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Abstract—In the area of wireless sensor networks (WSN)
there is still a significant gap between theory and practice:
system designs and protocols are rapidly out-pacing analysis.
We develop formal computational models of a WSN based on
non-linear optimization and use them to analyze the impact of
fairness constraints on network performance. The optimization
framework presented is very general and can also be used to
analyze the optimal performance of WSN subject to other design
parameters such as the topology, number of nodes, energy levels,
source rates, reception power, etc. Our results show that the
maximum information that can be extracted for a fixed amount
of energy increases and that the minimum energy required to
output a fixed amount of information decreases as we reduce the
fairness requirement in the network. We present these functions
for a fixed network topology and observe that they exhibit sharp
changes in gradient due to qualitative changes in optimal routes.

I. INTRODUCTION

Wireless sensor networks (WSN) are an emerging technol-
ogy which seem ready to revolutionize the availability and
quality of information in a wide array of application areas.
This new technology has come about due to the rapid advances
in embedded microprocessors, wireless communications, and
MEMS sensors over the past decade.

As we set out to design and implement these kinds of
systems, however, one fact becomes clear. In the area of
WSN there is a significant gap between theory and practice:
proposed system designs and protocols are rapidly out-pacing
mathematical understanding. While there is a strong mathe-
matical foundation for communication over a single link from
classical Information Theory, there are very few formal models
for analyzing the fundamental performance of information
routing in wireless networks.

The broad motivation for this work is this need for meaning-
ful mathematical models of WSN. Such models are necessary
to understand the theoretical bounds on performance and
the impact of different design parameters such as topology,
number of nodes, energy levels and fairness. We take an
optimization based modeling approach in this paper. Due to
the underlying equations that describe the capacity of physical
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channels, we will rely on convex non-linear optimization
techniques.

It is helpful to place this approach in context by comparing
it with the standard approach to design and evaluate protocols
for sensor networks. Much of the current literature in sensor
and ad-hoc wireless networks consists of practical proposals
for new protocols for information routing. Typically simulation
results are used to examine the impact of various parameters on
the effectiveness of the protocol. Comparisons are usually per-
formed either with some baseline strategies or with alternative
protocols. Iterated over time, this procedure yields practical,
implementable protocols with successively better performance
characteristics. However, if we do not know the fundamental
bounds imposed by the underlying problem structure, then
it will not be clear how the implemented protocol differs
from optimal performance. An estimation of the optimal
performance will allow us to determine if there is room for
additional improvement of a given protocol!. Our approach is
to characterize the optimal performance of information routing
(under carefully defined assumptions and constraints) without
reference to the details of any practical distributed schemes
that can realize this performance.

We present some general non-linear optimization models
in this paper that can be used to analyze the fundamental
limits on the performance of information routing. In particular
we explore the fundamental influence of different fairness
requirements of the network on the overall performance of the
WSN through some simple experiments. We treat end-to-end
fairness by placing constraints on the maximum percentage of
the total information to the sink that each source node can
send. We refer to these constraints as the fairness constraints.

A good analogy is the classic Channel Coding Theorem; it is only in recent
years that iterative decoding mechanisms for Turbo codes and low density
parity check codes have been shown to provide near-optimal performance.
The bounds developed by Shannon give us confidence that no other (as
yet undeveloped) coding/decoding techniques can perform significantly better
than these. Of course, physical-layer results from information theory have the
additional merit of being closed-form expressions. Given the complexities of
the networking wireless nodes, however, we restrict ourselves to non-closed-
form algorithmic optimization formulations in this work.



Thus, in a completely fair WSN every node contributes the
same percentage of the total information to the sink, and in a
completely unfair WSN all the information to the sink could
be from a single source node.

The rest of the paper is organized as follows. In Section II,
we will discuss some recent related work to place our own in
context. We then present our general model and optimization
formulation in Section III. In Section IV, we present the results
of our simple experiments that study the impact of fairness
constraints on the energy requirements and total information
flow for a few different WSN. Our concluding comments are
presented in section V.

II. RELATED WORK

Most recent work on sensor networks has been primarily in
the form of protocol development, and simulation studies [1].
The body of literature on analysis of the fundamental behavior
and limitations of these kinds of wireless networks is consid-
erably smaller.

Related to our approach is the work by Toumpis and Gold-
smith on capacity regions for wireless networks [2], [3]. Using
a linear-programming optimization based formulation (similar
in spirit to our work), the authors study the characteristics of
the maximum information throughput that can be obtained in
a network with arbitrary topology. Non-linear constraints of
the physical channel are taken into account in the work of [4].
One key difference from our work is that these papers focus
on general-purpose wireless networks and do not incorporate
energy or fairness constraints in their modeling.

Optimization models have also been used to study maxi-
mum lifetime conditions for sensor networks. Bhardwaj and
Chandrakasan [5] develop upper bounds on the lifetime of
networks based on optimum role assignments to sensors (€.g.
whether they should act as routers or aggregators). Kalpakis
et al. [6] formulate a linear programming problem to schedule
flows within the network in such a way as to maximize the
network lifetime. Our work is similar to these in that we too
employ a flow-based formulation, but we incorporate a number
of different constraints such as the non-linear physical channel
conditions and also the fairness constraints.

Generally speaking, fairness in resource allocation is an
issue that is considered in both end-to-end and medium access
(MAC) layer contexts. In the context of sensor networks, Woo
and Culler have developed a protocol to provide MAC-level
fairness [7]. In this paper we primarily treat end-to-end fairness
and place constraints on the maximum percentage of the total
information to the sink that each source can send.

III. MODELING AND PROBLEM FORMULATION

In this section we present two optimization based formula-
tions for the wireless sensor network problem. Both models
consider n sensor nodes, each with limited energy F; and
a maximum source rate of R; (i.e. node ¢ is capable of
transmitting at a maximum rate of R;). The models consider
variables f;; and P;; that denote the information flow rate and
transmission power on the link between nodes ¢ and j on the

network. These variables are used to balance the competing
objectives in the WSN of maximizing the amount of informa-
tion that reaches a sink (node n + 1 with unlimited energy
resources — a reasonable assumption if the sink is “plugged
in”’), and minimizing the total consumption of energy. The two
models differ in how these competing objectives are handled.
Both models also consider C' the per-bit rate reception
power for each node, n the noise in the communication
channel, and d;; the physical distance between nodes ¢ and
7. Additionally the models limit the total amount of data
that node ¢ sends to a certain fairness proportion «; of the
total information sent to the sink. Finally we assume that all
transmissions are scheduled (either through time or frequency
division multiplexing) such that they are non-interfering.

A. Formulation (1): Maximizing Information Extraction

Our first model balances the competing minimum energy
and maximum information objectives by limiting the total en-
ergy on each sensor node and maximizing the total information
that can be extracted. The model below pre-specifies the posi-
tions, the energy levels, source rates, and fairness constraints
for the nodes and then maximizes the total information routed
to the sink.
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In this model, the objective function is the total information
that is being routed from all sources to the sink. We now
explain each of the constraints in the model. Constraint (1a)
ensures that for all nodes except the sink, the out-flow from
each node is at least as large as the in-flow. In other words,
intermediate nodes do not drop packets?. Constraint (1b) is
the maximum source rate constraint and says that the out-
flow from any node is always less than its in-flow plus the
maximum rate at which the node obtains information (the
source rate R;).

Constraint (1c) is the fairness constraint, it ensures that each
node ¢ cannot generate a flow to the sink that is greater than
a fraction «; of the total flow being generated by the network

2This constraint disallows the possibility of data aggregation, and would
consequently have to be modified if we wish to extend our models to allow
in-network aggregation
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Fig. 1. Illustration of a 5 node wireless sensor network with optimal flows
(Not to scale).

to the sink. Note that when «o; = % for every node ¢, then all
nodes send an equal amount of flow to the sink. Constraint (1d)
is the energy constraint. We allow each node ¢ to transmit at a
different power F;; to other distinct nodes j. The total energy
expended by each node is a combination of the transmission
energy (which depends on the sum of its power settings for
transmission to other nodes) and the reception energy which
is charged a per-bit cost of C. In this model, each node may
expend no more than a pre-specified finite amount of energy
E;.

Constraint (le) is essentially Shannon’s capacity theorem,
which relates the maximum flow on a particular channel to
the SNR (signal to noise ratio) on that channel. Interference
effects are not taken into account in this model, which is
reasonable for channelized/scheduled networks - in any case
since interference can only make the information flow lower
than the optimal, it is reasonable to ignore it to obtain upper
bounds. We have modeled the wireless channel as an AWGN
channel (which is a reasonable assumption for line-of-sight
sensors and low-fading physical environments). The received
signal power is the transmit power attenuated by the square of
distance between the transmitter and receiver (more generally,
we could consider any attenuation exponent that is between
2 and 5 to model the radio propagation conditions). Finally,
constraint (1f) ascribes the non-negativity property to the
pairwise flow and transmission power variables.

The optimization problem described above is tractable, and
current non-linear optimization research software can tackle
moderate size versions of this problem. We have obtained
preliminary results for it using LOQO, an interior point algo-
rithm that incorporates a merit function to enforce feasibility
of the optimal solution [8]. Figure 1 illustrates the solution for
a small example. Given the locations of the nodes, and their
source rates and energy levels, the flows indicated in the figure
maximize the total information that can be collected by the
sink before the nodes run out of energy. The optimal solution
contains intuitively understandable features — for example,

nodes 1 and 4 are selected as intermediate routers for the
data from nodes 2 and 3 because they have relatively greater
energy resources, and lower source rates.

B. Formulation (2): Minimizing Energy Usage

The second model balances the competing minimum energy
and maximum information objectives by limiting the minimum
information to be extracted to the sink and minimizing the
energy required to do this. The model below pre-specifies the
minimal information f,;,,, and the positions, source rates, and
fairness constraints for the nodes and then minimizes the total
energy required:
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The only differences in this second model are the constraint
(2d) on the total information obtained by the sink (which must
now be at least f,,;,,), and the different objective function: we
now minimize total energy usage at all nodes except the sink
(which is assumed to have unlimited energy resources). As
before there are two components to the energy expenditure at
each node: energy expense due to transmission and reception
energy. The other constraints (2a), (2b), (2c¢), (2e), and (2f)
are identical to those used in the previous model. Like the
first model, current non-linear optimization research software
can tackle moderate size versions of this second problem as
well.

IV. EXPERIMENTS AND RESULTS

We considered a very simple example to explore the fun-
damental influence that the fairness constraint has on the total
information that can be extracted and the amount of energy
required and its optimal distribution. Both formulations of the
problem, Problems (1) and (2), were used to model a WSN
that consisted of a sink and four sensor nodes in line, equally
spaced. In these experiments, the four nodes are located at
(1,0), (2,0), (3,0) and (4,0) respectively, with the sink at (0,0).

We considered a uniform fairness constraint across all
nodes, that is « = «; for all nodes ¢. We gradually increased
the fairness constraint between 25% to 100% and report its
influence on the amount of information extracted and the
minimum energy required.



[ Experiment || Node I Node2 Node3 Node 4 |
El 1.0 1.0 1.0 1.0
E2 0.5 1.5 1.5 0.5
E3 0.4 0.8 1.2 1.6
E4 0.0 0.0 1.0 3.0
E5 1.6 1.2 0.8 0.4
E6 3.0 1.0 0.0 0.0
TABLE 1

DESCRIPTION OF EXPERIMENTS: MAXIMUM SOURCE RATES FOR EACH
NODE IN THE NETWORK

Different experiments were performed for both formulations
considering variations in the node rates. The nomenclature of
each experiment for the different values used for the maximum
node rates R; is described in Table I. Normalized units are
used for all parameters such as information rates and energy
levels.
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Fig. 2. Trends in the maximum source rate for each node in the network
for the various experiments

These maximum node rates are also plotted in Figure 2.
It can be seen from this plot that while the total source
rate is kept constant in each experiment, the experiments
capture different trends in the distribution of source rates (in
order: constant, increasing-then-decreasing, increasing slowly,
increasing sharply, decreasing slowly, and decreasing sharply).

Other problem parameters were set as follows: the noise
in the communication channel n = 0.0001, the reception
power C = 0.00005 (corresponds to roughly (1/5)th of the
transmission power). For Problem (1) all nodes were given the
same energy I; = 0.0001 units. In Problem (2) we required
fmin = 2 units of information.

Figure 3 shows the results of running the optimization
formulation Problem (1) to maximize the information flow for
each of the experiments, while varying the fairness proportion
index «. The first observation is that the total flow increases
monotonically with «. This is intuitive: as the fairness indica-
tor « increases, the fairness constraint is being relaxed (recall
that & = 0.25 represents the maximum fairness), allowing
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Fig. 3. Maximum total information flow to sink versus the fairness proportion
index « for each experiment

for higher overall flow. Also note that experiments E4 and E6
begin at & = 0.5 because in these experiments only two sensor
nodes have R; > 0 and can therefore send information to the
sink.

Another interesting observation is that the curves for ex-
periments E1 and ES5 overlap. ES is the experiment in which
the source rates for the nodes decrease gradually with distance
from the sink, while E1 has all nodes with the same source
rate. The overlapping of the curves can be explained by
the energy constraints. The figure suggests that the energy
constraints prevent node ¢ from ever sending more than B;
units of information, where B; = min(R;(E1), R;(E5)), the
minimum of the source rates for both experiments.

Similarly the curves E2 and E3 coincide with E1 when the
fairness constraints are strict. However these curves do not
offer overall the same flow as El because the information
is located on average farther away than on the fixed energy
experiment, therefore less of it can be drawn to the sink. E6 has
less flow on the whole because greater information is located at
the first node than can be drawn from it (due to a combination
of both energy and fairness constraints). Finally, the flow is
significantly worse for the setting E4 than all other source rate
distributions. This is easy to understand — recall that in E4,
most of the data is located 3 hops away from the sink, and
a little 2 hops away. The limited energy budgets, combined
with fairness constraints for low «a ensure that very little of
the information makes it to the sink.

Figure 4 shows the results of running the optimization
formulation Problem (2) to minimize the total energy usage for
each of the experiments, while varying the fairness proportion
index «. The first observation is that the minimum total
energy usage decreases with respect to «. This is intuitive:
as the fairness proportion index « increases, the fairness
constraint is being relaxed (recall that o = 0.25 represents the
maximum fairness), allowing for lower energy usage. Like in
the experiments with Problem (1), experiments E4 and E6 start
at a = 0.5. Additionally in this formulation experiments E3
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Fig. 4. Minimum total energy versus the fairness proportion index o for
each experiment

and E5 begin with a = 0.3 because tighter fairness constraint
does not allow these two cases to output 2 units of information
to the sink.

We see that the curves tend to flatten out once the o exceeds
a critical threshold - this represents the point at which the fair-
ness constraint is no longer tight and the information constraint
starts to dominate. For each strategy the beginning of this
region corresponds to the energy-optimal way of extracting
fmin amount of information from the nodes. After this point
the nodes have no flexibility in decreasing their energy usage
because they must send the required amount of information. It
can be seen that the experimental rate settings ES and E6 lead
to similar profiles for energy usage. This is because in both
cases (more so in E6) the 2 units of information that need to be
sent are located next to the sink. Once again E4 has the poorest
performance because the information is located farthest away
on average and requires greater total energy usage in order
to be extracted. The curve for E4 is flat because there is no
flexibility in sending information: in all cases, regardless of
the fairness constraint, the optimal solution is for node 3 to
send all its information (1 unit) and then node 4 to send an
additional unit of information the sink.

Finally, we observed that Formulation (2) provides solutions
that are more efficient in that these solutions can output more
information using less energy. This is because the energy is
distributed among the nodes in a more efficient manner in
Formulation (2).

V. CONCLUSIONS

We are attempting to develop a comprehensive approach
to understand the fundamental performance of information
routing in energy-limited wireless sensor networks through
formulations involving constrained non-linear optimization.
We presented two such flow-based formulations in this paper
- one involving maximum information extraction, and another
involving minimum total energy usage.

We presented some results for a few different small-scale
WSN experiments to study the solutions obtained for these
problems as we vary the fairness constraints. We found that
higher fairness constraints can result in significant decrease
in information extraction and higher energy usage. Another
observation about the results is that the flow and energy curves
show qualitatively abrupt changes as the fairness constraints
are varied. This has to do with the other constraints in each
model (constraints on energy in Problem (1) and information
extraction in Problem (2)) starting to dominate.

Although we chose a simple 5 node scenario for our
experiments, we should emphasize that these formulations
are reasonably tractable. Current off-the-shelf optimization
software can handle problems networks involving 100 node
problems in a few hours (in other experiments not presented
in this paper we have tested the formulations on topologies
involving a grid of 81 sensors). If required, we believe that
specific algorithms can be developed to solve these formula-
tions even faster.

Finally, we note that this is very much a work in progress.
We are currently trying to make the models richer and more
useful for analyzing different kinds of wireless sensor net-
works. One significant extension would be to incorporate in-
network aggregation to capture the data-centric nature of these
systems. Other extensions we are looking into include in-
depth analysis of the impact of other parameters such as sen-
sor deployment/placement, energy and information extraction
constraints. In the longer term, we also hope to enhance the
optimization based formulations with closed-form analytical
expressions.
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