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a b s t r a c t

In the event of a catastrophic bio-terror attack, major urban centers need to efficiently distribute large
amounts of medicine to the population. In this paper, we consider a facility location problem to deter-
mine the points in a large city where medicine should be handed out to the population. We consider
locating capacitated facilities in order to maximize coverage, taking into account a distance-dependent
coverage function and demand uncertainty. We formulate a special case of the maximal covering loca-
tion problem (MCLP) with a loss function, to account for the distance-sensitive demand, and chance-
constraints to address the demand uncertainty. This model decides the locations to open, and the
supplies and demand assigned to each location. We solve this problem with a locate-allocate heuristic.
We illustrate the use of the model by solving a case study of locating facilities to address a large-scale
emergency of a hypothetical anthrax attack in Los Angeles County.

� 2011 Elsevier Ltd. All rights reserved.
1. Introduction

Large-scale emergency events such as a bio-terrorist attack, or
a natural calamity such as an earthquake, strike with little or no
warning. Such situations can lead to a big surge in the demand for
medical supplies. Implementing an efficient disbursement of the,
possibly limited, medical supplies needed to satisfy this demand is
critical in reducing morbidity and mortality. The United States
maintains stockpiles of medical supplies, the Strategic National
Stockpile (SNS), to meet the extraordinary needs that can arise in
such large-scale emergencies. When the government declares the
need to use the SNS, the initial supplies, in the form of medical push
packages, would be delivered at the affected location within 24 h.
The local authority is then responsible for developing an efficient
plan for distributing the supplies to the population.

A disbursement plan considered by local authorities consists of
setting up points of disbursement (POD) where the population
would go to receive medical supplies or medical attention. This
form of distributing supplies is particularly useful if it is necessary
to further screen the population or have a trained team administer
the medicine. The key decisions in setting up such a disbursement
plan consist of the locations of the facilities (or PODs) to be opened
All rights reserved.
and the amounts of supplies to stock at each of these facilities.
Covering models are a classic solution approach for facility location
problems in emergency-related scenarios [1,2]. A demand point is
treated as covered only if a facility, or a set of facilities, is available to
provide the required service to the demand point within a required
distance or time. An important additional consideration when
planning a response to a large-scale emergency is that there is
a large degree of uncertainty associated with the location of the
emergency and the number of people affected.

In this work we propose a capacitated facility location model to
decide which facilities to open as PODs and how many supplies to
make available at each POD in order to maximize the coverage of an
uncertain demand in the event of a bio-terror attack. We make the
following assumptions about this large-scale emergency: 1) The
fraction of the population at demand point i that can be serviced by
facility j decreases as distance dij increases. 2) The PODs are
capacitated facilities. 3) There is a total amount of supply S available
to be distributed among the facilities. 4) The demand is optimally
assigned to facilities so that the demand covered is maximized. The
facilities are capacitated since the speed at which people are
serviced in a POD and the physical dimensions of these locations
impose a restriction on the maximum rate of service. Total supply
constraints can be significant in an emergency setting for a number
of reasons, such as: the delay in delivery of the SNS, difficulty in
estimating the emergency demand, and concurrent demands on
the SNS at other sites.
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The assumption that an optimal assignment of demand points
to facilities can be implemented is a critical assumption of this
model. When distributing medical supplies from PODs, each
individual has the freedom to decide whether to go to the assigned
POD or to deviate from this recommendation to obtain a better
service, suggesting that a congestion model would be a more
representative model. We opted to consider a simple optimal
assignment model of demand to facilities, as opposed to repre-
senting the congestion effects of having individuals select facilities,
since due to the uncertainty present in planning a response to an
emergency, the significance of a more representative demand
model is not clear. Such an optimal assignment model however is
realistic when facilities send a mobile unit to serve the population
and it also has been a common practice to plan resources at
facilities in mandatory evacuation orders during hurricanes where
people are advised to go to particular relief centers [3]. We
therefore assume that in a large-scale emergency, local authorities
aim for an efficient distribution of medical supplies by advising the
affected population to visit a particular set of facilities, based on
their residential location, medical conditions and supplies avail-
able at the facilities.

The questionwe seek to answer in this work is whether a facility
location model with these characteristics can obtain an efficient
distribution of scarce medical supplies. This possibility stems from
the idea that a critical mistake would be to place the scarce supplies
at locations where they are not consumed due to the uncertainty in
demand. We can avoid this by placing the supplies at locations
where they are more likely to be consumed. If we take into account
that a fraction of the demand can be covered by facilities that are
further away, then the idea is to select facilities at locations that
could receive demand frommore demand points and are thusmore
likely to experience a stable demand. We develop efficient solution
methods for this optimization problem that allows us to solve real
sized problems representing a large urban area. We present
computational results on a possible bio-terror attack in Los Angeles
County and simulated random demands to evaluate the solutions
found.

The rest of the paper is organized as follows. In Section 2, we
provide a brief review of prior work on covering problems and
stochastic facility location. In Section 3, we present the proposed
capacitated facility location model with chance-constraints, and in
Section 4 we present our solution algorithm to solve this optimi-
zation problem. We present results from simulation experiments
which verify the performance of our model and solution algorithm
in Section 5. Finally, in Section 6, we present our conclusions and
some future work.

2. Literature review

Given that our objective is to design an effective response
strategy to a large-scale emergency to reduce casualties, a maximal
covering location problem (MCLP) [4] is appropriate for our
purpose. In the event of a large-scale emergency, a very important
decision would be to locate facilities in tune with the location and
intensity (that is, number of affected people) of the attack. One of
the key assumptions of theMCLP is that a demand point is assumed
to be fully covered if locatedwithin a distance r from the facility and
not covered if it is farther than r away from the facility. However,
while planning for an emergency scenario, due to the gravity of the
situation, the possible damage to the transportation network and
individual decisions, it would be next to impossible to precisely
predict whether a person would be able/willing to travel to the
recommended facility to receive medicines, making it unrealistic to
enforce the binary coverage assumptions of the MCLP. Instead, it is
more realistic to assume that the further away the facility is, the
smaller the fraction of the demand it can cover. In the generalized
MCLP (GMCLP) as defined by [5], each demand point i has multiple
sets of coverage levels, with corresponding coverage radii. That is, if
a facility is located within a distance ri from i, then the coverage
level is ai(ri). The coverage levels can be thought of as a decreasing
step function of the distance between a demand point and an open
facility. This work was extended by [6] to the gradual covering
decay model where they considered general forms of the coverage
decay function. Berman et al. (2009) [7] considered the variable
radius covering problem, where the decision-maker needs to
determine coverage radii for the facilities, in addition to the
numbers and locations of facilities, to cover a discrete number of
demand points withminimal cost. In our work, we adopt the idea of
multiple coverage levels proposed by [5].

Previous works have considered a number of models of how
demand is assigned to facilities. Spatial interactions models, also
known as “gravitymodels”, have been used by researchers to assign
demand to facilities as a function of parameters that could lead to
attraction between demand points and facilities. Spatial interaction
models such as those proposed by [8] propose amodel based on the
distance minimization approach to represent how people assign
themselves to facilities. Berman and Krass (1998) [9] focus on
competitive facility location assuming that people decide which
facility to visit based on the facility’s attractiveness and the travel
distance. Aboolian et al. (2007) [10] study a location problem
wherein facilities compete for customer demand based on the
service utility that they provide. In these prior papers demand is
assigned to facilities under competition or congestion and every
customer chooses a facility with an objective to maximize its
individual utility leading to a game. Although such selfish behavior
could occur in a large-scale emergency, in this workwe assume that
demand is assigned optimally in order to maximize the demand
covered.

There exists a fair amount of literature on facility location
models dealing with response to an emergency. One of the earliest
models in this area was developed by [11] where they developed
the location problem as a set covering problem with equal costs in
the objective. The sets were composed of the potential facility
points within a certain distance or time from each demand point.
They solved this problem using linear programming techniques.
Rawls and Turnquist (2010) [12] presented a two-stage stochastic
optimization model to locate facilities and assign supply to them
under an emergency scenario. They develop a mixed integer
program to address uncertainty in the demands and in the
capacity of the transportation network. Berman and Gavious
(2007) [13] presented competitive location models to locate
facilities that contain resources required for response to a terrorist
attack. They consider the worst-case scenario where the terrorist
has knowledge of the location of the facilities and the State needs
to take this into account. Jia et al. (2006) [2] presented an unca-
pacitated version of the covering model to locate staging areas in
the event of a large-scale emergency. The location of the facilities
and the allocation of the demand points to the open facilities are
primarily based on distance constraints. In our paper, we extend
this model to a capacitated facility location model. Given the
uncertainty associated with a large-scale emergency, it is impor-
tant to accurately determine the quantity of supplies to be stocked
at each potential facility site so that the coverage provided is
maximized. To address this issue, we consider the available supply
at each facility to be a variable. Yi and Özdamar (2007) [14]
propose a mixed integer multi-commodity network flow model
for logistics planning in emergency scenarios. They address the
aspects of distributing supplies to temporary emergency centers
and the evacuation of wounded people to emergency units. The
location problem is implicitly handled by allocating optimal
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Fig. 1. Demand loss function.
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service rates to emergency centers according to which wounded
patients are discharged from the system. Görmez et al. (2010) [15]
study the problem of locating disaster response facilities to serve
as storage and distribution points. Under an emergency, supplies
will flow from these facilities to local dispensing sites where they
will be distributed to people. They decompose the problem into
a two-stage approach e in the first stage, they decide the locations
of the local dispensing sites, and in the second stage they treat the
local dispensing sites as demand points and decide the locations of
the response facilities. The model is solved for a worst-case
earthquake scenario in Istanbul. Balcik and Beamon (2008) [16]
develop a deterministic model that decides the number and
locations of stocking points in a humanitarian relief network and
the type and amount of supplies to be pre-positioned in these
locations under budgetary and capacity constraints. Chang et al.
(2007) [17] present a decision-making tool that could be used by
disaster prevention and rescue agencies for planning flood emer-
gency logistics preparation. Two stochastic programming models
are developed to determine the structure of rescue organization,
the location of rescue resource storehouses, the allocation of
rescue resources within capacity restrictions and the distribution
of rescue resources.

Facility location models aid decisions that are expensive and
difficult to change. Hence, facility location models should
consider the uncertainty associated with the demand, supply and
distance parameters over a time horizon. In the past, researchers
have utilized stochastic and robust optimization approaches to
model uncertainty in facility location problems. Snyder (2006)
[18] gives an in-depth review of the work done using these two
approaches. Mean-outcome models minimize the expected travel
cost or maximize the expected profit. The mean-outcome models
introduced by [19e21], minimized expected costs or distance.
Balachandran and Jain (1976) [22] presented a capacitated facility
location model with an objective to minimize expected cost of
location, production and transportation. Berman and Odoni
(1982) [23] considered travel-times to be scenario-based, with
transitions between states or scenarios occurring according to
a discrete-time Markov process. The objective was to minimize
travel-times and facility relocation costs. Weaver and Church
(1983), Mirchandani et al. (1985), Louveaux (1986) and Louveaux
and Peeters (1992) [24e27] presented stochastic versions of the
P-median problem to choose facilities and allocate demand
points. Berman and Drezner (2008) [28] presented a P-median
problem that handles uncertainty by minimizing the expected
cost of serving all demand nodes in the future. Meanevariance
models address the variability in performance and the decision-
maker’s aversion toward risk. Such models include [29e31]. Yet
another method to model uncertainty is chance-constrained
programming. In this procedure, the parameters that are
unknown at the time of planning are assumed to follow certain
probability distributions. A chance-constraint requires the prob-
ability of a certain constraint, involving the uncertain parame-
ter(s), holding to be sufficiently high. Carbone (1974) formulated
a P-median model to minimize the distance traveled by a number
of users to fixed public facilities. The uncertainty in the number of
users at each demand node is handled using chance-constraints.
The model seeks to minimize a threshold and ensure that the
total travel distance is within the threshold with a probability a.
Interested readers are referred to [18,32] for a review of papers
dealing with robust facility location.

While there exists a large amount of literature in the area of
capacitated facility location, there have not been many papers on
maximal covering models that use chance-constraints to deal
with demand uncertainty. In an application like the one presented
in this paper, where the number of people affected by a large-
scale emergency and its location are unknown well in advance,
facility location modeling under uncertainty is vital. Our model
assigns the supply to be stored at each facility by considering it as
a decision variable that depends on an unknown demand.
Previous papers that have supply as a variable [12,26] do not
consider the relation between supply and a random unknown
demand. Since the supply at each facility depends on a demand
unknown to us a-priori, we model this as a capacitated facility
location problem and use chance-constraints to handle the
demand uncertainty.

3. Facility location model for large-scale emergencies

In this section, we present the capacitated covering model with
chance-constraints to handle demand uncertainty. As explained
earlier, our objective is to maximize the percentage of the affected
population that successfully receives the medication. That is, our
goal is to maximize coverage or minimize unmet demand.

3.1. Coverage bound function

In the work presented in this paper, we adopt the idea of
multiple coverage levels introduced by [5]. We assume that the
fraction of demand at point i that is assigned by planners to any
facility j to get service decreases with dij, the distance between i and
j. We assume this decrease follows a step function. That is, given
positive distances 0 ¼ d0 < d1 < d2< . < dK we let fkDi be the
total demand from point i that can assigned to the group of facilities
located from dk�1 to dk, where Di is the demand of point i and K is
the number of coverage levels. The quantities fk denote the fraction
of the demand at i that can be satisfied in the interval of distance
(dk�1,dk) from i. These fractions satisfy 1 ¼ f1 > f2 >.>fK > 0. SincePK

k¼1fk � 1 is always valid, we enforce the condition that
P

j˛J tij �
Di in the deterministic and chance-constrained models presented
in the following sections, where tij is the amount of medical
supplies allocated to demand point i by facility j. Note that we can
have dK large enough to represent the maximum distance local
authorities would be willing to consider while assigning the
affected population to open facilities.

We illustrate the coverage bound function in Fig. 1. Here,
demand points are denoted by stars and facilities by triangles.
There are three coverage levels, shown by the concentric circles
around demand points. Facilities that fall beyond the third
concentric circle of a demand point, say i, are assumed to be too far
to satisfy any of the demand of i. Demand point 1 (DP1), with
a demand of D1, has zero facilities in the first coverage level, two in
the second coverage level and zero in the third level. Following our
coverage bound function, facilities F1 and F3 can cover at most f2D1
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of the demand of DP1. Since these are the only two facilities in the
area of coverage of DP1, the upper bound on the coverage DP1 can
obtain is the lowest of three quantities: f2D1, D1 and the total supply
stored at facilities 1 and 3. Since F1 and F3 might also serve other
demand points, the actual coverage DP1 will obtain could be lower
than this upper bound. The other demand point, DP2, has one
facility in the first coverage level, one in the second level, and two
facilities in the third level. Hence, an upper bound on the coverage
of DP2 is the minimum of three quantities: f1D2 þ f2D2 þ f3D2, the
demand D2, and the supply stored at F1, F2, F4 and F5. When the
sum of the fractions f1, f2 and f3 exceeds 1, then the maximum
possible coverage is limited by D2. Again, the actual coverage of the
demand at DP2 could be lower than this upper bound because F1,
F2, F4 and F5 might need to serve other demand points as well.

Note that the upper bound on the coverage at a certain
coverage level is a property of the demand and is not related to
the number of facilities opened at that level. For example, the
bound on the coverage of DP2 at the third coverage level is at
most f3D2 regardless of whether both F1 and F2 are available or
only one of them is open.

The covering model we present allows distributing the demand
of one point betweenmultiple facilities located possibly at different
coverage levels in order to maximize the amount of demand
serviced. For example, even if the facilities located in the first
coverage level [0,d1] have sufficient supply to satisfy all the
demand, it might be convenient to distribute some of this demand
to facilities at the second, or later, coverage levels, since the
resources placed at each facility need to satisfy the demand from
other points also. In other words, the proposed model maximizes
the population covered by deciding which facilities to open, the
quantity of supplies to stock at each open facility, and how each
demand point is serviced.

3.2. Deterministic model

In the model presented below, we determine which of a set of
pre-specified facilities need to be opened when a large-scale
emergency occurs. We consider a set I of demand points and
a set J of facility locations. We also consider that each demand point
has K levels of coverage. The model considers the following
parameters and decision variables.

Parameters

S: total supply available during an emergency
N: total number of facilities that need to be opened
bj: capacity of facility j˛J
Di: demand for medical supplies from demand point i˛I
fk: a fraction, fkDi is the k-th level coverage bound on the demand
of point i
dk: radius of the k-th coverage level from a demand point
dij: distance between demand point i and facility j

Decision variables

xj: takes a value of 1 if facility j˛J is open and 0 otherwise
sj: supply to be assigned to facility j˛J
tij: amount of medical supplies allocated to demand point i by
facility j

In the deterministic model the location and the intensity (size of
the affected population) is known ahead of time. That is, the
demand at each demand point is known. Then, the problem at hand
is to identify the locations of open facilities and their respective
supplies, sj, out of the available amount S so as to maximize
coverage. The deterministic coverage model is given below:
DM : max
X
i˛I;j˛J

tij

s:t:
X
j˛J

xj ¼ N

(1)

X
i˛I

tij � sj cj˛J (2)

sj � bjxj cj˛J (3)

X
j˛J

sj � S (4)

X
jjdk�1<dij�dk

tij � fkDi ci˛I; k˛1;.;K (5)

X
j˛J

tij � Di ci˛I (6)

X
jjdij>dk

tij ¼ 0 ci˛I

xi˛f0; 1g; sj; tij � 0
(7)

The objective of the above integer programming model is to
maximize the number of people who receive medication. The first
constraint ensures that exactly N facilities are opened. The second
constraint ensures that the supplies distributed for all demand
points from j cannot exceed the available supply at j. Constraints (3)
and (4) make sure supplies are only assigned to open facilities and
that these supplies satisfy the facility capacities and total supplies
available. The coverage bound function is enforced by constraint
(5), where the amount of demand that can be assigned to all the
facilities within (dk�1,dk] of demand point i is bounded by fkDi. The
sixth constraint ensures that the amount of supplies assigned to
demand point i from all facilities (at all coverage levels) are not
more than the demand at i, Di. This way even if the

PK
k¼1fk � 1,

supplies sent to i do not exceed its demand.

3.3. Chance-constrained model

We now consider the case when the demand for medical
supplies at each demand point is not known a-priori. This means
that constraints 5 and 6 of DM have some degree of uncertainty
around them. We assume that the possible demand values due to
an emergency event follow a random variable for which we know
the probability distribution at each demand point. One solution in
this case is to ignore the uncertainty, replace the randomvariable Di

with its expected value E½Di� and use the deterministic modelDM to
get a solution. However, ignoring the uncertainty can be risky in
emergency situations.

The proposed chance-constrained model instead requires that
the uncertain constraints be satisfied with high probability. That is,
if we let xi represent the random demand at i, the fifth and sixth
constraints of DM has to be satisfied except for a small probability
ε˛ð0;1Þ.

The chance-constrained model CCM is formulated as follows:

CCM: max
X
i˛I;j˛J

tij

s:t:
X
j˛J

xj ¼ N
(8)
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X
i˛I

tij � sj cj˛J (9)

sj � bjxj cj˛J (10)X
j˛J

sj � S (11)

Pr

0
@ X

jjdk�1<dij�dk

tij � fkx
i

1
A � 1� ε ci˛I; k˛1;.;K (12)

Pr

0
@X

j˛J
tij � xi

1
A � 1� ε ci˛I (13)

X
jjdij>dK

tij ¼ 0 ci˛I

xi˛f0;1g; sj; tij � 0

(14)

The right hand side of constraints (12) and (13) (fkx
i and xi) and

of the corresponding constraints on DM represent an upper bound
on the amount of demand from i that could be satisfied by different
groups of facilities. The chance-constraint aims to identify an
assignment of demand to facilities tij that couldmeet the demand at
the facilities with high probability. In other words, regardless of
how the demand xi changes, the assignment to facilities ensures
that there is supply to satisfy some of this demand. We note that if
the demand xi turns out to be higher than expected then the
assignment to the supply in facilities tij would satisfy only part of
this demand. However, since we are maximizing

P
i˛I;j˛J tij, the

amount of demand that is satisfied is as large as possible, given the
facility capacity and supply constraints and distribution of demand.
In practice, once facilities are opened and supply levels assigned,
when the emergency occurs and actual demand levels observed,
a linear optimization problem can be solved to determine optimal
demand assignments.

While maximizing coverage, the CCMmodel assigns supply sj to
facilities in J such that facilities further away from demand points
with xi > 0 are allotted lower to little supply compared to facilities
closer to those demand points. This ensures that wastage of
supplies is minimized. We evaluate the suitability of the proposed
approach in the experimental section, where we perform simula-
tions with random demand to observe how much of the actual
demand our chance-constrained model is able to satisfy.

In our work, we assume that the demand generated from the
demand points follows a log-normal distribution with mean m0 and
standard deviation s0. We make this assumption because demand
generated at a demand point cannot be negative and the log-
normal distribution has a positive support. The relationship
between the parameters of the log-normal and the normal distri-

butions are given by m0 ¼ logm� 1
2
s02, s02 ¼ logðm2 þ s2Þ=ðm2Þ. We

define k to denote the Z value of the normal distribution corre-
sponding to the confidence level ε. k is called the safety factor,
where fðkÞ ¼ 1� ε. Using this relation, we linearize the chance-
constraint (12) as follows:

X
jjdk�1<dij�dk

tij � fke
m0
i�ks0

i ci˛I; k˛1;.;K: (15)

Chance-constraint (13) can be linearized similarly.
The objective function for the chance-constrained model
remains unchanged from the deterministic model. We note that
these linearized versions of the chance-constraints (12) and (13)
have the same structure as constraints (5) and (6) on DM, with
the demand value Di replaced by em

0
i�ks0

i . While in DMwe replace Di

by its expected value, in CCM we replace it with the value given by
the chance-constrained expression.

4. A locate-allocate heuristic

The locate-allocate heuristic was introduced by [19] and, for
instance, used in [33] to solve facility location problems. Jia et al.
(2007) [34] show that the locate-allocate heuristic outperforms
a genetic algorithm procedure and is nearly as good as a Lagran-
gean-relaxation heuristic for solving an uncapacitated facility
location problem of locating medical supplies for a large-scale
emergency. In terms of computational time, they showed that the
locate-allocate heuristic is much faster than a genetic algorithm
and a Lagrangean-relaxation heuristic. The efficiency shown for the
uncapacitated version of the problem suggest the use of this type of
heuristic to solve the chance-constrained model described previ-
ously. To describe the locate-allocate heuristic, we use the deter-
ministic model DM. To solve this heuristic for CCM, we need to
simply replace Di with the value given by the chance-constrained
expression.

The idea behind this heuristic is very simple. The first step is to
choose an initial location for the N facilities to be opened. This can
be done by using a simple greedy approach. In our case, we solve an
integer program with an objective to maximize the amount of
supplies transported between facilities and demand points. At this
stage, we do not consider the demand loss function, but simply
specify that a facility is allowed to transport supplies to demand
points that lie within a radius dK from it. This mixed integer
program IP1 is as follows:

IP1 : max
X
i˛I;j˛j

tij

s:t:
X
j˛j

xj ¼ N
(16)

X
ijdij�dk

tij �
1
N

X
i˛I

Dixj cj˛J

xj˛f0;1g; tij � 0

(17)

The initial facilities opened, using IP1 above, consider the demand
balanced over all open facilities with the help of the second
constraint. The second step of the heuristic is to allocate demand
points to the facilities that were opened, with an objective to maxi-
mize coverage. In our case,we solve the following linear program LPA
that does this allocation of demand points to open facilities. We
define a set J

0
to denote the set of facilities that have beenopened and

xi
ε
as the demand realized at the confidence level of ε.

LPA : max
X

i˛I;j˛J0
tij

s:t:
X
i˛I

tij � sj cj˛J0
(18)

sj � bj cj˛J0 (19)

X
j˛J0

sj � S (20)
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X
0

tij � fkx
i
ε

ci˛I; k˛1;.;K (21)

j˛J jdk�1<dij�dk

X
j˛J0 jdij>dk

tij ¼ 0 ci˛I (22)

X
j˛J

tij � xi
ε

ci˛I

sj; tij � 0
(23)

The third step of the locate-allocate heuristic is to create clusters
of demand points served by each open facility. Then, for each
cluster, we try to relocate the open facility from its current site to
another one such that the total travel distance between the facility
and the demand points in the cluster is minimized. In our approach,
we define clusters C1, ., CN to denote the N clusters formed by the
N open facilities. The relocate integer program is:

IPR: min
X
Cy

2
4QCy;j

X
iji˛Cy

dij

3
5

s:t:
X
j˛J

xj ¼ N
(24)

X
j

QCy;j ¼ 1 cy˛1;.;N (25)

X
Cy

QCy;j ¼ xj cj˛J

xj˛f0;1g cj˛J
(26)

Here, QCy ;j is set to 1 if facility j is assigned to cluster Cy and
0 otherwise. The first constraint ensures that every cluster is
assigned exactly one facility, and the second constraint enforces the
condition that an open facility is assigned to only one cluster, and
a closed facility is assigned to none. On solving the above integer
Fig. 2. Locations of demand point
program, if a facility different from the one used in the allocate step
of the heuristic is found tominimize the total travel distance for any
particular cluster, then the new facility is assigned the same supply
as the previous facility. The allocate and relocate steps of the locate-
allocate heuristic are repeated until no further relocation occurs. At
this stage, the heuristic is terminated. The favorable performance of
the location-allocation heuristic in solving facility location models
has been presented by [33,35e37], among others. In our imple-
mentation of this heuristic, we use integer programs to solve the
relocate and allocate procedures. This reduces the number of iter-
ations required to find the best set of locations and allocations. The
heuristic stops when there is no further reduction in the objective
function value of the allocate step. While the convergence of the
heuristic cannot be proven for a general case, it did converge for all
the instances in our experiments. Its convergence for specific cases
has also been discussed in the aforementioned papers. In the
following section, we test the performance of our heuristic and
compare it with a simulated annealing heuristic presented by
Berman and Drezner (2006) which also considers a distance-
dependent demand.
5. Experimental analysis

In this section, we present experiments to show how the
deterministic and the chance-constrained models and the locate-
allocate heuristic can be used to locate staging areas for mass
distribution of the medical supplies with an objective to maximize
coverage in the event of an anthrax attack on Los Angeles County.
Anthrax is a deadly disease that requires vaccines and antibiotics
to treat the affected persons and immunize the high-risk pop-
ulation. During an anthrax emergency, the strategic national
stockpiles (SNS) are mobilized for local emergency medical
services. We use the centroid of each census tract, representing
the aggregated population in that tract as the demand points.
Using this procedure, we have 1939 demand points in Los Angeles
s within Los Angeles County.
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Fig. 3. Comparison of locate-allocate and simulated annealing for N ¼ 30.

Table 1
Coverage from the deterministic model using locate-allocate heuristic.

g 100% 90% 80% 70% 50% 30% 20%

N ¼ 50 94.19 89.99 80 70 50 30 20
N ¼ 40 89.66 88.32 80 70 50 30 20
N ¼ 30 84.96 83.68 77.01 70 50 30 20
N ¼ 20 74.56 72.26 72.09 70 50 30 20
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County. Under a large-scale emergency scenario, the demand
arising from each demand point could be anywhere between
0 and the aggregate population represented by it. The mean
demand for the 1939 demand points were provided to us. We
were also provided with approximately 200 eligible facility sites.
To protect the confidentiality of the exact site locations, we use
exactly 200 of these sites with a slight perturbation in their
geographical coordinates. Fig. 2 shows the distribution of the
demand points in the County.

For the loss function, we consider three coverage levels of radii
4 mi, 8 mi and 12 mi respectively, for every open facility. Corre-
sponding to these coverage levels, we assume f1 ¼ 100%, f2 ¼ 65%
and f3 ¼ 30%. Additionally, as presented by [38], we assume the
supply of vaccines in each facility (bj) to be at least equal to 140,000
units per week, with a response time period of 4 weeks. This means
that the facilities have a supply of 560,000 units. In the experiments
belowwe take the total supply S to be some fraction of the expected
total demand. That is, we take S ¼ g

P
i˛I E½Di� for some service

level g˛ð0;1�. We do this because the difficult situation is when
there is a lack of supplies.

We coded the simulated annealing heuristic presented by [39]
in Cþþ and ran it using Microsoft Visual Studio 5.0 on a Pentium
IV computer with 512 MB RAM. We maintained the same settings
as above, and compared its performance with our locate-allocate
heuristic. The simulated annealing heuristic uses an approach
similar to that of Vogel’s approximation method [40] to allocate
demand points to facilities. Since their heuristic does not consider
supply as a variable, we assumed the capacity of every open facility
to be equal to the minððgP

i˛I E½Di�Þ=N; bjÞ. The demand experi-
enced by a facility is discounted as per the loss function. Facilities
are sorted based on their opportunity cost for which we used
distance as a measure. Demand points are allocated to facilities as
long as the total demand assigned to a facility does not exceed its
capacity.

The locate-allocate heuristic was coded in Cþþ using ILOG
Concert Technology. For all the experiments provided below, CPLEX
and the locate-allocate heuristic were performed on a Dell Preci-
sion 670 computer with a 3.2 GHz Intel Xeon Processor and 2 GB
RAM running CPLEX 9.0. The heuristics executed rather quickly in
about 10e15 min. To contrast, we compared the results obtained
against solving the whole facility location problem with CPLEX for
2.0 CPU hours keeping the best solutions found so far. The
convergence of the CPLEX solution slowed down considerably after
2.0 h.

5.1. Deterministic model

In this case, we use the mean demand for the 1939 demand
points as the actual demand for the respective demand points. We
present below the coverage that could be obtained from the
deterministic model using the locate-allocate heuristic. We test the
sensitivity of the algorithm for varying number of facilities to be
opened N and varying service levels g.

We compare the above results with that obtained by using the
simulated annealing procedure, presented by Berman and Drezner
(2006), to solve the deterministic facility location problem. The
results from the simulated annealing procedure are presented
below.

In the figure below we plot the performance of the locate-
allocate (L-A) heuristic and the simulated annealing (SA) proce-
dure for N ¼ 40, and compare them to the best lower bound (LB)
and upper bound (UB) of the integer program DM obtained using
CPLEX after 2.0 CPU hours, also for N ¼ 40. Fig. 3 shows that for the
settings of our problem, the locate-allocate heuristic outperforms
the simulated annealing procedure in locating facilities to
maximize coverage. In addition, while the coverage achieved by the
locate-allocate heuristic is mostly greater than the CPLEX lower
bound, the coverage achieved by simulated annealing is usually
slightly below this lower bound for g values of 100%, 90%, and 80%.
This trend in both the heuristics holds true for the all the values ofN
tested, as shown in Tables 1 and 2 above.

To further evaluate the performance of our algorithm in
comparison to that of simulated annealing, we design an experi-
ment that consists of 500 demand points and 50 potential facility
sites. The demand points and facility sites were chosen randomly
from the entire set for Los Angeles that was presented earlier. As
before, bj ¼ 140,000 units per week and g ¼ [0,1] and the response
time is 4 weeks. We solve the deterministic problem DM using L-A
and SA for different coverage levels radii ðrÞ and coverage fractions
(f) : r1¼4mi, 8mi,12mi; r2¼ 3mi, 6 mi,12mi; f1¼100%, 65%, 30%;
f2 ¼ 100%, 75%, 50%. The results of these experiments are presented
in Tables 3e8 below.

On comparing results in Tables 3 and 4, we conclude that L-A
outperforms SA under these settings. We also note that for both
heuristics the coverage drops when the number of open facilities is
5. This could be due to the fact that 5 facilities may not be sufficient
to provide reasonable coverage to the spatially distributed demand
points. There is a slight improvement in coverage when the
coverage fractions increase (Table 5). This could mean that the total
supply, S, stored at the open facilities in the experiments in Table 3
was less than 4Nbj, where N is the number of open facilities and the
response time is 4 weeks. On increasing the coverage fractions,
some of the remaining supply can now be allotted to demand
points in all three coverage levels, thereby increasing overall
coverage. However, the improvement in coverage is negligible with
5 open facilities probably because Swas very close to 4Nbj and very
few of the 500 demand points are within 12 miles from the open
facilities. If S z 4Nbj under f1, then little supply is left over for



Table 3
Coverage from DM using L-A heuristic, under r1 and f1.

g 100% 90% 80% 70%

N ¼ 20 95.62 90 80 70
N ¼ 10 86.49 83.25 76.80 69.79
N ¼ 5 75.44 73.37 69.64 64.76

Table 4
Coverage from DM using SA heuristic, under r1 and f1.

g 100% 90% 80% 70%

N ¼ 20 91.41 87.31 80 70
N ¼ 10 79.11 72.73 65.35 53.33
N ¼ 5 70.47 61.93 53.80 43.71

Table 5
Coverage from DM using L-A heuristic, under r1 and f2.

g 100% 90% 80% 70%

N ¼ 20 98.74 90 80 70
N ¼ 10 89.56 85.67 78.25 70
N ¼ 5 75.81 73.37 69.64 64.76

Table 6
Coverage from DM using L-A heuristic, under r2 and f1.

g 100% 90% 80% 70%

N ¼ 20 89.22 84.36 77.53 70
N ¼ 10 76.48 74.57 70.70 66.15
N ¼ 5 69.61 69.01 67.14 63.79

Table 2
Coverage from the deterministic model using the simulated annealing heuristic.

g 100% 90% 80% 70% 50% 30% 20%

N ¼ 50 90.86 84.71 79.96 70 50 30 20
N ¼ 40 82.45 80.24 77.58 69.97 50 30 20
N ¼ 30 79.67 76.44 74.30 69.89 50 30 20
N ¼ 20 71.34 69.91 68.83 68.67 50 30 20

Table 7
Coverage from DM using SA heuristic, under r2 and f1.

g 100% 90% 80% 70%

N ¼ 20 82.57 76.41 73.13 68.93
N ¼ 10 68.62 61.43 55.89 50.44
N ¼ 5 63.13 57.10 49.60 40.57

Table 9
Coverage from the chance-constrained model.
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allocation to demand points upon increasing coverage fractions.
The coverage remains unchanged because the optimal solution
obtained with the original coverage fractions would still remain
optimal.

Similar to the previous set of experiments, we notice from
Tables 6 and 7 that L-A performs better than SA. Once again
coverage slightly improves when coverage fractions are increased.
Table 8
Coverage from DM using L-A heuristic, under r2 and f2.

g 100% 90% 80% 70%

N ¼ 20 91.52 85.25 77.79 70
N ¼ 10 77.83 75.33 70.78 66.21
N ¼ 5 69.61 69.01 67.14 63.79
However, the gain in coverage obtained in Table 8 is lower than the
gain obtained in Table 5. This could mean that a significant number
of demand points were located between 3 and 4miles and between
6 and 8 miles from the open facilities. Demand points located
between 3 and 4miles could receive up to 100% coverage in the first
set of experiments, but only up to 75% in the second set. Demand
points located between 6 and 8 miles could receive up to 75%
coverage in the first set of experiments, but up to 50% in the second
set. Hence, the gain is lower in Table 8.

5.2. Chance-constrained model

Having verified the quality of the locate-allocate heuristic for
solving the deterministic model, we now investigate the perfor-
mance of the chance-constrained model and the heuristic under
demand uncertainty. For all the results presented in this section, we
assume that N ¼ 20 and g ¼ 0.8. We use a log-normal distribution
with the same mean values as was used in the deterministic case
for generating random demand for the simulations presented in
this section. The standard deviations are taken to be a certain
percentage (10%, 20% etc.) of the respective mean demand values.
In Table 9 below, we present the results from an experiment to
study how the k values impact the coverage provided by the
chance-constrained model.

For low values of ε (corresponding to high values of k and low
uncertainty), the constraint that

P
j tij should never exceed fkx

i
ε
can

be satisfied easily. Hence,
P

j tij � fkx
i
ε
is a tight constraint. This

explains the low coverage values in Table 9 above. As ε increases
(that is, uncertainty increases), xi

ε
would need to be set to a higher

value so that
P

j tij never exceeds fkx
i
ε
. As a result, coverage values

increase.
Next, we perform two sets of simulation experiments to eval-

uate the quality of the locations of the open facilities and the supply
stored at each open facility in terms of unmet demand through
simulations. For both the simulation experiments, we fix the facility
locations and supplies, that is, the xj and sj solution values for all the
locations, for each combination of k and s as per Table 9. Next, we
generate random demands for the 1939 demand points based on
their respective mean values for each value of s. We compute the
following for each sample of demand: (1) the coverage of the CCM
from the performance obtained by the facility sites and supply
solutions under this random demand for a given k-s combination is
recorded as the coverage obtained by using the CCM for allocating
demand points to facilities, (2) coverage obtained if demand were
known in advance (i.e., deterministic) in which case the DM model
is used for locating facilities and allocating demand points and
supplies to facilities. Then, the ratios (1)/(2) are computed. Each
recording in Table 10 below is the average of 20 such ratios.

The ratios compare the performance of facility locations and
their respective supplies outputted by the CCM model under
a random demand to the performance of the locations and their
supplies outputted by the DM model optimal for that demand
alone. In Table 10, the denominator values remain constant for each
k ε s ¼ 10% s ¼ 20% s ¼ 40%

1.96 0.025 62.52 52.57 41.62
1.64 0.050 63.47 53.16 42.11
1.44 0.075 64.08 53.38 42.65
1.28 0.100 64.66 54.09 44.83
1.15 0.125 64.94 55.13 45.54
1.04 0.150 65.18 56.69 46.73
0.93 0.175 65.27 57.21 48.44
0.84 0.200 65.78 59.32 49.23



Table 10
Ratio of the coverage from the CCM under a random demand to the best possible
coverage had we known this demand in advance.

k ε s ¼ 10% s ¼ 20% s ¼ 40%

1.96 0.025 0.8253 0.7386 0.6868
1.64 0.050 0.8352 0.7558 0.7078
1.44 0.075 0.8391 0.7734 0.7312
1.28 0.100 0.8502 0.7815 0.7457
1.15 0.125 0.8539 0.8040 0.7492
1.04 0.150 0.8606 0.8121 0.7598
0.93 0.175 0.8626 0.8200 0.7704
0.84 0.200 0.8646 0.8317 0.7844

Table 11
Ratio of the performance of the CCM to the DM in response to a random demand.

k ε s ¼ 10% s ¼ 20% s ¼ 40%

1.96 0.025 0.9799 0.9820 1.0152
1.64 0.050 0.9917 1.0048 1.0727
1.44 0.075 0.9962 1.0282 1.1082
1.28 0.100 1.0094 1.0390 1.1301
1.15 0.125 1.0138 1.0689 1.1353
1.04 0.150 1.0218 1.0797 1.1514
0.93 0.175 1.0242 1.0902 1.1675
0.84 0.200 1.0265 1.1058 1.1887
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column. Similar to Table 9, the numerator values increase with
a decrease in the k value and decrease with an increase in uncer-
tainty, represented by the standard deviation. Table 10 shows that
in the worst-case, the locations chosen by the locate-allocate
heuristic cover approximately 69% of the demand that could be
covered had we known this random demand well in advance. For
the best-case scenario, this value increases to approximately 86%.

For the second simulation experiment, we compute the
following: (1) the numerator is computed just as how they were
computed in Table 10 above, (2) we consider the sites, the xj and the
sj values, used by the deterministic model, presented in Table 1with
N ¼ 20 and g ¼ 0.8 and allocate demand points to these open
facilities under the same demands as were considered for the
numerator (1). Then, the ratios (1)/(2) are computed. Each
recording in Table 11 is averaged over 20 such ratios.

Table 11 shows themerit of using the chance-constrainedmodel
to locate facilities, determine their supplies and allocate demand
points to the open facilities. It also shows the relative gain in the
coverage, achieved by using the chance-constrainedmodel over the
deterministic model, increases with a decrease in the safety factor
and an increase in the standard deviation. The first is due to an
increase in the numerator values as k decreases, and the second is
due to a decrease in the denominator values as demand uncertainty
increases. Under the best-case scenario, we see nearly a 20% gain in
coverage by resorting to the locations given by the chance-
constrained model.

6. Conclusions

In this study, we consider the problem of locating POD for
medicines in response to a bio-terror attack. To address the
tremendous magnitude and low frequency of large-scale emer-
gencies we obtain a solution that maximizes the number of people
serviced under such uncertain and limited resources/time
conditions.

The main contribution of our work is in designing a response
strategy to distribute supplies in a large-scale emergency that
considers distance-sensitive coverage, in addition to demand
uncertainty. In the problemwe consider here, first, the facilities are
capacitated by the service rate of a POD. Second, the demand
satisfied depends on the distance to the facility. This is because
while planning response to a large-scale emergency scenario, it is
reasonable to assume that the number of people expected to be
assigned to a particular POD decreases as their distance to that POD
increases. Thirdly, given the unpredictability as to when and where
such an emergency scenario could occur and how many people
would be affected, there is a significant uncertainty in demand
values. The aim is to identify locations and a way of distributing
supplies that will be effective in meeting the uncertain demand. In
an emergency situation an overriding objective is to service as
much of the demand as possible. In such a situation, an effective
placement of supplies so that they service demand is more
important than an accurate model of how demand is distributed
among facilities. Finally in this work we aim to include the aggre-
gate effect of uncertainty in the demand at different facilities and
leave for future work the inclusion of more detailed demand
distribution models, such as a consumer-choice demand model.
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