2, ....., pn the only function, upto a multiplicative constant,
that captures the randomness is the entropy, given by the formulaH = −∑n

i=1 pi log pi [27]. For
quantifying the randomness of a single agent MDP policy, we borrow the weighted entropy concept
developed in [22]. For purposes of clarity we reproduce the formula here (π is the CMDP policy which
defines a probability distribution over actions for each state s)-

HW (x) = −
∑
s∈S

∑
â∈A x(s, â)∑

j∈S αj

∑
a∈A

π(s, a) log π(s, a) = − 1∑
j∈S αj

∑
s∈S

∑
a∈A

x(s, a) log

(
x(s, a)∑

â∈A x(s, â)

)
.

Extending this formula for a 2-agent MCMDP is quite straightforward in the sense that instead of
calculating the weighted entropy over a single agent policy we calculate it over the joint policy of both
the agents for the 2-agent MCMDP. Hence, in the weighted entropy formula above,π refers to the joint
policy of the agents.

2.4 Intentional Randomization: Maximal entropy solution

We can now obtain maximal entropy policies with a threshold expected reward meeting the commu-
nication requirements by replacing the objective of Problem (1) with the definition of the weighted
entropyHW (x). (Note that the problem of miscoordination still remains which we will tackle in sec-
tion 3). The reduction in expected reward can be controlled by enforcing that feasible solutions achieve
at least a certain expected rewardEmin and the communication constraint remains unchanged. The fol-
lowing problem maximizes the weighted entropy while maintaining the expected reward aboveEmin

and a communication consumption below Q:
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(3)

whereEmin is an input domain parameter (Emin can vary between 0 andE∗ whereE∗ is the maxi-
mum expected reward obtained by solving (1)). Solving Problem (3) is our first algorithm to obtain
a randomized policy that achieves at leastEmin expected reward while meeting the communication
constraints (Algorithm 1).

Algorithm 1 MAX -ENTROPY(Emin, Q)
1: Solve Problem (3) withEmin and Q, letxEmin be optimal solution
2: return xEmin (maximal entropy, expected reward≥ Emin, communication required≤ Q)

Unfortunately, the problem of miscoordination introduced in section 2.2 still remains.

3 Solving Miscoordination: From MCMDP to Transformed MCMDP

This section presents an automatic transformation of a MCMDP to a transformed MCMDP, where
the resulting optimal policies can be executed in multiagent settings, via appropriate communication
(with communication costs within resource limits). We illustrate the key concepts in MCMDP trans-
formations by focusing on one specific transformation namely thesequential transformation, given in
Figure 2-a. While the transformation introduced is similar to [21], there are two key differences in that
work and the present work: (i) The solution for policy randomization we develop for the transformed
MCMDP needs a non-linear objective with non-linear constraints unlike earlier work where the reward
maximization needed linear objective with non-linear constraints. Hence, the basic problem being
solved is different. (ii) Maximizing entropy is the focus of our present work. The transformation re-
quires addition of new states and actions and hence entropy would get affected. Our transformation has
to ensure that maximizing entropy for the transformed MCMDP would be equivalent to the problem
of maximizing entropy for the original MCMDP. We provided a mathematical proof later to show that
indeed this property holds.

3.1 Transformation Methods: Sequential and Others

Figure 2-a shows a portion of a MCMDP, where agent A with actions a1 to am and B with actions
b1 to bn act jointly (aibj). Figure 2-b shows the transformation of this MCMDP into transformed
MCMDP. This transformation is sequential in that one of the agents, in this case agent A, first chooses
one of its actions ai and also decides whether to communicate this choice to its teammate, agent B.
Thus, C(ai) in Figure 2-b refers to A’s selection and communication of action ai to B, incurring the
cost of communication, and going to Aic (with probability 1-pf wherepf is the probability with which



communication may fail); while NC(ai) results in state Aio, where agent A selected ai but decided
not to communicate this choice to B to avoid communication costs. Note, since communication may
fail with a probability pf , C(ai) may transition to Aio with a probability pf . Once in state Aic or Aio,
agent B chooses its action bj, and the agents now jointly execute the action aibj. When choosing its
action, B observes which of the different Aic state it is in, since any such state is reached only after
A’s communication. Unfortunately, agent B cannot distinguish between states Aio reached without
A’s communication. Thus, B’s action bj in such non-communication states must be taken without
observing which of the m states A1o to Amo B is in. Thus, B will be unable to execute any randomized
policy which requires it (agent B) to select an action bj with a different probability in a state say Aio vs
a state Ako. To avoid this problem, we require that for any two states reached after non-communication,
the probability of B’s action selection must be identical, i.e., for any action bj and states Aio and Ako,
P(bj|Ai o) = P(bj|Ako). This restriction on probability of action execution in the transformed MCMDP
translates into the addition of the following non-linear constraints into our Problem 3 applied for the
transformed MCMDP, to solve the original MCMDP. Specifically, in terms of the state action variables,
given any two states Aio and Ako, and any action bj, it is necessary that:

Xoij/(
n∑

u=1

Xoiu) = Xokj/(
n∑

u=1

Xoku)⇒ Xoij ∗ (
n∑

u=1

Xoku) = Xokj ∗ (
n∑

u=1

Xoiu) (4)

Figure 2: Transformation

Thus, to obtain an optimal randomized policy in the MCMDP, we must solve problem 3 for the trans-
formed MCMDP with these non-convex constraints included in the problem. The optimal policy for
a transformed MCMDP thus obtained will require a random selection at state S1 by agent A alone,
and then in the next state (either Aic or Aio) by agent B alone, thus avoiding the problem faced in the
MCMDP. The non-linear constraints in the transformed MCMDP affect only the actions taken from
states A1o, A2o,....,Amo(from figure 2-b) and ensure that P(bj|A1o) = P(bj|A2o) = .... = P(bj|Amo)
for j ∈ 1,2....n. This is because for agent B, states A1o, A2o,....,Amo are indistinguishable, as they are
reached without A’s communication.

Apart from the addition of these non-linear constraints, the entropy function also undergoes change
as the transformed MCMDP has new states and actions added to it. The entropy function for Figure
2-a would be the straightforwardHW (x) as developed in section 2.1. In the transformed MCMDP,
it would still be theHW (x) with a small change in the way entropy is calculated at each state. The
entropy function at each state as calculated over the probability distribution of all actions at that state



is H = −∑n
i=1 pi log pi wherepi is the probability of taking actionai at that state. Therefore, for state

S1 in figure 2-a the entropy is -
H(S1) = −1∗ (p(a1b1)∗ log(p(a1b1))+ ...+P (a1bn)∗ log(p(a1bn))+ ....+P (amb1)∗ log(p(ambn))+
..... + p(ambn) ∗ log(p(ambn))).
If we notice state S1 of Figure 2-b, the probability with which agent A would take action saya1 would
be the sum of the probabilities with which it takesC(a1) andNC(a1). This is because whether agent
1 communicates that it would take actiona1 or does not communicate that it would takea1 is internal
to the system because of our assumption (as explained in introduction) that communication is safe.
Therefore, only the fact that agent A will take actiona1 (independent of whether it is known to agent
B) with certain probability is important to our entropy equation since the enemy gets to observe that as
the policy of agent A. Therefore the new entropy function for state S1 in figure 2-b would be
H(S1) = −1 ∗ (p(C(a1) + NC(a1)) ∗ log(p(C(a1) + NC(a1))) + ...... + p(C(am) + NC(am)) ∗
log(p(C(am) + NC(am))))
instead of the entropy function
H(S1) = −1 ∗ (p(C(a1)) ∗ log(p(C(a1))) + p(NC(a1)) ∗
log(p(NC(a1))) + ..... + p(C(am)) ∗ log(p(C(am))) + P (NC(am) ∗ log(p(NC(am)))).

Hence to solve our original MCMDP we solve Problem 3 for the transformed MCMDP using the mod-
ified entropy function with the addition of non-linear constraints we described earlier. One interesting
fact in Figure 2-a is that the entropy calculation would undergo such a change only for actions of agent
A while no such addition of probabilities of C and NC actions is needed for agent B. Given that we
now have a new entropy function (calculated using probability of an action of an agent as sum of com-
munication and non-communication probabilities of that action), and also new states and transitions, it
might not be necessary that optimizing the entropy function for the transformed MCMDP would auto-
matically mean that we are increasing security for the original problem we were solving. We therefore
prove the following lemma below for two cases of communication namely no communication and full
communication. The lemma basically states that the under conditions of no communication or full
communication the entropy obtained for the MCMDP and the transformed MCMDP would be the
same if there are no changes in the reward thresholds to be met and the bandwidth constraints. Under
conditions of limited communication, we experimentally verified over a large set of points and found
the lemma still holds true although we do not provide a formal proof.

Lemma 1 If in a state sayS1 of MCMDP (Figure 3-a), the entropy is defined over the probability
distribution of the actions over the state, then the entropy would remain the same in sequential trans-
formation over the whole system of states generated.

proof: For simplicity of proof, lets assume a two agent case where the bandwidth present is zero (no commu-
nication case) in the domain. In 3-a, we show the MCMDP where there are four joint actions obtained from the
two individual actions a,b of agents 1 and 2. We now transform the MCMDP using our sequential transforma-
tion into a transformed MCMDP. We assume agent 1 decides on the communication/non-communication issue.
Figure 3-b shows the transformed MCMDP. If the policy of the MCMDP and the transformed MCMDP is the
same, then the flows and hence the path probabilities for the four corresponding paths in both figures are equal.

Entropy from 3-a:Entropy1 = P1logP1 + P2logP2 + P3logP3 + P4logP4

Entropy from 3-b:Entropy2 = PalogPa + PblogPb + Pa ∗ (Pa1logPa1 + Pa2logPa2) + Pb ∗ (Pb1logPb1 +
Pb2 ∗ logPb2)



Figure 3: Illustrative Example

Lets consider the termsPalogPa + Pa ∗ (Pa1logPa1 + Pa2logPa2)
= Pa ∗ (logPa + Pa1logPa1 + Pa2logPa2)
SincePa1 + Pa2 = 1,
= Pa ∗ ((Pa1 +Pa2)logPa +Pa1logPa1 +Pa2logPa2) = Pa ∗ (Pa1 ∗ (logPa + logPa1)+Pa2 ∗ (logPa + logPa2)
= PaPa1 ∗ log(PaPa1) + PaPa2 ∗ log(PaPa2)
Since the path probabilities are equal,PaPa1 = P1 andPaPa2 = P2. Hence proved equal toP1logP1+P2logP2.
Similar math applies to the other terms making it equal toP3logP3 + P4logP4. Therefore the entropies of both
transformations is the same. The same reasoning as above follows if there is full communication also.

While we showed one particular method of transformation called the sequential transformation with
one particular order of communication actions, as shown in Figure 4, there are other methods of trans-
forming a MCMDP into a transformed MCMDP. First, as shown in Figure 4-a, the order of commu-
nication actions in the sequential transformation can be changed. If one agent has fewer actions than
another (e.g., ifn < m), such a change in the order of communication may improve the optimality of
the resulting policy or reduce communication costs. Second, as shown in Figure 4-b, in ahierarchical
transformation, an agent first decides which action to select, and only later whether to communicate
this choice (C) or not (NC). By choosing an action first, an agent’s communication decision may be
improved, potentially improving policy optimality. Our thirdextra-communicationtransformation is
similar to the sequential transformation, except that agent A chooses actions for itself and for agent B
and communicates the choice of both to agent B. As discussed earlier, this would lead to extra over-
heads in communication. Finally, oursimultaneoustransformation, is shown in Figure 4-d. Here, while
the choice of communication is done sequentially, no communication by A results in state S2; and in
S2, agent A and B simultaneously and randomly select their actions. Additionally, combinations of
these transformations are also feasible. Typically, we must select from these multiple transformations
the one that provides the most optimal policies. However, in this paper, we just introduce the sequential
transformation and its properties and leave such an analysis of various transformations for future work.

In all the above transformations, one of the agents selects an action without observation of its actual
state, leading to non-linear constraints, e.g., in simultaneous transformation at state S2, agents A and
B act simultaneously. Once again, non-linear constraints arise and hence non-linear constraints must
be added in the simultaneous case also. Indeed, irrespective of the style of transformation, non-linear
constraints must be added. This is because expressing probabilities of events in MCMDPs requires
divisions via Xia variables. And regardless of the transformation that we choose for the MCMDP, we
need to express constraints using probabilities. Indeed, all transformations either involve sequential
action selection or simultaneous, and we showed non-convex constraints in each case [21]. Thus:



Figure 4: Other methods of transformation

o Proposition 1: It is necessary to add non-convex constraints to solve the actual MCMDP.

3.2 The Sequential Transformation Algorithm

Since sequential transformation is the basis of our work in this paper, we describe the transformation
algorithm for it. We now present Algorithm 2 that achieves this sequential transformation of MCMDP
into a transformed MCMDP automatically. (In fact our implementation creates problem 3 with the
non-linear constraints as an output). The algorithm works by first adding intermediate states with (and
without) communication inSrcToCommand then adding transitions from the intermediate states to the
destination states inCommToDest. We assume that joint actions are processed in increasing order of
the index i (1 <= i <= m) for ai, and j for bj (1 <= j <= n). In SrcToComm, communication
actions ai c leads to state sai c with probability 1-Pfn (and state sai nc with probability Pfn); and
non-communication action ai nc deterministically transitions to state sai nc, where the first agent has
decided not to communicate its choice to its teammate. Line 13 in theConversionalgorithm adds
the constraints on probabilities of outgoing actions from sai nc — because of transitivity of equality,
it is sufficient to add probability constraints with respect to just the first non-communication state
sa1 nc. From line 4 and line 7 of the algorithm, the number of probability constraints can be seen as
(m-1)*n to be later translated into non-linear constraints using equation 4. Thus, this is a polynomial
time algorithm, with a complexity ofO(|S|2 ∗ |A|), where|A| = n ∗m gives us the number of joint
actions. In the worst case, the resulting MCMDP has2 ∗ |S| ∗ m additional states inserted. Given
that the output of the transformation algorithm is a nonlinear program with nonlinear constraints our
polynomial transformation algorithm does not add anything to the complexity of the problem.

4 Experimental Results

Based on the UAV example we described earlier, we first constructed a MCMDP with joint states,
actions, transitions and rewards. We then transformed the MCMDP into a transformed MCMDP with
the appropriate communication and non-communication actions. We then present results using the
transformed MCMDP (Figure 5) to provide key observations about the impact of reward and commu-
nication thresholds on policy randomization. Figure 5-a shows the results of varying reward threshold
(x-axis) and communication thresholds (y-axis) on the weighted entropy of the joint policies (z-axis).



Based on the figure, we make two key observations. First, with extreme (very low or very high) re-
ward thresholds, communication threshold makes no difference on the value of the optimal policy. In
particular, in extreme cases, the actions are either completely deterministic or randomized. On one
extreme (maximum reward threshold), agents choose the best deterministic policy and hence commu-
nication makes no difference and entropy hits zero. At the other extreme, with low reward threshold
(reward threshold 0) agents gain an expected weighted entropy of almost 2 (the maximum possible in
our domain), since the agents can choose highest entropy actions and thus communication does not
help. Second, in the middle range of reward thresholds, where policies are randomized, communi-
cation makes the most difference; indeed, the optimal entropy is seen to increase as communication
threshold increases. For instance, when reward threshold is 7, the weighted entropy of the optimal pol-
icy obtained without communication is 1.36, but with high communication threshold of 6, the optimal
policy provides a weighted entropy of 1.81.

Figure 5-b zooms in on one slice in Figure 5-a (reward threshold fixed at 7). It shows the changes
in probability of communication and non-communication actions in the optimal policy (y-axis), with
changes in communication threshold (x-axis). P(comm ai) denotes the probability of executing the
action to communicate ai (similarly for non-communication actions). The graph illustrates the follow-
ing: when there is no communication in the system, actiona1 gets preferred overa2 because of reward
constraints. Actiona1 would have been chosen with probability 1 but for the fact that entropy needs to
be maximized. As communication is increased, most communication is allocated toa1 as opposed to
a2 because of the high reward to cost ratio fora1. The interesting issue that arises here is, at the highest
communication point even though after all the communication was used up but actiona1 accounted
to only .4 of the total probability (i.e 1), the no communication actiona2 was chosen for the rest of
the probability even thougha1 would have provided higher reward. This is due to our assumption that
communication is safe, i.e both communication and non-communication actions appear the same to our
adversary. If this assumption was not there, most possibly non communication ofa1 should have been
chosen with higher probability. In the highest communication threshold case, increasing probability
of NC(a1) is actually detrimental to entropy since P(C(a1)) + P(NC(a1)) might then add up to near 1
making it more deterministic which seems counterintuitive. The other interesting issue is that, as com-
munication threshold increases, the probability of communicative actions increase say P(a1) increases
from 0 to 0.4. At the same time, the probability of the non-communication actions decreases.

Table 1: Comparing Weighted Entropies.

Comm Threshold→ 0 3 6
MCMDP 1.9 1.9 1.9

Deterministic 0 0 0
Miscoordination Yes Yes No

Transformed MCMDP 1.6 1.83 1.9

Table 1 compares the weighted entropies of different joint policies with changes in communication
threshold for the same example we showed our results on earlier (using a fixed reward threshold of 5).
In the first row we show the three settings of the communication thresholds (0,3 and 6 respectively)
we use for deriving the entropy values for the various cases in the table. Row 2 shows the entropies
obtained by an optimal MCMDP policy. The entropy (1.9) is an ideal upper-bound for benchmarking



Figure 5: Effect of thresholds

and the entropy is unaffected by the communication threshold. Row 3 illustrates that deterministic
policies exist in our domain but their entropy be 0 and hence there would be no security. Row 4 shows
the results, where agents take the optimal policy of the MCMDP and attempt to execute it without
coordination. Unfortunately, communication constraints are violated in columns 1 and 2. Only when
communication resource of 6 units is available the MCMDP policy becomes executable without any
miscoordination. Finally, row 5 shows the entropy of the transformed MCMDP for comparison. It is
able to avoid the problems faced by policies in row 3 and 4. However, with communication threshold
of 0, the transformed MCMDP must settle for an entropy of 1.6; as the communication threshold
increases, it finally settles at an entropy of 1.9 which also shows why the MCMDP policy(row 1)
becomes executable when communication threshold is 6.

5 Summary and Related Work

This paper focuses on security in multiagent teams acting in observable domains with communication
resource constraints. The issue of security arises here because of intentional threats that are caused
by unseen adversaries, whose actions and capabilities are unknown, but the adversaries can exploit
any predictability in our agent’s policies. Policy randomization with guaranteed rewards meeting the
communication constraints becomes critical in such domains. To this end, this paper provides three
key contributions. First we recall the MCMDP framework where agents not only maximize their ex-
pected team rewards but also bound the expected team consumption of the communication resource.
We then developed a non-linear program for this MCMDP that maximizes policy randomization while
bounding communication consumption at the same time providing guarantee on the expected team re-
ward obtained. We then show how randomized policies in team settings lead to miscoordination and
hence the policies obtained from our non-linear program can be inexecutable. Our second contribution
is the introduction of a novel transformation algorithm called the sequential transformation where we
can explicitly incorporate communication and non-communication actions. Thus problems may be
formulated using our abstract transformed MCMDP and our transformation ensures that the resulting
randomized policies avoid miscoordination. We also show the existence of many other such transfor-



mations. Third, we showed that despite the fully observable domains, transformed MCMDPs neces-
sitate programs using our non-convex constraints. We then solved our non-linear program with the
non-convex constraints on our UAV domain, initially modeled as a MCMDP on which we applied our
transformation algorithm to obtain the transformed MCMDP. From these experiments, we showed the
various tradeoffs involved between the three key factors namely entropy, reward and communication re-
sources. Finally, while our techniques are applied for analyzing randomization-reward-communication
tradeoffs, they could potentially be applied more generally to analyze different tradeoffs between com-
peting objectives in MCMDPs.

Decision-theoretic literature has focused on maximizing total expected reward [24, 5, 12] but maxi-
mizing policy randomization as a goal has received little attention in the literature. Randomization is
mostly seen as a means or side-effect in attaining other objectives, e.g., in resource-constrained MDPs
[2] or limited memory POMDP policy generators [14, 20, 15, 23, 6]. In [21] coordination of multiple
agents executing randomized policies in a MDP team setting is discussed, but there randomization
occurs as a side-effect of resource constraints. The work in [22] explicitly emphasizes on maximizing
policy entropy but no resource constraints are considered. In contrast, our work focuses on policy
randomization while explicitly ensuring that the communication constraints of the team are met. The
effect of communication in multiagent teams has been analyzed extensively [28, 4, 11, 19]. However,
none of this work focuses on using communication to counter the miscoordination arising due to ran-
domized policies in team settings. Further we model communication as a resource with a cost which
is independent of the reward i.e communication costs and rewards cannot be compared and the focus
is to make optimal usage of the limited communication unlike heuristic techniques developed earlier
for adding communication actions. Significant attention has been paid to learning in stochastic games,
where agents must learn dominant strategies against explicitly modeled adversaries [17, 13]. Such
dominant strategies may lead to randomization, but randomization itself is not the goal. Our work in
contrast does not require any model of the adversary and under this worst case assumption hinders any
adversary’s actions by increasing the policy’s weighted entropy. Thus, we focus on agent teams using
Decentralized MDPs with communication constraints doing intentional policy randomization.
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Algorithm 2 CONVERT()
1: Input :< S,A, P,R,N, Q >
2: Output :< S′, A′, P ′, N ′, Q′ >
3: Conversion()
4: Create Problem 3 fromOutput .

1: Conversion(){
2: Initialize: S′ = S, A′ = A,P ′ = P,R′ = φ,N ′ = φ,Q′ = Q
3: for all s ∈ S do
4: for all (â = (ai, bj)) ∈ A do
5: if sai nc /∈ S′ then
6: SrcToComm(s, â, sai nc, ai nc)
7: p′(s, â, sai nc)← 1
8: if (|p(s,< ai, ∗ >, ∗) > 0| > 1) then
9: SrcToComm(s, â, sai c, ai c)

10: n′(s, ai c)← Communication Model
11: p′(s, ai c, sai c)← 1− Pf

12: p′(s, ai c, sai nc)← Pf

13: if i 6= 1 then
14: prob(bj |sai nc) = prob(bj |sa1 nc)
15: CommToDest(s, â, sai nc, ai nc)
16: if (|p(s,< ai, ∗ >, ∗) > 0| > 1) then
17: CommToDest(s, â, sai c, ai c)
18: for all s′ ∈ S′ do
19: p′(s, â, s′)← 0
20: }
1: SrcToComm(Sparent, Aparent, Scurrent, Acurrent){
2: S′ ← S′⋃Scurrent

3: A′ ← A′⋃Acurrent

4: r′(Sparent, Acurrent), n′(Sparent, Acurrent)← 0
5: }
1: CommToDest(Sparent, Aparent, Scurrent, Acurrent){
2: for all s′ ∈ S′ do
3: p′(Scurrent, Aparent, s

′)← p(Sparent, Aparent, s
′)

4: r′(Scurrent, Aparent)← r(Sparent, Aparent)


