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Network protection against natural and human-caused hazards has become a topical research theme in
engineering and social sciences. This paper focuses on the problem of allocating limited retrofit resources
over multiple highway bridges to improve the resilience and robustness of the entire transportation
system in question. The main modeling challenges in network retrofit problems are to capture the
interdependencies among individual transportation facilities and to cope with the extremely high uncer-
tainty in the decision environment. In this paper, we model the network retrofit problem as a two-stage
stochastic programming problem that optimizes a mean-risk objective of the system loss. This formula-
tion hedges well against uncertainty, but also imposes computational challenges due to involvement of
integer decision variables and increased dimension of the problem. An efficient algorithm is developed,
via extending the well-known L-shaped method using generalized benders decomposition, to efficiently
handle the binary integer variables in the first stage and the nonlinear recourse in the second stage of
the model formulation. The proposed modeling and solution methods are general and can be applied to
other network design problems as well.

© 2008 Elsevier Ltd. All rights reserved.

1. Introduction

Transportation systems are critical infrastructure systems, whose
smooth operation is important for maintaining normal functions of
our society. However, these spatially distributed systems are also
vulnerable to large scale urban disasters, such as earthquakes, hur-
ricanes, flood, and bio/chemical/nuclear hazards. For example, the
1994 Northridge earthquake caused damages to 286 state highway
bridges, of which seven major ones collapsed [1]. A damaged trans-
portation system directly affects the effectiveness of post-disaster
rescue and repair activities, and also causes huge socio-economic
losses [2]. Despite the unpredictable nature of disasters in terms of
location, time, and magnitude, retrofit appears as one of the effective
mitigation methods from an engineering perspective. Again using
the 1994 Northridge earthquake as an example, the highway bridges
that had been retrofitted survived the earthquake even though some
were within 100m of collapsed structures. Some bridges, which
were under seismic risk but not retrofitted, were damaged in the
earthquake [3]. This empirical experience naturally raises a question:
How should limited resources be allocated to competing facilities
for retrofit so that the total loss of the entire transportation system
caused by future earthquakes is minimized?
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Federal highway administration (FHWA) seismic retrofit manual
[4] states that retrofit decisions are made according to seismic haz-
ard and the importance of individual components. The importance
is mainly judged by the daily traffic volume that a highway segment
carries, and some other subjective judgments such as its connectiv-
ity to critical facilities. However, individual components in a trans-
portation system are actually not independent of each other. Any
change in one component of the system may cause redistribution of
the traffic and thus affect the traffic on other remote components as
well. Therefore, a rigorous retrofit decision should be made at a sys-
tem level, where a spatially distributed transportation system may
be modeled as a network and the interrelations between different
components can be captured by network flow theories. Such sys-
tem issues are not currently considered in seismic retrofit practice
due primarily to the lack of adequate system-based evaluation and
decision tools [4].

Another challenge in retrofit decision making is the extremely
high uncertainty induced by the nature of most disasters, which
makes deterministic modeling techniques less relevant. However,
most existing research in disaster mitigation is still scenario specific
[5,6]. For example, an easy way is to consider a single representa-
tive disaster scenario. The computed solution is then evaluated in a
set of possible disaster scenarios. Such efforts can only tell us how
sensitive a chosen strategy is to environment uncertainty, but not
the explicit optimal strategy that hedges well against a whole range
of possible hazards. Moving beyond current scenario analysis based
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approaches to arrive at a more rigorous stochastic approach is an-
other focus of this paper.

This paper will introduce a mathematical model for supporting
retrofit decision making, considering both interdependency among
individual network components and the uncertain nature of disaster
occurrence. In this model, the benefit of retrofit is only quantified
as savings in reconstruction and travel delay costs. Other broader
socio-economics impacts are not included at this stage of our re-
search. In some sense, the problem of making retrofit decisions at
network level falls into the general category of network design prob-
lems (NDP), which have been intensively studied in the field of trans-
portation engineering and planning [7,8]. However, the key differ-
ence between the two problems is that the retrofit problem faces an
uncertain network configuration. More specifically, a given design
decision in standard NDP results in a deterministic new network
configuration, while in retrofit problems there can be many possible
post-disaster network configurations resultant from a given retrofit
decision, depending on the disaster scenario that is actually realized.

In order to cope with the high uncertainty involved in this prob-
lem, we built the model in a two-stage mean-risk stochastic pro-
gramming framework, which aims to take into account both ex-
pected costs and the risk. Stochastic programming was first intro-
duced by Dantzig [9] to handle mathematical programming with un-
certainty, and was further developed both in theory and computa-
tional aspects by subsequent work (e.g. [10--12]). Examples of appli-
cations of stochastic programming in transportation and operations
research include stochastic network routing [13,14] and capacity ex-
pansion [15]. Traditional stochastic programming is risk neutral in
the sense that it focuses only on optimizing the expected value. In
the context of disaster mitigation where extremely severe conse-
quence should be avoided, we can include some risk measures in
the model to improve the robustness of the solution.

The deterministic equivalent form of our formulation is a mixed-
integer nonlinear program. In some cases, standard commercial
solvers can be used directly to solve the equivalent form. However,
due to the large number of variables and constraints involved in
this problem, direct usage of standard solvers is inefficient, and
sometimes infeasible. On the other hand, the special structure of the
problem naturally leads to consideration of decomposition methods
for efficient solution schemes. In regards of these considerations, we
designed a solution algorithm that exploits the ideas from L-shaped
method [11] and generalized Bender's decomposition [16]. We will
also show that the proposed algorithm achieves finite convergence.

The organization of this paper is as follows. Section 2 focuses
on the modeling and solution methods, including modeling assump-
tions and the proposed stochastic programming formulation for the
network retrofit problem, the solution algorithm, and discussions on
the convergence of this solution algorithm. Numerical examples and
some computational results will be given in Section 3, followed by
discussions on advantages, limitations, and possible future exten-
sions of this research in Section 4.

2. Methodologies

2.1. Mathematical model

The proposed model is general and in principle can be used
to address the question of how to protect or strengthen any type
of network under limited resources. However, for the convenience
of discussion, we only focus on seismic risks. The network retrofit
problem is stated as: Which bridges should be retrofitted for given
budget constraints and hazard estimates in order to reduce the po-
tential system damage quantified by the total structural and travel
delay loss? In the framework of two-stage stochastic programming,
the first stage of the retrofit problem is to make retrofit decisions

before the earthquake happens, while the second stage is to evalu-
ate the total loss due to a realized earthquake including repair cost
and increased travel delay in the network. The second stage cost
(recourse cost) is a random variable dependent on the first-stage
retrofit decision and the particular realization of bridge damages.

A common approach that considers a weighted mean-risk cri-
terion [17] will be adopted to build a risk-averse model, in which
the objective function consists of the expected cost and some dis-
persion statistic that can be used as an estimate of risk. In this
paper, risk will be measured by central semideviation defined as
�p[Y ] = (E[(Y − EY)

p
+])1/p. It has been mathematically proven [17]

that the mean-risk objective E[Y ] + ��p[Y ] is convexity-preserving
for all p�1 and � ∈ [0,1].

2.1.1. Modeling assumptions
2.1.1.1. Network notations and flow assumptions. Let us denote a trans-
portation network as G(N, A), where N is the set of nodes of size n
and A is the set of network links of size m. Denote A (A ⊂ A) as
the set of links that are subject to earthquake hazards and thus the
candidates for retrofit. The size of A is m. The binary decision vari-
able ua is 1 if link a is to be retrofitted and 0 otherwise. For each
commodity1 k ∈ {1 . . . K}, xk ∈ Rm+ is the link flow vector, and qk ∈
Rn is the vector of demands and supplies of commodity k at each
node. Denote fa as the total flow on link a, i.e.,fa = ∑K

k=1xk
a , ∀a ∈ A.

In transportation network literature, traffic is often assumed to be
in equilibrium condition, where no traveler can gain more by simply
changing her own routing decisions. This assumption works well in
a normal situation in which travelers can learn about and adapt to
day-to-day traffic condition. However, how to model travelers rout-
ing behavior in a sudden changing environment (such as following a
catastrophic disaster) is still arguable. In this paper, we assume that
traffic flow can be controlled to achieve system optimal condition.
The total costs estimated under this assumption can be considered
as a lower bound of the costs in reality.

2.1.1.2. Damage scenarios. Seismic damage to a structure (highway
bridges in this study) is usually classified into five categories, rang-
ing from no damage to complete collapse. Advanced structural anal-
ysis can lead to probabilistic assessment of structural damage for a
given earthquake, in terms of a set of discrete probabilities associ-
ated with each of the five damage categories. Seismologists, on the
other hand, have predictions to the probabilities of various earth-
quake occurrences. The two sets of probabilistic estimations from
earthquake-structural engineers and seismologists can be combined
to prepare the damage prediction. For simplicity, we only consider a
binary damage state, with 1 indicating being damaged and 0 other-
wise. This assumption is merely for the convenience of discussion. It
can be easily relaxed without changing the structure of the proposed
model, as long as the data for supporting the more detailed analysis
is available. Let the random vector � describe the uncertain events of
link damages without considering any retrofit decision. Each realiza-
tion of �, �, and the corresponding probability p(�) define a damage
scenario. In this paper we represent the uncertainty in link damages
with a given finite set of damage scenarios �l , l = 1, . . . , L, each with
probability pl = prob[� = �l]. In this work, we consider the discrete
scenarios and the associated probabilities are given. In some applica-
tions, the random variables may follow continuous probability dis-
tributions, in which case Monte Carlo sampling techniques may be
used to generate a finite set of discrete random scenarios.

1 In transportation network literature, the flow between each origin-
destination pair is often considered as one commodity. Different commodities rep-
resent travel between different origin-destination pairs.
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2.1.1.3. Post-retrofit damage states. A random vector � is introduced
to represent the random event of link damages following an earth-
quake given any retrofit implementation. We assume that if a link is
retrofitted, its probability of being damaged is zero. A more realis-
tic way is to assume reduced but nonzero damage probabilities for
retrofitted links. However, this choice would make the problem fall
in the class of stochastic programming problems with decision de-
pendent random events, which rely heavily on heuristic methods to
solve problems with realistic sizes due to computational difficulties
[18]. The relationship between the pre-retrofit link damage state �,
the retrofit decision u, and the post-retrofit damage state �(�, u) is
described as

�(�, u)a =
{
�a(�a − ua), ∀ a ∈ A,

0, ∀ a ∈ A\A.
(1)

For a scenario, if the pre-retrofit damage state of link a is 1 (�a = 1),
but the link is retrofitted (ua=1), the value of �(�, u)a is 0, indicating
that the link will be intact under this scenario. On the other hand, if
the link is not retrofitted but its pre-retrofit damage state is 1, the
value of�(�, u)a would be 1, indicating that the link will be damaged.
If the pre-retrofit damage state of link a is 0 (�a =0), then the link is
always in good condition no matter whether it is retrofitted or not.

2.1.2. Model formulation
With the above assumptions, the network retrofit problem is for-

mulated in a two-stage mean-risk stochastic programming frame-
work as follows.

Network retrofit problem (NRP):

min
u

0 + E
�∈�d

{Q(u,�)}

+ � E
�∈�d

⎧⎨
⎩

[
Q(u,�) − E

�∈�d

{Q(u,�)}
]

+

⎫⎬
⎭ (2)

s.t. 〈c1, u〉�B, (3)

u ∈ {0,1}m, (4)

with

Q(u,�) := min
xk

〈c2,�(�, u)〉 + �〈f, t(f)〉 (5)

s.t. Wxk = qk, ∀k = 1 . . . K , (6)

xk � (e − �(�, u))M, ∀k = 1 . . . K , (7)

f =
K∑

k=1

xk, xk ∈ Rm+ , (8)

where c1 is the retrofit cost vector, B is the total budget for
retrofitting, and c2 is the repair cost vector. Vector e has all entries
1, i.e., ea =1, ∀ a ∈ A. The link travel time t depends on the link flow f.
Their relationship is usually described by a non-decreasing function
such as the bureau of public roads (BPR) function. The notation W
represents the node-link adjacency matrix, and M is an arbitrarily
large positive number.

Condition (3) represents the budget constraint. Condition (4)
simply restricts u to be binary. Expression (5) states the second-
stage cost, which includes the repair cost term 〈c2,�(�, u)〉 and
the weighted flow cost �〈f, t(f)〉, where � is a weight coefficient
converting time to monetary value. This cost becomes known once
the earthquake hazard has been realized, thus is the recourse cost
quantifying the effectiveness of the first-stage decision. Condition
(6) is flow conservation constraint for second stage problem. Con-
dition (7) restricts the link flow to zero if the link is damaged by
the earthquake. Finally expression (2) describes our objective as to
minimize the weighted sum of mean and risk of second stage cost.

The weighting factor � trades off expected cost with risk. Note that
the first stage retrofit cost is incorporated in the budget constraint,
instead of contributing to the total system cost. System modelers
may consider adding retrofit cost directly to the objective function.
This modeling choice would not change the structure of the model.

For simplicity of themodel presentation, we omit the superscripts
in xk and qk in the rest of this paper. Hence constraints (6) and (7)
are denoted as follows:

Wx = q, (9)

x� (e − �(�, u))M. (10)

Under the assumption of finite discrete distributions of the un-
certain parameters, used in this work, the deterministic equivalent
program (DEP) of this formulation is a mixed-integer nonlinear pro-
gram. As the size of the network and the number of damage scenarios
increase, the DEP can become prohibitively large. Difficulties in solv-
ing large scale testing problems through direct usage of commercial
software (e.g. Cplex 10.0 and SBB with nonlinear sub-solvers) mo-
tivate us to use alternative solution methods based on decomposi-
tion and exploiting the problem structure that can handle large size
problems with reasonable computing and memory requirements.

2.2. Solution method

Van Slyke and Wets [11] introduced the L-shaped decomposition
algorithm for stochastic linear programs, which greatly reduced the
computational efforts required to generate a solution. The procedure
takes advantage of the fact that the second-stage value function is
convex and piecewise linear on a polyhedral domain, thus may be
represented by a finite number of so-called feasibility and optimality
cuts. It then proceeds to generating these cuts by solving successive
linear programming problems. We follow this general approach to
obtain a solution method based on the basic ideas of decomposition,
linearization, and successive approximation. Our method is a special
case of generalized Bender's decomposition, which we review next.

2.2.1. Decomposition
Benders decomposition (BD) method has been a classical method

for solving large scale stochastic programming problems through
decomposition and cutting planes method [20]. It was originally de-
signed by Benders [19] to solve mix-integer linear problems, and
later extended to nonlinear programs by Geoffrion [16]. Before pre-
senting our solution algorithm, we review the basic ideas of gener-
alized BD [16] for nonlinear problems.

BD is appropriate for problems with complicating variables,
which, when temporarily held constant, render the remaining prob-
lem more tractable. It decomposes the problem into two parts
through the projection of original problem onto the space of com-
plicating variables. For example, consider the following problem:

min f1(u) + f2(u, x) s.t. G(x, u)�0,

x ∈ X, u ∈ U. (11)

Assume that f1(u), f2(u, x), and G(x, u) are convex functions, and that
X is a convex set. Let the vector u represent the complicating vari-
ables. The projection of problem (11) onto the u-space is

min f1(u) + v(u) s.t. u ∈ U ∩ V , (12)

where

v(u) := inf
x

{f2(u, x)} s.t. G(x, u)�0,

x ∈ X, (13)

and

V := {u|G(x, u)�0, for some x ∈ X}. (14)
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Note that V is the set of induced constrains, which restricts u to guar-
antee that v(u) is feasible. Function v(u) is the objective value of the
optimization problem parameterized by u, which is called the value
function. Both v(u) and V are convex since they are projections of a
convex function and a convex set, respectively. By the designation of
u as complicating variables, evaluating v(u) is much easier than solv-
ing problem (11). Problem (12)--(14) can simply be reformulated as

min
�,u

f1(u) + � s.t. ��v(u), u ∈ U ∩ V . (15)

The original problem (11) is equivalent to problem (15) (see [16,
Theorem 2.1]). Problem (15) can be solved by a cutting-planemethod
which explores the approximate representation of the convex set V
and convex function v(u).

2.2.2. Problem reformulation and relaxation
The structure of the two-stage formulation of problem (NRP) sug-

gests a natural decomposition scheme: the network retrofit decisions
are complicating variables, and once these are fixed, the sub-problem
is a convex min-cost multicommodity network flow problem, for
which efficient algorithms are available in the literature [21]. To see
this, we simply rewrite the formulation (2)--(8) in a compact way:

Reformulated network retrofit problem (R − NRP):

min
�,u

� s.t. ��EQ(u) + �DQ(u)+, u ∈ U ∩ V (16)

with

pl = prob[� = �l], l = 1, . . . , L, (17)

EQ(u) = E{Q(u,�)} =
L∑

l=1

plQ(u,�l), (18)

DQ(u)+ = DQ(u)+

=
L∑

l=1:Q(u,�l
)>EQ

pl[Q(u,�l) − EQ ], (19)

Q(u,�l) := min
x

{〈c2,�(�l, u)〉 + �〈f, t(f)〉|x
� (e − �(�l, u))M, x ∈ X}, (20)

X := {x|Wx = q, x ∈ Rm+}, (21)

U := {u|〈c1, u〉�B, u ∈ {0,1}m}, (22)

V :=
L⋂

l=1

V(�l) =
L⋂

l=1

{u|x� (e − �(�l, u))M,

for some x ∈ X}. (23)

Note that U is a binary set, X is a polyhedral set, and V is a convex
set. We refer to expression (20) and (21) as sub-problem (SP(u,�l)),
where Q(u,�l) is the value function of this sub-problem. Set V defines
the induced constraints to retrofit decisions such that the second
stage min-cost network flow sub-problem SP(u,�l) is feasible. One
way of representing the induced constraints V and V(�l) is to solve
the following optimization problem given u = û:

Feasibility sub-problem (FSP(û,�l)):

Q0(û,�l) := min
x,s

‖s‖1 (24)

s.t. x� (e − �(�l, û))M + s, (25)

x ∈ X, s�0, (26)

where s is the slack variable, and Q0(û,�l) is the value function

of this minimization problem. Problem FSP(û,�l) is always feasible
through constraints relaxation. If Q0(û,�l) >0, it means that problem

(SP(û,�l)) is infeasible for this particular choice of û and �l . Therefore
an alternative way of expressing constraint (23) is

0�Q0(u,�l), ∀l = 1, . . . , L. (27)

Then problem (R−NRP) is equivalent to the followingmaster problem
with associated sub-problems SP(u,�l) and FSP(u,�l):

Master problem (M):

min
�,u

� s.t. ��EQ(u) + �DQ(u)+,0�Q0(u,�l),

∀l = 1, . . . , L, u ∈ U. (28)

The optimal solution of problem (M) includes u∗ and �∗, which tells
the first-stage optimal solution and the objective value to the original
problem (NRP), respectively.

For each given scenario l, functions Q0(u,�l) and Q(u,�l) are con-
vex as the inf-projections on convex sets of convex functions defined
by FSP(u,�l) and SP(u,�l), respectively. Function EQ(u) + �DQ(u)+
is convex because function Q(u,�l) is convex and the mean-risk ob-
jective is convexity-preserving. The master problem (M) is solved
through relaxation and outer linearization to EQ(u) + �DQ(u)+ and

Q0(u,�l). At iteration step k we solve the following relaxed master
problem Mk:

min
�,u

� (29)

s.t. 0�Q0(uv,�l) + 〈w�,l
0 , u − u�〉,

∀��k : SP(u�,�l) infeasible, (30)

�� [EQ(u�) + �DQ(u�)+] + 〈w�, u − u� > ,

∀��k : SP(u�,�l) feasible for l = 1 . . . L, (31)

u ∈ U, (32)

where wv,l
0 ∈ �Q0(uv,�l) and wv ∈ �{EQ(uv) + �DQ(u�)+}, and �{·}

represents the subgradient.
Let (uv,�v) be the solution to the master problem Mk . We then

check for every �l if the sub-problem SP(u�,�l) is infeasible, namely
Q0(uv,�l) >0. If the l-th sub-problem is infeasible, we add a con-

straint 0�Q0(u�,�l) + 〈w�,l
0 , u − u�〉 to the relaxed master problem

Mk . This constraint is also called a feasibility cut. If the sub-problem
SP(u�,�l) is feasible for every �l , we then proceed to check the opti-
mality of current solution to Mk . If [EQ(uv)+�DQ(u�)+]−�v is larger
than certain tolerance 	>0, we add the constraint �� [EQ(u�) +
�DQ(u�)+]+〈w�, u−u�〉 to Mk , which is also called an optimality cut.
The algorithm proceeds by solving the relaxed master problem Mk

and sub-problems (including FSP(u�,�l) and SP(u�,�l)) iteratively.
The optimal objective value of problem Mk , i.e. �v , defines a non-
decreasing sequence of lowerbounds of the optimal objective value
of the original problem (NRP), and the values of EQ(uv) + �DQ(u�)+
defines a sequence of upper bounds. Thus the algorithm terminates
when the gap between the upper and lower bounds is within the
predefined tolerance 	. The detailed solution algorithm is provided
in Section 2.2.3.

The computation of the solution involves evaluation of the sub-
gradients �{EQ(uv) + �DQ(u�)+} and �Q0(uv,�l). A derivation for
obtaining these subgradients is given in the appendix.
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2.2.3. Solution procedure
The detailed procedure for obtaining a numerical solution to the

network retrofit problem is as follows.
Benders decomposition (BD)-based Algorithm:
Step 0: Initialization. Set � = 0, k = 0.
Step 1: If � = 0, let uv be any feasible point in the domain U, and

�v be −∞. Otherwise, solve the relaxed master problem Mk . Denote
the current optimal solution as (uv,�v).

Step 2: For l = 1 . . . L, solve feasibility sub-problem (FSP(uv,�l)).

(1) If Q0(uv,�l) >0, it means that sub-problem SP(uv,�l) is infeasi-

ble. The feasibility cut 0�Q0(u�,�l)+〈w�,l
0 , u−u�〉 is generated

and added to the problem Mk . Let k = k + 1, � = v + 1. Return to
Step 1.

(2) Otherwise, if Q0(uv,�l) = 0 for all l = 1 . . . L, go to Step 3.

Step 3: For l = 1 . . . L, solve the sub-problem (SP(uv,�l)).
This problem must be feasible, since we have already passed the

feasibility test.

(1) If sub-problem is unbounded, then the original problem (NRP)
is unbounded. Thus stop the process.

(2) If sub-problem is bounded, we have the following cases:
(a) if [EQ(uv) + �DQ(u�)+] − �v �	, then stop. The solution

(��, u�) is the optimal solution of problem (NRP);
(b) otherwise, the optimality cut �� [EQ(uv) + �DQ(u�)+] +

〈w�, u − u�〉 is generated and added to problem Mk . Let
k = k + 1, � = v + 1. Return to Step 1.

The finite convergence of our algorithm is a direct consequence of
the finiteness of the discrete feasible set U and the fact that no u�

can ever repeat itself in a solution to the master problem (M) (see
[16, Theorem 2.4]).

3. Numerical examples

Numerical experiments were implemented using two case
studies. The first case study has a relatively small size, and is
used to validate the proposed solution procedure and to test
the numerical efficiency of the algorithm. The second case study
uses realistic seismic risk and cost data, and is included to
demonstrate potential real world applications of the proposed
methodologies.

3.1. Case study I: Sioux Fall City network

The first case study uses the well known Sioux Fall City road
network (24 nodes and 76 links) [22] as shown in Fig. 1. It is as-
sumed that six bi-directional highway bridges (labeled as A--F)
are under potential threaten from future earthquakes and thus
need to be retrofitted. The possible damage scenarios of these six
bridges are considered as input data to the model. Here we use
the independent probabilities given in Table 1 to generate a total
of 26 = 64 damage scenarios for the random vector � in problem
(NRP). Note that assumption of independent probabilities is only
for the convenience of generating test data. Probabilities of dam-
age scenarios generated with consideration of correlation between
individual bridge damage states can be used in the same man-
ner as an input to the model. The BPR function is in the form of
t0a [1 + 
(xa/c′

a)�], where t0a and xa are free flow travel time and
flow for link a, respectively, c′

a is the "practical capacity'' of link
a and is set to be 90% of the design capacity. The values of other
model parameters are: c1a = 1, c2a = 1.5, � = 1, 
 = 0.15, and � = 4.
At this point we temporarily set � to zero and focus on the numer-
ical performance of the decomposition algorithm. Later, � will be

Fig. 1. Sioux Fall city network.

Table 1
Independent probability of bridge damage for generating the set of damage
scenarios .

Bridge A B C D E F

Probability of damage 0.1 0.1 0.4 0.5 0.8 0.7

increased to show how consideration of risk may affect the retrofit
strategies.

We consider two approaches to solve problem (NRP): using com-
mercial solvers to solve the DEP directly or running the BD-based
algorithm presented in Section 2.3.4. We investigate the efficiency of
using these two approaches for different forms of link performance
function (� = 4 and 1). The DEP of the problem (NRP) considered is
a mixed-integer nonlinear program with more than 110,000 vari-
ables (76 links×24 origins 64 scenarios=116,736). The commercial
package GAMS SBB2 (Simple Branch and Bound) solver is used to
solve the DEP directly.

3.1.1. Results on the efficiency of the solution method
When the budget for retrofit is set to be sufficient for only two

bridges, there are 15 (C2
6 ) possible retrofit solutions, in which case all

possible retrofit solutions can be easily enumerated. We use the re-
sults from this enumeration as a benchmark for validating the accu-
racy of the proposed solution algorithm. Directly solving the DEP us-
ing commercial optimization solvers and solving the problem using
the BD-based algorithm both return the correct solution (to retrofit
bridges D and E). However, the computational efficiency resulting
from the decomposition method is much better than solving (DEP)
directly. For linear link performance functions, t0a [1+
(xa/c′

a)], solv-
ing (DEP) directly using GAMS SBB solver took 3012 s; the BD-based
algorithm, with CONOPT solving sub-problems, solved the prob-
lem in 290 s. When BPR link performance functions are considered,
solving (DEP) directly using SBB solver took 22,817 s; the BD-based

2 SBB is a GAMS solver for mixed integer nonlinear programming problems.
It needs a nonlinear programming solver such as CONOPT to run.
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Fig. 2. Alameda County road network.

Table 2
Model input data: damage scenarios and cost data .

ID National bridge index (NBI) Replacement cost Retrofit cost Scenarios

1 2 3 4 5 6

A 330343 $833,833 $208,458 0 0 0 1 1 0
B 330318 $1,144,154 $286,038 0 1 0 1 1 0
C 330159 $1,024,100 $256,025 0 1 0 1 1 0
D 330324 $1,806,588 $451,647 0 1 1 1 1 0
E 330227L $706,420 $176,605 0 1 0 1 1 0
F 330162 $1,980,990 $495,247 0 1 1 1 1 0
G 330315L $3,878,490 $969,622 0 1 0 1 1 0
H 330420L $1,737,450 $434,362 0 0 0 0 1 0
I 330289S $489,940 $122,485 0 1 0 1 1 0
J 330414L $1,361,008 $340,252 1 1 1 1 1 0
K 330416R $9,007,614 $2,251,903 1 1 1 1 1 0
L 330359K $1,746,030 $436,507 0 1 0 1 1 0
M 330421L $5,871,690 $1,467,922 1 1 1 1 1 0

Probability of each damage scenario (%) 7.6 11.3 6.2 7.7 1.6 66

algorithm, with CONOPT solving sub-problems, solved the problem
in 859 s.3

Additional numerical experiments are conducted to test the per-
formance of the BD-based algorithm in problems of different size.
The performance of the algorithm is measured by the number of
optimality cuts since it determines the number of NLP sub-problems
to be solved. The problem difficulty is reflected by the size of
the solution space of the first-stage integer variables, since these
integer variables are the major complicating factors in the NRP
problem. We now let retrofit decisions to be associated with each
directional link, thus increasing the number of first-stage decision
variables from six to 12. To speed up the experiment, only the 10
most likely scenarios are included in this test. It is observed that
the rate of increase of the number of optimality cuts is smaller than

3 All the numerical results reported in this paper were computed using a
Windows XP Dell Workstation with dual Intel(R) Xeon(R) CPU (2.40GHz) and 3.5GB
RAM.

the increase rate of the number of possible first-stage solutions. For
example, as the number of possible retrofit solution increased about
40 times from C1

12 to C4
12, the number of optimality cuts only in-

creased about six times from 9 to 61. This observation suggests that
BD-based algorithms may be a favorable choice for problems where
the first-stage integer variables are the major complicating factors.
Numerical results from this case study also demonstrate that solv-
ing NRP problems through decomposition is much more efficient
than direct use of commercial solvers as long as the problem size is
nontrivial.

3.1.2. Results on the sensitivity of the solution
When � increases within the interval [0,1], the retrofit solution

remains the same (to retrofit bridges D and E). When the mean term
is removed from the objective, or equivalently when the risk term is
weighed very highly, the retrofit solution changes to bridges C and
D. This risk-averse solution trades off 4% increase in expected cost
(from 46.4 to 48.3) with 18% reduction in the semi-deviation (from
1.5 to 1.2) by comparison with the risk-neutral solution (� = 0). In
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Table 3
Numerical results from the Alameda case study .

Retrofit budget Number of feasible Optimal retrofit Total retrofit ost Expected second-stage
costs EQ (M$)

Number of Computing
(M$) retrofit policies policy (M$) optimality cuts time

0.5 15 330414L 0.463 12.442 10 1h14min18 s
330289S

4 1205 330416R 3.97 7.688 98 9h42min34 s
330421L 330159

this particular case study, the effect of risk consideration on retrofit
strategy is observable, but not significant. However, the example
demonstrates that (1) an optimal solution based on mean criterion
may not be the most reliable; (2) different risk preference may affect
retrofitting strategies.

3.2. Case study II: Alameda County network

The second case study uses a sub-network of California Alameda
County road network (including highways and major local streets)
as shown in Fig. 2, which includes 510 nodes, 1424 links, and 2401
origin--destination pairs.

Thirteen highway bridges in the study area are found vulner-
able while being evaluated under 31 potential earthquake events
that are likely to affect Alameda County. Most of these earth-
quake events are not severe enough to cause functional damage
to the bridges. After aggregating all no-damage scenarios, we have
a total of six damage scenarios to consider. The probabilities of
these damage scenarios are computed based on the Poisson arrival
rates of the 31 earthquake events and a 10-year planning horizon.
Table 2 provides information of the damage scenarios and the retrofit
and replacement costs of each candidate bridge. The structure dam-
age estimation was provided by Prof. Anne Kiremidjian's research
group at Stanford University. The replacement costs were provided to
us by California Department of Transportation. The retrofit cost of a
bridge is estimated to be one-forth of the corresponding replacement
cost.

Parameter � converts 2-h peak time delay to yearly (assuming
reconstruction of a bridge takes one year) dollar value. It is set as
( 1
60 )∗8∗365∗20=973.3, where ( 1

60 ) is to convert minutes to hours,
365 is to convert daily to yearly value, 20 is the average value of time
for travelers in the study area, and 8 is the two-peak-hour conversion
factor to daily impact estimated for the San Francisco Bay Area.4

Link performance function is the same as the BPR function used in
the previous case study.

In this particular case study, the risk-neutral and risk-averse
models return the same solution. The computational experience re-
ported below is based on setting �=0. Each sub-problem in the BD-
based algorithm is a min-cost flow problem with more than 400K
(1424 links × 49 origins × 6 scenarios = 418,656) continuous vari-
ables. Two retrofit budgets are considered: 0.5M$ and 4M$, result-
ing in 15 and 1205 possible retrofit solutions, respectively. In both
cases, the solution algorithm converged within a finite number of
optimality cuts. Detailed numerical results are given in Table 3. From
an engineering perspective, the following observations are made:

1. Retrofit strategy may change completely as budget varies. This
suggests that a commonly used engineering approach that picks
retrofit bridges based on their ranks may be questionable.

4 This conversion factor is estimated based on peak duration and daily vehicle
hours in year 2006 provided by Metropolitan Transportation Commission (unpub-
lished).

Table 4
Performance of wait-and-see and the stochastic programming solutions .

Wait-and-see
policy

Scenario cost with
perfect information (M$)

Expected cost over
all scenarios (M$)

Scenario 1 330416R 5.81 7.90
33 0421L

Scenario 2 330359K 17.51 8.79
330421L
330289S
330315L
330159
330318
330324

Scenario 3 330416R 9.61 7.90
330421L

Scenario 4 330414L 18.32 8.70
330359K
330421L
330289S
330315L
330343
330324

Scenario 5 330414L 20.06 18.25
330359K
330421L
330289S
330315L
330343
330324

Scenario 6 None 4.45 13.02

Stochastic
program

33 0416R 7.69

330421L
330159

2. Retrofit program has a positive impact on the society. For ex-
ample, as the retrofit budget increases by 3.5M$ from 0.5M$ to
4M$, the total system cost (retrofit cost plus the expected re-
pairing and time delay costs) decreases from 12.9M$ to 11.7M$.
The gained benefit is about 10%.

3.2.1. Stochastic programming approach vs. wait-and-see approach
Wait-and-see approach [23] is a commonly used deterministic

approach which seeks an optimal solution for each scenario, as if
we could wait and see the realization of random events and then
make decisions accordingly. Since wait-and-see approach provides
a set of scenario-dependent solutions, simple heuristic rules are of-
ten used to aggregate these solutions to a single one that can be
implemented.

Wait-and-see policies u(�) for all the scenarios are reported
in Table 4, given 4M dollars of retrofit budget. The "scenario cost
with perfect information'' Q(u(�) reports the recourse cost of each
scenario when the corresponding wait-and-see policy is followed.
This is the least possible cost for each scenario. The "expected cost
over all scenarios'' evaluates the performance of the wait-and-see
policies in an expected sense. As expected, the stochastic program-
ming solution provides the least expected cost compared with
wait-and-see policies. The difference ranges from 210K to 10.56M
dollars.
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The wait-and-see solution [23], defined as WS = E�[Q(u(�),�)], is
5.03M$. Expected recourse cost from stochastic programming solu-
tion is 7.69M$. Therefore, the expected value of perfect information
(EVPI) is 7.69− 5.03= 2.66M$. The EVPI of stochastic programming
solution suggests that effort in improving estimates of uncertain pa-
rameters is worthwhile, even though stochastic programming model
may be less sensitive to imperfect information than its deterministic
correspondents.

3.2.2. Value of stochastic programming solutions
Stochastic programming approach explicitly considers the

entire range of uncertain scenarios thus hedging better against
uncertainty than its deterministic correspondents. However, it also
increases computational complexity dramatically. The concept of
value of stochastic programming solution (VSS) [23] can be used to
justify whether the extra effort on modeling and solving stochastic
programming is worthwhile.

The VSS compares the value obtained by a commonly used engi-
neering approach with the stochastic programming solution, defined
by VSS=EEV−SP. Here u∗ is the solution of the engineering approach,
for instance the solution for the most likely scenario, with EEV :=
E�(Q(u∗,�)) and SP := minuE�Q(u,�). In general, a bigger VSS indi-
cates higher benefit from using stochastic programming approach.
In this case study, the VSS is 1.1M$, by comparison with the wait-
and-see solution to the most likely scenario (Scenario 2), the relative
gain is 12.6%. This relatively large value justifies use of more sophis-
ticated modeling techniques and the extra computational efforts.

4. Discussion

The main contribution of this paper is the new formulation of
the network retrofit problem in risk-averse stochastic programming
framework, and the development of a solution algorithm that can
solve the problem without excessive memory and computing time
requirements. Nevertheless, we are still at an early stage of this
research where the focus is mainly on theory and model develop-
ment. Several issues arising from retrofit practice have yet to be
considered. For example, from a construction view point, bridges
are often grouped during a retrofit project and thus the retrofit de-
cisions would be made over clusters instead of individual bridges.
If the clusters are predefined, then the proposed formulation is still
suitable. However, if clustering decision needs to be made simulta-
neously with the retrofit decision, this requirement would impose
one more layer of complexity to the model. Other practical issues
include considerations of the convenience and safety of detour
during construction.

From computational view point, immediate extensions of this
work include implementing the model to networks of larger sizes
and find stable scenario reduction methods. In addition, there are
several modeling related questions to be further investigated. In this
study, we made a simplified assumption on network flow, i.e., the
flow conforms to system optimum. Consideration of other behav-
ior assumptions, such as travelers learning or user equilibrium, may
change the structure of the problem. For example, assumption of
equilibrium traffic condition leads to a stochastic mathematical pro-
gramming model with equilibrium constraints (SMPEC). SMPEC is an
important but computationally difficult problem, whose properties
and solution schemes are still being explored (see e.g. [24--26]). The
risk measure defined by positive mean deviation did not seem to
play an important role in the case studies included here. In another
word, the optimal stochastic programming solution happens to per-
form well in terms of both expectation and risk. However, such an
observation is data specific and should not be generalized. In the fu-
ture work, we may explore other risk-averse criteria, such as maxi-
mizing the probability of achieving a certain goal, guaranteeing cer-
tain level of reliability (also called the chance constrained model), or

minimizing the regret in the worst case scenario (also called robust
model) [27]. Understanding of how decision makers' risk preferences
might affect their choices and eventually impact the effectiveness of
the entire society will have significant policy implications.

The discussion of this paper is focused on highway networks.
However, the modeling and solution methods are general and can be
tailored to other transportation modes and a broad range of lifeline
systems that can be analyzed as networks. It is our hope that this
study will attract more research effort into this important subject
of strategic resource allocation for critical infrastructure protection
and hazard prevention.
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Appendix A. Subgradient of optimal value function

We first derive the subgradient in the general case and then apply
it to the present problem. Define the value function of a convex
program as

v(u) = min
x

{f0(x, u)} (33)

s.t. fi(x, u)�0, i = 1, . . . , s, (34)

fi(x, u) = 0, i = s + 1, . . . , m, (35)

(x, u) ∈ X × U ⊂ Rn1 × Rn2 , (36)

where X is a closed convex set, for i = 1, . . . , s, the functions fi :
Rn1 × Rn2 → R are convex and for i = s + 1, . . . , m, the functions
fi : Rn1 ×Rn2 → R are affine. We note that the associated Lagrangian
function to this program is

L(x, u,�,) = f0(x, u) +
s∑

i=1

�ifi(x, u)

+
m∑

i=s+1

ifi(x, u).

To evaluate v(û), we may just fix u to be û and solve the resultant
optimization problem. We have the following lemma on the subgra-
dient of v(u) at û.

Lemma 1 (Subgradient of optimal value function). Assume strong dual-
ity holds for v(û) (for example in the case of satisfying Slater constraint
qualification, i.e. ∃ feasible (x̂), which in addition satisfies fi(x̂, û) <0, i=
1, . . . , s). Let x∗, �∗, and ∗ denote the optimal primal and dual solu-
tions for v(û), then

∇u L(x∗, û,�∗,∗) = ∇uf0(x∗, û)

+
s∑

i=1

�∗
i ∇u fi(x

∗, û)

+
m∑

i=s+1

∗
i ∇u fi(x

∗, û)
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is a subgradient of value function v(u) at û, i.e.,

∇u L(x∗, û,�∗,∗) ∈ �v(û).

Proof. First note that ∇xL(x∗, û,�∗,∗) = 0 from the KKT conditions
for problem (1). The Lagrangian function L(x, u,�,) is convex with
respect to x and u

⇒ L(x, u,�,)�L(x∗, û,�,)

+ ∇uL(x∗, û,�,)T(u − û)

+ ∇xL(x∗, û,�,)T(x − x∗)

= L(x∗, û,�,)

+ ∇uL(x∗, û,�,)T(u − û)

⇒ inf
x

L(x, u,�,)�L(x∗, û,�,)

+ ∇uL(x∗, û,�,)T(u − û).

From strong duality we have v(u) = sup��0, inf
x

L(x, u,�,)� inf
x

L(x, u,�,). Thus we have v(u)� infxL(x, u,�,)�L(x∗, û,�,) +
∇uL(x∗, û,�,)T(u − û). Evaluating the both sides of last equation at
�∗,∗ yields v(u)�L(x∗, û,�∗,∗) + ∇uL(x∗, û,�∗,∗)T(u − û).

Invoking strong duality again we have that L(x∗, û,�∗,∗) = v(û).
Substituting this in the previous inequality gives v(u)�v(û) +
∇uL(x∗, û,�∗,∗)T(u − û), which is the definition of subgradient,
thus ∇u L(x∗, û,�∗,∗) ∈ �v(û). �

Applying the above lemma directly to the evaluation of
�Q0(uv,�l) and �Q(uv,�l) yields

∇u

⎡
⎣‖s‖1 +

∑
i∈A

�∗
i (x∗

i − �l
iMu�

i − M + M(�l
i)
2)

⎤
⎦

=

⎡
⎢⎢⎢⎣

−�l
A1

�∗
A1

M

...

−�l
Am

�∗
Am

M

⎤
⎥⎥⎥⎦ ∈ �Q0(uv,�l),

∇u
[〈c2,�〉 + �〈x∗, t(x∗)〉

+
∑
i∈A

�∗
i (x∗

i − �l
iMu�

i − M + M(�l
i)
2)

⎤
⎦

=

⎡
⎢⎢⎢⎣

−�l
1(c2

A1
+ �∗

A1
M)

...

−�l
A
(c2

Am

+ �∗
Am

M)

⎤
⎥⎥⎥⎦ ∈ �Q(uv,�l).

According to [17], the subgradient of mean-semideviation function
is calculated as

s ∈ �{EQ(u) + �DQ(u)+}.
Note

(�l) =

⎡
⎢⎢⎢⎣

−�l
1(c2

A1
+ �∗

A1
M)

...

−�l
A
(c2

Am

+ �∗
Am

M)

⎤
⎥⎥⎥⎦ ∈ �Q(uv,�l).

Then s = E[] + �EQ(u,�)�EQ(u)[((�) − E())].
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