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Abstract— We present an efficient and implementable algo-
rithm for maximizing data extraction from energy limited wire-
less sensor networks. A distinguishing feature of this algorithm
is that it arrives at efficient routing solutions after few itera-
tions, which is vital for efficient performance in energy limited
networks. The algorithm uses sub-gradient optimization to solve
the dual of a data extraction problem constructed by relaxing the
energy constraints. We show through computational experiments
that, for the problem considered, both centralized and distributed
versions of the algorithm arrive at routing solutions that are on
average better than 10% from optimal after only 10 iterations.

I. I NTRODUCTION

Wireless Sensor Networks (WSN) constitute a paradigm
that is already revolutionizing the availability and quality
of information for many applications including battlefield
and homeland security surveillance, wildfire monitoring, air
quality/environmental control, manufacturing monitoring and
control, and structural integrity monitoring. It is possible that
in the future WSN will become integral to our everyday lives
in ways that are difficult to imagine today [1].

We consider a WSN composed of nodes with sensing,
processing, and communicating functions integrated into a
small unit with a finite energy supply. These nodes are to
be deployed in large numbers without close human supervi-
sion, possibly into unfriendly territory, for various information
gathering tasks. Within its energy limits, the WSN must sense,
process, and transmit information to a base station or sink
node, where a remote end-user can access it. Since communi-
cation is often the most expensive operation for a sensor node,
an efficient algorithm to route the data gathered is crucial to
efficiently use the limited energy [2]. For instance, if every
node transmits its data directly to the sink node, nodes with
little data to send will be left with unused energy while data
can be stranded in a node that depleted its energy. In addition,
since the limited energy in effect limits the life of the network,
the WSN can not spend much time coordinating a routing
policy and must reach an efficient data gathering mechanism
rapidly. If not it would spend a significant percentage of its
lifetime operating inefficiently.

In this work we consider the problem of maximizing
data extraction in energy-limited WSN. In particular, we are
concerned with algorithms that can achieve close to optimal
performance after only a few iterations (rounds of commu-
nications). In fact, since the actual operating conditions are
subject to uncertainty, one might argue that an algorithm
that reaches near-optimal routing solutions quickly without
optimality guarantee is preferable to an algorithm that is
guaranteed to converge to the optimal solution but takes a
long time to reach efficient solutions. The paper is organized
as follows: We review recent results in routing algorithms
and contrast them to our work in Section II. In Section III
we describe the problem, model, and a general sub-gradient
algorithm. In Section IV we present three centralized variants
of the sub-gradient algorithm for the maximal data extraction
problem. We discuss a distributed version of the algorithm in
Section V and present computational results comparing these
implementations in Section VI. We finish with concluding
remarks in Section VII.

II. LITERATURE REVIEW

We classify recent routing protocols for sensor networks in
two broad classes, which we discuss below in more detail: net-
work dependent protocols [3,4,9-11] and optimization based
protocols [2,12-14].

Network dependent routing protocols exploit various net-
work properties for efficiency. For example LEACH [3], PE-
GASIS [4], andDirected Diffusion[9] exploit the possibility
of data aggregation at the nodes to achieve important energy
savings. The algorithms proposed in [10,11] rely on some
high-energy agents in the network which create directed paths
between the source of information and the sink. Thus the
algorithms can save the energy typically used for flooding
queries through the network. In general terms, since network
dependent protocols exploit particular features of the network,
they could conceivably perform poorly in a network without
these properties, in addition it is difficult to obtain performance
bounds for these routing heuristics as they do not compute or
approximate an optimal solution.



Optimization based protocols are implementing an iterative
optimization algorithm on some problem over the sensor
network. Examples of such protocols for sensor networks
include: sub-gradient algorithms for the maximum lifetime
problem, i.e. maximizing the time until the first node runs out
of energy, see [12-14], and approximate solutions to maximum
data extraction problem [2]. The prior work on sub-gradient
based methods considers additional assumptions, such as the
use of potential functions, to ensure efficient performance.
The sub-gradient optimization method is classic in non-linear
optimization [7], and has been used to develop distributed
algorithms for network flow [15] and flow control in networks
without energy constraints but with fixed capacity [6]. In
[2], the authors propose an approximate algorithm that uses
network topology and current energy information to derive
a metric with which to route the information. Optimization
based protocols are both general and can provide performance
bounds based on the optimization problem over the network.

We consider a WSN model similar to the one in [2],
however we introduce a routing protocol based on sub-gradient
optimization as opposed to the heuristic developed in [2]. Prior
work on sub-gradient based protocols for WSN consider max-
imizing lifetime of the network, which simplifies the problem
to be solved. In contrast, the network problem considered
here is to maximize data extraction. Although maximum data
is related to maximizing lifetime of the network, it has one
significant difference: in maximum data extraction the network
operates until energy in all nodes is depleted, not until the
first node exhausts its energy. Maximizing data extraction is a
reasonable situation in surveillance applications, for example,
where nodes provide intrusion information, although with
lower quality, until the last node ceases to operate. Another
difference with prior optimization based algorithms on WSN
is that the sub-gradient algorithm implemented in this paper
does not use potential functions or additional assumptions, it
solves a dual of the maximal data extraction problem.

Finally we mention that, to our knowledge, our work is
the first to focus on the transient behavior of protocols in
particular whether they exhibit fast convergence to efficient
solutions. Prior work is usually concerned with the asymptotic
convergence of the protocol. We use the optimal solution of
the maximal data extraction problem as a benchmark for the
protocol, as suggested in [5].

III. PROBLEM DEFINITION

We consider a WSN withn fixed sensor nodes that gather
data to be sent to a sink node, denoted as noden+1. Let
Di

max be the total amount of the data (bytes) collected by the
node i, andEi

max be the total energy of the nodei. Let dij

be the Euclidean distance between nodesi and j. We denote
by N , the set of sensor nodes, andA the set of directed
arcs (i, j), in the complete graphi ∈ N, j ∈ N ∪ {n + 1}.
The energy consumed in transmitting data from one sensor to
another depends on the distance between them according to the
following radio model, as presented in [2,8]. We consider that
a radio dissipatesεelec=400nJ/byte to run the transmitter or

receiver circuitry andεamp=800pJ/byte/m2 for the transmitter
amplifier. The transmission energy costs and receiving energy
costs for ak-byte message and distanced are given by

Transmitting:ETx(k, d) = εeleck + εampkd2

Receiving:ERx(k) = εeleck .
We also assume thatk = 1 byte and the radio channel is
symmetric, so that the energy required to transmit a byte of
information is the same from nodei to nodej and from node
j to nodei for a given signal to noise ratio.

A. Mathematical Programming Model

The problem of maximizing data output given limited
energy at the nodes and the above energy expenditure in
transmissions and receptions can be written as a linear pro-
gramming problem, see [2]. The problem constraints are:
(1) Energy Constraint: the amount of data transmitted and
received by a sensor is limited by the energy available at the
sensor node.
(2) Flow conservation: the amount of data transmitted by a
sensor minus the amount of the data received by the sensor
must be less than or equal to all data collected by the sensor
and also greater than or equal to 0.

Let fij be the amount of the data transmitted from nodei
to nodej, then the maximal data extraction problem is:

max
∑

(i,n+1)∈A

fin+1

s.t.
∑

{j|(i,j)∈A}
fij(1 + βd2

ij) +
∑

{j|(j,i)∈A}
fji ≤ Ei i ∈ N (1)

0 ≤
∑

{j|(i,j)∈A}
fij −

∑

{j|(j,i)∈A}
fji ≤ Di

max i ∈ N (2)

fij ≥ 0 (i, j) ∈ A

whereβ = εamp

εelec
, Ei = Ei

max
εelec

.

To simplify notation, we have normalized the energy in
terms of receptions, that is to say, each reception consumes a
unit of energy, while each transmission from (i, j) consumes
1 + βd2

ij . This model considers that each node has a maximal
amount of dataDi

max to be transmitted. Hence if there are no
energy limit constraints (1), then we can extract all data avail-
able in the network:max

∑
(i,n+1)∈A fin+1 =

∑
i∈N Di

max.
We denote the set of flows that satisfy the routing conditions

by X, that is:

X =



f ∈ <|A| |

0 ≤
∑

{j|(i,j)∈A}
fij −

∑
{j|(j,i)∈A}

fji ≤ Di
max i ∈ N

fij ≥ 0 (i, j) ∈ A



 .

B. Partial Lagrangian Relaxation

We now consider the problem obtained by the Lagrangian
relaxation of the energy constraints, that is incorporating these
constraints in the objective with the a multiplier, or price,p.
Let ξ(f) denote the vector of energy consumption at each node
given flow f , that is ξi(f) =

∑
{j|(i,j)∈A} fij(1 + βd2

ij) +



∑
{j|(j,i)∈A} fji for any i ∈ N . Then the Lagrangian dual

function is given by

D(p) = max
f∈X

L(f, p)

= max
f∈X





∑
(i,n+1)∈A

fin+1 −
∑
i∈N

pi
[
ξi(f)− Ei

]




= max
f∈X





∑
(i,n+1)∈A

fin+1(−pi − βpid2
ij + 1) +

+
∑

{(i,j)∈A|j 6=n+1}
fij(−pi − βpid2

ij − pj) +
∑
i∈N

piEi



 .

Setpn+1 = −1 and define

B(p) = max
f∈X

∑

(i,j)∈A

fij(−pi − βpid2
ij − pj)

as the part ofL(f, p) which involvesf , then the Lagrangian
dual becomes

D(p) = max
f∈X

L(f, p) = B(p) +
∑

i∈N

piEi.

Since the original problem is a linear program (LP), then
its Lagrangian dual,D : minp≥0 D(p), is also an LP. Also,
since both are feasible, the primal and dual attain the same
finite optimal objective function value, see [7]. Therefore,
we solve the dual problem to obtain the optimal objective
function value, and in the process provide a routing solution
that achieves this value.

C. Sub-gradient projection method

We use the sub-gradient projection optimization method to
solveD : minp≥0 D(p), see [6,7]. This method is an iterative
algorithm where at each iterationt + 1 the prices per node,
p(t + 1) ∈ <n

+, are set by the recursion

p(t + 1) = [p(t)− αtg(t)]+ . (3)

Here,[z]+ = max{z, 0} denotes the positive part ofz, g(t) ∈
∂D(p(t)) is a sub-gradient ofD(p) at p(t), and αt > 0 is
the step-size at thet-th iteration. Thus at each iteration of
the sub-gradient method, we take a step in the direction of
a negative sub-gradient. A sub-gradient ofD(p) at p(t) is
defined as any vectorg that satisfies the inequalitygT (p −
p(t)) ≤ D(p)−D(p(t)) for anyp. Given a pricep(t), let f∗(t)
denote the solution that maximizes the LagrangianL(f, p(t))
over f ∈ X, andp∗ the optimal solution that minimizes dual
problemD(p).

We now present results that outline the correctness of the
sub-gradient algorithm and detail how to compute the sub-
gradient for this problem. We omit the proof of the well known
result on convergence of the sub-gradient projection algorithm,
and refer the reader to [7].
Proposition 1: The sub-gradient projection method with iter-
ates defined by (3) where0 < αt = D(p(t))−D(p∗)∑

i
(gi(t)2)

, converges

andp(t) −→ p∗.

Proof: See [7], pages 610-612 and 629.
Proposition 2: The sub-gradients ofD(p(t)) at p(t) are given
by (

∂D(p(t))

∂p

)

i

=
∂D(p(t))

∂pi
= −(ξi(f∗(t))− Ei)

Proof: Let gi(t) = ∂D(p(t))
∂pi = −(ξi(f∗(t)) − Ei) where

f∗(t) = argmaxf∈XL(f, p(t)). We know that

gT (t)(p− p(t)) =−
∑
i∈N

(p i − pi(t))(ξi(f∗(t))− Ei)

=
∑

j=n+1

f∗ij(t)−
∑
i∈N

(p i
(
ξi(f∗(t))− Ei

)

− [
∑

j=n+1

f∗ij(t)−
∑
i∈N

pi(t)
(
ξi(f∗(t))− Ei

)
] .

Givenp let f = argmaxf∈XL(f, p). From the definition of
D(p) we have

D(p) =
∑

j=n+1

fij −
∑
i∈N

p i(ξi(f)− Ei)

≥
∑

j=n+1

f∗ij(t)−
∑
i∈N

p i(ξi(f∗(t))− Ei) .

Replacing this inequality in the previous equation and substi-
tuting the definition ofD(p(t)) yields

gT (t)(p− p(t)) ≤ D(p)−D(p(t)) ,

which proves thatgi(t) = −(ξi(f∗(t)) − Ei) is the sub-
gradient ofD(p(t)) at p(t).

Although sub-gradient type algorithms converge to the
optimal solution, this convergence can be very slow [7]. We
are interested in studying whether, for the problem in question,
this convergence is sufficiently efficient in the first iterations
as to provide solutions that are already reasonably close to the
optimal to be considered efficient routing heuristics.

IV. CENTRALIZED ALGORITHM

We now describe the implementation details for the sub-
gradient projection method for the maximal data extraction
problem. The following implementations use a routing solution
for the problem without energy constraints and decide a
unique step size at each iterate. Hence, these are centralized
algorithms. Although these are not realistic algorithms from an
implementation point of view, we seek to determine whether
these algorithms can achieve fast enough convergence to an
efficient solution as to justify pursuing this approach in a
distributed setting.

A. Method 1: optimal value

Our first centralized algorithm, which is referred to as
Method 1, uses the optimal value of the dual problemD(p∗)
to calculate the step-size. It is therefore a purely theoretical
algorithm which will be used for comparison purposes. The
algorithm considers a fixed integer valuem to control the
rate of decrease of the diminishing step size, an iteration limit
ITLIM, and an optimal tolerance value of TOL.



Algorithm 1 Centralized Algorithm-Method 1:

1: At t=0, setpi(0) = 0, ∀i ∈ N , or other initial values.
2: while t ≤ ITLIM and |D(p(t))−D(p(t− 1))| > TOL do
3: Solve problemB(p(t)), let f∗(t) be the optimal solution.
4: Set

D(p(t)) = B(p(t)) +
∑
i∈N

pi(t)Ei

5: Setαt = m
m+t

D(p(t))−D(p∗)∑
i
(gi(t)2)

,

6: Setgi(t) = −(ξi(f∗(t)− Ei)
7: Compute a new price:pi(t + 1) = [pi(t)− αtg

i(t)]+

8: Set t=t+1

In Algorithm 1, the formula m
m+t , satisfies the usual

conditions for a diminishing step size:mm+t
−→

t→∞ 0, and∑∞
t=0

m
m+t = ∞, see [7]. In the experimental section below

we usem = 1. Since we cannot use the valueD(p∗) to set step
sizes, our next two centralized methods consider variations of
Model 1 which use a lower bound ofD(p∗) instead.

B. Method 2:δ LB

We modify Method 1 above simply by replacing a lower
boundδ LB instead of the optimal solution valueD(p∗) when
computing the step size.

The t-th iteration lower boundδ LB(t) is obtained by
scaling down the flowf(t) obtained at each iteration to
obtain a feasible flow. This guarantees that it provides a lower
bound, which isδ LB(t) =

∑
{i,j=n+1|(i,j)∈A} δf∗ij(t) where

δ = mingi(t)>0,∀i
Ei

ξi(f∗(t)) .
Then the lower boundδ LB = maxt=0,1,2,... δ LB(t)

C. Method 3:Hop LB

Method 3 also modifies Method 1 simply by constructing
a lower bound toD(p∗) for computing the step size. At
the beginning of the centralized algorithm, we use a flow
obtained by transmitting directly from each node to the sink
(see Fig.1), which gives the following lower bound onD(p∗):
DT LB =

∑
i min

{
Di

max,
Ei

1+βd2
ij

}
. However, we improve

this lower bound by considering the feasible flowHop LB
obtained fromDT LB by allowing flow to take a single hop
to the sink if its beneficial to the system.

Fig.1: Direct Transmit Fig.2: One-hop transmit

In Fig.2, we consider some nodes that cannot send all their
collected data directly to sink node because they have limited
energy and large distance to the sink. Let these nodes be
the setK and let nodes that have sent all their information

and have residual energy be the setL. The Hop LB initial
solution allows a nodek ∈ K to send part of its information
to the sink through some nodel ∈ L, if it is beneficial to
the network. We obtain this improved lower boundHop LB
using the procedure below:

Algorithm 2 Hop LB procedure:

1: Initially, set LB = 0, Ei = Ei
max

2: while Ei

1+βd2
ij

> Di
max and i ∈ N do

3: Ei = Ei − (1 + βd2
ij)D

i
max, D(i) = 0, LB = LB + Di

max.
4: while D(i) = 0 andEi > 0 and i ∈ N do
5: find the close nodej with D(j) > 0 to sink node,
6: let fij = min( Ei

2+βd2
i(n+1)

, Ei

1+βd2
ij

)

7: Ei = Ei − (2 + βd2
i(n+1))fij , Ej = Ej − (1 + βd2

ij)fij ,
D(j) = D(j)− fij , LB = LB + fij .

8: while i ∈ N do
9: if Ei

1+βd2
i(n+1)

< D(i) then

10: LB = LB + Ei

1+βd2
i(n+1)

11: else
12: LB = LB + D(i)
13: LB is theHop LB.

Note that the lower bound for Method 3,Hop LB is
fixed, independent of the current iterate of the sub-gradient
algorithm, and can be determined a priori. This is in contrast
to Method 2 which is updated at each iteration from the current
optimal solutionf∗(t).

V. DISTRIBUTED ALGORITHM

The centralized algorithm assumes we can compute the step-
size globally and get the optimal flowf∗(t) at each time period
t. In this section, we extend the centralized algorithm to a
distributed model. In the experimental section below we show
that we maintain in part the quick convergence of the sub-
gradient algorithm in this distributed implementation.

The centralized algorithms discussed above are coordinated
in two steps: in determiningf∗(t), the optimal solution to
B(p(t)), and in setting the step size. The steps of computing
the sub-gradient and the new price can be done separately at
each node.

To obtain f∗(t), we have to solve the following problem
which has a linear objective function, which can be separated
grouping all outgoing arcs of each node:

B(p) = max
f∈X

∑

(i,j)∈A

[fij(−pi − βpid2
ij − pj)] .

Hence the only coordination has to do with the flow constraints
f ∈ X. Our distributed algorithm approximately solves this
problem by increasing or decreasing the flow at each arc
fij independently according to the sign of the objective cost
coefficientvij := −pi−βpid2

ij−pj , while maintaining a close
to feasible flow with the information available. If we denote
µi(t−1) =

∑
{j|(i,j)∈A} fij(t−1)−∑

{j|(j,i)∈A} fji(t−1) the
amount of flow that originates at nodei given flow f(t− 1),



then the flow update heuristic is given by

fij(t)=





min
{

fij(t− 1) + max
{
Di

max− µi(t− 1), 1
}

, Ei

1+βd2
ij

}

if vij > 0

max{fij(t− 1)−max{µi(t− 1), 1}, 0} if vij < 0

fij(t− 1) if vij = 0

(4)

Note that the solution obtained by this heuristic can vary
depending on the order in which the arcs are updated, and
that in factf(t) could violate slightly the flow constraints.

To determine the step size in a distributed algorithm, we
select a predetermined value at every iterationαt = α0

m
m+t ,

whereα0 andm are fixed parameters. This rule for selecting
step sizes has been shown to lead to convergent sub-gradient
algorithms, see [6,7]. Algorithm 3 presents the details of the
distributed algorithm.

Algorithm 3 Distributed Algorithm

1: At t=0, setpi(0) = 0, ∀i ∈ N , or other initial values.
2: while t ≤ ITLIM and |D(p(t))−D(p(t− 1))| > TOL do
3: Computevij = −pi(t) − βpi(t)d2

ij − pj(t) objective coeffi-
cients ofB(p(t)).

4: Updatef(t) according to (4)
5: Adjust sof(t) ∈ X by modifying fij ’s with vij = 0.
6: SetB(p(t)) =

∑
(i,j)∈A

fij(t)vij .

7: SetD(p(t)) = B(p(t)) +
∑

i∈N
pi(t)Ei.

8: Setαt = α0
m

m+t
.

9: Setgi(t) = −(ξi(f(t))− Ei).
10: Compute a new price,pi(t + 1) = [pi(t)− αtg

i(t)]+

11: Set t=t + 1.

The distributed algorithm above suggests the following
protocol which can be implemented on each sensor nodei.
Algorithm 4 running on each node leads to a synchronized
protocol since it requires that all nodes update flows before
broadcasting new prices.

Algorithm 4 Synchronous Distributed Protocol at nodei:

1: At t=0, setpi(0) = 0 andfij(0) = 0 for j ∈ N \ {i}.
2: while Ei > 0 do
3: Broadcasts pricepi(t) and receivespj(t) from nodej via arc

(i, j).
4: Computevij = −pi(t)− βpi(t)d2

ij − pj(t).
5: Computes the new flow ratefij(t) for j ∈ N \ {i} from (4).
6: Transmitsfij(t) through arc(i, j) and receivesfji(t).
7: Setαt = α0

m
m+t

.
8: Set new pricepi(t + 1) = [pi(t) + αt(ξ

i(f(t))− Ei)]+.
9: Set t = t + 1.

VI. COMPUTATIONAL EXPERIMENTS

Our computational experiments consider 50 sensor nodes
randomly deployed in a 0.5km×0.5km area with the sink node
at (0.25km, 0.5km). Each sensor node has limited power and
the ability to transmit data to any other node, including the
sink node. To send data, the sensor has to run its transmitter
and amplifier circuitry, with parametersεelec = 400nJ/byte
and εamp = 800pJ/byte/m2 respectively. We assume that a

reception of a single byte consumes one unit of energy. The
valueεelec is so that each 0.01J of energy allows about 25,000
receptions [2].

We present numerical results for two different scenarios:
one considers homogeneous nodes, that is, all nodes have
the same energy (25,000) and the same available data 10,000
(approximately 10k). The second scenario considers nodes
with different ratios of Ei

Di
max

. This heterogeneous scenario
consider three types of nodes: high energy nodes with a ratio of
2,500, withEi = 250, 000 andDi

max = 100; medium energy
nodes with ratio 2.5 forEi = 25, 000 and Di

max = 10, 000;
and low energy nodes with ratio 0.5 forEi = 2, 500 and
Di

max = 5, 000. The type of node in a heterogeneous scenario
is selected randomly maintaining even proportions: 17 high
energy nodes, 17 medium energy nodes, and 16 low energy
nodes. It is clear that high energy nodes have residual energy
but no data, while low energy nodes are exhausted even
with substantial data left to transmit to sink node. We use
AMPL and LOQO software in our computational experiments.
For each problem setting, we generate 30 random instances
and execute the algorithms on each instance. We report the
average of the relative error to true optimal solutions:Rate =
curr valueD(p(t))−optimal value

optimal value × 100%.

A. Computational Results

We conduct two computational experiments. The first in-
vestigates whether the centralized versions of the algorithm
achieve fast convergence to an efficient solution. Our second
set of experiments compare the centralized and distributed
versions of the algorithm against simple routing heuristics.

1. The performance of different centralized algorithm meth-
ods. As shown in Fig.3 for the homogeneous experiment, and
Fig.4 for the heterogeneous experiment, we set initial value
pi(0) = 0. The three centralized methods converge to efficient
solutions at different speeds with Method 2 being the slowest
to converge. Method 1 and Method 3 both converge to 10%
of the optimal value within 10 iterations.

Fig.3: Homogeneous Fig.4: Heterogeneous

2. Comparison of different algorithms: Distributed Al-
gorithms (DA), Centralized Algorithms (CA), Direct trans-



mit(DT), and LEACH.
Now, we contrast the performance of these sub-gradient

based heuristics with two common protocols: algorithm DT,
where each sensor node sends its information directly to the
sink, and LEACH. If the sink node is located far from certain
nodes, DT will only be able to transmit small amounts of data
from these distant nodes, which would impair the performance
of the network. Algorithm LEACH uses randomization to
designate some nodes as cluster heads, which receive data
from sensors in the cluster and transmit it to the sink node.
The algorithm greatly improves on simple routing solutions
partly because it aggregates data at the cluster heads, thus
reducing the total data sent long distances to the sink. Here
we consider that LEACH does not perform data aggregation
at cluster heads and instead uses the centralized Method 3 to
route from cluster heads.

From the first set of experiments we know that the central-
ized algorithm converges to within 10% of the optimal value in
10 iterations. Based on the step sizes used in these centralized
methods, we set the step size for the distributed method as
α0 = 0.5× 10−7, with m = 1. We run all four algorithms on
each random problem created and average the results.

As is shown in Fig.5 for the homogeneous experiments,
algorithm DT is constantly within 7-8% of the optimal value
and DA and LEACH perform steadily within 4-5% of the
optimal. As it was observed in the previous experiment CA
converges to within 10% of the optimal in 10 iterations. We set
initial valuepi(0) = 0 for high energy nodesi, pj(0)=0.01 for
other nodesj to do heterogeneous experiments. Fig.6 shows
that for heterogeneous experiments the behavior is different.
Algorithms DT and LEACH perform badly, at about 60% and
30% from optimal respectively. However, algorithms CA and
DA both converge achieving 10% of the optimal on average
in less than 10 iterations.

Fig.5: Homogeneous Fig.6: Heterogeneous

VII. CONCLUSION

We formulate the maximal data extraction problem in en-
ergy limited WSNs as a linear programming problem. By using

Lagrangian relaxation on the energy constraints we formulate
a related dual problem amenable to a solution via a sub-
gradient projection method. We present both a centralized
and a distributed version of this algorithm and show through
computational experiments that these algorithms achieve close
to optimal performance quickly (achieving 10% of optimal in
less than 10 iterations on average). Although convergence of
sub-gradient methods can be slow in theory, for our problem
they quickly arrive at an efficient routing heuristic.
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[5] F. Ordóñez and B. Krishnamachari, “Optimal information
extraction in energy-limited wireless sensor networks,”IEEE
JSAC, vol.22(6), pp.1121-1129, 2004.
[6] S. H. Low and D. E. Lapsley, “Optimization flow control
I: Basic algorithm and convergence,”IEEE/ACM Transactions
on Networking, vol.7(6), pp. 861-874, 1999.
[7] D. Bertsekas,Nonlinear Programming, Athena Scientific,
second edition, 1999.
[8] S. Lindsey, C. Raghavendra and K. Sivalingam, “Data
Gathering in sensor networks using energy delay metric,”Proc.
of Parallel and Distributed Computing Issues in WNMC, San
Francisco, 2001.
[9] C. Intagagonwiwat, R. Govindan, and D. Estrin, “Directed
Diffusion: A scalable and robust communication paradigm for
sensor Networks,”MobiCom,2000.
[10] D. Braginsky and D. Estrin, “Rumor Routing Algorithm
for sensor networks,Proc. of the 1st ACM Intl’ Workshop on
WSN & Applications, Atlanta, 2002.
[11] D. Tian and N. D. Georganas, “Energy efficient routing
with guaranteed delivery in WSN,”IEEE WCNC, 2003.
[12] A. Sankar and Z. Liu, “Maximum lifetime routing in
wireless ad-hoc networks,”INFOCOM, 2004
[13] R. Madan and S. Lall, “Distributed algorithms for maxi-
mum lifetime routing in WSN,”IEEE GLOBECOM, 2004.
[14] C. Hua and T. Yum, “Optimal routing for maximizing
lifetime of WSN,” INFOCOM, 2005.
[15] P. Tseng, D. P. Bertsekas, and J. N. Tsitsiklis, “Partially
asynchronous, parallel algorithms for network flow and other
problems,” SIAM J. Control and Optimization, vol. 28, pp.
678-710, 1990.


