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This paper analyzes the design of a distribution network for fast-moving items able to pro-
vide differentiated service levels in terms of product availability for two demand classes
(high and low priority) using a critical level policy. The model is formulated as a MINLP
with chance constraints for which we propose a heuristic to solve it. Although the heuristic
does not guarantee an optimal solution, our computational experiments have shown that it
provides good-quality solutions that are on average 0.8% and at worst 2.7% from the opti-
mal solution.

� 2015 Elsevier Ltd. All rights reserved.
1. Introduction

Fast moving-items are products with high demand volume or items with high inventory turnover. Examples include non-
perishable food, toiletries, over-the-counter drugs, cleaning supplies, building supplies and office supplies. The distribution
channels of these products have been concentrated in large retails chains requiring high service level in terms of product
availability at the supplier’s expense. Therefore, many wholesalers segment their customers based on service level. The sim-
plest segmentation is to classify customers into two demand classes, (i) high priority class will correspond to large retail
chains that require high service levels and (ii) low priority class corresponding to small retailers which can be provided lower
service levels.

An efficient way of providing differentiated service levels is through a critical level policy. This policy is a inventory control
model for rationing the inventory between different classes of customers and its main application is in inventory systems
that must provide differentiated service levels to two or more classes of demand. Deshpande et al. (2003) and Escalona
and Ordóñez (2015) have provided evidence of the efficiency of the critical level policy compared to other traditional inven-
tory control policies that allow providing differentiated service levels as round-up or separate stock policies.

Let us now consider the design of a distribution network for fast-moving items able to provide differentiated service
levels using a critical level policy. From literature review we observe that (i) models that integrate inventory and location
decisions (Daskin et al., 2002; Shen et al., 2003; Miranda and Garrido, 2004; Shen, 2005; Shen and Daskin, 2005; Snyder
et al., 2007; Ozsen et al., 2008; You and Grossmann, 2008; Atamtürk et al., 2012) considers that the entire distribution net-
work provides the same service level which is equivalent to considering that all customers require the same service level or
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there is only one class of demand (customer category), (ii) for fast-moving items it is usually more convenient and efficient to
model the demand over a time period by a continuous distribution, e.g., normal or gamma distributions (Peterson and Silver,
1979; Axsäter, 2006; Ramaekers and Janssens, 2008), and (iii) the critical level policy when demand volume is large, only it
has been analyzed by Escalona and Ordóñez (2015) for a single DC. Therefore, to the best of our knowledge, there does not
exist previous works that integrates differentiated service levels in the optimal configuration of a network distribution for
fast-moving items using critical level policy.

The objective of this paper is determine the optimal configuration of a distribution network for fast moving items where a
rationing inventory policy is used to provided differentiated service levels in terms of product availability to two demand
classes (high and low priority). The optimal design of the distribution network should determine the number and location
of distribution centers and the allocation of demand to DC, while meeting required service levels, so that fixed installation
costs, transportation costs, and storage costs are minimized. We assume at each DC: (i) a continuous review ðQ ; rÞ policy,
with a critical threshold value C, where Q is the fixed lot size, r is the reorder point and C denote the critical level for rationing
the low priority class; (ii) normally distributed demand as a approximation to fast-moving items demand; and (iii) service
level type I as service level measure. We formulate the location-inventory model with differentiated service levels, denoted
ðP0Þ, as an MINLP problem with chance constraints and nonlinear objective function. The chance constraints of ðP0Þ corre-
spond to the service levels constraints. We observe that the location-inventory model with a single service level is a relax-
ation of ðP0Þ. We reformulate the location-inventory model with a single service level as a conic quadratic mixed integer
program from which we obtain a lower bound of ðP0Þ. Using the resulting configuration of the relaxation of ðP0Þ in terms
of location and allocation variables we obtain the optimal control parameters of the critical level policy at each DC. The result
is an upper bound (feasible solution) for the problem ðP0Þ. Furthermore, we propose a method to improve the solution based
in the risk pooling effect. Computational results show that the best feasible solution is a good-quality solution, in which the
maximum gap is 2.7%, and that the benefit of using a critical level policy in the configuration of a distribution network is
greater when the holding cost per unit and unit time is high, and/or when the difference between the preset service levels
for high and low priority class is high. The main contributions in this paper can be summarized as follows: (i) we address for
the first time the modeling and solution of a supply chain design problem of fast moving items that considers the ability of
the distribution network to provide and fulfill different service levels in term of product availability, (ii) we demonstrate that
under no demand for one of the classes, the ðQ ; r;CÞ policy is equivalent to the traditional ðQ ; rÞ policy and (iii) the service
level constraints, under rationing, remain valid under no demand for one of the classes.

The rest of this paper is structured as follows. In Section 2 we discuss relevant results in the literature. In Section 3 we
formulate the service level constraints, the cost function and the model that integrates location, inventory and service levels.
In Section 4, we describe the solution approach. We present our numerical experiments to evaluate the quality of the pro-
posed solutions in Section 5. Section 6 presents our conclusions and future extensions to this work.
2. Related work

The traditional structure of Facility Location Problem (Erlenkotter, 1978) does not consider the relationship between loca-
tion and inventory control decisions, nor its impact on the distribution network configuration. This is because the distribu-
tion network design is solved sequentially, by first solving the location problem and then the inventory problem. This is
related to the natural separation between strategic and tactical decision making. However, when these decisions are
addressed separately, it often results in suboptimal solutions. In the last decade there has been a strong move towards inte-
grated models of inventories and location. These models simultaneously determine the location of the DCs that will be
opened, the allocation of customers to DCs and the optimal parameters of the inventory policy so as to minimize the total
system cost. A comprehensive characterization in location-inventory models can be found in Sadjadi et al. (2015).

Our work focuses on location inventory models that integrate the service level, in terms of product availability, in its for-
mulation. In this sense, Daskin et al. (2002) study a location-inventory model that incorporates fixed facility location cost,
ordering, holding and safety-stock inventory cost at the DCs, transportation costs from the supplier to the DCs, and local
delivery costs from the DCs to the customers. The main difficulty of this model is that the inventory costs at each DC are
not linear respect to customer assignments. The model is formulated as a nonlinear integer program and solved by Lagran-
gian relaxation for a special case in which the ratio between the variance and expected demand is constant for all customers.
Shen et al. (2003) analyze the same problem as Daskin et al. (2002). Their work restructures the model into a set-covering
integer programming model and use column generation to solve the LP-relaxation of the set covering model.

The model of Daskin et al. (2002) and Shen et al. (2003) has been generalized in different directions. For example: Shen
(2005) generalizes the model to a multi-commodity case with a general cost function and proposes a Lagrangian-relaxation
solution algorithm. Shen (2005) also relaxes the assumption that the variance of the demand is proportional to the mean for
all customers and proposes a Lagrangian-relaxation approach using an algorithm proposed by Shu et al. (2005). Shen and
Daskin (2005) introduce a service level element in the model through the distance coverage and propose a weighting method
and a heuristic solution approach based on genetic algorithms. Snyder et al. (2007) present a stochastic version of the model.
Ozsen et al. (2008) study a capacitated version of the model. Miranda and Garrido (2004) also study a capacitated version of
the model and propose a Lagrangian-relaxation solution algorithm. You and Grossmann (2008) relax the assumption that
each customer has identical variance-to-mean ratio, reformulating the INLP model as a MINLP problem and solve it with
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different solution approaches, including a heuristic method and a Lagrangean relaxation algorithm. Atamtürk et al. (2012)
also relax the assumption that each customer has identical variance to mean ratio and reformulate the INLP model of
Daskin et al. (2002) as conic quadratic mixed-integer problem and added cuts to improve the computational results. They
consider cases with uncapacitated facilities, capacitated facilities, correlated retailer demand, stochastic lead times, and
multi commodities. Atamtürk et al. (2012) show, through a computational study, that the conic formulation outperforms
the column generation and Lagrangian based methods considered up to now. Shahabi et al. (2014) study a capacitated ver-
sion with correlated retailer demand and propose a solution approach based on an outer approximation strategy.

All of the above authors assume that the inventory system at each DC operates under a continuous review ðQ ; rÞ
policy with type I service level and fullbackorder. Under this policy, a replenishment order Q is emitted when the inventory
level falls below the reorder point r. Based on the results of Axsäter (1996) and Zheng (1992), previous work has
approximated the ðQ ; rÞmodel assuming that each DC determines the replenishment batch Q using an EOQmodel and deter-
mines the reorder point r (the safety stock) ensuring that the probability of a stockout at each DC is less than or equal to
some preset service level. This preset service level is the same for all the distribution network. Further, a normally
distributed demand is assumed at each DC as an approximation for a high volume Poisson demand process. With these
approximations, the parameters for the continuous review ðQ ; rÞ policy are the result of the optimal allocation of customers
to DCs.

Our work focuses on situations where customers may require different service levels or that there are different demand
classes, which can be more realistic in many cases. To the best of our knowledge, there does not exist previous works that
integrates differentiated service levels in the optimal configuration of the network distribution.

Several types of inventory control policies can be implemented in a distribution network to deal with different service
requirements. We propose classifying this policies into two types. The first group of policies imposes general service condi-
tions over the entire network distribution. The simplest mechanism is that each DC serves a single demand class, to which
we refer as single class allocation. This policy tends to increase the number of DCs in the network and not to take advantage of
the risk pooling benefits (Eppen, 1979). Another mechanism is to set the service level of the entire distribution network
based on a preset level corresponding to the highest priority class, to which we refer as global round-up policy. This policy
tends to provide too much inventory for classes that require less service level than the maximum. The second type of policy
imposes conditions on the operation of the inventory system at each DC. In this case, the simplest mechanism is to impose
that each DC serves the demand assigned to it from a common stockpile and uses separate safety stocks for each class (Sepa-
rate Stock Policy). However, separating the safety stocks in each DC does not take advantage of the benefit of centralized
inventories. The separate stock policy can be outperformed imposing at each DC, a mechanism that serves all demand
assigned to it from a common stockpile and sets the safety stock as the maximum required between the sets of classes
assigned to it (Round-up Policy). In this case, although all demand of a DC is centralized and the variability reduced, this pol-
icy may provide too much inventory for classes that require less service level than the maximum. A third mechanism of this
type consists in each DC serving the demand assigned to it from a common stockpile, but using a critical level policy for
rationing the inventory between different classes. With this policy, as soon as the inventory level falls below a critical level,
the low priority demands are not attended.

In the current study we focus on critical level policy because as well as using the advantage of the pooling effect, it has the
flexibility of providing different service levels to different customer classes without provide too much inventory for classes
that require less service level than the maximum or increase the number of DCs in the network.

A comprehensive review of inventory rationing can be found at Kleijn and Dekker (1999) and a classification at Teunter
and Haneveld (2008). Recent works are those of Möllering and Thonemann (2010), Wang et al. (2013a,b) and Escalona and
Ordóñez (2015). From the literature review we conclude that literature on inventory systems with multiple demand classes
is extensive, but to the best of our knowledge, only Escalona and Ordóñez (2015) analyzed the constant critical level policy
when demand volume is large – which is our concern – while previous works has only consider the case of discrete demand,
in particular Poisson distributed demand, which is the form to model demand for slow-moving items. Escalona and Ordóñez
(2015) analyzed the constant critical level policy in a single DC when the rationing is due to the presence of two classes of
demand (high and low priority) and the inventory system operates under a continuous review ðQ ; r;CÞ policy with type I
service level, full-backorder, deterministic lead time and continuous demand distribution. Our work extends results from
Escalona and Ordóñez (2015) to a network setting, where we not only decide optimal parameter of the critical level policy
at a DC, but also the optimal number of DCs, their location and customer allocation.
3. Model formulation

Our location-inventory model with differentiated service levels can be stated as follows. Consider the design of a distri-
bution network consisting of an external supplier and a set of J candidate sites for locating DCs which must supply a set I of
retailers. These retailers could be customers or markets, but for convenience we denote them as retailers in the rest of this
paper. We assume that the location of the external supplier, site candidates and retailers locations are known and that the
supplier and DCs are uncapacitated. In this distribution network there are two categories of retailers or demand classes (high
and low priority). The high priority retailers (class 1) require high service level and the low priority retailers (class 2) require
lower service level. A retailer can be assigned to a single demand class, and we define Nk ¼ fi 2 I j i is class kg, with k ¼ 1;2,
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as the set of retailers of class k. We also assume that the class of each retailer is known. The demands per unit time at each
retailer are independent and normally distributed with mean li > 0 and variance r2

i > 0. The problem is to determine the
optimal number of DCs, their locations, the retailers assigned to each DC, how much inventory to keep at each of them and
how to meet the preset service level for each demand class so as to minimize the total system cost.

To provide differentiated service levels we assume at each DC a continuous review ðQ ; r;CÞ policy with full-backorder and
deterministic lead time, operating as follows. When the inventory position at DC j falls below a reorder level rj, a replenish-
ment order for Qj units is placed and arrives Lj > 0 time units later. Demand from both classes is satisfied as long as the
inventory level is greater than the critical level Cj, otherwise only high priority demand is satisfied from on-hand inventory
and low priority demand is backordered. If on-hand inventory level reaches zero, both demands are backordered. If a DC j
provides only retailers belonging to one class demand, the critical level is zero, i.e., Cj ¼ 0, and therefore, the rationing policy
becomes the traditional continuous review ðQ ; rÞ policy.

As Daskin et al. (2002) and Shen et al. (2003) do, we assume the replenishment order Qj is determined using an economic
order quantity model (EOQ) and the steady-state backorders are negligible. Hence, there are four types of decision variables
in our model: the reorder point in a candidate DC j; rj; the critical level in the candidate DC j; Cj; the location variable, Xj;
and the assignment variable, Yij. In particular, the last two variables are defined as:
Xj ¼
1 if we locate a DC at candidate site j

0 �

�

Yij ¼
1 if demand at retailer i is assigned to a DC at candidate site j

0 �

�

Once we define the allocation variable Yij, we can characterize the demand at candidate DC j. Let DkjðsÞ be the total demand
of class k during an interval of length s at DC j and DjðsÞ ¼ D1jðsÞ þ D2jðsÞ be the total demand of both classes during an inter-
val of length s at DC j. As retailers, demand per unit time are independent and normally distributed, DkjðsÞ is also normally
distributed with mean slkj and variance sr2

kj, where lkj ¼
P

i2Nk
liY ij P 0 and r2

kj ¼
P

i2Nk
r2

i Yij P 0. Furthermore, DjðsÞ is

normally distributed with mean slj and variance sr2
j , where lj ¼ l1j þ l2j ¼

P
iliYij and r2

j ¼ r2
1j þ r2

2j ¼
P

ir2
i Y ij. In Appen-

dix A, we present a glossary of terms.
3.1. Service level type I under rationing

In this paper, the service level provided by a DC j to the class k is measured by the probability of satisfying the entire
demand of class k assigned to him during a replenishment cycle from it on hand inventory, i.e., service level type I, which
does not depend of the replenishment batch quantity Qj.

For a single class demand, service level type I is defined as the probability of no stockout per order cycle (Axsäter, 2006,
page 94), i.e., the probability to satisfying the entire demand during a replenishment cycle. Mathematical formulation of
these measure depends of the type of the inventory system. In a traditional ðQ ; rÞ policy, the service level type I is the prob-
ability that total demand during the lead time is less than or equal to the reorder point (Axsäter, 2006, page 97), equivalent to
the probability of no-stock out or satisfy the total demand during lead time. In a continuous review ðQ ; r;CÞ policy, Escalona
and Ordóñez (2015) developed expressions for the service level type I for high and low priority class under strictly increasing
Lévy process using normally distributed demand, i.e., they formulate expressions for service level type I of each class demand
considering non-negative demand, and then imposing the normally distributed demand as an approximation. In order to
determine the operational characteristics of the inventory system they assume a hitting time approach. In our work, the hit-

ting time at DC j; srj�Cj
H;Dj

, is defined as the amount of time that elapses from the moment an order is placed in DC j until the

time at which the critical level Cj is reached for the first time, i.e., srj�Cj
H;Dj

¼ inffs > 0 j DjðsÞ > rj � Cjg. The subscript H is used

to remind the reader we refer to a hitting time, in this case the first time that demand Dj accumulates an amount of rj � Cj.

Let sl jkðrj;Cj;YijÞ be the service level type I provided by the DC j to class k, and bk the preset service level for class k, where
b1 > b2. Using the expressions developed by Escalona and Ordóñez (2015), the service level type I provided by the DC j to the
high and low priority class, under strictly increasing Lévy process, are:
sl j1ðrj;Cj;YijÞ ¼ PðDjðLjÞ 6 rj � CjÞ þ P D1jðLj � srj�Cj
H;Dj

Þ 6 Cj \ srj�Cj
H;Dj

< Lj
� �

; ð1Þ
sl j2ðrj;Cj;YijÞ ¼ PðDjðLjÞ 6 rj � CjÞ; ð2Þ
where the first term of Eq. (1) is the probability that rationing does not exist in the lead time of DC j; and second term of Eq.
(1) is the probability of rationing occurs in DC j and the class 1 demand during this period not reach the critical level Cj.
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Escalona and Ordóñez (2015) assume that a single DC serves both types of demand. In our case, a DC j could serve both
types of demand or only one type of demand. Therefore it is necessary to verify that Eqs. (1) and (2) make sense in the case
that the DC j is assigned a single type of demand.

Proposition 1. Under strictly increasing Lévy process, Eqs. (1) and (2) are general expressions for the service level type I provided
to the high and low priority classes respectively.
Proof. The proof is detailed in Appendix B. h

Using normally distributed demand and conditioning on the hitting time, the service levels provided by the candidate DC
j to the high and low priority class are:
sl j1ðrj;Cj;YijÞ ¼
Z Lj

0
U

Cj � ðLj � sÞPi2N1
liY ijffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðLj � sÞPi2N1
r2

i Yij

q
0
B@

1
CA f

rj�Cj ;Yij
H;Dj

ðsÞ dsþU
rj � Cj � Lj

P
iliY ijffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

Lj
P

ir2
i Yij

q
0
B@

1
CA; ð3Þ

sl j2ðrj;Cj;YijÞ ¼ U
rj � Cj � Lj

P
iliYijffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

Lj
P

ir2
i Y ij

q
0
B@

1
CA; ð4Þ
where UðxÞ is the distribution function of the standard normal distribution,
f
rj�Cj ;Yij
H;Dj

ðsÞ ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
s
P

ir2
i Y ij

q rj � Cj þ s
P

iliYij

2s

� �
u

rj � Cj � s
P

iliYijffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
s
P

ir2
i Y ij

q
0
B@

1
CA; ð5Þ
is the density distribution of the hitting time srj�Cj
H;Dj

using normally distributed demand and uðxÞ is the density function of the

standard normal distribution. The superscripts indicates the dependence of the density distribution of the hitting time with
respect to rj � Cj and assignment variable Yij, and the subscript Dj represent the total demand of both classes and H the hit-
ting time.

3.2. Cost function

There is a fixed setup cost f j of opening each distribution center. Each DC can serve more than one retailer, but each retai-
ler should be only assigned to exactly one DC. The ordering cost from distribution center j is Sj. Linear transportation costs
are incurred for shipment from the external supplier to distribution center jwith unit cost aj and from distribution center j to
retailer i with unit cost dij. With this notation, the average cost per unit time at DC j is:
ACjðrj;Cj;YijÞ ¼ Sj

P
iliY ij

Q j
þ aj

X
i

liYij þ
X
i

dijliYij þ hj
Qj

2
þ rj � Lj

X
i

liYij

 !
: ð6Þ
The first term of Eq. (6) is the ordering cost per unit time. The second and third term are the supply and distribution costs
per unit time respectively. As we assume negligible backorders, the fourth term is approximated the holding cost per unit
time. Each distribution center determines the replenishment order Qj using an EOQ model, i.e.,
Qj ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2Sj
hj

X
i
liYij

s
: ð7Þ
Then, replacing Eq. (7) into Eq. (6), the average cost per unit time at DC j is:
ACjðrj;Cj;YijÞ ¼
X
i

d̂ijYij þ kj
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiX

i
liY ij

q
þ hjrj; ð8Þ
where kj ¼
ffiffiffiffiffiffiffiffiffiffiffi
2hjSj

p
and d̂ij ¼ ðaj þ dij � hjLjÞli.

3.3. Problem formulation

We can formulate an integrated location-inventory model with differentiated service levels using normally distributed
demand as an MINLP problem with constraints on service probability (non-convex) and nonlinear objective function includ-
ing non-convexity in the assignments variables, denoted (P0), as follows.

Problem (P0):
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min
X;Y ;r;C

X
j2J

f jXj þ
X
i

d̂ijY ij þ kj
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiX

i
liYij

q
þ hjrj

( )
ð9Þ

s:t :
Z Lj

0
U

Cj � ðLj � sÞPi2N1
liY ijffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðLj � sÞPi2N1
r2

i Yij

q
0
B@

1
CA f

rj�Cj ;Yij
H;Dj

ðsÞ dsþU
rj � Cj � Lj

P
iliY ijffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

Lj
P

ir2
i Yij

q
0
B@

1
CAP b1 8j 2 J; ð10Þ

rj � Cj P Lj
X
i

liYij þ zb2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Lj
X

i
r2

i Y ij

q
8j 2 J; ð11Þ

X
j2J

Y ij ¼ 1 8i 2 I; ð12Þ

Yij 6 Xj 8i 2 I;8j 2 J; ð13Þ
rj P Cj P 0 8j 2 J; ð14Þ
Xj; Yij 2 f0;1g 8i 2 I;8j 2 J; ð15Þ
where zb2 is the inverse standard normal distribution for a preset service level b2 and the f
rj�Cj ;Yij
H;Dj

ðsÞ is given by Eq. (5).

The objective is to minimize the total steady state cost per unit time including location fixed cost, ordering costs, supply
cost from supplier to DCs, distribution cost from DCs to retailers, and holding cost at each DC. Constraints (10) and (11)
ensure, at each DC, the fulfillment of the preset service level for the high and low priority class respectively. Constraint
(12) ensures that each retailer is assigned to exactly one DC. Constraint (13) stipulates that retailers can only be assigned
to open DCs. Constraint (14) ensures, at each DC, that the replenishment order be placed before the lower priority class is
no longer served. Finally, constraint (15) is an integrality constraint.
4. Solution approach

Consider the joint location-inventory problem described by Shen et al. (2003), but without relying on the assumption that
each retail has identical variance-to-mean ratio. This problem assumes that the distribution network is dominated by a con-
tinuous review ðQ ; rÞ policy, deterministic lead time and full-backorders. These authors considered a single demand class, i.
e., to the distribution network providing a unique service level. Let b be this unique preset service level. Using the notation
above the model of Shen et al. (2003) is expressed as:

Problem (P1):
min
X;Y

X
j2J

f jXj þ
X
i

ðd̂ij þ hjLjliÞYij þ kj
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiX

i
liYij

q
þ zbhj

ffiffiffiffi
Lj

q ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiX
i
r2

i Yij

q( )
ð16Þ

s:t : ð12Þ; ð13Þ; ð15Þ:

It is easy to show that the problem (P1) is a relaxation of (P0) when b ¼ b2. Therefore, the optimal solution of the problem

(P1) when the level of service is the lowest, is a lower bound (LB) of problem (P0).
Also, if we solve (P1), and then use the resulting configuration in terms of location (X-variables) and allocation (Y-

variables), we can obtain the optimal remaining feasible variables corresponding to this configuration, for each DC, always
considering the actual proportion of customers requiring each class of service (b2 and b1). The result is a feasible solution
and, hence, an upper bound (UB) for the problem (P0). Thus, we now have a lower bound and an upper bound of the original
problem with two classes of service, obtained by solving two problems with a single class of service, and completing the
solution of the second one by including both service classes.

Note that for fixed X-variables and Y-variables that satisfy the constraint (12), (13) and (15), the problem (P0) reduces to
determine the optimal parameters of the critical level policy at all installed DCs, i.e., for all Xj ¼ 1 we must solve the follow-
ing service level problem SLP(j) using normally distributed demand:

Problem SLP(j):
min
rj ;Cj

rj ð17Þ

s:t : ð10Þ; ð11Þ; ð14Þ:

Escalona and Ordóñez (2015) characterize under mild assumptions, the optimal solution of the problem SLPðjÞ using nor-

mally distributed demand, when a single DC satisfies the demand of both demand classes, i.e., when lkj; r2
kj > 0.

Consider now that we solve the same two problems (P1) and SLPðjÞ for an increasing value of b, starting at b2. Let X
�
b; Y�

b

be the optimal location and assignments variables of the problem (P1) given a service level b; FOP1ðbÞ be the objective func-
tion of problem (P1) given a service level b; and FOP0ðX�

b;Y
�
bÞ be the objective function of problem (P0) given the optimal net-

work configuration of the problem (P1) and a service level b. We propose a simple heuristic to find a better upper bound of
the problem (P0) based on the following four properties:
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(1) LB ¼ FOP1ðb2Þ; UB ¼ FOP0ðX�
b2
;Y�

b2
Þ and UB > LB;

(2) FOP1ðbÞ is strictly increasing in b for all b 2 ½b2; b1�with b2 P 0:5 because increasing the requirements in quality of ser-
vice tightens the feasible space. However, as b increases, there is no guarantee that FOP1ðbÞ is a lower bound anymore;

(3) Recall that the feasible solution FOP0ðX�
b1
;Y�

b1
Þ is computed by finding variables X and Y as if there were only customers

requiring service at level b1, and completed using the actual distribution of classes of customers. Then,
FOP1ðb1Þ P FOP0ðX�

b1
;Y�

b1
Þ, because a global round-up policy induces a higher cost than a critical level policy. In other

words, providing all customers with the highest class of service b1 is costlier than having some of them with the low-
est class of service b2.

(4) As we increase the service level b and solve the problem (P1) one or more of the following events may occur:
(i) the configuration (X�

b2
;Y�

b2
) remains constant for any b 2 ½b2; b1�;

(ii) the optimal network configuration (X�
b;Y

�
b) changes due to the reallocation of demand without changing the num-

ber of open DCs; and
(iii) the optimal network configuration (X�

b;Y
�
b) tends to make pooling, closing one or more DCs and reassigning

demand.

Our improvement heuristic exploits the risk pooling effect to increase the service level b in the interval ½b2; b1�. If pooling
happens at some b̂ 2 ½b2; b1� and the sum of the savings on holding and fixed costs are greater than the increase in transporta-
tion costs at that point, then FOP0ðX�

b̂�e;Y
�
b̂�eÞ > FOP0ðX�

b̂;Y
�
b̂Þ. A heuristic, to find this b̂ (if exist) based on the systematic

increase in the service level b can be costly in terms of computational time because each increased service level b means
solving the problems ðP0Þ and SLPðjÞ. We propose to evaluate FOP0ðX�

b;Y
�
bÞ only in b ¼ b1 and b ¼ b2. Let FO

�
P0 the objective

value of the best solution found to ðP0Þ, then:

� if FOP0ðX�
b2
;Y�

b2
Þ 6 FOP0ðX�

b1
;Y�

b1
Þ, an increase in the service level b in the interval ½b2; b1� produces no improvement in the

initial solution (UB), which becomes the best solution found, i.e., FO�
P0 ¼ FOP0ðX�

b2
;Y�

b2
Þ;

� if FOP0ðX�
b2
;Y�

b2
Þ > FOP0ðX�

b1
;Y�

b1
Þ, there is improvement in the initial solution and the second solution becomes the best

solution found, i.e., FO�
P0 ¼ FOP0ðX�

b1
;Y�

b1
Þ;
i.e., FO�
P0 ¼ minfFOP0ðX�

b2
;Y�

b2
Þ; FOP0ðX�

b1
;Y�

b1
Þg.

4.1. Solution characterization for the problem (P1)

The square root term in the objective function of problem ðP1Þ can give rise to difficulties in the optimization procedure.
When the DC j is not selected, both square root terms would take a value of 0, which leads to unbounded gradients in the NLP
optimization and hence numerical difficulties. Thus, we reformulate the problem ðP1Þ in order to eliminate the square root
terms. We first introduce two sets of nonnegative continuous variables, Z1j and Z2j, to represent the square root terms in the
objective function:
Z12
j ¼

X
i

liY
2
ij; 8j 2 J; ð18Þ

Z22
j ¼

X
i

ðriY ijÞ2; 8j 2 J; ð19Þ

Z1j; Z2j P 0; 8j 2 J: ð20Þ

Because the nonnegative variables Z1j and Z2j are introduced in the objective function with positive coefficients, and this

problem is a minimization problem, Eqs. (18) and (19) can be further relaxed as the following inequalities:
Z12
j P

X
i

liY
2
ij; 8j 2 J; ð21Þ

Z22
j P

X
i

ðriYijÞ2; 8j 2 J: ð22Þ
Note that constraints (21) and (22) with constraint (20) define second-order cone constraints. Thus, the reformulated
problem ðP1Þ can be expressed as the following MINLP problem with second-order cone constraints denoted as ðP2Þ:

Problem (P2):
min
X;Y ;Z1;Z2

X
j2J

f jXj þ
X
i

ðd̂ij þ hjLjliÞYij þ kjZ1j þ zbhj

ffiffiffiffi
Lj

q
Z2j

( )
ð23Þ

s:t : ð21Þ; ð22Þ; ð12Þ; ð13Þ; ð15Þ; ð20Þ:
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Problem ðP2Þ can be trivially shown to be equivalent to problem ðP1Þ but it has a linear objective function and second-
order cone constraints (21) and (22). We can solve this problem using CPLEX 12.4., which handles second-order cone con-
straints in an efficient way.

4.2. Solution characterization for SLPðjÞ using normally distributed demand

In this section we suppress the j subscript in order to simplify the notation. Escalona and Ordóñez (2015) characterized
under mild assumptions, the optimal solution of the problem SLPðjÞ under normally distributed demand, when a single DC
satisfies demand of both classes as follows:

For, l1; r2
1; l2; r2

2 > 0 and b2 2 ½0:5;1Þ, the optimal parameters of the critical level policy are obtained from the follow-
ing system of equations:

(a) If sl1ðr02;0Þ < b1:
r� � C� ¼ lLþ zb2 r
ffiffiffi
L

p
; ð24Þ

Z L

0
U

C� � l1ðL� sÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðL� sÞr2

1

q
0
B@

1
CA f r

��C�

H;D ðsÞ ds ¼ b1 � b2; ð25Þ

where r02 ¼ lLþ zb2 r
ffiffiffi
L

p
and the service levels provided to each class are equal to their preset levels, i.e.,

sliðr�;C�Þ ¼ bi; i ¼ 1;2.

(b) If sl1ðr02;0Þ P b1:
C� ¼ 0; ð26Þ
r� ¼ lLþ zb2 r

ffiffiffi
L

p
; ð27Þ

and service levels provided to each class are: sl1ðr�;0Þ P b1 and sl2ðr�;0Þ ¼ b2 for high and low priority class
respectively.
In our network design, a candidate DC j can provide both demand classes, one or none. The following proposition indi-
cates the optimal parameters of rationing policy when a DC provides only a single demand class.

Proposition 2. Under normally distributed demand and single class demand, the optimal parameters of the critical level policy
are:

(a) If l1 ¼ r2
1 ¼ 0 and l2; r2

2 > 0, the optimal parameters of the critical level policy are: C� ¼ 0; r� ¼ r02 ¼ l2Lþ zb2 r2

ffiffiffi
L

p
, and

the service levels provided to the high and low priority class are sl1ðr�;C�Þ ¼ 1 and sl2ðr�;C�Þ ¼ b2 respectively.
(b) If l1;r2

1 > 0 and l2 ¼ r2
2 ¼ 0, the optimal parameters of the critical level policy are C� ¼ 0 and r� ¼ r01 solution of

sl1ðr�;0Þ ¼ b1, i.e.,
Z L

0
U

�l1ðL� sÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðL� sÞr2

1

q
0
B@

1
CA f r

�
H;D1

ðsÞ dsþU
r� � l1Lffiffiffiffiffiffiffiffi

r2
1L

q
0
B@

1
CA ¼ b1; ð28Þ

and the service levels provided to the high and low priority class are sl1ðr�;C�Þ ¼ b1 and sl2ðr�;C�Þ > b2 respectively.
Proof. The proof is detailed in Appendix C. h

Note that under no demand for one of the classes C� ¼ 0. Therefore, the ðQ ; r;CÞ policy is equivalent to the traditional
ðQ ; rÞ policy.

5. Computational study

In order to illustrate the applicability and evaluate the performance of our solution approach in terms of quality solution
(optimality gap) and computational time, we carried out computational experiments for instances with 49 and 88 nodes
from Daskin (2011). We generated several test problems for each data set in which we compare our solution approach with
the Global Round-up policy. We denote these instances as test sets. In all cases, each retailer location is also a candidate DC
location, i.e., there are as many candidate DC locations as retailer locations for each instance.

The test problems were generated around a base case with the following parameters: service level requirements
b1 ¼ 0:975 and b2 ¼ 0:75; cost per unit to ship between retailer i and candidate DC site j; dij equal to the distance between
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retailer i and candidate DC j multiplied by a transport rate cij ¼ 0:01; 8i; j; and holding cost per unit and unit time at can-
didate DC site j; hj ¼ 0:25; 8j 2 J. Furthermore, all the test problems used the following common criterion and parameters:
demand per unit time at each retailer is normally distributed with mean li ¼ U½10;50� and coefficient of variation
CVi ¼ U½0:1;0:4�; class of the retail i;ni ¼ f1;2g with discrete uniform distribution; fixed (per unit time) cost of locating a
DC at candidate site j; f j ¼ U½200;300�; cost per unit to ship between external supplier and candidate DC site j,
aj ¼ 0:5; 8j 2 J; ordering cost from candidate DC site j; Sj ¼ 1000; 8j 2 J; and lead time, Lj ¼ f2;3;4g with discrete uniform
distribution.

To illustrate the industrial applicability of the location-inventory model with differentiated service levels we also con-
sider a illustrative example of a company that manufactures products derived from fruits and vegetables. The supply chain
consisting of one plant, 38 potencial DCs, and 38 customers.

Problem (P2) was modeled with AMPL and solved with CPLEX 12.4. The equation systems (24) and (25) and Proposition 2,
solutions of problem SLPðjÞ, were programmed and solved by a C code. We integrate both codes through an AMPL script and
the shell command to execute the C code. The time limit was set for 10,800 s. All test were carried on a PC with Intel Core i7
2.3 GHz processor and 16 GB RAM.
5.1. Test sets

We solved 63 problems, 30 for 49 nodes and 33 for 88 nodes. In each problem, we changed parameters relative to the base
case. In particular the modified parameters were: the preset service level for low priority class (b2), the holding cost per unit
and unit time (hj), and the transport rate (cij). Table D.3 shows the data-set used, the parameter modified from the base case;
results of location-inventory model with differentiated service levels using critical level policy; results of the global round-
up policy; and the relative difference between the total costs induced by critical level and global round-up policies.

Regarding the difficult to solve the problem we have the following comments derived from the computational experi-
ments in Table D.3:

� as expected, as the problems grow larger, it becomes more difficult to solve them;
� as the holding cost per unit and unit time and/or the preset service level increases, the problem (P2) becomes harder to
solve. This is because, higher values of hj and zb assign more weight on the nonlinear terms of the objective function of
(P2).

We measure, for our approach, the relative optimally gap between the lower bound (LB) and the best solution found, i.e.,
Gapð%Þ ¼ 100� ðFO�

P0 � LBÞ=LB. Fig. 1 show for each data set, how the relative optimally gap change as the holding cost per
unit and unit time (hj) and the preset service level of the low priority class (b2) change.

From Fig. 1, we can see that relative optimality gap increase when the holding cost per unit and unit time and b1 � b2

increases. This is because, the absolute gap is less than or equal to FOP0ðX�
b2
;Y�

b2
Þ � FOP1ðb2Þ ¼

P
jhjðr�j�

ðLj
P

iliY
�
ij þ zb2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Lj
P

ir2
i Y

�
ij

q
ÞÞ. From Table D.3 the maximum relative gap is 2.7%.

Regarding the number of DC installed we have the following comments derived from the computational experiments in
Table D.3:

� as expected, as the holding cost per unit and unit time increases, the number of DCs decreases;
� as expected, as the transport rate increases, the number of DCs increases;
� no effect of b1 � b2 on the number of DC is observed.
Fig. 1. Relative gap with b1 ¼ 0:75; cij ¼ 0:01.
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For all instances in Table D.3, the total cost of the location-inventory model with differentiated service levels using critical
level policy is less than the total cost induced by the global round-up policy. We measure the relative benefit induced by the
critical level policy regarding global round-up policy as Dcostð%Þ ¼ 100� ðFOP1ðb1Þ � FO�

P0Þ=FOP1ðb1Þ. Fig. 2 show for each
data set, how the relative benefit induced by the critical level policy change as the holding cost per unit and unit time
(hj) and the preset service level of the low priority class (b2) change.

From Fig. 2, we can see that benefit induced by the critical level policy increase when the holding cost per unit and unit
time and b1 � b2 increases. This is because, the absolute benefit is greater than or equal to FOP1ðb1Þ � FOP0ðX�

b1
;Y�

b1
Þ ¼P

jhjððLj
P

iliY
�
ij þ zb1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Lj
P

ir2
i Y

�
ij

q
Þ � r�j Þ. Therefore, we concluded that our location-inventory model with differentiable ser-

vice levels using critical level policy is useful when the difference between the preset service levels for high and low priority
class is high and/or the holding cost per unit and time unit is high. From Table D.3 the maximum benefit induced by the
critical level policy is 2.33%.
5.2. Illustrative example for industrial application

Consider the case of a company that manufactures products derived from fruits and vegetables which requires determin-
ing the number of distribution centers (DC) to locate in Santiago (Chile), where to locate, what kinds of customers should be
assigned to each DC, howmuch inventory to keep each of them, and how to meet the required service level of their customer.
The supply chain consisting of one plant, 38 potencial DCs, and 38 customers. The production plant is located 200 km south
of Santiago (Chile). The company segments its customers by volume of annual demand. Thus, customers who demand more
than the average annual demand are classified as high priority and its preset service level is b1 ¼ 0:98. Customers who
require less than the average annual demand are classified as low priority and its preset service level is b2 ¼ 0:70.

The products manufactured by the company are derivative of fruits and vegetables, with holding cost per unit and unit
time at candidate DC site j; hj ¼ 0:005 ðUS$=Kg dayÞ; 8j 2 J. The location, class, demand, and coefficient of variance for each
customers is show in Table E.4. From Table E.4, note that 24% of customers are class 1 and they demand 72% of daily demand.

Ordering cost from candidate DC site j; Sj ¼ 250 ðUS$=orderÞ; 8j 2 J; cost per unit to ship between plant and candidate DC
site j; aj ¼ 0:0069 ðUS$=dayÞ; 8j 2 J; and lead time, Lj ¼ 4 ðdayÞ; 8j 2 J. The location and fixed cost to the 40 potential DCs is
show in Table E.4. For class 1 customers the company uses medium goods vehicles and for class 2 customers the company
uses light goods vehicle. Each vehicle uses a driver and an assistant. The unit cost of transport (US$/Kg) between candidate
DC j and retail i; dij, is calculated as the fixed cost of loading and unloading (including labor and depreciation), plus variable
cost that depends on the distance between candidate DC j and retail i (including labor, fuel and depreciation). Then, unit cost
of transport are dij ¼ 0:0025þ 0:00012 hij and dij ¼ 0:0021þ 0:00015 hij for class 1 and 2 respectively, where hij is the Eucli-
dean distance between candidate DC j and retail i.

We analyze the location-inventory problem with differentiated service levels using critical level and global round-up
policies. Table 1 shows the inventory policy, number of opened DC, the objective function and the cost components (FC: fixed
cost; OC: ordering cost; SC: supply cost; CD: distribution cost; HC: holding cost).
Fig. 2. Relative benefit with b1 ¼ 0:75; cij ¼ 0:01.

Table 1
Illustrative example: results.

Policy Result Cost component

] DC Objective function FC OC SC DC HC

Critical level 1 805.73 195 122.84 166.58 115.21 206.10
Global round-up 1 825.18 195 122.84 166.58 115.21 225.56



Fig. 3. Location-inventory model using critical level policy: FO� ¼ 805:73.

P. Escalona et al. / Transportation Research Part E 83 (2015) 141–157 151
Table 1 indicates that the lower cost configuration is achieved with the critical level policy with a saving of 2.4% per day.
Note that this saving is produced by lower holding cost induced by the critical level policy. The resulting network configu-
ration is the same for critical level and global round-up policies. Fig. 3 show the network configuration.
6. Conclusions

This paper consider a location-inventory model for fast-moving items in which the distribution centers observe demand
from two classes of customers, high and low priority. To provide differentiated service levels we assume, at each DC, a con-
tinuous review ðQ ; r;CÞ inventory policy. If a DC provides only one class of demand, the critical level policy becomes the tra-
ditional continuous review ðQ ; rÞ policy. In this paper the service level is measured by service level type I.
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We formulate the location-inventory model with differentiated service levels as an MINLP problem with chance con-
straints, corresponding to the service levels constraints, and nonlinear objective function. We propose optimally solve a
relaxation of the location-inventory model with differentiated service levels which allows us to obtain good-quality bounds.

The computational results show that our proposed heuristic able to find good-quality solutions because for test set prob-
lems, the maximum optimality gap is 2.7%, a very good solution in itself, which provides us the configuration of the network,
including location of the CD’s, allocation of demands and the required stock everywhere. We also consider a Illustrative
example for industrial application, for which the total cost induced by the location-inventory model with differentiated ser-
vice levels using critical level policy is 2.4% lower than the total cost induced by the global round-up policy.

The computational result also provides managerial insight: the benefit of using a critical level policy in the configuration
of a distribution network is greater when the holding cost per unit and unit time is high, and/or when the difference between
the preset service levels for high and low priority class is high.

There are a number of questions and issues left for future research. The first one, is to consider other policies to provide
differentiated service levels in a distribution network, e.g., separate stock policy, single class allocation or round-up policy, so
we can determine the best policy to provide differentiated service levels in a distribution network. The second one is related
with the fact that our solution approach uses normally distributed demands. We believe that since the problem formulation
is valid for any strictly increasing Levy process, similar solution approaches could be developed for other distributions in
future research. Another possible extensions are: (i) consider other service levels measure, e.g., fill-rate; and (ii) use penalty
cost as an alternative way of the service levels.
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Appendix A. Glossary of terms

See Table A.2.
Table A.2
Glossary of terms.

Sets Definition

I Set of retailers indexed by i
J Set of candidate DC sites indexed by j
K Set of class demand indexed by k, with k ¼ 1;2
Nk Set of retailers that belong to the class k, with k ¼ 1;2

Parameters
li Mean demand per unit time at retailer i
ri Standard deviation of demand per unit time at retailer i
bk Preset service level for class k, with b1 > b2
f j Fixed (per unit time) cost of locating a DC at candidate site j
dij Cost per unit to ship between retailer i and candidate DC site j
cij Transport rate between retailer i and candidate DC j
aj Cost per unit to ship between external supplier and candidate DC site j
Sj Ordering cost from candidate DC site j
hj Holding cost per unit time at candidate DC site j
Lj Constant replenishment lead time at candidate DC site j
ni Class of retail i

Variables
Xj 1 if we locate a DC in candidate site j, and 0 otherwise
Yij 1 if retailer i is served by the DC at candidate site j, and 0 otherwise
rj Reorder point at candidate DC site j
Cj Critical level at candidate DC site j

Variable functions
lj ¼

P
iliYij P 0 Mean demand per unit time at candidate DC j

rj ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP

ir2
i Yij

q
P 0 Standard deviation of demand per unit time at candidate DC j

lkj ¼
P

i2Nk
liYij P 0 Mean demand per unit time of class k at candidate DC j

rkj ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP

i2Nk
r2
i Yij

q
P 0 Standard deviation of demand per unit time of class k at candidate DC j

Qj ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2Sj
hj

P
iliYij

q
Replenishment order at candidate DC j
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Appendix B. Proof of Proposition 1

To prove that Eqs. (1) and (2) are general expressions for the service level type I under rationing we must show that these
equations remain valid in the absence of one of the two class demand. In order to simplify the notation, we suppress the
subscript j.

Proof. The conditions to fully meet the demand of class 1 in a replenishment cycle when the DC only provides class 1 is that
demand of class 1 during the lead time is less or equal to the reorder point r, i.e., D1ðLÞ 6 r. Therefore, the service level
provided to the high priority class when the DC only provides service to class 1 is:
sl1ðr;CÞ ¼ PðD1ðLÞ 6 rÞ: ðB:1Þ

Eq. (B.1) is equal to Eq. (1) when D2ðsÞ ¼ 0 for any s > 0, because
PðD1ðLÞ 6 rÞ ¼ PðD1ðLÞ 6 r j D1ðLÞ 6 r � CÞPðD1ðLÞ 6 r � CÞ þ PðD1ðLÞ 6 r j D1ðLÞ > r � CÞPðD1ðLÞ > r � CÞ
¼ PðD1ðLÞ 6 r � CÞ þ PðD1ðLÞ 6 r j D1ðLÞ > r � CÞPðD1ðLÞ > r � CÞ
¼ PðD1ðLÞ 6 r � CÞ þ PðD1ðLÞ 6 r � C þ C j sr�C

H;D1
< LÞPðsr�C

H;D1
< LÞ

¼ PðD1ðLÞ 6 r � CÞ þ PðD1ðLÞ 6 D1ðsr�C
H;D1

Þ þ C j sr�C
H;D1

< LÞPðsr�C
H;D1

< LÞ
¼ PðD1ðLÞ 6 r � CÞ þ PðD1ðL� sr�C

H;D1
Þ 6 C j sr�C

H;D1
< LÞPðsr�C

H;D1
< LÞ

¼ PðD1ðLÞ 6 r � CÞ þ PðD1ðL� sr�C
H;D1

Þ 6 C \ sr�C
H;D1

< LÞ:

Furthermore, in Section 4.2 we show that in the absence of demand for class 1, sl1ðr�;C�Þ ¼ 1 > b1, where ðr�;C�Þ are the

optimal reorder point and critical level respectively. Therefore, Eq. (1) is a general expression for the service level provided to
the high priority class.

The conditions to fully meet the demand of class 2 in a replenishment cycle, when the DC only provides service to class 2
is that demand of class 2 during the lead time (D1ðsÞ ¼ 0 for any s > 0) is less or equal to the reorder point r, i.e., D2ðLÞ 6 r.
Therefore, the service level provided to the high priority class when the DC only provides service to class 2 is:
sl2ðr;CÞ ¼ PðD2ðLÞ 6 rÞ: ðB:2Þ

Eq. (2) is equal to Eq. (B.2) when D2ðsÞ > 0 for any s > 0;D1ðsÞ ¼ 0 for any s > 0 and C ¼ 0. In Section 4.2 we show that

when D1ðsÞ ¼ 0 for any s > 0, then the optimal critical level is equal to zero, i.e., C� ¼ 0. Furthermore, in Section 4.2 we show
that in the absence of demand for class 2, sl2ðr�;C�Þ > b2. Therefore, Eq. (2) is a general expression for the service level pro-
vided to the low priority class. h
Appendix C. Proof of Proposition 2

Proof. Let C2ðrÞ be the maximum critical level, given a reorder point r, that ensures a service level b2, i.e.,
C2ðrÞ ¼ maxfC j sl2ðr;CÞ P b2g. Escalona and Ordóñez (2015) showed that sl2ðr;CÞ is increasing in r (and decreasing in
Fig. C.4. Feasible region of SLP problem under normally distributed demand and single class demand.



Table D.3
Results for test set.

Data
set

Vary Parameters Solution approach Global round-up Dcost
(%)

First solution Second solution Critical level policy

b2 hj cij ] DC FOP0ðX�
b2
;Y�

b2
Þ Time(s) ] DC FOP0ðX�

b1
;Y�

b1
Þ Time(s) LB FO� Gapð%Þ ] DC Time(s) FOP1ðb1Þ ] DC Time(s)

49-nodes Case
base

0.75 0.25 0.01 12 8766.65 1.40 12 8766.65 1.78 8709.91 8766.65 0.65 12 3.18 8819.29 12 1.79 0.60

b2 0.55 0.25 0.01 12 8745.29 1.35 12 8745.29 1.77 8663.21 8745.29 0.94 12 3.11 8819.29 12 1.79 0.84
0.65 0.25 0.01 12 8755.40 1.52 12 8755.40 1.79 8685.30 8755.40 0.80 12 3.32 8819.29 12 1.79 0.72
0.85 0.25 0.01 12 8780.73 1.42 12 8780.73 1.77 8740.71 8780.73 0.46 12 3.19 8819.29 12 1.79 0.44
0.95 0.25 0.01 12 8804.37 1.64 12 8804.37 1.76 8792.48 8804.37 0.14 12 3.41 8819.29 12 1.79 0.17

hj 0.75 0.005 0.01 12 6188.71 0.38 12 6188.71 0.31 6187.53 6188.71 0.02 12 0.69 6189.77 12 0.32 0.02
0.75 0.1 0.01 12 7642.65 0.47 12 7642.65 0.50 7619.95 7642.65 0.30 12 0.97 7663.70 12 0.50 0.27
0.75 0.35 0.01 11 9320.38 2.76 10 9318.37 3.04 9242.65 9318.37 0.81 10 5.80 9386.98 10 3.03 0.73
0.75 0.50 0.01 10 9992.74 10.15 9 9995.60 16.86 9885.64 9992.74 1.07 10 27.02 10088.43 9 16.72 0.95
0.75 0.75 0.01 9 10890.68 43.02 9 10890.68 67.19 10733.56 10890.68 1.44 9 110.22 11029.92 9 68.04 1.26
0.75 1.00 0.01 7 11589.59 163.53 7 11589.59 141.39 11410.71 11589.59 1.54 7 304.92 11761.83 7 140.84 1.46
0.75 1.25 0.01 7 12206.26 233.89 6 12197.85 145.95 11982.67 12197.85 1.76 6 379.85 12387.38 6 147.86 1.53

cij 0.75 0.25 0.005 6 6558.11 6.30 6 6558.11 7.74 6517.31 6558.11 0.62 6 14.03 6597.14 6 7.76 0.59
0.75 0.25 0.015 13 10476.10 0.81 12 10475.07 0.83 10415.98 10475.07 0.56 12 1.64 10527.71 12 0.82 0.50
0.75 0.25 0.02 18 11552.20 1.16 18 11552.20 1.27 11487.46 11552.20 0.56 18 2.43 11620.44 18 1.30 0.59

b2;hj 0.55 0.5 0.01 10 9952.95 9.61 9 9957.92 16.44 9798.06 9952.95 1.56 10 26.05 10088.43 9 16.72 1.34
0.55 1.00 0.01 7 11519.14 238.56 7 11519.14 140.71 11260.81 11519.14 2.24 7 379.26 11761.83 7 139.37 2.06
0.55 1.25 0.01 7 12118.20 450.61 6 12120.36 147.49 11795.28 12118.20 2.66 7 598.10 12387.38 6 147.16 2.17
0.95 0.5 0.01 9 10062.13 14.57 9 10062.13 16.57 10040.00 10062.13 0.22 9 31.14 10088.43 9 16.71 0.26
0.95 1.00 0.01 7 11713.94 201.50 7 11713.94 140.23 11675.76 11713.94 0.33 7 341.72 11761.83 7 139.37 0.41
0.95 1.25 0.01 6 12334.61 226.86 6 12334.61 146.32 12292.57 12334.61 0.34 6 373.17 12387.38 6 147.41 0.43

b2; cij 0.55 0.25 0.005 6 6542.14 5.57 6 6542.14 7.75 6483.23 6542.14 0.90 6 13.32 6597.14 6 7.73 0.83
0.55 0.25 0.015 12 10243.91 0.82 12 10243.91 0.71 10161.83 10243.91 0.80 12 1.53 10317.91 12 0.73 0.72
0.55 0.25 0.02 19 11531.42 1.33 18 11524.42 1.34 11429.38 11524.42 0.82 18 2.67 11620.44 18 1.28 0.83
0.95 0.25 0.005 6 6586.31 6.75 6 6586.31 7.69 6577.57 6586.31 0.13 6 14.44 6597.14 6 7.76 0.16
0.95 0.25 0.015 12 10302.99 0.77 12 10302.99 0.71 10291.10 10302.99 0.12 12 1.48 10317.91 12 0.71 0.14
0.95 0.25 0.02 18 11601.27 1.18 18 11601.27 1.26 11587.85 11601.27 0.12 18 2.44 11620.44 18 1.29 0.16

hj; cij 0.75 1.25 0.005 4 9023.39 1477.19 4 9023.39 3508.15 8858.55 9023.39 1.83 4 4985.34 9193.62 4 3537.09 1.85
0.75 1.25 0.015 12 14271.58 21.546 11 14264.62 24.368 13987.86 14264.62 1.94 11 45.91 14521.85 11 24.973 1.77
0.75 1.25 0.02 12 15770.25 2.16 12 15770.25 1.71 15486.53 15770.25 1.80 12 3.88 16033.43 12 1.796 1.64

88-nodes Case
base

0.75 0.25 0.01 15 15831.84 14.80 15 15831.84 23.98 15750.57 15831.84 0.51 15 38.78 15914.42 15 24.45 0.52

b2 0.55 0.25 0.01 15 15798.22 20.80 15 15798.22 24.31 15680.62 15798.22 0.74 15 45.10 15914.42 15 24.45 0.73
0.65 0.25 0.01 15 15814.13 15.64 15 15814.13 24.16 15713.71 15814.13 0.63 15 39.80 15914.42 15 24.45 0.63
0.85 0.25 0.01 15 15853.98 16.64 15 15853.98 24.22 15796.70 15853.98 0.36 15 40.86 15914.42 15 24.45 0.38
0.95 0.25 0.01 15 15891.18 18.49 15 15891.18 24.03 15874.25 15891.18 0.11 15 42.52 15914.42 15 24.45 0.15

hj 0.75 0.005 0.01 21 11549.66 1.49 21 11549.66 1.42 11547.71 11549.66 0.02 21 2.91 11551.56 21 1.40 0.02
0.75 0.05 0.01 20 13105.64 2.24 20 13105.64 2.23 13087.70 13105.64 0.14 20 4.47 13123.96 20 2.24 0.14
0.75 0.1 0.01 19 14052.27 3.71 19 14052.27 4.04 14016.88 14052.27 0.25 19 7.75 14087.74 19 3.97 0.25
0.75 0.40 0.01 13 17015.56 47.11 11 17010.60 31.30 16890.26 17010.60 0.71 11 78.42 17126.94 11 31.345 0.68
0.75 0.5 0.01 11 17623.92 38.89 11 17623.92 53.30 17477.97 17623.92 0.83 11 92.19 17769.34 11 54.37 0.82
0.75 0.75 0.01 11 18951.74 117.66 11 18951.74 220.41 18732.82 18951.74 1.16 11 338.07 19169.86 11 220.11 1.14
0.75 1.00 0.01 11 20094.59 771.74 10 20094.23 4414.24 19802.70 20094.23 1.45 10 5185.98 20376.72 10 4320.96 1.39
0.75 1.25 0.01 10 21059.36 2608.21 10 21059.36 10812.15a 20717.83 21059.36 1.62 10 13420.36 21412.47 10 10809.80a 1.65
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cij 0.75 0.25 0.005 10 11719.49 72.59 10 11719.49 116.68 11651.18 11719.49 0.58 10 189.27 11790.11 10 118.12 0.60
0.75 0.25 0.015 23 18449.29 8.43 22 18442.41 10.19 18346.98 18442.41 0.52 22 18.62 18538.83 22 10.16 0.52
0.75 0.25 0.02 28 20274.77 2.49 28 20274.77 2.72 20164.00 20274.77 0.55 28 5.21 20382.88 28 2.67 0.53

b2; hj 0.55 0.05 0.01 20 13098.21 2.12 20 13098.21 2.23 13072.22 13098.21 0.20 20 4.36 13123.96 20 2.21 0.20
0.55 0.4 0.01 13 16964.89 27.29 11 16962.91 30.51 16783.70 16962.91 1.06 11 57.81 17126.94 11 31.08 0.96
0.55 1.00 0.01 11 19975.36 693.47 10 19978.26 4419.15 19553.91 19975.36 2.11 11 5112.62 20376.72 10 4385.18 1.97
0.55 1.25 0.01 10 20914.40 2908.11 10 20914.40 10810.67a 20421.25 20914.40 2.36 10 13718.78 21412.47 10 10810.03a 2.33
0.95 0.05 0.01 20 13118.74 2.21 20 13118.74 2.24 13115.07 13118.74 0.03 20 4.45 13123.96 20 2.21 0.04
0.95 0.4 0.01 11 17094.85 34.68 11 17094.85 31.34 17069.80 17094.85 0.15 11 66.02 17126.94 11 31.38 0.19
0.95 1.00 0.01 10 20299.07 2073.77 10 20299.07 4225.10 20240.49 20299.07 0.29 10 6298.87 20376.72 10 4330.09 0.38
0.95 1.25 0.01 10 21315.41 10809.19a 10 21315.41 10809.53a 21242.19 21315.41 0.34 10 21618.73 21412.47 10 10809.46a 0.45

b2; cij 0.55 0.25 0.005 10 11690.49 48.93 10 11690.49 115.82 11591.86 11690.49 0.84 10 164.75 11790.11 10 117.62 0.84
0.55 0.25 0.015 23 18409.14 6.99 22 18403.29 10.33 18260.95 18403.29 0.77 22 17.31 18538.83 22 10.32 0.73
0.55 0.25 0.02 28 20230.91 2.49 28 20230.91 2.66 20070.54 20230.91 0.79 28 5.15 20382.88 28 2.67 0.75
0.95 0.25 0.005 10 11770.70 200.16 10 11770.70 117.83 11756.05 11770.70 0.12 10 317.99 11790.11 10 116.97 0.16
0.95 0.25 0.015 22 18511.46 9.17 22 18511.46 10.29 18492.58 18511.46 0.10 22 19.46 18538.83 22 10.27 0.15
0.95 0.25 0.02 28 20352.21 2.89 28 20352.21 2.76 20329.23 20352.21 0.11 28 5.66 20382.88 28 2.72 0.15

hj ; cij 0.75 1.0 0.005 7 15100.30 10812.81a 7 15100.30 10808.06a 14875.43 15100.30 1.49 7 22110.88 15337.88 7 10816.931a 1.55
0.75 1.0 0.015 17 23868.85 3949.97 16 23862.61 10520.11 23535.58 23862.61 1.37 16 14470.09 24189.39 16 10274.19 1.35
0.75 1.0 0.02 22 26387.26 370.98 22 26387.26 311.39 26018.35 26387.26 1.40 22 682.37 26772.94 22 311.59 1.44

a Suboptimal solution obtained for 3 h limit.
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C), therefore, C2ðrÞ is solution of sl2ðr;CÞ ¼ b2. Then, C2ðrÞ ¼ r � r02 ¼ r � lL� zb2r
ffiffiffi
L

p
. In the same way we define C1ðrÞ as the

minimum critical level, given a reorder point r, that ensures a service level b1, i.e., C1ðrÞ ¼ minfC j sl1ðr;CÞ P b1g. Let r0i be
the minimum reorder point r such that the service level provided to the class i, given a critical level C ¼ 0, is greater than or
equal to his preset service level bi, i.e., r0i ¼ minfr j sliðr;0Þ P big, with i ¼ 1;2.

(a) If l1 ¼ r2
1 ¼ 0, from Eq. (1) we have for any r > C P 0 that sl1ðr;CÞ ¼ PðD2ðLÞ 6 r � CÞþ Pðsr�C

H;D2
< LÞ ¼

PðD2ðLÞ 6 r � CÞ þ 1� PðD2ðLÞ 6 r � CÞ ¼ 1. Therefore, sl1ðr;CÞ ¼ 1; 8C P 0 and C1ðrÞ ¼ 0; 8r. On the other hand,
C2ðrÞ ¼ r � l2L� zb2r2

ffiffiffi
L

p
. Once C1ðrÞ and C2ðrÞ are defined, the feasible region of SLP problem where all ðr;CÞ satisfies

sl1ðr;CÞ P b1; sl2ðr;CÞ P b2 and r > C P 0, when l1 ¼ r2
1 ¼ 0, is the intersection of the areas above C1ðrÞ, below C2ðrÞ

and strictly below r ¼ C. The feasible region is shown in Fig. C.4a.
From Fig. C.4a we conclude that the minimum reorder point that guarantees a service level b2 provided to the low
priority class is r02. Therefore, r

� ¼ r02 ¼ l2Lþ zb2r2

ffiffiffi
L

p
and C� ¼ 0.

(b) If l2 ¼ r2
2 ¼ 0, it valid that sl1ðr;CÞ ¼ sl1ðr;0Þ; 8C P 0. Therefore, C1ðrÞ ¼ 0 for any r P r01. On the other hand,

C2ðrÞ ¼ r � r02 ¼ r � l1L� zb2r1

ffiffiffi
L

p
. The feasible region of SLP problem where all ðr;CÞ satisfies sl1ðr;CÞ P

b1; sl2ðr;CÞ P b2 and r > C P 0, when l2 ¼ r2
2 ¼ 0, is the intersection of the areas above C1ðrÞ, below C2ðrÞ and strictly

below r ¼ C. The feasible region is shown in Fig. C.4b.
From Fig. C.4b we conclude that the minimum reorder point that guarantees a service level b1 provided to the high
priority class is r01. Therefore, r

� ¼ r01 solution of sl1ðr;0Þ ¼ b1 and for convenience C� ¼ 0. Note that sl2ðr�; 0Þ > b2

because r02 < r01. h
Table E.4
Data for illustrative example.

Candidate DCs Customers

DC Location f j Customer Class Location Demand

X Y (US$/day) X Y li ðkg=dayÞ CVi

1 �9.47 21.02 191 1 1 �7.37 10.71 4647.33 0.53
2 �6.22 15.53 200 2 1 �18.23 0.11 1616.67 0.42
3 �6.67 15.92 195 3 1 �13.31 �12.01 1275.33 0.85
4 �7.98 16.39 206 4 2 �9.38 10.96 504.67 0.63
5 �8.60 16.71 206 5 2 �11.15 �3.24 430.00 0.59
6 �7.59 16.18 202 6 1 �5.27 1.55 882.00 0.93
7 �7.56 15.23 211 7 2 �6.13 4.23 248.00 0.36
8 �7.10 14.90 206 8 1 2.19 1.11 4880.00 0.78
9 �6.45 14.93 211 9 2 4.13 �0.22 386.67 0.78

10 �6.89 14.03 206 10 1 �8.16 13.68 1256.67 0.44
11 �5.97 13.62 244 11 1 �13.15 5.45 1476.67 0.61
12 �4.91 11.62 237 12 2 �2.48 6.04 176.00 0.17
13 �3.56 12.01 233 13 1 �8.32 10.19 700.67 0.15
14 �0.89 10.31 233 14 2 7.18 4.45 230.00 0.58
15 �4.49 9.56 255 15 1 �6.40 5.12 872.67 0.80
16 �4.35 9.29 255 16 2 �8.81 �9.94 196.00 0.94
17 �3.64 5.38 233 17 2 �7.05 0.22 388.00 0.22
18 �6.87 10.81 211 18 2 1.18 �9.12 176.00 0.61
19 �9.55 10.16 222 19 2 �11.24 �38.33 456.67 0.52
20 �10.27 10.08 211 20 2 �6.86 �12.23 114.00 0.11
21 �10.64 10.15 206 21 2 �2.61 �6.45 156.00 0.40
22 �10.65 9.79 217 22 2 �7.05 �18.35 250.67 0.25
23 �11.08 9.89 211 23 2 7.65 0.00 144.67 0.81
24 �11.87 9.55 203 24 2 �7.51 �18.12 321.33 0.38
25 �12.34 8.76 208 25 2 �10.55 �33.96 194.67 0.58
26 �22.13 2.04 200 26 2 4.04 �18.35 174.67 0.25
27 �12.88 2.72 222 27 2 �23.59 �19.68 168.00 0.64
28 �13.07 2.92 222 28 2 �2.71 �2.78 198.00 0.34
29 �13.10 2.53 211 29 2 �28.49 �26.02 150.67 0.69
30 �13.09 2.14 195 30 2 �12.41 �7.45 111.33 0.72
31 �12.32 2.31 211 31 2 9.77 7.78 100.00 0.77
32 �9.31 1.59 228 32 2 6.07 �6.12 88.67 0.51
33 �8.72 1.51 228 33 2 �8.59 �10.30 186.00 0.18
34 �6.93 �6.22 228 34 2 �4.37 7.78 154.00 0.31
35 �5.07 �3.42 217 35 2 �26.55 �25.24 264.67 0.92
36 �6.47 �8.86 222 36 2 2.56 �9.90 233.33 0.24
37 �6.98 �9.36 208 37 2 4.33 3.14 222.00 0.84
38 �6.49 �9.47 208 38 2 4.23 �20.35 109.33 0.58
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Appendix D. Numerical results for test sets

See Table D.3.

Appendix E. Data for illustrative example

See Table E.4.
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