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Abstract: Some important issues in the design of an efficient pharmaceutical supply 
chain involve deciding where to place the warehouses/inventories and how to 
route distribution vehicles.  Solving appropriate facility location and vehicle 
routing problems can ensure the design of a logistic network capable of rapid 
distribution of medical supplies.  In particular, both these problems must be 
solved in coordination to quickly disburse medical supplies in response to a 
large-scale emergency.  In this chapter, we present models to solve facility 
location and vehicle routing problems in the context of a response to a large-
scale emergency.  We illustrate the approach on a hypothetical anthrax 
emergency in Los Angeles County.   
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1. INTRODUCTION 

Rapid distribution of medical supplies plays a critical role in assuring the 
effectiveness and efficiency of the healthcare system. The medical supply 
distribution involves the movement of a large volume of different items that 
usually must be delivered rapidly. For example, in the United States, the 
distribution system must serve more than 130,000 pharmacy outlets every 
day on demand and a typical pharmacy relies on the distributors to have 
more than 10,000 SKUs accessible for delivery, often within 12 hours 
(HDMA, 2005).   

In broad terms, most pharmaceuticals distributed in the United States go 
through a supply chain that comprises the following steps (Belson, 2005):  
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• Manufacturers produce various pharmaceuticals necessitated by demand; 
• Distributors manage large warehouses and control the movement of 

supplies from manufacturers to the retailers; 
• Retailers, including hospitals, clinics, independent pharmacies, chain 

pharmacies, and grocery stores, sell or dispense the pharmaceuticals to 
customers. 

 
The pharmaceutical supply chain is relatively complex compared to the 
supply chains for other products, particularly when considering the strict 
deadline and sufficiency requirements. Different information technologies 
such as product identification, bar coding, usage related information, and 
electronic identification have been applied to facilitate the rapid distribution 
of the pharmaceuticals in the supply chain (Belson, 2005). Furthermore, 
logistic and inventory control of the pharmaceuticals have also been widely 
investigated in the research community in the past decades; for example, see 
Rebidas et al. (1999), Rubin and Keller (1983), and McAllister (1985).  

It is the design of the distribution system in particular, that most 
significantly affects the rapid disbursement of pharmaceuticals, directly 
impacting the quality of healthcare.  The design of an effective distribution 
system comprises the careful consideration of two strategic planning issues: 

 
• Where to place the facilities including warehouses and inventories in 

support of rapid distribution of the medical supplies, and  
• What is the best strategy to distribute the medical supplies and what 

routes need to be used? 
 
Operations research models play an important role in addressing these 
logistical problems for distribution systems. At the heart of both questions 
there is a transportation network to distribute the medical supplies. The 
question of where to place warehouses/inventories is essentially a facility 
location problem within this supply network, while the disbursement of 
supplies can be posed as a vehicle routing problem (VRP) on this network. 
The benefits of modeling and solving the facility location problem and 
vehicle routing problem are two-fold. First, from a planning perspective, the 
models and solutions can aid planners to optimally determine the facility 
locations and vehicle routes and thus maximize the efficiency and 
effectiveness of the pharmaceutical supply chain system as a whole. Second, 
these plans can become well tested operating policies, which can further 
improve performance.  Clearly, the plans need to be flexible enough to 
accommodate contingencies of daily operations.  For the plans to be robust, 
they must take into consideration the stochastic nature of the problem such 
as uncertain demand, traffic conditions, etc.  
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Large-scale emergencies create situations that demand a rapid 
distribution of medical supplies and thus require an efficient and coordinated 
solution to both the facility location and vehicle routing problems.  In 
particular, the response to a large-scale emergency must take into 
consideration that: 

 
• A huge demand for medical supplies appears within a short time period 

and thus large quantities of medical supplies must be brought to the 
affected area;  

• The local first-responders and resources will be overwhelmed; 
• Although tremendous in their magnitude, large-scale emergencies occur 

with low frequency.  
 
An additional parallel distribution system is envisioned in response to large-
scale emergencies such as earthquakes, terrorist events, etc. as massive 
supplies that are brought to the affected area have to be rapidly disbursed 
among the affected population.  Indeed, many countries maintain national 
stockpiles of medical supplies that can be delivered in push packages to the 
Emergency Staging Area (ESA) in case of a large-scale emergency.  For 
example, to address emergencies of infectious disease outbreak, the federal 
government of the United States maintains a Strategic National Stockpile 
(SNS) which contains about 300 million doses of smallpox vaccines and 
enough antibiotic to treat 20 million people for anthrax (CDC website, 
2005).  Furthermore, a vendor managed inventory system (VMI) has also 
been developed to augment the SNS from pharmaceutical vendors to ESAs 
within 21-36 hours.  During a large-scale emergency, the medical supplies at 
the national stockpile and VMI require direct delivery and disbursement to 
ESAs and dispensing centers from which the population could receive the 
medical supplies. Rapid delivery and disbursement of the large volume of 
supplies need careful planning and professional execution to save lives, 
particularly in high-density urban regions like Southern California.  

In this chapter, we analyze the facility location and vehicle routing 
problems, which are crucial for a rapid distribution of medical supplies in 
response to large-scale emergencies. We use the anthrax disease as an 
emergency example to investigate the problems of determining where to 
locate the staging areas to receive the national stockpile and how to route the 
vehicles to distribute the medical supplies. The rest of the chapter is 
organized as follows: Section 2 presents a literature review of the facility 
location and vehicle routing problems that are related to emergency services. 
In Section 3, we describe an anthrax emergency example in a metropolitan 
area and then analyze the requirements for locating the facilities and routing 
the vehicles for rapid medical supply distribution. In Section 4, we propose a 
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facility location model and a vehicle routing model that address the 
characteristics of an anthrax emergency. In Section 5, we demonstrate how 
the proposed models can be used to solve the facility location problem and 
the VRP. The solutions, including the selected staging areas and vehicle 
routes to store and distribute the medical supplies, are discussed.  Finally, we 
conclude the chapter and give future research directions in Section 6.  

2. LITERATURE REVIEW 

Facility location problems and VRPs have been extensively investigated 
by different researchers and practitioners. In this section, we review the prior 
work that is related to different emergencies settings.  

2.1 Review of Facility Location Problems 

Various location models have been proposed to formulate different 
facility location problems for emergency services. Based on the objectives, 
these location models can be classified into covering models, P-median 
models, and P-center models.  

2.1.1 Covering Models 

Covering models are the most widespread location models for 
formulating the emergency facility location problem.  The objective of 
covering models is to provide “coverage” to the demand points. A demand 
point is considered as covered only if a facility is available to service the 
demand point within a distance limit.  Figure 15-1 presents an illustration of 
an infeasible covering problem, where the coverage area of a facility is 
indicated by circles around the four selected locations. 

Toregas et al. (1971) first proposed the location set covering problem 
(LSCP), aiming to locate the least number of facilities to cover all demand 
points. Since all the demand points need to be covered in the LSCP, the 
resources required for facilities could be excessive. Recognizing this 
problem, Church and ReVelle (1974) and White and Case (1974) developed 
the MCLP model that does not require full coverage to all demand points.  
Instead, the model seeks the maximal coverage with a given number of 
facilities. The MCLP, and different variants of it, have been extensively used 
to solve various emergency service location problems (see e.g., Benedict 
1983, and Hogan and ReVelle 1986).  
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  Distance requirement 

Selected facility Unselected facility 
 

Figure 15-1. Covering Problem Example  

 
Research on emergency service covering models has also been extended 

to incorporate the stochastic and probabilistic characteristics of emergency 
situations so as to capture the complexity and uncertainty of these problems.  
Examples of these stochastic models can be found in recent papers by 
Goldberg and Paz (1991), ReVelle et al. (1996), and Beraldi and 
Ruszczynski (2002). There are several approaches to model stochastic 
emergency service covering problems. The first approach is to use chance 
constrained models (Chapman and White, 1974).  Daskin (1983) used an 
estimated parameter (q) to represent the probability that at least one server is 
free to serve the requests from any demand point. He formulated the 
Maximum Expected Covering Location Problem (MEXCLP) to place P 
facilities on a network with the goal to maximize the expected value of 
population coverage. ReVelle and Hogan (1986) later enhanced the 
MEXCLP and proposed the Probabilistic Location Set Covering Problem 
(PLSCP). In the PLSCP, a server busy fraction and a service reliability 
factor are defined for the demand points. Then the locations of the facilities 
are determined such that the probability of service being available within a 
specified distance is maximized. The MEXCLP and PLSCP later were 
further modified to tackle other EMS location problems by ReVelle and 
Hogan (MALP) (1989a), Bianchi and Church (MOFLEET) (1988), Batta et 
al. (AMEXCLP) (1989), Goldberg et al. (1990), and Repede and Bernardo 
(TIMEXCLP) (1994).  A summary and review to the chance constrained 
emergency service location models can be found in ReVelle (1989). 

Another approach to modeling stochastic emergency medical service 
(EMS) covering problems is to use scenario planning to represent possible 
values for parameters that may vary over the planning horizon in different 
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emergency situations. A compromise decision is made to optimize the 
expected/worst-case performance or expected/worse-case regret across all 
scenarios. For example, Schilling (1982) extended the MCLP by 
incorporating scenarios to maximize the covered demands over all possible 
scenarios. Individual scenarios are respectively used to identify a range of 
good location decisions. A compromise decision is made to the final location 
configuration that is common to all scenarios in the horizon. 

2.1.2 P-median Models 

Another important way to measure the effectiveness of facility location is 
by evaluating the average (total) distance between the demand points and the 
facilities.  When the average (total) distance decreases, the accessibility and 
effectiveness of the facilities increase. This relationship applies to both 
private and public facilities such as supermarkets, post offices, as well as 
emergency service centers, for which proximity is desirable. The P-median 
problem takes this measure into account and is defined as: minimize the 
average (total) distance between the demands and the selected facilities. We 
illustrate a P-median model in Figure 15-2.  The total cost of the solution 
presented is the sum of the distance between demand points and selected 
locations represented by the black lines.  

 Maximal distance 

Selected facility Unselected facility 
 

Figure 15-2. P-median / P-center Problem Example  
 

Since its formulation, the P-median model has been enhanced and 
applied to a wide range of emergency facility location problems. Carbone 
(1974) formulated a deterministic P-median model with the objective of 
minimizing the distance traveled by a number of users to fixed public 
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facilities such as medical or day-care centers. Recognizing the number of 
users at each demand node is uncertain, the author further extended the 
deterministic P-median model to a chance constrained model.  The model 
seeks to maximize a threshold and meanwhile ensure the probability that the 
total travel distance is below the threshold is smaller than a specified level α.  
Paluzzi (2004) discussed and tested a P-median based on a heuristic location 
model for placing emergency service facilities for the city of Carbondale, IL.  
The goal of this model is to determine the optimal location for placing a new 
fire station by minimizing the total aggregate distance from the demand sites 
to the fire station.   

One major application of the P-median models is to dispatch EMS units 
such as ambulances during emergencies. For example, Carson and Batta 
(1990) proposed a P-median model to find the dynamic ambulance 
positioning strategy for campus emergency service. Mandell (1998) 
developed a P-median model and used priority dispatching to optimally 
locate emergency units for a tiered EMS system that consists of advanced 
life-support (ALS) units and basic life-support (BLS) units.  

Uncertainties have also been considered in many P-median models.  
Mirchandani (1980) examined a P-median problem to locate fire-fighting 
emergency units with consideration of stochastic travel characteristics and 
demand patterns. Serra and Marianov (1999) implemented a P-median 
model and introduced the concept of regret and minmax objectives. The 
authors explicitly addressed in their model the issue of locating facilities 
when there are uncertainties in demand, travel time or distance.  

2.1.3 P-center Models 

In contrast to the P-median models, which concentrate on optimizing the 
overall (or average) performance of the system, the P-center model attempts 
to minimize the worst performance of the system and thus is also known as 
minimax model. The P-center model considers a demand point is served by 
its nearest facility and therefore full coverage to all demand points is always 
achieved.  In the last several decades, the P-center model and its extensions 
have been investigated and applied in the context of locating facilities such 
as EMS centers, hospitals, fire station, and other public facilities.  The 
objective function for the P-center model of the location solution in Figure 
15-2 quantifies only the longest distance between a demand point and a 
selected location. 

In order to locate a given number of emergency facilities along a road 
network, Garfinkel et al. (1977) examined the fundamental properties of the 
P-center problem. He modeled the P-center problem using integer 
programming and the problem was successfully solved by using a binary 
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search technique and a combination of exact tests and heuristics. ReVelle 
and Hogan (1989b) formulated a P-center problem to locate facilities so as 
to minimize the maximum distance within which EMS service is available 
with α reliability. System congestion is considered and a derived server busy 
probability is used to constrain the service reliability level that must be 
satisfied for all demands. Stochastic P-center models have also been 
formulated for EMS location problems. For example, Hochbaum and Pathria 
(1998) considered the emergency facility location problem that must 
minimize the maximum distance on the network across all time periods. The 
cost and distance between the locations vary in each discrete time period. 
The authors used k underlying networks to represent different periods and 
provided a polynomial time 3-approximation algorithm to obtain the solution 
for each problem. Talwar (2002) utilized a P-center model to locate and 
dispatch three emergency rescue helicopters to serve the growing EMS 
demands from accidents of tourist activities such as skiing, hiking and 
climbing at the north and south end of the Alpine mountain ranges. One of 
the model’s aims is to minimize the maximum (worst) response times and 
the author used effective heuristics to solve the problem.  

2.2 Review of VRPs 

Routing vehicles in response to a large-scale emergency typically include 
various uncertainties such as stochastic demands and/or travel times. In this 
section, we first review the literature on the stochastic vehicle routing 
problem (SVRP). We then review other vehicle routing/dispatching 
problems in the literature that have been formulated for emergency 
situations.  

2.2.1 Stochastic Vehicle Routing Problems (SVRPs) 

SVRPs differ from the deterministic VRPs in several aspects, such as 
problem formulations and solution techniques. SVRPs are usually divided, 
according to the uncertainties in consideration, into SVRPs with stochastic 
customers and/or demands, and SVRPs with stochastic travel time and/or 
service time.  

The VRP with stochastic customers (VRPSC) addresses the probabilistic 
presence of customers (see e.g., Jezequel (1985), Jaillet (1987) and Jaillet 
and Odoni (1988)). Bertismas (1988) gave a systematic analysis to this 
problem. The properties, bounds and the heuristics to solve the problem were 
also presented. 

The VRP with stochastic demand (VRPSD) captures the uncertainty of 
customer demands (i.e. the demands at the individual delivery (pickup) 
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locations behave as random variables). An early investigation on the VRPSD 
comes from Stewart and Golden (1983), who applied the chance constraint 
modeling and resource methods to model the problem. Dror (1986) later 
illustrated the effects of route failure on the expected cost of a route, as well 
as the impact that a re-direction of the pre-designed route has on the 
expected cost. In the late 80’s and early 90’s, along with the conventional 
stochastic programming framework, Markovian Decision Processes for 
single-stage and multi-stage stochastic models were introduced by Dror 
(1989,1993) to investigate the VRPSD. Another major contribution to the 
study of VRPSD comes from Bertsimas (1988, 1992). Their work illustrates 
different recourse policies that could be applied to re-optimize the routes. 
More recently, a re-optimization based routing policy for the VRPSD was 
demonstrated by Secomandi (2001). In their work, a rollout algorithm is 
proposed to improve a given a priori solution. 

The vehicle routing problem with stochastic customers and demands 
(VRPSCD) combines the VRPSC and the VRPSD. Early work on this topic 
includes Jezequel (1985), Jaillet (1987), and Jaillet and Odoni (1988). 
Motivated by applications in strategic planning and distribution systems, 
Bertsimas (1992) constructed an a priori customer visit sequence with 
minimal expected total distance and analyzed the problem using a variety of 
theoretical approaches. Gendrueau, Laporte and Seguin (1995) proposed a L-
shaped method for the VRPSCD and solved it to optimality for instances of 
up to 46 customers.  Another strategy to account for the demand 
uncertainties is to develop a waiting strategy for vehicles to strategically wait 
at pre-determined locations in order to maximize the probability of meeting 
any future anticipated demand (Branke et al. 2005).  

VRP with stochastic travel time (VRPSTT) addresses the unknown 
knowledge of the road conditions. Systematic research on the VRP with 
service time and travel time (VRPSSTT) has been done by Laporte, 
Louveaux and Mercure (1992). They proposed three models for the 
VRPSTT: chance constrained model, 3-index recourse model, and 2-index 
recourse model. The VRPSSTT model was also applied by Lambert, Laporte 
and Louveaux (1993), and Hadjiconstrantinou and Roberts (2002) to 
optimize the customer service in the banking and other commercial systems.   
Jula, Dessouky, and Ioannou (2005) develop an approximate solution 
approach for random travel times with hard time windows.  Their 
approximation approach is based on developing estimations for the first two 
moments of the arrival time distribution.   
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2.2.2 Vehicle Locating/Routing/Dispatching for Emergency Services 

Emergency service systems (e.g., police, fire, etc.) need to dispatch their 
response units to service requests. In an emergency, the primary objective is 
to save lives, and thus sending response units to the incident site at the 
earliest time has the highest priority. However the requests for emergency 
services are usually unpredictable and furthermore they come with a 
relatively low frequency. Therefore the planner is generally faced with two 
major problems. First, an allocation problem in which the response units that 
are sent for service need to be determined; and second, a re-deployment 
problem in which the available response units need to be deployed at the 
potential sites in preparation to incoming requests needs to be determined.  

One important thrust and cornerstone in vehicle locating/routing/ 
dispatching for emergency services is the development and application of the 
queuing approach. The most well known queuing models for emergency 
service problems are the hypercube and the approximated hypercube by 
Larson (1974, 1975), which consider the congestions of the system by 
calculating the steady-state busy fractions of servers on a network.  The 
hypercube model can be used to evaluate a wide variety of output 
performance such as vehicle utilization, average travel time, inter-district 
service performance, etc.  Particularly important in the hypercube models is 
the incorporation of state-dependent interactions among vehicles that 
preclude applications of traditional vehicle locating/routing/dispatching 
models. Larson (1979) and Brandeau and Larson (1986) further extended 
and applied the hypercube models with locate-allocate heuristics for 
optimizing many realistic EMS systems.  For example, these extended 
models have been successfully used to optimize the ambulance deployment 
problems in Boston and the EMS systems in New York. Based on the 
hypercube queuing model, Jarvis (1977) developed a descriptive model for 
operation characteristics of an EMS system with a given configuration of 
resources and a vehicle locating/dispatching model for determining the 
placement of ambulances to minimize average response time or other 
geographically based variables. Marianov and ReVelle (1996) created a 
realistic vehicle locating/dispatching model for emergency systems based on 
results from queuing theory. In their model, the travel times or distances 
along arcs of the network are considered as random variables.  The goal is to 
place a limited numbers of emergency vehicles, such as ambulances, in a 
way as to maximize the calls for service. Queueing models formulating other 
theoretical and practical problems have also been reported by Berman and 
Larson (1985), Batta (1989), and Burwell et al. (1993).  
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3. A LARGE-SCALE EMERNGECY --                      

AN ANTHRAX ATTACK 

In this section, we use an anthrax attack emergency to demonstrate the 
characteristics of a large-scale emergency. We then derive the requirements 
for the facility location problem and vehicle routing problem for the medical 
supply distribution in a large-scale emergency. Note that different 
emergency scenarios may require different response plans.  The area in 
which we consider the anthrax attack emergency is Los Angeles (LA) 
County, which consists of 2054 census tracts and a total population of 9.5 
million. In addition, we identify a number of potential eligible medical 
supply facility sites (see Figure 15-3) and the goal is to select some of these 
eligible facility sites as the staging areas to dispense the vaccinations.  

3.1 Characteristics of an Anthrax Emergency 

Anthrax is an acute infectious disease caused by a spore-forming 
bacterium. The anthrax spores can be used as a bioterrorist weapon, as was 
the case in 2001, when Bacillus anthracis spores had been intentionally 
distributed through the postal system causing 22 cases of anthrax emergency, 
including 5 deaths (CDC website, 2005). If the anthrax spores had been 
disseminated in an airborne manner through airplanes or from high 
buildings, thousands of people and hundreds of blocks would have been 
severely affected. Anthrax causes disease after inoculation of open or minor 
wounds, ingestion, or inhalation of the spores. At the earliest sign of disease, 
patients should be treated with antibiotics and other necessary medications to 
maximize patient survival. Otherwise, shock and death could ensue within 
24 to 48 hours. Although no cases of person-to-person transmission of 
inhalation anthrax have ever been reported, cutaneous transmissions have 
occurred. Early treatment of anthrax disease is usually curative and 
significant for recovery. For example, patients with cutaneous anthrax have 
reported case fatality rates of 20% without antibiotic treatment and less than 
1% with it (CDC website, 2005).  

The impact of an anthrax attack to the population can be tremendous. 
First, thousands of people could be directly infected by the disease at the 
incident site. Second, the affected area could quickly spread from the 
original incident site to a much larger region by the movement of the 
infected but unaware people because the anthrax attack is usually covert and 
the appearance of the disease symptom may lag the attack from hours to 
days. Third, after an anthrax disease emergency becomes known in public, 
people may panic and become scared. They may request medical treatment 
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or vaccination even if they are not actually infected or not in a high-risk 
situation.  

 

 
Figure 15-3. Los Angeles County  

 
 
Huge demands for medical supplies could occur in a short time period 

after the anthrax attack. Blanket medical service coverage and mass 
vaccination may be necessary to all the population in a region. As such, a 
large amount of vaccines may be required. However an anthrax emergency 
has a low occurrence frequency and it is very expensive for any local region 
to maintain massive medical supplies for such a rare event. Therefore, large 
volumes of medical supplies for such an emergency are usually not stored at 
local sites. Instead, they are inventoried by the government at national 
stockpiles which consist of large quantities of medications, vaccines, and 
antibiotics to protect the public. The national stockpile is organized as push 
packages for flexible response and immediate deployment to a designated 
site within 12 hours (e.g. the SNS of the United States). Once delivered to 
the local areas, the stockpiles can be repackaged and distributed to various 
demand points though the local dispensing centers (staging areas).  The 
overall process of a rapid medical supply distribution for a large-scale 
emergency can be depicted as follows in Figure 15-4. The details for each 
procedure in this process are described in the following sections.  
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Figure 15-4. Medical Supply Distribution Process 
 
It should be noted that anthrax is not contagious from person to person 

and the medical service coverage should depend on the actual disease 
spreading pattern. For example, if the attack can be detected at an early stage 
and the infected people can be identified and quarantined in a timely manner, 
then only the areas near the incident site need to be serviced with medical 
supplies. In this example we consider the worst case scenario and assume 
that the delayed detection of the attack has caused intractable population 
movements, and thus a blanket medical service coverage to all the areas is 
required. The logistical problem for such a worst case scenario is much more 
challenging than other scenarios in which only a portion of a region needs to 
be provided with medical supplies. Also note that the blanket medical 
service coverage is similarly applicable to contagious emergencies such as 
smallpox. During a contagious disease outbreak, it is possible that some 
areas are more critical than others due to certain disease spreading pattern. 
However, a mass vaccination to all the areas may be desired since it could 
effectively stem the disease transmission among the population (CDC, 
2005).  

3.2 Requirements to Facility Location Deployment 

As mentioned in the last section, the medical supplies are usually not 
stored at the local level, and during an anthrax emergency the national 
stockpile will be called to service the demands at the local areas. Therefore, 
the primary goal of the facility location problem is to determine a number of 
local staging areas so that the supplies from the national stockpile can be 
received, re-packaged and distributed.  
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The deployment of medical facility sites (staging areas) in response to a 
large-scale emergency must account for massive service requirements. In 
most traditional facility location problems, each individual demand point is 
covered only by one facility given the fact that demand does not appear in 
large amounts. However, in the event of an anthrax emergency, if a mass 
vaccination to the population is necessary, the demands for medical services 
will be significant. As a result, a redundant and dispersed placement of the 
facilities (staging areas) is required so that more medical supplies could be 
mobilized to service different demand points to reduce mortality and 
morbidity.  

Another important aspect of the facility locations for the anthrax 
emergency is the fact that given the occurrence of the emergency at an area, 
the resources of a number of facilities will be applied to quell the impact of 
the emergency, not only those located closest to the emergency site.  This 
implies that there are different types of coverage, or quality of coverage, 
which can be classified in terms of the distance (time) between facilities and 
demand points. Thus, a facility that is close to a demand point provides a 
better quality of coverage to that demand point than a facility located far 
from that demand point.  When planning the emergency medical services, it 
is important to consider adequate staging areas of various qualities for each 
demand point.  

Furthermore, potential demand areas for medical services need to be 
categorized in a different way than other regular emergencies. Each demand 
area has distinct attributes, such as population density, economic importance, 
geographical feature, weather pattern, etc. Therefore, different requirements 
of facility quantity and quality should be assigned for each demand point so 
that all demand points can be serviced in a balanced and optimal manner. 
For example, for the demand points at a downwind and populous downtown 
area, a larger quantity of facilities should be located at a relatively better 
quality level, as opposed to the demand points at an upwind and/or less 
populous area.  

Moreover, the facility location objective for an anthrax disease 
emergency should be carefully defined.  An anthrax emergency is bound to 
impact lives regardless of the solution. Thus care should be taken in 
prioritizing one solution over another.  Since the blanket medical service 
coverage and mass vaccination may be carried out, all the demand points in 
the affected areas need to be serviced simultaneously. To optimize the 
overall performance of the medical distribution system, it is desirable that 
the total (average) distance from all demand points to the staging areas be 
minimized. Thus, a P-median model with multiple facility quantity-of-
coverage and quality-of-coverage requirements is applicable. It is important 
to note the model that is selected should be in accordance with the 
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characteristics of the emergency, and different models may be suitable for 
different emergency scenarios. For example, for the emergency of a dirty 
bomb attack in which only a portion of a region needs be serviced by the 
medical supplies, the covering model may be more applicable since the 
model ensures a maximal population coverage by the medical supply 
facilities.  

Finally, the selection of eligible staging area sites for the anthrax 
emergency must consider a different set of criteria that are used for regular 
emergencies.  For instance, the facilities should have easy access to more 
than one major road/highway including egress and ingress.  The sites should 
be secure and invulnerable to damages caused by the emergencies.  In this 
paper we consider eligible staging area sites as given. 

3.3 Requirements to Vehicle Routing  

In an anthrax emergency, the primary goal of vehicle routing is to deliver 
the medical supplies to the affected areas as soon as possible. To reach this 
goal, a fast and efficient vehicle routing/dispatching plan needs to be 
executed. To maximize life-saving in an anthrax emergency, medications, 
antibiotics, and vaccines should be administered to the affected population 
within a specified time limit (within 24 hours to 36 hours). This implies that 
vehicles need to have a hard time-window for medical supply delivery. To 
minimize the loss of life at any demand area, the medical supplies must be 
sent to the demand area within this hard time-window. Note that although a 
hard time-window is used to model the VRP for the anthrax emergency, it 
may not always be applicable to other emergencies. For example, for a 
contagious disease outbreak, such as smallpox, the demand for medical 
supplies could be a continuous function of time. In such a case, a soft time-
window approach may be more suitable to model the VRP. 

The input parameters to the vehicle routing problem in the anthrax 
emergency have a probabilistic/stochastic nature. For example, the traffic 
conditions may change and therefore the vehicle travel times can be highly 
uncertain. In addition, the demands for medical services may be stochastic 
because of the way the disease disseminates, the wind direction, the 
geographic conditions, etc. As such, the vehicle routing problem needs to 
capture the demand uncertainties and provide a robust solution that performs 
well in a variable environment.  

Moreover, because of the massive service requirements, the demand at a 
location is not necessarily satisfied by a single truckload. As such, the 
vehicle routing problem for the anthrax emergency should allow for split 
delivery (i.e., a point can be visited more than once if the demand exceeds 
the load capacity of available vehicles). Also, the VRP for the anthrax 
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emergency should be a multi-depot problem since many local depots are 
dispersed across a region. However, unlike the traditional multi-depot VRP, 
which requires each vehicle to return to its origination depot, the vehicles are 
now allowed to return to any depot for reloading and then continue serving 
other demand points. This requirement enables the vehicles to distribute the 
medical supplies in a more flexible manner.  

Finally, the primary objective of the vehicle routing problem during the 
emergency should be the minimization of loss of lives, which is caused by 
minimizing the unmet demands for the medical service.   

As mentioned before, the facility location and vehicle routing models can 
be used as a planning tool to determine the optimal staging areas and vehicle 
routes considering the probabilistic/stochastic nature of the emergency.  
These plans can serve as practical drills for the first responders to prepare 
and train them for a possible emergency, and they may be to be altered in the 
event that an emergency has occurred once the characteristics of the 
emergency become known.   

4. MATHEMATICAL MODEL FORMULATIONS 

Based on the analysis stated in the last section, we now formulate a 
facility location model and a vehicle routing model that take into account the 
characteristics of the anthrax disease emergency.  Generalizations of the 
models discussed in this section can found in Jia et al. (2005) for the facility 
location problem and Shen et al. (2005) for the vehicle routing problem. 

4.1 Formulation of the Facility Location Model 

To formulate the facility location model, we use I to denote the set of 
demand points and J to denote the set of eligible facility sites (staging areas).  
Indexed on these sets we define two types of integer variables: 

 
Decision variables: 

�
�
�

=
0

1
jx  

�
�
�

=
0

1
ijz  

 
Furthermore, we define the following parameters: 

if a facility j services demand point i; 
otherwise. 

if a facility is placed at site j; 
otherwise. 
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Input Parameters: 

Popi   = the population of demand point i. 

dij = the distance between demand point i and facility location j. 
Di = the distance limit within which a facility could service demand point 

i. 

{ }iiji DdjN ≤= | , the set of eligible facility sites that are located within 

the distance limit and thus are able to service demand point i. 

Qi = the required number of facilities that must be assigned to demand 
point i so that i is considered as covered. 

P = the maximal number of facilities that can be placed in J. 

 
We can now formulate the model to locate P facilities to service the 

population during an anthrax emergency, requiring that Qi facilities service 
demand point i with the same quality. 

 

Minimize ��
∈∈ Jj

ijiji
Ii

zdPop               15-1 

Subject to: 

�
∈

≤
Jj

j Px                      15-2 

,IiQz i
Nj

ij

i

∈∀≥�
∈

               15-3 

,, JjIixz jij ∈∈∀≤              15-4 

 }{ ,,1,0, JjIizx ijj ∈∈∀=             15-5 

 
The objective (15-1), as mentioned in Section 3.2, is to minimize the total 

demand-weighted distance between the demand points and the facilities. 
Constraint (15-2) states that there are P facilities to be located in a set J of 
possible locations. Constraint (15-3) ensures that demand point i is assigned 
with a required quantity (Qi) of facilities servicing it. This constraint also 
requires that all the facilities assigned to demand point i need to be located 
within the given distance limit. Constraint (15-4) allows assignment only to 
the sites at which facilities have been located. Finally constraint (15-5) 
enforces the integrality of variables zij and xi.   

Consider now the problem with multiple quality-of-coverage 
requirements at each demand point.  Let us assume that at demand point i we 
must have Qi

1, Qi
2,…, Qi

q, facilities for each quality from 1 to q, where 
quality Qi

1 represents the facilities that are closest to demand point i, Qi
2 are 
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the facilities located farther than those of quality 1, and so on. Thus the 
facility location model needs to be modified as follows:  

 
(1) Objective function: Since multiple quality-of-coverage is considered, 

the objective function needs to be optimized across different quality 
levels.  Because the facilities with a higher quality level (i.e. closer to 
the demand points) are usually considered to be more crucial in 
servicing the demand points, as opposed to the facilities with lower 
quality levels (i.e. farther from the demand points), we introduce a 

weight parameter, rh , to prioritize the importance of the facilities at 

each different quality level r. Also we modify i jz  to r
ijz  in order to 

differentiate the facilities that are servicing the demand points at 
different quality levels. Thus, we obtain the modified objective 
function: 

Minimize � � �
∈ ∈r Ii Jj

r
ijiji

r zdPoph            15-6 

 
(2) Constraints: First, the group of constraints (15-3) needs to be changed 

to:  

qrIiQz r
i

Nj

r
ij

r
i

,...,1, =∈∀≥�
∈

         15-7 

The modified constraints state that, for each demand point, there 
must be more than a required quantity of facilities at each quality 
level so that this demand point can be considered as properly 
serviced.  In addition, to avoid repeated assignment of a facility to 
any demand point for different quality requirements, we introduce 
another group of constraints: 

  1 ,r
ij

r

z i I j J≤ ∀ ∈ ∈�            15-8 

 
As such, the modified objective (15-6), together with the constraints (15-

2), (15-4), (15-5), (15-7), and (15-8), can be used to formulate the facility 
location problem for the anthrax emergency with multiple facility quantity-
of-coverage and quality-of-coverage requirements. Note that in the problem 

formulation, all the ,, iij Qz and iN need to be correspondingly changed to 

,, r
i

r
ij Qz and r

iN . 

Exact algorithms have been developed in the literature to solve different 
facility location problems; for example, see Holmberg (1999). However 
exact algorithms can only solve small problem instances in a reasonable 
computational time. Therefore, to solve the location problems for large-scale 
emergencies, efficient heuristics, such as greedy algorithms, genetic 
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algorithms, or Tabu search, should be used. References to the heuristics for 
traditional location problems can be found in Jain et al. (2002) and Jaramillo 
et al. (2002).  

4.2    Formulation of the Vehicle Routing Model 

To formulate the vehicle routing model, we use K, I, J, and A to denote 
the sets of vehicles, demand points, facility sites, and medical supply items. 
In addition, we use node 0 as a dummy node to represent a virtual/imaginary 
central depot that is linked to each real depot (facility site). The cost or travel 
times on these links is set to be a large number. The dummy node is useful in 
representing the availability of vehicles. To conveniently denote different 
node combinations in the medical supply network, we further define set 

}0_{nodeJIC ∪∪= , and set RO = JI ∪ . Furthermore, indexed on 
these sets, we define the following deterministic parameters. Note that 
different from the facility location problem, in which the index i is defined 
as demand point i and the index j is defined as facility site j, here the indices 
i and j are defined as any node from set C, which could be either a demand 
point or a facility site (depot).  

 
Deterministic Parameters: 

ni   = the initial number of vehicles at facility site (depot) i. 

wa = the unit weight of medical supply item a. 

ca,k = the load capacity of vehicle k for medical supply item a. 

ea,i = the earliest service start time for medical supply item a at demand 
point i. 

la,i = the latest service start time for medical supply item a at demand point 
i. 

sa,I = the amount of medical supply item a supplied at facility site (depot) i. 
r i = the service (loading/unloading) time at node i, including both the 

demand points and the facility sites. 
 
We use M as a large constant to transform nonlinear terms to linear ones 

for the time window constraints. In addition, the parameter Dα  is used to 
represent the upper bound of unsatisfactory rate for demands at each demand 
point and Tα is used to denote the upper bound of total traveling time for 
each vehicle. These two parameters represent the probabilistic violation on 
the demand and travel time constraints.  
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As mentioned in the pervious section, uncertainties exist in the anthrax 
emergency. We consider the following two parameters as stochastic 
variables. 

 

Stochastic Parameters: 

kji ,,τ  = the time required for vehicle k to travel from point i to j.  

ia,ζ = the demand for medical supply item a at demand point i. 

 
Finally, four groups of decision variables are defined as follows: 

Decision variables: 

�
�
�

=
0

1
,, kjiX  

kjiaY ,,, = the amount of medical supply item a traversing arc (i, j) using 

               vehicle k. 

iaU , = the amount of unsatisified demand for medical supply item a at  

           demand point i. 

kiT , = the service start time for vehicle k at demand point i. 

 
Based on these parameters and variables, we are now in a position to 

formulate the stochastic vehicle routing problem, with the objective to 
minimize the unmet demands over all the demand points. 

 

Minimize ,a i
a A i I

U
∈ ∈
� �                  15-9 

 
Subject to: 

JinX i
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∈∈

        15-13 

 { } CjiMXTrTP Tkjikjkjiiki ∈∀−≥−≤−++ ,1)1()(| ,,,,,, αττ  

if vehicle k traverses arc (i,j); 
otherwise. 
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Constraints (15-10)-(15-14) characterize the vehicle flow on the medical 
distribution network. Constraint (15-10) states that the number of vehicles in 
service should not exceed the number of vehicles available at each depot at 
the beginning of the planning horizon. The number of vehicles in service is 
the total number of vehicles flowing from the dummy central depot 0 to each 
facility site. Constraints (15-11) and (15-12) specify that each vehicle can 
flow from and to only one facility site (depot). Constraint (15-13) states that 
all vehicles that flow into any demand point must also flow out of it. 
Constraint (15-14) is a chance constraint for the service start times at the 
demand points. The inner part, MXTrT kjikjkjiiki )1()( ,,,,,, −≤−++ τ , 

guarantees the schedule feasibility with respect to time considerations. 
Constraint (15-15) gives the balanced material flow requirement for the 
facility sites. Constraint (15-16) prohibits the medical supply items flow 
from and to the dummy node. Constraint (15-17) allows the medical supply 
item to flow as long as there are sufficient vehicle capacities. It establishes 
the connection between the medical supply flow and vehicle flow. Constraint 
(15-18) gives the hard time window constraint on each demand point. 
Chance constraint (15-19) enforces the balanced material flow requirement 
for the demand points from a probabilistic perspective. It states that a small 
probability of unmet demands at each demand point is allowed within a 
threshold level. Finally constraint (15-20) enforces the integrality and non-
negativity constraints on the variables.  
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5. PROBLEM SOLUTION AND ANALYSES 

In the preceding section, the facility location problem and the VRP for the 
anthrax disease emergency have been formulated. In this section, we first 
specify illustrative values for the input parameters and then we show how 
these proposed models could be applied to solve the facility location 
problem and the VRP for the anthrax emergency.   

5.1 Facility Location Problem  

5.1.1 Parameter Specification  

There are 2054 census tracts and 9.5 million people in Los Angeles 
County. To define the demand distribution for medical services during an 
anthrax disease emergency, we use the day-time population density pattern 
that is available for Los Angeles County (ESRI website, 2005). Furthermore, 
we use the centroid of each census tract as a demand point to represent the 
aggregated population in this tract.  Thus we obtain 2054 discrete demand 
points that have different population densities. We assume that, in the 
anthrax emergency, the people at different demand points need to visit the 
selected facilities (staging areas) for vaccination. Note that although we 
assume that all the population at the demand points need to be serviced by 
the medical supplies, during an emergency, a more accurate demand pattern 
for medical supplies can be obtained by using schools, shopping malls and 
offices as indicators to assess the actual disease exposure.  

To determine the staging areas that can be used to receive, re-package, 
and distribute the medical supplies from the national stockpile to the demand 
points, we identify 30 eligible facility sites. We assume that the resource 
limitation allows only 10 eligible facility sites to be selected to services the 
demand points (P = 10). To ensure effective and efficient medical supply 
distribution, each demand point needs to be serviced by a required quantity 
of facilities that are located at each quality level. In practice, different quality 
levels should be defined for different demand points, based on the attributes 
of each point such as population density, political/economic importance, etc. 
In this example, for simplicity, we define a uniform quality requirement for 
all demand points; that is, each demand point needs two quality levels and 
the distance requirements for the first and second quality levels are 35 miles 
and 60 miles, respectively.  

Furthermore, we specify the facility quantity requirement at each quality 
level for each demand point as follows: 
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(1) Qi = 1, if the population of demand point i is less than 4,000; 
(2) Qi = 2, if the population of demand point i is between 4,000 and 

8,000; 
(3) Qi = 3, if the population of demand point i is greater than 8000. 

 
Finally, we specify the distances (times) between each pair of demand 

point and facility site. In practice, the roadway system should be used to 
define the distances since the medical supplies will be transported by 
vehicles during the emergency. However, for simplicity, in this illustrative 
example, we use the straight line distances between the demand points and 
facility sites.  

5.1.2 Solution and Analyses 

Based on the input parameters defined above, we solve the facility 
location problem for the anthrax emergency. The solution is depicted in 
Figure 15-5.   The problem was solved to optimality using a commercial 
integer program solver, CPLEX 8.1.  The stars in the diagram represent the 
selected facilities. 

Figure 15-5. Solution to the Facility Location Problem 
 
In this solution, each demand point is covered by a required quantity of 

facilities at each of the two quality levels. Therefore, the demand points can 
be sufficiently serviced by the facilities in an efficient manner. The average 
distance from the demand points to their servicing facilities at quality level 1 
is 25.8 miles; and the average distance at quality level 2 is 50.2 miles. Since 
the weighted total distance between the demand points and the facilities has 
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been minimized (as defined by the objective function), the effectiveness of 
facility service performance is optimized.  

It should be noted that a tight definition of the input parameters may lead 
to the facility location problem being infeasible; that is, no subset of P 
facilities is able to service all demand points within the defined quality levels 
(distance requirements). In this case, any one of the following four 
adjustments in the parameters can be made to make the problem feasible: 

 
(1) Increase the parameter P, i.e. the number of facilities that can be 

selected; 
(2) Relax the distance requirements, within which the facilities need 

to be located to service the demand points; 
(3) Drop the insignificant demand points (e.g. the ones with a low 

population density) from the problem constraints so that the 
limited resources (facilities) can be leveraged to the other demand 
points.  

5.2 Vehicle Routing Problem (VRP) 

5.2.1 Parameter Specification 

After the facility sites (staging areas) have been determined, the solution 
is used as input parameters for the vehicle routing problem. In the anthrax 
emergency example, the 10 selected facility sites from the location problem 
are the demand points for the vehicle routing problem. To illustrate the VRP, 
for simplicity, we will use a single depot (i.e. Los Angeles International 
Airport as the central distribution warehouse) and a uniform capacity for 
each of a total of three vehicles to route and service the 10 staging facilities.  

We calculate the demand on each selected facility by summing up the 
population in the tracts that are covered by the facility. The population size 
will be used as the criterion to specify the demand size; for example, 1 box 
of 100000-dose anthrax vaccine is needed for every 100000 people. As we 
stated in the previous section, the demand of each facility is stochastic. The 
exponential distribution, Bexp BxA /)( /)( −=  (where the mean is A+B and 
variance is B2), is assumed with the mean value set according to the 
population density. The standard deviation is set to be 20 percent of its mean 
value at each facility.  

Furthermore, we assume an exponential distribution for the travel times 
between each pair of facility and central depot. Their mean values are 
specified as proportional to the Euclidean distances between them. We also 
set the standard deviation to be 20 percent of the mean value of the travel 
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time on each leg of the connection. Such an exponential distribution gives a 
lower bound and an upper bound for the travel time, which reasonably 
reflects the fact that travel time is constrained by the physical distance and 
the maximal speed of the vehicle, and could be prolonged by different traffic 
conditions. 

Shock and death caused by untreated anthrax exposure could ensue 
within 24 to 48 hours, and the dispatching from the central warehouse to the 
10 selected local staging facilities is just one chain of the whole process of 
dispensing medical supplies. Hence we use a hard time window constraint of 
up to half of the required time for treatment (i.e. 12 hours) to finish this 
placement. 

Finally, we assume the total supply at the depot can meet 120 percent of 
the summation of the mean value of the demand quantity at all points. 
However, since the demand is stochastic, it is possible that the demand 
cannot be fully satisfied in some cases. 

5.2.2 Solution and Analyses 

The routing problem is solved based on the parameters specified in the 
previous section and its result is compared with that of a deterministic 
formulation to show the advantage of our chance-constraint model. 

The CPLEX solver was used to optimally solve both the deterministic 
and chance-constraint models to optimality with the given parameters. The 
deterministic model uses the mean value of the demand quantity and travel 
time to eliminate uncertainties.  

To compare the routing solutions, we generate exponential random 
variables with the mean and variance specified above for the demand and 
travel time.  For each generated scenario we solve a linear optimization 
problem to obtain the quantities of supply that minimize the total unmet 
demand with fixed routing solutions obtained above and constrained by the 
deadline and the total available quantity at the depot. The comparison shows 
that out of the 50 test cases, the deterministic routes generate 18 unmet 
demand cases with an average unmet demand of 9.94 while the chance-
constraint routes only generate 2 unmet demand cases with an average unmet 
demand of 5.50. The chance-constraint routes outperform the deterministic 
ones because of the conservative nature of the chance-constraint model, 
which leads to balanced routes with similar number of nodes. The 
deterministic routes are more prone to have uneven number of nodes on 
different paths. We observe that this property makes the chance-constraint 
solution more robust and competitive than the deterministic one especially 
for the test cases that deviate far away from the mean value. 
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6. CONCLUSIONS AND FUTURE DIRECTIONS 

Facility location and vehicle routing are important issues in designing the 
medical supply distribution system, particularly for large-scale emergencies. 
This chapter has two primary goals. The first is to review different location 
models and vehicle routing models in the literature that are related to regular 
emergency services such as police, fire, etc.  The second goal is to present 
tailored location and vehicle routing models to design rapid distribution 
systems of medical supplies in response to a large-scale emergency.  An 
illustrative example of an anthrax emergency was discussed to show how the 
proposed models can be used to determine the facilities locations and vehicle 
routes for rapid medical supply distribution during the emergency.  

In this chapter, we consider an emergency due to an anthrax attack as a 
representative large-scale emergency. We discuss the characteristics of 
large-scale emergencies and their requirements for the facility location and 
vehicle routing problems in the context of this particular emergency. 
However, other types of emergencies (e.g. chemical incident, dirty bomb 
attack, contagious disease outbreak, etc.) may involve different 
characteristics and thus will lead to different requirements on the problem 
formulations and solutions. For example, an emergency caused by a dirty 
bomb attack may impact not only the population, but also the medical supply 
facilities themselves.  Therefore, reduced service capability of the facilities 
needs to be taken into account.  A chemical incident may need instantaneous 
medical service to the infected people, and therefore medical supplies may 
need to be pre-positioned at a local level for immediate deployment. An 
open research question is how to develop an overall response plan that takes 
into consideration all the different possible scenarios.  Is it more efficient 
and cost effective to develop a single strategy that is robust to the different 
possibilities or is it better to develop a separate plan for each possible 
emergency?   

Another research direction is to develop efficient algorithms to solve the 
facility location and vehicle routing problems. In this chapter, the formulated 
problems were of relatively small size (i.e. 30 eligible facility sites, 10 
selected staging areas, 1 central depot, and 3 vehicles) so the optimal 
solutions could be readily found using commercially available optimization 
software.  However, for modeling more realistic and larger scenarios, the 
problem size of the models will increase significantly so that it becomes 
computationally prohibitive to obtain an optimal solution. Future research 
direction should also focus on developing efficient heuristics which can 
identify near optimal solutions to the large problems within a reasonable 
computational time. 
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