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In this paper, we study a new variant of the vehicle routing problem (VRP) with time windows, multi-

shift, and overtime. In this problem, a limited fleet of vehicles is used repeatedly to serve demand over a

planning horizon of several days. The vehicles usually take long trips and there are significant demands

near shift changes. The problem is inspired by a routing problem in healthcare, where the vehicles

continuously operate in shifts, and overtime is allowed. We study whether the tradeoff between

overtime and other operational costs such as travel cost, regular driver usage, and cost of unmet

demands can lead to a more efficient solution. We develop a shift dependent (SD) heuristic that takes

overtime into account when constructing routes. We show that the SD algorithm has significant savings

in total cost as well as the number of vehicles over constructing the routes independently in each shift,

in particular when demands are clustered or non-uniform. Lower bounds are obtained by solving the LP

relaxation of the MIP model with specialized cuts. The solution of the SD algorithm on the test problems

is within 1.09–1.82 times the optimal solution depending on the time window width, with the smaller

time windows providing the tighter bounds.

& 2010 Elsevier Ltd. All rights reserved.

1. Introduction

The basic vehicle routing problem (VRP) is concerned with
finding a set of routes to serve a given number of customers,
minimizing the total distance traveled. In this problem, the total
demand of all the customers on a route must not exceed the
vehicle capacity. If in addition each customer specifies a time
window within which the customer must be visited, the problem
is known as a VRP with time windows (VRPTW). There are many
other variants of the VRP. Classical variants of the VRP aim at
planning the routes of a fleet of vehicles for a single planning
period (a day or a shift). The above VRP is however unrepresen-
tative of some situations, in which companies have to route
vehicles to satisfy demand for continuous operations, in many
cases routing and scheduling in a 24 h period divided into shifts.
In such cases, a solution that forces all vehicles to return to the
depot before the end of each shift can perform suboptimally, in
particular in situations with high demand near shift changes or
with long distances. If the demands were the same in each shift
we can simply find an optimal solution (or a good solution) and
repeat the same routes. These repeated routes could still be
improved with overtime if before returning to the depot a vehicle
turns out to be close to a demand of the next shift. In practice,
however, the demand fluctuates causing repeated routes to be
inefficient.

The objective of this paper is to introduce a VRP model that
plans over several periods and allows routes to exceed shift
lengths at a certain overtime cost, if that decision is economical.
This work then investigates the impact of the tradeoff between
overtime and other operational costs (e.g. travel cost, regular
driver usage, and unmet demands) on the efficiency of the routing
solutions. For example, if a customer in the next shift happens to
be on the return trip to the depot for a vehicle of the current shift,
the vehicle can serve it incurring a small overtime. This would
reduce demands in the next shift, possibly resulting in less total
travel distance and fewer drivers.

We consider a multi-shift VRP with overtime. The problem is
inspired by a routing problem in a leading healthcare organization
that operates about 240 medical office buildings in the southern
California region. The healthcare provider continuously routes
medical samples, mails, X-rays, lab-specimens, documents, etc.
between various medical facilities and a central lab for testing.
The medical facilities are located throughout southern California,
causing travel times between facilities to be on the order of the
entire shift length in the worst case. The organization has about
70 vehicles to carry out the deliveries. Because of the random
nature of customer demands in the healthcare industry, demands
occur any time during a day, even during shift changes. In
addition, most medical samples are perishable and must be
processed within a certain period, so the demands have time
windows. There are no capacity constraints because the items
delivered are light and small. To serve these demands, vehicles in
this problem travel through multiple urban areas and are
operated on a 24/7 basis in three consecutive shifts in each day.
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The central lab includes the vehicle depot where all routes in a
shift start and end. Overtime is allowed at a higher salary rate.
Third party vehicles, such as taxis, are hired to serve the unmet
demand.

There is limited research on VRP that plans multiple trips or
over multiple periods. One VRP variant that considers dependency
between routes is multi-trip VRP (MVRP) [1–7]. In the MVRP,
vehicles can be assigned to more than one route within a time
period. The MVRP is different from our problem because the
multiple trips still occur in a single shift, and overtime is
considered only for the last trip of a vehicle. Another VRP variant
that considers dependency between periods is periodic VRP
(PVRP) [8–11]. The PVRP extends the classical VRP to a planning
horizon of several days. Each customer requires a certain number
of visits within this time horizon while there is some flexibility on
the exact days of the visits. Hence, one has to choose the visit days
for each customer and to solve a VRP for each day. In addition to
deciding when a demand is serviced, the PVRP is different from
our problem because the operations consider only one regular
shift in a period (workday). In addition, overtime is not considered
in the PVRP, and demands do not have time windows.

It is common in the production planning and scheduling
literature to use overtime as an option for shift scheduling [12,13].
For instance, Lagodimos and Mihiotis [12] show that the effective
use of overtime leads to workforce reductions and improved
utilization in packing shops. However, only a few prior work has
considered overtime as an option for vehicle routing and
scheduling. In the 1970s, transit systems generally used models
to estimate the costs of bus systems. In these unit cost models, the
estimated cost of a proposed timetable for a transit system was
simply the sum of two cost factors: the number of buses and the
total mileage. These cost models for analyzing bus systems were
extended in Bodin et al. [14,15] to include factors such as the
number of bus drivers needed, overtime, maintenance costs, etc.
Sniezek and Bodin [16] argue that only considering total travel
time in the objective function is not enough in evaluating VRP
solutions, especially for non-homogeneous fleets. Instead, they
determine a measure of goodness, which is a weighted linear
combination of many factors such as capital cost of a vehicle,
salary cost of the driver, overtime cost, mileage cost, and the
tipping cost of a sanitation vehicle at the disposal facility,
to compare the various solutions generated. They use the cost
models to generate and evaluate solutions to the capacitated arc
routing problem with vehicle-site dependencies (CARP-VSD).
These cost models allow the use of overtime in generating routes
and analyzing solutions. These models confirm a long-term
conjecture of the authors that using overtime can help to generate
less expensive solutions to vehicle routing problems because
of the savings in capital cost of the vehicles. Recently, Zäpfel
and Bögla [17] studied a multi-period vehicle routing and
crew scheduling problem with overtime and outsourcing
options. The problem is different from our problem because the
operation in their problem is not continuous. There are two break
periods in each workday; second, the demands must be served in
the same period as their occurrence; and third, the overtime
constraint is imposed on a whole week basis, not on each
individual shift.

The rest of this paper is organized as follows. In Section 2 we
present a mixed integer programming (MIP) formulation of the
problem. Section 3 describes two insertion heuristic algorithms to
solve the problem. Section 4 describes an approach to obtain a
lower bound of the problem by solving the relaxation of the MIP
model. Section 5 presents the experimental results, which include
comparison of the performance of the two algorithms, and
comparison of the best solution with the lower bound. We
conclude the paper and discuss future research in Section 6.

2. Problem formulation

Assume we know in advance the demand for a planning
horizon of P days. We consider three daily shifts of length L hours
(e.g., the three shifts are 0:00–8:00am, 8:00am–16:00pm, and
16:00–24:00pm if L=8). Let T denote the set of shifts, with jTj ¼ 3P

and T={1,2,y,3P}. For shift t, tAT, the shift start time is
Bt ¼ Lðt�1Þ, and the shift end time is Et ¼ Lt.

The set of demand nodes is denoted as D. A hard service time
window [ei,li] is also associated with each demand node iAD, where
ei and li represent the earliest and latest service start times,
respectively. Let n denote the total number of demand nodes with
n=|D|. We create |T|+1 copies of the depot represented by nodes
n+1,y,n+t,y,n+|T|+1. Node n+1 represents the origin depot of
shift 1, node n+t represents the origin depot of shift t as well as the
destination depot of shift t�1, tA{2,y,T}, and node n+|T|+1 re-
presents the destination depot of shift T. The problem can be defined
on a directed graph G=(V, E), where V=D[{n+1,y,n+t,y,n+|T|+1}.
Each arc (i,j)AA has an associated travel time tij, and the travel cost is
W per hour. Note that arcs (n+t, n+t+1) are included in the graph to
model situations in which a vehicle is not used during a shift.

Let K denote the set of vehicles. A vehicle can be reused by
another driver in the next shift after it returns to the depot. A
driver is ready to work at the start time of each shift. The working
time of a driver is from the shift start time until he/she returns to
the depot. At the end of each route in a shift, all vehicles should
return to the home depot. Because there are a limited number of
vehicles, the next driver assigned to a vehicle has to wait until the
vehicle returns to start its route. For example, if a vehicle from
shift t�1 returns at Btþ2, its earliest start time for the next shift
will be Btþ2. For a fleet of 5 vehicles, if L=8 and the end times of
the routes for shift 1 are [5, 8, 9, 10, 6], then the earliest start
times of the vehicles for shift 2 will be [8, 8, 9, 10, 8].

We assume that the overtime limit is L hours. That is, the
working time of a driver cannot be longer than LþL hours. To deal
with the overtime limit, we impose a time window ½Et�1; Et�1þL�

on the depot node n+t, tA{2,y,T+1}. For node n+1, the time
window is [0, 0]. It is reasonable to assume LoL, since overtime
cannot be too long. In this case, the time windows of the nodes
n+t and n+t+1 do not overlap. The regular salary rate is R per
hour, and the overtime salary rate is S per hour. In some situations
the use of overtime is inevitable. For example, if a demand occurs
late in shift t�1 and eiþti04Et�1, or a demand occurs early in a
shift t and Btþt0i4 li, then a vehicle in shift t�1 has to use
overtime to meet such demands. Once a vehicle in a shift is used,
it is assumed that the driver is paid for the entire shift even if the
vehicle returns to the depot early.

The objective is to determine a set of routes and their scheduling
to satisfy all demands and associated time windows with minimum
total costs for the planning horizon. Total costs include travel cost
(the product of total travel time and W), overtime cost (the product
of total overtime and S), cost of drivers for regular time, and cost of
unmet demands. We assume that each unmet demand will be
served by a taxi at a transportation cost of A per hour.

The notation is summarized below
(1) Sets and problem size parameters

P Number of days in the planning horizon.
T The set of shifts in the planning horizon, T={1,2,y,3P}, and
jTj ¼ 3P.

D The set of demand nodes.
V D[{n+1,y,n+t,y,n+ |T|+1}.
n Total number of demand nodes in the planning horizon,

n¼ jDj.
K The set of vehicles, defined a priori or determined by the model.
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(2) Time parameters

tij Travel time from node i to node j.

L Shift length (e.g. 8 h).

L Overtime limit for each shift imposed by company
policy.

Bt Begin time of shift t, Bt ¼ Lðt�1Þ, tAT.
Et End time of shift t, Et ¼ Lt, tAT.

[ei; li] The service time window of node i, iAV.

(3) Cost parameters

W Traveling cost per hour (e.g., gas).
R Regular salary rate for drivers.
F Driver cost of using a vehicle in a shift, F=LR.
S Overtime salary rate for drivers.
A Cost per hour for using a taxi to serve each unmet demand.

(4) Decision variables:

xk
ij ¼ 1 if vehicle k travels from node i to node j, and 0

otherwise;

yk
t ¼ 1 if vehicle k is used in shift t, and 0 otherwise;

ui ¼ 1 if demand i is served by taxi, and 0 otherwise;

wk
i =the time at which node i is visited by vehicle k, wk

i Z0.

The problem can be formulated as the following mixed integer
program (MIP):

Minimize W
X

kAK

X

ði;jÞAE

tijx
k
ijþS

X

kAK

X

tAT\fTþ1g

ðwk
nþ tþ1�EtÞ

þF
X

kAK

X

tAT

yk
t þA

X

iAD

uiðt0iþti0Þ

subject to
X

kAK

X

ði;jÞAE

xk
ijþui ¼ 1; 8iAD ð1Þ

X

ðnþ t;iÞAE

xk
nþ t;i ¼ 1; 8tAT; kAK ð2Þ

X

ði;nþ tÞAE

xk
i;nþ t ¼ 1; 8tAf2; . . . ; jTjþ1g; kAK ð3Þ

X

ðj;iÞAE

xk
ji�

X

ði;jÞAE

xk
ij ¼ 0; 8iAV\fnþ1;nþjTjþ1g; kAK ð4Þ

wk
i þtijrwk

j þMð1�xk
ijÞ; 8iAV ; jAV ; kAK ð5Þ

eirwk
i r li; 8iAD; kAK ð6Þ

Et rwk
nþ tþ1rEtþL; 8kAK; tAT ð7Þ

yk
t ¼ 1�xk

nþ t;nþ tþ1; 8kAK; tAT ð8Þ

In the objective function, the four cost terms are travel, overtime,
regular driver usage, and taxi, respectively. Constraints (1) ensure
that each demand is served exactly once, either by internal
vehicles or by a taxi. Constraints (2) and (3) ensure that every
vehicle visits all the depot nodes n+t, tAf1; . . . ; jTjþ1g in the
planning horizon. Depot node n+t must be visited before n+t+1
because their time windows are non-overlapping. The depot
nodes divide demands visited by a vehicle into different shifts. All
demands visited between node n+t and n+t+1 are served in shift

t. If no demand is visited between them for a vehicle, then this
vehicle is not used and the route for shift t is empty. These
constraints also ensure that every route in a shift starts from the
origin depot and ends at the destination depot. Constraints (4)
ensure that for all nodes except n+1 and n+ |T|+1, the inflow
equals to the outflow. Constraints (5) force consistencies of time
variables, which are also subtour elimination constraints. M is an
upper bound on liþtij, 8iAV ; ði; jÞAE. Constraints (6) are time
window constraints for the demand nodes, and constraints (7)
are time windows constraints for the depot nodes. Constraints (8)
calculate whether vehicle k is used in shift t or not. If
xk

nþ t;nþ tþ1 ¼ 1, then no demand is served by vehicle k in shift t.
Therefore, the vehicle is not used and yk

t ¼ 0. Otherwise, at least
one customer is served by vehicle k, so yk

t ¼ 1.

3. Heuristic algorithms

In this section, we first review recent relevant research on
heuristics for vehicle routing problems. We then present the
building blocks of our heuristics, followed by two heuristic
algorithms, SI and SD, for solving our problem, and an improve-
ment phase.

In the solution algorithm, we use an insertion-based heuristic
to generate the initial solution and then use a tabu search
algorithm to improve it. Insertion heuristics are effective solution
methods for VRP. The recent works include Diana and Dessouky
[18], who present a parallel regret insertion heuristic to solve a
large-scale dial-a-ride problem with time windows. The compu-
tational results show the effectiveness of this approach in terms of
trading-off solution quality and computational times. Lu and
Dessouky [19] present an insertion-based construction heuristic
to solve the multi-vehicle pickup and delivery problem with time
windows. This heuristic considers not only the classical incre-
mental distance measure in the insertion evaluation criteria but
also the cost of reducing the time window slack due to the
insertion. Tabu search has also been applied to major variants of
VRP, e.g. VRP with soft time windows [20], VRP with split delivery
[21], and the pick-up and delivery problem [22]. It is shown that
tabu search generally yields very good results on a set of
benchmark problems and some larger instances [28].

3.1. The building blocks

3.1.1. The insertion routine

First we describe the Insertion Routine (Algorithm 1 in the
Appendix), which greedily inserts the customer with the cheapest
cost in the routes. There are four associated costs (C1–C4) in the
algorithm. Similar to Lu and Dessouky [19], we consider the cost
of reducing the time window slack due to the insertion, which
is denoted as C1. The costs C2, C3, and C4 are respectively
the overtime cost, the regular driver usage cost, and the cost of
unmet demands. The insertion algorithm tries to insert as many
customers as possible. The insertion cost of a new customer is the
total weighted increase of C1, C2, and C3, while C4 is calculated
after the algorithm is finished. In terms of the weights of these
costs, we assume C4 is the highest; that is, we try to serve as many
demands as possible with the internal vehicles. The weights of C1,
C2 and C3 are W, S, and F, respectively.

Whenever a new vehicle is used, a driver cost of F=LR is
incurred. Even if the vehicle leaves the depot after the shift start
time, the salary is always F because the driver is available at the
shift start time. If the working time is longer than L hours, there
will be an overtime cost. After the routes are created, we calculate
the cost of unmet demand and add it to the total cost. We assume
that each unmet demand needs a separate taxi, so the cost for an
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unmet demand i is Aðt0iþti0Þ. The total unmet demand cost is the
sum of those costs.

The insertion algorithm is a parallel insertion, in which all
routes are constructed simultaneously with initial seeds used to
begin the route. If a pair of nodes i and j cannot be served by the
same vehicle, i.e., eiþtij4 lj and ejþtji4 li, then the two nodes are
called an incompatible pair. For each shift, we construct a
compatibility graph by taking the nodes to be served in the shift,
and creating an edge between any incompatible pair. Then we
solve a maximum clique problem approximately using a greedy
algorithm on the graph [19]. The seeds are the nodes that form the
max clique. Let Zt denote the set of seeds in shift t. Since each pair
in Zt is incompatible, every node must use a different vehicle. Thus
the minimum number of vehicles used to serve the nodes in the
shift is |Zt| if all nodes are served by internal vehicles. The role
of the seeds is two fold. First, it helps to create balanced routes.
Because of the high cost of a new route, without seeds, the
insertion algorithm tends to fulfill a route and then initiates
another when the first is full. Thus the last route usually has few
customers. Second, using seeds to guide the construction of the
routes avoids the late insertion of incompatible demand nodes,
which can lead to higher costs or infeasibilities.

3.1.2. Intra-shift tabu search algorithm

We use an intra-shift tabu search algorithm (Algorithm 2 in the
Appendix) to improve the routes for each shift. This implementation
of the tabu search considers the neighborhoods obtained from the
standard 2-opt exchange move [23] and the l-interchange move
[24]. The algorithm evaluates solutions based on the objective
function, i.e. the sum of the travel cost, overtime cost, cost of unmet
demands and driver cost. At each iteration the tabu search generates
amax l-interchange neighbors and bmax 2-opt neighbors of the
current solution. The tabu search at each iteration moves to the
best neighbor, even if it is worse than the current best solution.
The prevention of cycling is achieved by forbidding some moves
for a given number of iterations y. In our implementation, the
number of tabu iterations is randomly generated in ðymin; ymaxÞ.
For a l-interchange move, feasible moves of a solution consider
that up to 2 nodes are exchanged between two routes of the
solution. The tabu status is overridden if the new solution is better
than the best solution so far and the algorithm terminates if there
is no improvement in Nmax iterations.

3.1.3. Inter-shift tabu search algorithm

For algorithm SD, apart from the intra-shift tabu search
algorithm (Algorithm 2), an inter-shift tabu search algorithm
(Algorithm 3 in the Appendix) is implemented. There are two
types of moves that can possibly reduce the total cost. The first
type is moving a node from the previous shift to a non-empty
route in the current shift. Because of the high fixed route cost, the
insertion algorithm (Algorithm 1) tries to insert as many as
possible demands in the existing routes. As a result, some
demands may be served with unnecessary high overtime cost.

In such a move, if the decrease in overtime is larger than the
increase in travel cost, then it is made. The second type of move is
rescheduling a node from its current shift to the previous shift.
The rationale is that increasing overtime might cause a larger
saving in the travel cost or new driver cost.

3.2. Heuristics

3.2.1. Shift independent (SI) algorithm

The simplest way to tackle the multi-shift VRP with overtime
is to treat each shift independently. Because of the limit in fleet
size, we need to consider the availability of vehicles. That is, we
can only start using a vehicle in the current shift after it returns to
the depot from the previous shift. Specifically, for vehicle k in shift
t, the earliest time it is available is maxðwk

nþ t ; Et�1Þ.
In the SI algorithm (Algorithm 4 in the Appendix), we avoid

using overtime as much as possible. If a demand can be served in
either the current shift or the previous shift, it is served in the
current shift to avoid overtime. To do this, we first classify all
demands D into different shifts Dt, tAT , as shown in Fig. 1. In
particular, for demand i that occurs near shift changes, if Btþt0ir li
and eiþt0irBtþL (i.e., it can be served in either shift t or shift
t�1), then we place the demand in Dt. Otherwise if Btþt0i4 li, then
it can only be served in shift t�1. So we place it in Dt�1. For
example, suppose a demand i has time window ½Bt ;Btþ2�. If t0ir2
and t0irL, then it can be served in shift t or shift t�1, and we place
it in Dt. On the other hand, if t0i42, then it has to be served in shift
t�1 using overtime, and we place it in Dt�1.

Each Dt is scheduled independently only considering the
return time of the vehicles of the previous shift. As mentioned
before, we have seeds for each shift. There are a lot of options to
match the seeds of the current shift with the routes of the
previous shift. One reasonable way is to match seeds with the
routes that have the earliest available times for the next shift. In
this way, the routes initiated by the seeds have more time
available to serve the unscheduled demands, leading to a higher
utilization level of the used vehicles. This is implemented by first
ranking the routes in the previous shift in increasing order of
wk

nþ t , and then inserting the |Zt| seeds in the first |Zt| routes.
Because we consider each shift independently, only the intra-shift
tabu search algorithm (Algorithm 2) is executed.

3.2.2. Shift dependent (SD) algorithm

In the SD algorithm (Algorithm 5 in the Appendix), as opposed
to the SI algorithm, a demand can be served in either the current
shift or the previous shift, as long as it is feasible. Both intra-shift
tabu search algorithm (Algorithm 2) and inter-shift tabu search
algorithm (Algorithm 3) are executed. The method to match seeds
is also to place them in the routes with the earliest available time.
It also classifies the demands into each shift, and then it schedules
the demands shift by shift sequentially. However, the classifica-
tion method is different. In SD, the classification differentiates
demands that can be served in both shifts and those that can only

D1

B1 E1 E2 E3 E4

D2 D3 D4

Fig. 1. The classified demand nodes in SI algorithm.
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be served in one shift. If two nodes cannot be served in the same
shift, they are called non-adjacent. To identify all non-adjacent
nodes, we classify all demand nodes into 2T�1 disjoint sets. There
are T sets called single shift (SS) demands, i.e. SSt contains nodes
that can only be served in shift t, tAT. There are T�1 sets called
inter-shift (IS) demands. That is, ISt contains nodes that can be
served either in shift t or shift t+1, tAf1; . . . ; jTj�1g. Starting from
shift 1, for node i, if E1þti04 li, then it can only be served in shift
1, and it is placed in SS1. If E1þti0r li and eiþti0rE1þL, then
it can be served either in shift 1 or 2, and it is placed in IS1.
If eiþti04E1þL and E2þti04 li, then it can only be served in shift
2, and it is put in SS2. In this way, we can classify all demand
nodes into SS or IS. Fig. 2 illustrates the classified demand sets
for T=4. We can see that Dt ¼ ISt�1 [ SSt , tAf2; . . . ; jTjg. For shift t,
SD first schedules demands in SSt, and then schedules demands
in ISt-1.

3.2.3. The post improvement (PI) algorithm

This post improvement (PI) algorithm can reduce overtime by
re-matching the routes in adjacent shifts without changing the
travel time and sequence of nodes in each shift. The following is a
simple example. Let rk

t denote the route of vehicle k in shift t.
Suppose for route rk

t�1, ek
t�1 ¼ Btþ1, and for rk

t , ek
t ¼ Btþ1þ1. In

addition, assume that wk
i�eiZ1 for all iArk

t . That is, all demands
of rk

t can be served 1 h earlier. For route rl
t�1, el

t�1 ¼ Bt , and for rl
t ,

el
t ¼ Btþ1�1. In addition, assume li�wl

iZ1 for all iArl
t . That is, all

demands of rl
t can be served 1 h later. Now we have an overtime of

2 h for the four routes. But if we swap the second part of the
routes of vehicles k and l (including all routes from t to |T|), we can
obtain an overtime of only 1 h for the four routes.

The PI is implemented by solving a series of minimum cost
network flow problems, in particular, assignment problems.
Because overtime cost in the current shift depends on the routes
of the previous shifts, the algorithm is implemented sequentially
from shift 1 to |T|�1 (Algorithm 6 in the Appendix). The sub-
problem for every two consecutive shifts is a bipartite assignment
problem, which is solved to optimality using the Hungarian
algorithm [25]. In the sub-problem of shifts t and t+1, the nodes
are the routes from 1 to t and the routes from t to |T| of vehicle k,
8kAK . The arc cost ckl is the overtime cost of matching the routes
from 1 to t of vehicle k with the routes from t+1 to |T| of vehicle l,
8k; lAK. The graph constructed is bipartite. We want to find the
matching that has the minimum total overtime cost. We need to
solve the sub-problem |T |�1 times. After SI and SD, PI is called to
reduce the overtime cost. Then, the final routes are output and the
associated costs in travel time, regular driver usage, overtime, and
unmet demand are calculated.

4. Lower bound

To estimate the performance of the SD algorithm relative to
the optimal solution, we present a method to obtain a lower
bound of the objective value. It is obtained by solving the LP

relaxation of the MIP model of Section 2 with several types of
cuts, which take into account the special structure of the problem.
According to Cordeau et al. [26], the LP relaxation of the VRPTW
model often provides very loose lower bounds. To show this, the
authors show a procedure to find near-optimal solutions in which
time constraints are inactive. We need to add some cuts to
increase the lower bound. In general the tighter the time window,
the tighter the lower bound.

First of all, we restrict the definition of variables to only
feasible ones. Recall that all demands can be classified into SS and
IS (Fig. 2). Although the classification is done only for SD, it exists
for the data set, independently of any algorithm. Variables xk

ij are
only defined for pairs (i, j) of adjacent nodes; otherwise there are
one or more depot nodes between them, thus xk

ij ¼ 0. In addition,
xk

ij are only defined for edges (i, j) for which it is feasible to visit j

after i, i.e. eiþtij�ljo0.

4.1. Minimum number of required routes (MNRR)

In this section, we have four propositions to bound the
minimum number of required routes. In each shift t, the
minimum number of routes to be used is the size of the max
clique in the compatibility graph induced by SSt if there is no
unmet demand. As before, the clique is obtained by solving a
maximum clique problem approximately using a greedy algorithm
[19]. Recall that Zt is the set of nodes forming the clique obtained
from SSt.

Proposition 1. The number of routes used for each shift satisfies the

following inequalities:
X

kAK

X

iAD

xk
nþ t;iZ jZtj�

X

iAZt

ui; 8tAT;

X

kAK

X

iAD

xk
i;nþ t Z jZtj�

X

iAZt

ui; 8tAf2 . . . jTjþ1g:

Proof. Since every pair of nodes in Zt is incompatible, at least |Zt|
vehicles have to be used in shift t if they are all served by the
internal vehicles. If any one of the demands is served by a taxi, we
need to decrease the size of the max clique by one. Therefore in
shift t at least jZtj�

P
iAHt

ui vehicles have to travel from the origin
depot node n+t to a demand node, and similarly at least
jZtj�

P
iAHt

ui vehicles have to return to the destination depot
node n+t+1 from a demand node. &

We extend the notion of incompatible pair to incompatible
triple. If three nodes cannot be served by one vehicle, then they
are called an incompatible triple. We just need to check whether all
six possible permutations of the three nodes are infeasible to
know whether they are incompatible or not. For example, for
three nodes i, j and p, if eiþtij4 lj or maxðeiþtij; ejÞþtjp4 lp, then
the permutation (i, j, p) is infeasible. Thus it takes OðjSStj

3Þ

computation time to identify all incompatible triples for shift t.

SS1

IS1 SS2
IS2 SS3

IS3 SS4

B1 E1 E2 E3 E4

Fig. 2. The classified demand nodes in SD algorithm.
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Proposition 2. Let ITt be the set of all incompatible triples in SSt , we

have
X

kAK

X

iAD

xk
nþ t;iZ2�

X

iAP

ui; 8tAT; PA ITt;

X

kAK

X

iAD

xk
i;nþ t Z2�

X

iAP

ui; 8tAf2 . . . jTjþ1g; PA ITt

Proof. . For an incompatible triple P in SSt, at least two vehicles
are needed to serve the three nodes in P if all three nodes are
served by internal vehicles. The route number is non-decreasing if
we serve more nodes by the two vehicles. Considering that some
nodes might be served by taxi, we have Proposition 2. &

Proposition 3. In the compatibility graph, suppose there exists four

different nodes (i, p, q, l) in SSt, such that node i is incident to nodes p,
q, and l, and (p, q, l) is an incompatible triple (Fig. 3). Let TEt be the set

of all such tetrads in SSt, we have
X

kAK

X

iAD

xk
nþ t;iZ3�

X

iAP

ui; 8tAT; PATEt;

X

kAK

X

iAD

xk
i;nþ t Z3�

X

iAP

ui; 8tAf2 . . . jTjþ1g; PATEt :

Proof. Node i needs one vehicle k1, and nodes p, q, and l, cannot
be served by k1 since they are incident to node i. Since (p, q, l) is an
incompatible triple, they must be served by at least two other
vehicles k2 and k3. Therefore, at least three vehicles are needed if
they are all served by internal vehicles. Considering the case of
using taxi, we have Proposition 3. &

Proposition 4. Suppose there exists five different nodes (i, j, p, q, l)
in SSt , such that i is incident to p and j, and j is incident to q, and (l, p,
j) and (l, i, q) are both incompatible triples (Fig. 4). Let PEt be the set

of all such pentads in SSt, we have
X

kAK

X

iAD

xk
nþ t;iZ3�

X

iAP

ui; 8tAT; PAPEt;

X

kAK

X

iAD

xk
i;nþ t Z3�

X

iAP

ui; 8tAf2 . . . jTjþ1g; PAPEt

Proof. First we assume that all nodes in SSt are served by internal
vehicles. Since nodes i and j are incident, at least two vehicles are
needed. Suppose i and j are served by vehicles k1 and k2,
respectively. Suppose two vehicles can serve all five nodes, then
p must be served by k2, q must be served by k1, and l must be
served by k1 or k2. However, since both (l, p, j) and (l, i, q) are
both incompatible triples, k cannot be served by either k1 or k2.
There is a contradiction. Thus there has to be a third vehicle k3 to
serve all of them. Considering the case of using taxi, we have
Proposition 4. &

A straightforward implementation to find all pentads that
satisfies Proposition 4 is to check every pentad in SSt . The
computation time is OðjSStj

4Þ for shift t. Similarly, the computation
time of Proposition 5 is OðjSStj

5Þ for shift t.

4.2. No incompatible nodes served by the same vehicle (NINSSV)

Proposition 5. (No Incompatible Pairs Served by the Same Vehicle).
If nodes i and j are an incompatible pair, then the following

inequalities are valid:
X

ði;pÞAE

xk
ipþ

X

ðj;pÞAE

xk
jpr1; kAK:

Proof. If nodes i and j are incompatible, then no vehicle k can
serve both of them in a feasible solution. That is,

P
ði;pÞAExk

ip

and
P
ðj;pÞAExk

jp cannot be both 1. Therefore
P
ði;pÞAExk

ip

þ
P
ðj;pÞAExk

jpr1. &

4.3. No two-node cycles (NTC)

Proposition 6. (No Two-node Cycles): The following inequalities are

valid:

xk
ijþxk

jir1; 8ði; jÞAE; kAK:

Proof. Since there are no two-node cycles in a feasible solution,
for any two nodes i and j, at most one of xk

ij and xk
ji can be 1. Thus

xk
ijþxk

jir1. &

4.4. Minimum overtime required (MOR)

Proposition 7. (Minimum Overtime Required). The following

inequality is valid:
X

kAK

wk
nþ tþ1ZLKðt�1Þþðeiþti0�EtÞð1�uiÞ; 8tAf1 . . . Tg; iASSt

Proof. For node i in SSt, 8tAf2 . . . Tþ1g, the minimum overtime of
the node is maxðeiþti0�Et ;0Þð1�uiÞ. That is, if ui ¼ 0, the earliest
time the vehicle serving node i returns to the depot is eiþti0, with
a minimum overtime of maxðeiþti0�Et ;0Þ. If ui ¼ 1, then there is

i

l

p q

Fig. 3. The node pattern for Proposition 3.

i

p q

j

l

Fig. 4. The node pattern for Proposition 4.
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no overtime associated with this node. For each node i in SSt, since
the earliest start time of depot node n+t is Bt ¼ Lðt�1Þ, we have
X

kAK

wk
nþ tþ1ZLKðt�1Þþmaxðeiþti0�Et ;0Þð1�uiÞ

ZLKðt�1Þþðeiþti0�EtÞð1�uiÞ: &

Please note that to get a lower bound, these valid inequalities
are all included from the beginning of the formulation. On the
other hand, for each proposition defining the MNRR constraints, it
is convenient to include only one constraint. The other one is
redundant because if vehicle k in shift t is used, it must go from
the origin depot node to a demand node and from a demand node
to the destination node, i.e.

P
iADxk

nþ t;i ¼
P

iADxk
i;nþ tþ1 ¼ 1. If

vehicle k is not used, then
P

iADxk
nþ t;i ¼

P
iADxk

i;nþ tþ1 ¼ 0. Thus,P
kAK

P
iADxk

nþ t;i ¼
P

kAK

P
iADxk

i;nþ tþ1.

5. Experimental results

We randomly generate customers lying on a 2-dimensional
Euclidean plane (a 200 minute*200 minute square) and then
construct the travel time matrix. Problems generated with this
procedure will have a symmetric travel time matrix, which obeys
the triangular inequality. The depot is located at the center of the
square, (100, 100).

We consider a time horizon of a week (five working days), and
each shift has 8 h. There are a total of 15 shifts. Note that we
evaluate the results in a steady state environment by solving a
larger instance and removing several ‘‘warm-up’’ shifts and
termination shifts. In the steady state, the customers who occur
early in the current shift may be served by the vehicles of the
previous shift, and the customers who occur late in the shift may
be served by the next shift. The first shift and the last shift do
not meet both requirements. It may take several shifts to enter
or leave the steady state. Thus, we generate and solve an instance
of 21 shifts, but only evaluate the middle 15 shifts (shifts 4–18).
The earliest start time (ei) is generated randomly in the interval
(0, 120), and the latest start time (li) is ei+2 since we assume that
the base time window length is 2 h. We also consider two problem
classes where time window length is 4 h.

We consider four problem classes: uniform demands (TW=2 h),
clustered uniform demands (TW=2 h), clustered uniform demands
(TW=4 h), and clustered non-uniform demands (TW=4 h). The
problem classes are named according to the spatial (or geographi-
cal) distribution of customers and their arrival rate. Thus, ‘‘uniform
demands’’ means uniform spatial distribution and uniform arrival
rate;‘‘clustered uniform demands’’ means clustered spatial dis-
tribution and uniform arrival rate; ‘‘clustered non-uniform de-
mands’’ means clustered spatial distribution and non uniform
arrival rate. For each problem class, we consider three uniform
demand rates per shift: Q=30, 60 and 120. For each case, the
number of vehicles is chosen such that it is just enough to serve all
the demands or almost all the demands for the SI algorithm. We
generate 10 instances in the same manner and report the average
results over the 10 instances. Note that the number of vehicles does
not increase linearly with the demand rate because of the
aggregate effect, i.e., each vehicle can serve more customers when
the demand rate is high.

5.1. Parameter setting and tuning

The values of the cost parameters are set to real world costs. W

is obtained by considering the fuel cost and fuel mileage of a
standard shuttle vehicle. R is based on $15/hour. Overtime salary

rate is 1.5 times the regular salary rate. Taxi cost rate is based on a
typical fare in Los Angeles County.

We do some experiments to tune the parameters for tabu
search for the case of 30 demands/shift for uniform demands.
Similar results are observed for other cases, and they are not
reported for space consideration. We first show sensitivity results
for Nmax, amax, and bmax in Table 1. In the table, the columns
‘‘Travel’’, ‘‘OT’’, ‘‘Unmet Demand’’ and ‘‘Route’’ are travel cost,
overtime cost, unmet demand cost, and route cost, respectively.
‘‘Total’’ is the total cost. ‘‘CPU Time’’ is the CPU time in seconds.
We note that as we increase the parameters, we observe a smaller
improvement in solution quality, however solution time increases
steadily. The best solution is 14 802 when Nmax ¼ 2000,
amax ¼ 1000, bmax ¼ 1000, however the CPU time is more than
an hour. When Nmax ¼ 800, amax=400, bmax ¼ 400, the solution is
within 0.72% of the best solution, and the CPU time is only about
11 min. Hence, we use Nmax ¼ 800, amax ¼ 400, bmax ¼ 400 in later
experiments.

We show sensitivity results for ymin and ymax in Table 2. We
can see that the changes in CPU time are not significant and the
best solution is obtained when ymin ¼ 10 and ymax ¼ 20 so we use
these values in later experiments. When the tabu tenure is high,
the solution converges faster, but the solution quality
deteriorates.

The parameter values in the problem instances and algorithms
are summarized below.

(1) Problem size and time parameters

P: 5 days
|T |: 15
L: 8 h

L: 4 h

(2) Cost parameters

W: $17.5/h
R: $15/h
F: $15*8=$120
S: $22.5/h (1.5 times of the regular salary rate)
A: $40/h

Table 1

Parameter tuning for tabu search (ymin=10, ymax=20) based on 10 instances.

Nmax amax bmax Travel OT Unmet

demand

Route Total CPU time

100 50 50 6984 2092 16 6768 15861 18

200 100 100 6743 1880 16 6828 15467 53

400 200 200 6613 1768 33 6684 15098 186

800 400 400 6594 1615 16 6684 14909 675
1000 500 500 6565 1569 33 6684 14851 1027

2000 1000 1000 6555 1518 33 6696 14802 3882

3000 1500 1500 6573 1525 33 6696 14827 8627

4000 2000 2000 6554 1558 33 6708 14853 15525

Table 2

Sensitivity analysis of ymin and ymax (Nmax ¼ 800, amax ¼ 400, bmax ¼ 400) based on

10 instances.

ymin ymax Travel OT Unmet

demand

Route Total CPU time

5 10 6591 1545 33 6816 14985 741

10 20 6594 1615 16 6684 14909 675
20 40 6585 1687 33 6672 14977 656

40 80 6612 1771 33 6552 14968 630

80 160 6636 1784 29 6720 15169 616
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(3) The parameter values in the tabu search algorithms
(Algorithms 2 and 3)

Nmax: 800
amax: 400

bmax: 400

ymin: 10

ymax: 20

All the experiments are performed on a Dell Precision 670
computer with a 3.2 GHz Intel Xeon Processor and 2 GB RAM
running Red Hat Linux 9.0. The largest instance could be solved in
about an hour of CPU time. For a typical instance of the problem
class that takes the longest running time (the third case in Table 5
solved by SD), the total running time is 1 h, the time used for
constructing the routes is 16 min, and the time used for tabu
search is 44 min. There are 45 tabu searches because SD
algorithms calls 3 tabu searches in each iteration, so on an
average each tabu search takes 1 min.

5.2. Uniform demands

For uniform demands, we consider three cases: 30 demands/
shift to be served by 7 vehicles, 60 demands/shift by 10 vehicles,
and 120 demands/shift by 16 vehicles. The results are shown in
Table 3, where the values are the ratios of SD/SI for the four cost
measures, the total cost and the CPU time. In the table, ‘‘route
length’’ is the ratio of the average route length, where route length
is defined as the sum of shift length L and overtime of the route.
The ratio of route length r is an indicator of overtime because for a
problem instance, r¼ LþOTSD=LþOTSI , where OTSD is the average
overtime of the routes obtained by the SD algorithm, and OTSI is
the average overtime of the routes obtained by SI. Then we have
LþOTSD ¼ rðLþOTSI Þ, i.e., OTSD ¼ rOTSIþðr�1ÞL. It can be seen that
larger r corresponds to larger OTSD . In the column ‘‘CPU Time’’, we
give CPU times of both SD and SI, where the first value is for SD,
and the second is for SI.

From the results, we can see that SD outperforms SI in terms of
total cost with a 7% saving. SD uses a slightly more overtime to get
savings in travel cost, unmet demands, and cost of routes. The
percentage savings in unmet demand is most significant, meaning
that with the same number of vehicles, SD can serve more
customers than SI. The savings in route cost are also significant
(at least 18%). In terms of solution time, SI is faster than SD. But
the CPU time of SD is not a problem since we are planning for a
week.

5.3. Clustered uniform demands

We investigate the effect of geographical distribution of
customers on the performance of the algorithms by considering
clustered uniform demands. The method we use to generate
clustered demands is similar to Sungur et al. [27]. We randomly
generate customer locations in five different clusters with
identical radius of 25. We center each cluster at a random
location with a distance of 50 from the depot. The results are
shown in Table 4. We consider the same demand quantity as
before, but the fleet size is smaller because a vehicle can serve
more customers for clustered demand.

From Table 4 we can see that the savings in total cost are
larger than for uniform demands. The savings are about 10%.
The solutions in general use more overtime than in the case of
uniform demand, and the savings in route cost are larger. The
reason is that in SD when the demands are clustered, the vehicles
prefer to stay longer in a cluster to serve more customers of the
next shift, leading to more overtime cost and more reduction in
the number of routes. However, the savings in travel cost are
small. The reason is that in SD, there are savings from fewer trips
from and to the depot; on the other hand, since there are fewer
vehicles used, some demands are served with longer travel
distance. The two effects cancel out and the total travel distance is
almost the same. Note that the ratio of 1.00 of unmet demand
means that there are no unmet demands for both algorithms. The
solution time is longer than the previous problem class since
there are more feasible moves when the demands are clustered.

5.4. Clustered uniform demands with relaxed time windows

Now suppose that the demands are uniform and the time
windows are all 4 h. The results are shown in Table 5. The savings
are even larger in this case, at about 22%. Compared with the
smaller time windows, the routes use more overtime. The savings
in route cost and travel cost are larger. The reason is that in SD,
with longer time windows, the vehicles can serve more requests
on their return trips to the depot, incurring more overtime cost
but larger savings in travel distance and route cost. The solution
time is longer than previous problem classes since there are more
feasible moves with wider time windows.

5.5. Clustered non-uniform demands with relaxed time windows

In the real world, clustered non-uniform demands are more
likely to be observed. A new set of experiments is done for this
case. The time windows are all 4 h. Generally, we have the most

Table 3
The ratio of SD/SI for uniform demand.

Cases Travel Route length Unmet demand Route Total CPU time SD/SI

450 customers, 7 vehicles 0.96 1.10 0.33 0.82 0.93 675/470
900 customers, 10 vehicles 0.97 1.11 0.38 0.79 0.93 1184/1034
1800 customers, 16 vehicles 0.96 1.11 0.50 0.78 0.93 2122/2133

Table 4
The ratio of SD/SI for clustered uniform demand.

Cases Travel Route length Unmet demand Route Total CPU time SD/SI

450 customers, 5 vehicles 0.97 1.09 1.00 0.72 0.87 695/566
900 customers, 8 vehicles 0.98 1.11 1.00 0.70 0.88 1482/1199
1800 customers, 12 vehicles 0.99 1.15 1.00 0.69 0.90 2997/2229
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demand in shift 2, fewer in shift 3, and the least in shift 1 for each
day. Recall that shift 1 corresponds to the night shift, shift 2
corresponds to the day shift, and shift 3 corresponds to the
evening shift. In particular, we assume that the demand rate is
0.25Q in shift 1, Q in shift 2, and 0.5Q in shift 3. For example, if the
demand rate is 60/shift, we have 15, 60, and 30 demands in shifts
1, 2, and 3, respectively. In the three cases, the numbers of
vehicles are 4, 7, and 11, respectively. We use fewer vehicles since
the total demand quantity is less than that in the previous cases.
The results are shown in Table 6.

From Table 6, we can see that the savings are even larger with
non-uniform demands and relaxed time windows. The reason is
that in SD, demands in the shift with a lower demand rate tend to
be served by vehicles of the previous shift using overtime, thus
reducing substantially the number of routes in the low demand
shifts. Compared with case 1, in bigger instances (cases 2 and 3),
more overtime is used and larger savings in every other aspect are
obtained. The CPU time is shorter than the previous problem class
because there are fewer customers. Note that PI is applied at the
end of both SD and SI. However, the improvement is very small
(on average about 0.01%) due to the effectiveness of the tabu
search. It only takes 1–3 s, which are included in the CPU time of
SD and SI.

5.6. Effect of the algorithms on the number of vehicles

In this section we study the effect of the algorithms on the
minimum number of vehicles required to serve all customers. We
only show the results for uniform demands. Similar results are
obtained for other problem classes. Table 7 presents the minimum
|K| required to serve all customers for SD and SI. The data shown
are also the average results over 10 instances. We can see that SD
can save the number of used vehicles. The average saving is about
one vehicle. With a smaller fleet size, using SD results in less fixed
vehicle and maintenance cost.

5.7. Comparison of the lower bound with the solution of SD

The CPLEX solver can only solve the case of 360 customers and
12 shifts for uniform demands. This problem (with cuts) has
104 461 variables and 58 055 constraints after presolve. For bigger
instances, the memory usage is more than 2 G and exceeds the
memory of the computer. Using the CPLEX solver, the LP relaxation
can be solved in at most 30 min of CPU time. We compare the lower
bound with the solution of SD. The results are shown in Table 8.
With all the cuts, the ratio of the solution of SD to the lower bound
is between 1.09–1.82. Without adding the cuts described in Section

4, the ratio is 13.25–26.55, showing that the cuts are very effective.
From column 4, we can see that the most important cut is the
minimum number of required routes (MNRR) as described in
Section 4.1. From the results, we can see that the tighter the time
window, the tighter the lower bound. An important reason for the
increase in the ratio is the size of the max clique which is quite
small with wide time windows. Hence in the lower bound, the cut
minimum route number required becomes loose, leading to much
less route cost than in the algorithm.

To show the performance of SD over the optimal solution and
investigate whether a high ratio is due to a loose lower bound, we
solve a set of small instances to optimality and report the ratios of
the solution of SD over the optimal solution, and over the lower
bound. The results are shown in Table 9. Note that the problem
size is the largest size the CPLEX can solve.

From Table 7, we can see that the ratios of SD/OPT are close to
1, meaning that the solution of SD is near optimal. On the other
hand, the ratios of SD/LB are also high, meaning that high ratio is
due to a loose lower bound. There are some differences in SD/LB
between small instances and large instances because in small
instances the MNRR cuts are generally much tighter.

6. Conclusions and future research

This research provides some practical insights for multi-shift
VRP with overtime. We provide two algorithms: SI and SD. SI is
based on scheduling each shift independently, while SD allows
effective use of overtime. From the experimental results, we can
see that SD can provide much better solutions than SI in terms
of total cost. SD also uses fewer vehicles than SI to serve all
customers. If we have geographically clustered demands, the
savings are larger than that in the case of uniformly distributed
demands. The savings are even larger for wide time windows and
non-uniform demand rates. We obtain a lower bound to the
problem by solving the LP relaxation problem with cuts, which
shows that the solution of SD is within 1.09–1.82 times the
optimal solution on the test problems. We also show that the ratio
of the SD solution to LB is high when the lower bound is loose.

Table 5
The ratio of SD/SI for clustered demand (time window 4 h).

Cases Travel Route length Unmet demand Route Total CPU time SD/SI

450 customers, 5 vehicles 0.94 1.17 1.00 0.58 0.80 925/625
900 customers, 8 vehicles 0.93 1.13 1.00 0.55 0.76 1896/1195
1800 customers, 12 vehicles 0.96 1.16 1.00 0.53 0.77 3571/2185

Table 6
The ratio of SD/SI for non-uniform clustered demand (time window 4 h).

Cases Travel Route length Unmet demand Route Total CPU time SD/SI

260 customers, 4 vehicles 0.94 1.11 1.00 0.59 0.78 676/546
525 customers, 7 vehicles 0.91 1.13 1.00 0.54 0.73 1262/963
1050 customers, 11 vehicles 0.93 1.16 1.00 0.52 0.74 2621/1576

Table 7
Minimum |K| required to serve all customers for uniform demand.

Cases SI SD SD/SI

450 customers 8.0 7.1 0.89
900 customers 10.7 9.6 0.90
1800 customers 16.5 15.4 0.93
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The results can be generalized to other situations where inter-
shift dependencies should be considered. There are a lot of
interesting extensions for this problem. For example, in practice
some companies have mixed shift lengths, i.e., there are
shorter shifts such as 4 or 5 h shifts as well as 8 h shifts. We can
study the routing problem with all these shifts. It is also useful to
determine company policies, such as overtime limit or overtime
salary rate to enhance operational effectiveness or reduce total
cost.

Appendix

Algorithm 1. Insertion routine
Require: Set of unscheduled demands, travel time matrix, the

initial routes

Repeat
Calculate insertion cost of possible insertion positions for all the

demands

Pick the demand with the cheapest insertion cost

Insert the demand in the cheapest position

Update the routes

Remove the inserted demand from the demands

Until no insertion is feasible, mark the infeasible demands as

unmet demands

return the resulting routes and unmet demands

Algorithm 2. Intra-shift tabu search algorithm

Require: The routes of shift t

Repeat
Set the best solution as the current routes

Randomly choose two routes R1 and R2 of shift t

Generate amax neighbors from l-interchange operator

Generate bmax neighbors from 2-opt operator

Choose the neighbor with the least cost and make the move

if The cost of the current routes is less than the best solution

then
Set the best solution as the current routes

end if
Randomly generate tabu tenure y from a uniform distribution

Uðymin; ymaxÞ

if The move is l-interchange then
Make moving the exchanged nodes tabu for y iterations

else
Make removing the new arcs tabu for y iterations

end if
Until No improvement in Nmax iterations

return The best solution

Algorithm 3. Inter-shift tabu search algorithm

Require: The routes of shift t and t�1
Repeat

Set the best solution as the current routes

Randomly choose two routes R1 and R2 from the solution

For i=1 to amax do
Select a node from shift t�1 in R1, and evaluate the

cost of moving the node to a random position of the shift t

in R2
and
Select a node from shift t of R2, and evaluate the cost of

moving the node to a random position of shift t�1 in R1
End for
Choose the neighbor with the least cost and make the move

if The cost of the current routes is less than the best solution

then
Set the best solution as the current routes

end if
Randomly generate tabu tenure y from uniform distribution

Uðymin; ymaxÞ

Make moving the moved nodes tabu for y iterations

Table 8
Comparison of SD and LB.

Problem classes Problem size SD/LB (no cut) SD/LB (with cut MNRR) SD/LB (with all cuts)

TW 60 360 customers, 10 vehicles 20.76 1.95 1.26
TW 60, non-uniform 208 customers, 10 vehicles 19.38 1.54 1.09
TW 60, clustered, non-uniform 208 customers, 7 vehicles 26.55 1.42 1.11
TW 120 360 customers, 7 vehicles 17.36 2.24 1.48
TW 120, non-uniform 208 customers, 7 vehicles 16.54 1.86 1.29
TW 120, clustered, non-uniform 208 customers, 5 vehicles 22.56 1.69 1.33
TW 240 360 customers, 5 vehicles 14.27 2.69 1.82
TW 240, non-uniform 208 customers, 5 vehicles 13.25 2.38 1.66
TW 240, clustered, non-uniform 208 customers, 4 vehicles 18.10 2.08 1.64

Table 9
Comparison of SD, optimal solution, and LB for small instances.

Problem classes Problem size SD/OPT SD/LB

TW 60 24 customers, 4 vehicles, 3 shifts 1.00 1.12
TW 60, non-uniform 14 customers, 3 vehicles, 3 shifts 1.00 1.10
TW 60, clustered, non-uniform 14 customers, 3 vehicles, 3 shifts 1.00 1.10
TW 120 24 customers, 3 vehicles, 3 shifts 1.01 1.25
TW 120, non-uniform 14 customers, 3 vehicles, 3 shifts 1.02 1.22
TW 120, clustered, non-uniform 14 customers, 3 vehicles, 3 shifts 1.00 1.16
TW 240 16 customers, 2 vehicles, 2 shifts 1.01 1.55
TW 240, non-uniform 14 customers, 3 vehicles, 3 shifts 1.01 1.30
TW 240, clustered, non-uniform 14 customers, 3 vehicles, 3 shifts 1.02 1.18
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Until No improvement in Nmax iterations

return The best solution

Algorithm 4. SI
Require: The set of demands D, travel time matrix, T, K

Classify the demands D into Dt, tAT

Calculate the seeds of Dt, tAT

for shift t=1 to |T| do
Insert depot node n+t into route k as the origin node of

shift t, kAK

if tZ2 then

Rank the routes according to ek
t�1

end if
for i=1 to jStj do

Insert the ith seed of St in route i

end for
Remove seeds from Dt

Insert depot node n+t+1 into each route as the destination of

shift t

Call Insertion Routine (Algorithm 1) to insert Dt into routes of

shift t

Call Intra-shift tabu search algorithm (Algorithm 2) for
shift t

end for
Execute PI
return The routes, unmet demands, and the total cost

Algorithm 5. SD
Require: The set of demands D, travel time matrix, T, K

Classify the demands D into SS and IS

Calculate the seeds of SSt , tAT

for shift t=1 to |T| do
Insert depot node n+t into route k as the origin node of shift t,

kAK

if (tZ2) then

Rank the routes according to ek
t�1

end if
for i=1 to |SSt| do

Insert the ith seed of SSt in routes i

end for
Remove seeds from SSt

Insert depot node n+t into each route as the destination node of

shift t

Call Algorithm 1 to insert demands of SSt into the routes of

shift t

if tZ2 then
Call Algorithm 1 to insert demands of ISt�1 into the routes of

shift t or t�1
end if
Call Intra-shift tabu search algorithm (Algorithm 2) for
shift t�1
Call Intra-shift tabu search algorithm (Algorithm 2) for shift t

Call Inter-shift tabu search algorithm (Algorithm 3) for
shift t�1 and t

end for
Execute PI

return The routes, unmet demands and the total cost

Algorithm 6. PI

Require: The solution of SI or SD

for t=1 to |T|�1 do
Calculate the cost matrix (|K|*|K| matrix) of matching routes 1

to t of vehicle k with routes t+1 to |T| of l, 8k; lAK

Solve an assignment problem to optimality

Re-match the routes according to the optimal solution

end for
Calculate the total cost

Return The final routes and the total cost
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