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Scaling Laws From Statistical
Data and Dimensional Analysis
Scaling laws provide a simple yet meaningful representation of the dominant factors of
complex engineering systems, and thus are well suited to guide engineering design.
Current methods to obtain useful models of complex engineering systems are typically ad
hoc, tedious, and time consuming. Here, we present an algorithm that obtains a scaling
law in the form of a power law from experimental data (including simulated experi-
ments). The proposed algorithm integrates dimensional analysis into the backward elimi-
nation procedure of multivariate linear regressions. In addition to the scaling laws, the
algorithm returns a set of dimensionless groups ranked by relevance. We apply the algo-
rithm to three examples, in each obtaining the scaling law that describes the system with
minimal user input. �DOI: 10.1115/1.1943434�
1 Introduction
In engineering design, we are constantly faced with the need to

describe the behavior of complex engineered systems for which
there is no closed-form solution or exhaustive analysis. This usu-
ally leads to a tedious, time consuming, and detailed study of the
engineering process in question, delaying the overall process of
design and limiting the total number of possibilities that can be
investigated. For example, the design of a welding procedure in-
volves so many parameters that it can seldom be predicted reli-
ably; therefore, extensive experimentation must take place in or-
der to determine an ideal process setup. A set of simple and
intuitive design laws based only on the most relevant parameters
would be of enormous help in this case. Scaling laws in the form
of power laws, which we will simply call scaling laws, are par-
ticularly well suited for this purpose.

Scaling laws are ubiquitous in engineering. In fact, they have
been used to explain the behavior of many physical, biological
�e.g., �1,2��, psychophysical �3�, geophysical �e.g., �4,5��, Internet
traffic �6�, and even economic systems �7�. A broad sample of
problems that can be described with such scaling laws is presented
in �8�. Segel �9� provides a good overview of simplification and
scaling. Some reasons for the wide applicability of power law
models in engineering are: �i� the combination of units has the
form of a power law, �ii� the expressions of many physical phe-
nomena have the form of power laws as noted above, and �iii�
many empirical regressions of engineering data in log-log plots
tend to give a straight line, which corresponds to a power law.

Scaling laws are of enormous utility during the early stages of
design, when the configuration of a system and the choice of
materials are still uncertain. In this case, they provide quick esti-
mations of the feasibility of a design, help determine optimal
sizes, and contribute to decisions about configuration and materi-
als. These laws are also useful for control systems and for
decision-making algorithms, predicting the behavior of a system
much faster than computationally intensive models such as finite
element analysis or computational fluid mechanics. The design
and interpretation of physical models of reduced size, such as
reduced-scale aircraft in wind tunnels, are based on scaling laws.
When experimental databases or numerical models exist, scaling
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laws can be used to generalize and extrapolate the results ob-
tained. For existing machines, scaling laws are useful for setup
and tuning operations.

Our work aims at facilitating the process of engineering design
by providing a computational tool that derives the best power law
from experimental data. We propose the algorithm SLAW �Scaling
LAWs�. This algorithm combines a linear regression model of the
experimental data with physical considerations of the process,
namely, that the units of the resulting model match the units of the
dependent variable. We look for the power law model that mini-
mizes the prediction error only among models that have the cor-
rect units. The output of the algorithm is a physically meaningful
and simple power law, representing the process and a set of di-
mensionless groups ordered by their relevance to the problem.
The user input in selecting the simple model, and the ability to
correct it further using the dimensionless groups, provide the
means to construct a model that achieves the desired balance be-
tween accuracy and simplicity. An early version of this algorithm
was presented in �10�. SLAW grew from that version by incorpo-
rating: a rounded model output, where all coefficients are fractions
typical in the equations in physics and engineering; user input to
select the best scaling law; and ranked dimensionless groups that
explain the residual error. In this work, we call “model” any scal-
ing law that captures the main behavioral trends of a process as a
function of the parameters of the problem; this should not be
confused with other ways of representing the problem, such as
finite element models.

The SLAW algorithm differs from classical dimensional analysis
in that it selects the scaling law with the smallest predictive error
out of all the dimensionally correct models. There are computa-
tional implementations of dimensional analysis, such as that de-
scribed by Kasprzak et al. �11�, which are able to construct dimen-
sionally correct models and check the completeness of the set of
variables. SLAW differs from these approaches in the systematic
search for an expression involving the smallest acceptable number
of variables.

SLAW also differs from other statistical simplifications, such as
the principal directions of the matrix of correlation, in that these
other approaches, besides not necessarily providing the correct
units, reduce the mathematical complexity of the problem but still
consider all physical parameters, regardless of their importance.
Previous works that combines linear regressions and dimensional
analysis, such as landmark work by Vignaux and Scott �12�, Vig-
naux �13�, Li and Lee �14�, and Dovi et al. �15�, all use dimen-
sionless groups determined a priori. In contrast, SLAW automati-

cally generates the ranked dimensionless groups.
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The automatic determination of formulas, such as scaling laws,
from data has been an active area of research in the artificial
intelligence community. Important examples of this research are
the algorithm BACON due to pioneering work by Bradshaw et al.
�16�, algorithms ABACUS �3,17� and COPER �17�, and recent work
by Washio and Motoda �3,18�. Important differences that the al-
gorithm proposed here has with both BACON and ABACUS are that
these latter algorithms produce only scaling laws with integer ex-
ponents and require that the data vary one variable at a time. The
algorithm COPER and the work by Washio and Motoda differ from
the current work in that they do not explicitly construct a scaling
law that is the simplest with respect to some criterion, and the
dimensionless groups obtained are not necessarily ranked by rel-
evance to the model.

In Sec. 2, we describe the assumptions made on the physical
process and the main ideas in the methodology. In Sec. 3, we
present the algorithm SLAW. We apply this methodology to three
different examples: a pendulum, ceramic-to-metal joining, and the
“punch test” �a standard test used to determine mechanical prop-
erties of materials�. We describe the examples and present the
results obtained with our algorithm in Sec. 4. In Sec. 5, we present
the conclusions of this work.

2 Methodology

2.1 Scope of Methodology. To illustrate this discussion, con-
sider the problem of joining a ceramic cylinder to a metallic cyl-
inder, as pictured in Fig. 1.

One of the quantities of interest in this problem is the volumet-
ric strain energy in the ceramic, which can be expressed as

u�X,Z� = Y�X�u*�X,Z� �1�

Here, u�X ,Z� is the volumetric strain energy at each point in the
ceramic and depends on the problem parameters X and other vari-
ables Z. In this example, problem parameters X can include the
radius of the cylinders r, the yield strength of the metal �Y, and
the elastic modulus of the materials Ec and Em, while other vari-
ables Z typically represent the space and time coordinates of a
point in the cylinders. The quantity Y is a characteristic value that
only depends on problem parameters and has the same units as u.
The function u* is a dimensionless function that shows the volu-
metric strain energy variations relative to the characteristic value.

Our objective in this paper is to obtain a simple yet meaningful
expression for Y from experimental data, as the characteristic
value captures important trends of the quantity of interest. For
example, in Sec. 4 we show that the characteristic value of the
volumetric strain energy in ceramic-to-metal joining as a function
of the parameters is Y =�Y

2r3 /Ec. To use a nomenclature that is
consistent with linear regression literature, we will also refer to
the characteristic value Y as the dependent variable and to the
parameters X as the independent variables.

Dimensional analysis states that the characteristic value Y can
be decomposed in one power law expression with the same units
of u and a function f of m dimensionless groups �1 , . . . ,�m,
which also have a power law expression as a function of the
parameters. If we assume that there are n parameters for the prob-
lem X1 , . . . ,Xn, this means that

Y = a0�
j=1

n

Xj
a0j f��1, . . . ,�m� �2�

with �i=ai� j=1
n Xj

aij. For simplicity, we will assume that the func-
tion f can be approximated by a power law. This is reasonable,
given that most of the behavior of the dependent variable is typi-
cally captured by the power law expression and f shows small,
smooth, and monotonic variations within a regime. Therefore, we

can write Eq. �2� as
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Y = a0�
j=1

n

Xj
a0j�

i=1

m �aj�
j=1

n

Xj
aij� �3�

=a�
j=1

n

Xj
�i=0

m aij �4�

with a=�i=0
m ai. Equation �4� is a valid model for the problem

under two additional assumptions on the system, which are stan-
dard assumptions in dimensional analysis: �i� We assume that at
least all parameters that determine the problem are considered.
This assumption is also necessary in the analysis of regressions.
Omitting a relevant parameter can result in ignoring a dominant
effect and, thus, missing the correct model. Considering more pa-
rameters than are strictly necessary is not a problem, since SLAW

can efficiently discard the less relevant parameters. �ii� We assume
that the physical system is studied under a single regime. This
means that the same physical factors �there is no need to know
exactly which� are dominant for all of the observations used to
build the input data set. This implies that f is of the order of

Fig. 1 Geometry of the ceramic and metal parts to be joined
magnitude of 1.
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An important observation, which is enforced explicitly in the
algorithm, is that the model given by Eq. �4� has the same units as
the characteristic value Y. This additional constraint, denoted the
units constraint, is expressed by

units of Y = �
j=1

n

�units of Xj��i=0
m aji �5�

For this approach to be well defined, it is necessary that some
combination of the parameters considered can yield the units of
the characteristic value, and thus it is possible to satisfy the units
constraint.

2.2 Constrained Linear Regression. For any application, the
model postulated is faced with uncertainties that arise, for ex-
ample, from working with experimental data or considering only
n independent variables and disregarding the possibly tiny effect
of other variables. By taking the logarithm of Eq. �4�, and consid-
ering the existing uncertainties in the model, we can express the
model as

log Y = �0 + �
j=1

n

� j log Xj + � �6�

where the coefficients are �0=log a and � j =�i=0
m aij, and � is an

error term that captures the model uncertainties. Additive errors in
logarithms of measurements is a common assumption in fitting
scaling laws, see �15,19�, and it is justified by Benford’s law
�20,21�, which states that variations of physical quantities are
evenly distributed in a logarithmic scale.

Considering p experimental observations of the physical pro-
cess, we obtain estimators of the coefficients of Eq. �6� using
standard linear regression machinery. We denote the p observa-
tions of the dependent variable Y by y1 , . . . ,yp, and the observa-
tions for the jth independent variable Xj by x1j , . . . ,xpj. We as-
sume independent experimental observations, which implies that
observed errors �1 , . . . ,�p are independent identically distributed
�IID� random variables, where �i=log yi−�0−� j=1

n � jlog xij. Using
matrix notation, we have

ỹ = 	log y1

]

log yp

, and X̃ = �1 log x11 ¯ log x1n

] ] � ]

1 log xp1 ¯ log xpn
�

The estimate for the coefficients in model �6� that minimizes the
residual sum of squares is the solution to the system of normal

equations X̃TX̃�= X̃ỹ, where the superscript T denotes the trans-
pose of a matrix. We denote this estimate by the n+1 dimensional

vector �̂= ��̂0 , . . . , �̂n�, and the estimate of the independent vari-

able becomes Ŷ =e�̂0� j=1
n Xj

�̂ j.

The estimate �̂, however, will generally not satisfy the units
constraint. Therefore, we have to select the coefficients that mini-
mize the residual sum of squares only among those that satisfy Eq.
�5�, which as we explain below is equivalent to a linear constraint
of the form R�=b. With this additional constraint, the estimate of
the coefficients in model �6� that minimizes the residual sum of
squares and satisfies the units constraint is the solution to the
problem

min��ỹ − X̃��T�ỹ − X̃��
�7�

s.t. R� = b

To represent the units constraint in linear form, assume that q
reference units �m, kg, s,…� are the building blocks for the units
of the dependent and all independent variables in the problem.
The units constraint can be expressed by R�=b, where b is a
q-dimensional vector such that bi is the exponent of reference unit

i in the units of the dependent variable Y, and matrix R is q by
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n+1 such that Rij is the exponent of reference unit i in the units of
variable Xj, for j=0,1 , . . . ,n. Note that we include a variable X0,
which accounts for the constant dimensionless term, thus Ri0=0
for all i. For example, this notation implies that Rā=b, for āT

= �a0 ,a01 , . . . ,a0n�.

2.3 Generation of Dimensionless Groups. The solution to
problem �7�, denoted with the vector �0= ��0

0 ,�1
0 , . . . ,�n

0�, esti-
mates the coefficients that construct the model in Eq. �4�. This
solution, however, can have all coefficients different from zero,
which leads to a model that, although satisfies the units constraint
and has minimal residual sum of squares, is not simple as it in-
cludes all independent variables and lacks physical interpretation.
We aim to separate this complicated model into a simpler power
law and dimensionless groups, as in Eq. �3�. For this, consider �̃
another n+1 dimensional vector that satisfies the units constraint
and is simpler, i.e., has few nonzero coefficients, and let �=�0

− �̃. Using this decomposition, we express the model with �0 in
the following form, in line with Eq. �3�:

Ŷ = e�0
0�

j=1

n

Xj
�j

0

= e�̃0�
j=1

n

Xj
�̃ j�e�0�

j=1

n

Xj
�j�

The first factor in the right side of this equation corresponds to a

simple power law as �̃ has few nonzero coefficients and, since
R�=0 by construction, the second corresponds to a dimensionless
group.

The proposed algorithm simplifies the model, and in the process
identifies the dimensionless groups by removing independent vari-
ables from the model one at a time. A variable Xj is removed from
the model by forcing the solution to satisfy � j =0, which is en-
forced by the linear constraint ej

T�=0, where ej is the jth canoni-
cal vector in n+1 dimensions. After k iterations of the algorithm,
exactly k independent variables, let us say Xi1

, . . . ,Xik
, have been

removed from the model. Therefore, feasible models now must
also satisfy ei1

T �=0, . . . ,eik
T�=0, which can be written in matrix

form as Mk�=0 for the k by n+1 matrix Mk= �ei1
, . . . ,eik

�T. For
each iteration k, let �k= ��0

k , . . . ,�n
k� be the solution to Eq. �7� that

satisfies, in addition, Mk�=0. To remove an additional variable Xj

with � j
k�0 from the model, we simply add the constraint � j =0 to

the problem. Therefore, the reduced model is given as the solution
to the optimization problem

zk
*�j� = min��ỹ − X̃��T�ỹ − X̃��

s.t. R� = b
�8�

Mk� = 0

� j = 0

Equation �8� minimizes a strictly convex function over linear con-
straints and therefore has a unique solution that can be computed
solving the first-order optimality conditions, which for this prob-
lem are a linear system of equation �22�.

From all variables with � j
k�0, we eliminate at iteration k+1

the variable ik+1, which makes zk
*�j� smallest. The resulting model,

with coefficients �k+1, best fits the given data in a least-squares
sense, satisfies the units constraint, and has k+1 coordinates equal
to zero. This last constraint is encoded in the matrix Mk+1

T

= �Mk
Teik+1

�. After eliminating k parameters from the model, we
obtain a simplified model �k and the dimensionless groups �i

=�i−1−�i for i=1, . . . ,k. These vectors satisfy �0=�i=1
k �i+�k,
which implies the following expression:
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Ŷ = e�0
k�

j=1

n

Xj
�j

k
�
i=1

n �e�0
i �

j=1

n

Xj
�j

i��
The process of sequentially eliminating variables is possible while
the linear system of constraints has a solution. We show below
that the dimensionless groups generated �k are linearly indepen-
dent; therefore, the number of iterations can be at most n+1
−rank�R�.

To see that �1 , . . . ,�K are linearly independent, assume without
loss of generality that coordinate k is eliminated to construct �k,
then by construction we have that � j

k=0 for all j�k and �k
k�0,

thus the matrix ��1 , . . . ,�K� is lower triangular with nonzero diag-
onal elements, which implies the linear independence. In addition
we know there are rank�R� linearly independent rows of R, and
thus the vector space orthogonal to the rows of R is of dimension
n+1−rank�R�. Since all �k are orthogonal to the rows of R and
linearly independent, there can be at most n+1−rank�R� of them.

The process of generating solutions �k, each with k variables
removed, can be interpreted as backward elimination for linear
regression, see �23�. Here, the backward elimination is applied to
a linearly constrained linear regression problem.

3 Algorithm SLAW

The algorithm SLAW �Scaling LAWs� uses experimental data,
information regarding the units of variables, and information
about the accuracy needed. It outputs a physically meaningful
simple model and a set of dimensionless groups that explain the
dependent variable in order of importance.

This algorithm can be broken down into four steps:

1. Find the sequence of models ��k� through the backward
elimination process that solves Eq. �8�.

2. Determine, with user input, which model of the sequence

��k� to select, say its �̂.
3. Round the coefficients in �̂, obtaining a physically meaning-

ful simple model �*.
4. Perform backward elimination again, to identify dimension-

less groups in what is not explained by �*.

Step 4 is needed to identify the correct dimensionless groups
because the rounding procedure in Step 3 creates a model �* that
is slightly different from the model derived in the original regres-
sions. This second application of backward elimination has a sig-
nificant difference from the first. While the goal of the first appli-
cation of backward elimination is to find the smallest meaningful
scaling law, we start the second set of iterations with a scaling law
already in place, �*. Although the change in scaling law is typi-
cally small, the dimensionless groups corresponding to the new
law are not necessarily the same, and we perform another back-
ward elimination to find them. The goal of this second backward
elimination is simply to find a scaling law for the error between
the input data and the rounded scaling law, characterized by �
=�0−�*. We now describe each step of the SLAW algorithm.

3.1 Model Reduction Algorithm. The following algorithm
identifies the dimensionless groups of the linear regression model
in order of significance to the dependent variable. The inputs are
the experimental data and units constraint data; the output are the
sequence of estimators ��k� and dimensionless groups ��k�.

—Algorithm MODEL REDUCTION �X̃ , ỹ ,R ,b�:
Step 1: Solve �7�, let �0 be the solution. k=0.
Step 2: Find the coordinate jk that minimizes zk

*�j� �problem
�8��. Let �k+1 be the solution to zk

*�jk�. Let �k+1=�k−�k+1.
Step 3: Let k=k+1. Repeat Step 2 while some variable can be

eliminated from �k.
k n−rank�R� k n−rank�R�
—Output: �� �k=0 and �� �k=1 .

Journal of Applied Mechanics
3.2 Selecting Model. By definition, �0 defines the model that
best explains the dependent variable out of the sequence generated
by the DIMENSION REDUCTION algorithm. This solution has the
smallest residual sum of squares �RSS� but is not a simple solu-
tion, as it uses all n variables and constant term. In contrast,
�n−rank�R� is the simplest solution that satisfies the units constraints
and at the same time has the largest RSS. User input is used to
select a model that balances simplicity with accuracy.

The inputs are the experimental data, the sequence of estimators
��k�, and a user-supplied tolerance TOL. The output is the estima-

tor �̂, the simplest estimator in the sequence with average relative
error �TOL.

—Algorithm Selection �X̃ , ỹ , ��k�k, TOL�
Step 1: Let �̂ be the model �k with less coefficients�0 that

satisfies

�k =�1

p
�ỹ − X̃�k�T�ỹ − X̃�k� 	 TOL

—Output: �̂.
The quantity �k used to determine the cutoff is the square root

of an average RSS of the linear models considered. We opted for
this criteria due to the engineering interpretation of this quantity,
outlined below. There are a number of classic statistical tests, such
as the F test, that are used in linear regressions. However, such
tests do not have the direct interpretation of �k, and do not apply
to the linearly constrained regressions we are considering; addi-
tionally, they require extra assumptions on the distribution of the
errors.

Note that if we let ŷk be such that log ŷk= X̃�k, and define

yk= ŷk−y, then we have

�k
2 =

1

p
�ỹ − X̃�k�T�ỹ − X̃�k� =

1

p�
i=1

p

�log yi − log ŷi
k�2

=
1

p�
i=1

p

log2�1 +

yi

k

yi
�

Since for small values of 
yi
k /yi we have that log�1+ �
yi

k /yi��
��
yi

k /yi�, an interpretation for the cutoff criteria of algorithm
selection is that the quantity �k

2 corresponds to the average
squared relative error

�k
2 =

1

p�
i=1

p

log2�1 +

yi

k

yi
� �

1

p�
i=1

p �
yi
k

yi
�2

We refer to �k as the average relative error �avg. RE�.

3.3 Rounding the Model. The input to function Round is an

estimator �̂, and its output is a related estimator �* that satisfies
the units constraints, has all coefficients rounded to a number with
decimals, either 0, 1

4 , 1
3 , 1

2 , 2
3 , or 3

4 , and minimizes the increase in
error. Note that since 0 is a round number, �* has all the zeros of

�̂. The choice of using quarters and thirds as the finest division
strikes a balance between independence from experimental error
and physical meaning. A large number of known laws for engi-
neering problems, probably the vast majority, involve exponents
consistent with this choice. For example, scaling laws for a
boundary layer involve whole numbers and halves in the expo-
nents, and if the boundary layer involves heat transfer, we obtain
exponents with thirds �24�. Additionally, rounding the exponents
reduces their variation with experimental error.

To obtain �*, the algorithm sequentially fixes the closest expo-
nent to its rounded version, and solves a linearly constrained lin-
ear regression similar to problem �8�. The problems solved at each

iteration include the units constraint and linear constraints that fix
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coordinates to their rounded values. This is iterated until all ex-
ponents are fixed; the resulting �* satisfies the units constraint, as
this is enforced at very iteration.

3.4 Overall SLAW Algorithm. The overall algorithm performs
the four steps outlined at the start of this section. For an input of

statistical data ỹ, X̃, and units constraint R and b, the algorithm
SLAW does

Step 1: Run Dimension Reduction �X̃ , ỹ ,R ,b�, and obtain the
sequence ��k�k, ��k�k.

Step 2: Run Selection �X̃ , ỹ , ��k� ,TOL�, and obtain �̂.

Step 3: Run Round ��̂�, obtaining �*.

Step 4: Run Dimension Reduction �X̃ , ỹ− X̃�* ,R ,0�, to obtain

��̃k�k and ��̃k�k.

—Output: �* and ��̃k�k.

4 Examples
In this section, we present the results of applying the algorithm

SLAW to three different physical experiments: a pendulum, the
bonding of ceramics to metals, and a “punch test” recently devel-
oped at Exponent, Inc. As we show below, in each case SLAW

“rediscovered,” with a minimum of human input, the scaling laws
that match previous analysis of the problem.

The input files for these three examples can be downloaded
from �25�. For each problem, there are two text input files, one
containing the experimental data and the other describing the units
matrix.

4.1 Period of a Pendulum. Figure 2 shows a schematic of a
simple pendulum and some of its elements. When the only rel-
evant force acting on the pendulum is the force of gravity, and for
small oscillations, the period of the pendulum is given by the
following formula:

T = 2��l/g �9�

where T is the period �the dependent variable in this problem�, l is
the length of the string, and g is the acceleration of gravity. In
what follows, we denote by T the observed period, and by Ttheory
the quantity in Eq. �9�. We now use the SLAW algorithm to dis-
cover this relationship, assuming that the period of the pendulum

Fig. 2 Representation of a simple pendulum and its elements

Table 3 Results of Step 1 of

Iter. Param. Constant m l

1 6 0.117 0.000 0.502
2 6 2.050 −0.021 0.506
3 5 1.998 −0.016 0.500
4 4 1.861 −0.006 0.517
5 3 1.872 0.000 0.500
6 2 0.000 0.000 0.500
652 / Vol. 72, SEPTEMBER 2005
is determined by the parameters in Table 1.
These parameters account not only for inertial forces and grav-

ity, but also for drag, rotational inertia of the bob, and initial
angle. If these last three effects are neglected, dimensional analy-
sis alone can solve Eq. �9�, with the exception of the constant,
which can be estimated by a single experiment. When these three
effects are considered, dimensional analysis alone does not pro-
vide a unique formula. In this work, we considered these effects,
which make the problem more complex, but more representative
of real situations.

4.1.1 Input for SLAW. The input for SLAW are the set of experi-
mental data and a matrix describing the units of the dependent and
independent variables. The set of experimental data consists of a
table listing the measured value of the period for different values
of the parameters. Table 2 below displays the matrix R, which
contains the units of the dependent variable and the parameters.
This matrix was constructed using the units listed in Table 1; each
element corresponds to the exponent of a unit �listed in the left
column� for a given parameter �listed in the top row�.

4.1.2 Output From SLAW. To illustrate the workings of SLAW,
we here illustrate the output of the different steps of the SLAW

algorithm. Table 3 displays the result of the iterations to obtain the
initial simplest, meaningful, and dimensionally correct scaling
law.

In this table, the first iteration corresponds to a power law with-
out the units constraint. This model corresponds to what is typi-
cally used in engineering to fit experimental data. It is the most
mathematically accurate of all possible power laws; however, it is
physically incorrect, as the estimates of the model do not have the
right units. The second iteration is a modification of the first
power law, chosen to provide the correct units with the minimum
increase in fitting error. These first two iterations use all param-
eters of the problem, regardless of their relevance. The third to
sixth iterations remove the least significant independent variables
one at a time; for example, the exponent for � in the third iteration

Table 1 Parameters involved in the pendulum example

Symbol Units Description

T s period �dependent variable�
m kg mass of the bob
l m length of the pendulum
� rad initial angle
d m characteristic dimension of the bob

 kg/m3 density of fluid surrounding the bob
g m/s2 acceleration of gravity

Table 2 Matrix of reference units R for the pendulum example

Units T m l � d 
 g

m 0 0 1 0 1 −3 1
kg 0 1 0 0 0 1 0
s 1 0 0 0 0 0 −2

W, for the pendulum example

� d 
 g avg. RE

0.023 −0.004 0.021 0.266 0.0197
0.025 0.057 0.021 −0.500 0.0197
0.000 0.049 0.016 −0.500 0.0197
0.000 0.000 0.006 −0.500 0.0200
0.000 0.000 0.000 −0.500 0.0260
0.000 0.000 0.000 −0.500 1.8582
SLA
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is set to zero after determining that the corresponding average
relative error in this case was smaller than that of setting to zero
the exponent of any other parameter. The sixth iteration is the
minimum expression that provides the correct units after remov-
ing parameters in this order. Since the average relative error �avg.
RE� jumps from 2.6% to 185.8% in the last iteration, we decide to
use Iteration 5 as the basis of the final scaling law. This corre-
sponds to the simplest model that provides an acceptable error.
The selection of this model constitutes Step 2 of SLAW and it is
automatically performed using a criteria that the average relative
error �avg. RE� has a tolerance of TOL=0.2.

The behavior of exhibiting dramatic increases in the fitting er-
ror of models as variables are removed is the norm, not the ex-
ception, for physical processes that can be described with scaling
laws. In this case, there is little error as the less relevant terms are
discarded, and the error jumps suddenly when one of the essential
terms of the power law is eliminated. This sudden jump in error
can often be used by SLAW to automatically identify a cutoff point
in the simplifications. The scaling law automatically obtained by
SLAW for this problem is

TSLAW1 = e1.872�l/g �10�

where TSLAW1 is the estimation of the period based in this scaling
law. The constant factor obtained is within a 3% error from the
exact coefficient 2�, and the functional dependence is the same as
predicted by theory in Eq. �9�.

Table 4 displays the iterations that determine the dimensionless
groups ranked by relevance. Each line of this table corresponds to
a dimensionless group that can be used to improve the predictions
of the scaling law.

The first iteration corresponds to fitting the error of the scaling
law �10� with a dimensionless group that considers all parameters.
The fourth iteration corresponds to the simplest dimensionless
group obtained after eliminating the less relevant parameters:
�1= �
d3 /m�0.016. The last iteration �the fifth in this case� always
corresponds to a constant numerical factor. In this case, this factor
is one �this row contains only zeros� because the scaling law ob-
tained in the first iteration already has a constant numerical factor.
Incorporating the most relevant dimensionless group yields the
following scaling law:

TSLAW2 = e1.997� l

g
�
d3

m
�0.016

�11�

which has a better predictive value for these experiments and
incorporates the effect of fluid drag. Fluid drag is relevant in this
case because we measured pendulums surrounded by air and wa-
ter, which differ by a factor of three orders of magnitude in their
density. In the set of relevant parameters, we did not include the
fluid viscosity. This choice is based on engineering insight that
viscous drag is negligible. A metric for the relative relevance of
viscosity is the Reynolds number, which in our experiments var-
ied between 102 and 104. These values correspond to a flow in
which viscous drag is unimportant.

Figure 3 illustrates the predictive capabilities of the scaling law
obtained with the SLAW algorithm. Figure 3 plots the observed
period on the vertical axis versus the known law Ttheory and the
scaling laws, TSLAW1 and TSLAW2, on the horizontal axis. We also

Table 4 Result of Step 3 of SL

Iter. Param. Constant m l

1 6 −0.001 0.000 0.002
2 5 0.178 −0.021 0.006
3 4 0.195 −0.021 0.000
4 3 0.125 −0.016 0.000
5 0 0.000 0.000 0.000
plot the identity for comparison purposes. We note that all three
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models predict the observed period of the pendulum very accu-
rately when the pendulum is surrounded by air. However, both
Ttheory and TSLAW1 are slightly off the observed values when the
bob was submerged in water. This effect is corrected by including
the most important dimensionless group that accounts for the ef-
fect of drag, and can be seen in the plot of TSLAW2.

Table 5 presents the correlation with the observed period and
the average residual sum of squares for Ttheory, TSLAW1, and
TSLAW2. The correlation provides an indication of how well the
different models capture the functional dependence; in engineer-
ing terms, it captures the precision of the models. The average
relative error captures not only the trends, but also how close the
predictions and the measured data are. In engineering terms, this
would be the accuracy of the models.

4.2 Strain Energy in Ceramic-to-Metal Joining. Figure 1
shows the geometry of the problem, which consists of two long
cylinders; one made of ceramic and the other of metal. These two
cylinders are joined at their circular bases at high temperature.
The temperature variation between the hot joining temperature
and the cooler room temperature causes the ceramic and the me-
tallic cylinder to decrease slightly in size. Typically, the metallic
cylinder will shrink more than the ceramic cylinder, causing very
large stresses on and around the interface of the joint. These
stresses weaken the joint; therefore, the calculation of these

for the on pendulum example

� d 
 g avg. RE

0.023 −0.004 0.021 −0.002 0.020
0.025 0.057 0.021 0.000 0.021
0.022 0.064 0.021 0.000 0.022
0.000 0.048 0.016 0.000 0.026
0.000 0.000 0.000 0.000 0.044

Fig. 3 Theoretical and SLAW-generated scaling laws for the
pendulum example

Table 5 Correlation and error of the scaling laws for the pen-
dulum example

Model Correlation with T avg. RE

Ttheory
0.992 0.056

TSLAW1
0.992 0.044

TSLAW2
0.999 0.025
AW,
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stresses is essential. The metric for these stresses is the “total
elastic strain energy” U �units=Pa·m3� accumulated in the ce-
ramic. The total strain energy is the integral of the volumetric
strain energy over the total volume of the ceramic cylinder.

Scaling factors exist for cases in which the metallic cylinder
behaves elastically �26�. Similar scaling factors for when the me-
tallic cylinder experiences nonlinear plasticity have been obtained
only recently, by manual analysis of computational experiments
�27�. In this paper, we will show how SLAW automatically obtains
the same scaling factor of �27�. Similar to what is done in �27�, we
consider that the parameters of Table 6 represent the total strain
energy in the ceramic. These parameters correspond to an elastic-
plastic metal and a linear elastic ceramic.

4.2.1 Input for SLAW. Table 7 lists the elastic strain energy,
which is the dependent variable that we wish to analyze, and the
problem parameters for nine numerical simulations of ceramic-to-
metal joints. In this problem, an engineering criterion was used to
discard the length of the cylinders as a relevant parameter. The
reason is that the cylinders considered are long enough, such that
the far end does not influence the joined faces.

Table 8 displays the matrix of units R for this example.

4.2.2 Output From SLAW. We now present the output obtained
from the SLAW algorithm for the above input data. The main out-
puts of SLAW are a simple scaling law, with rounded coefficients,
and dimensionless groups that identify the most relevant param-
eters to describe the fitting error of this scaling law. The following
scaling law was obtained after Step 1 of SLAW, using an avg. RE
criteria with a tolerance of TOL=0.2, and the rounding procedure
of Step 3.

USLAW1 =
�Y

2r3

Ec
�12�

This is the same scaling law that is obtained in �27� through ad
hoc analysis and physical considerations. Table 9 displays the sec-
ond set of iterations that determine the dimensionless groups and

Table 6 Parameters involved in the ceramic-to-metal bonding
example

Symbol Units Description

U m3 Pa total elastic strain energy in the ceramic �dependent
variable�

Ec
Pa elastic modulus of the ceramic

Em
Pa elastic modulus of the metal

�Y
Pa yield stress of metal

r m radius of cylinders
�T

differential thermal shrinkage

Table 7 Input database containing the resu
ceramic-to-metal bonding example

Ceramic Metal
U

10−2 Pa·m3
E

1011

Si3N4
Cu 0.423 3.0

Si3N4
Ni 1.52 3.0

Si3N4
Nb 2.80 3.0

Si3N4
Inco600 3.78 3.0

Si3N4
AISI 304 3.88 3.0

Si3N4
AISI 316 4.91 3.0

Al2O3
Ti 1.04 3.5

Al2O3
Inco600 3.00 3.5

Al2O3
AISI 304 3.16 3.5
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numerical constant ranked by relevance.
Incorporating this last dimensionless group, the constant factor,

in the scaling law, we obtain

USLAW2 = e−0.333�Y
2r3

Ec
�13�

In Table 10, we see that the average residual sum-of-square error
is greatly reduced by considering this constant factor. This table
also shows the correlation between the observed strain energy and
what is predicted by USLAW1 and USLAW2. Here, we additionally
consider the scaling law USLAW-lin, given by the simple model
selected by the avg. RE criteria, but prior to the rounding proce-
dure.

USLAW-lin =
�Y

2.045r3

Ec
1.045 �14�

The model USLAW-lin is the best simple linear regression model,
but because the coefficients are not rounded, the model lacks
physical interpretation. We notice that adding this physical inter-
pretation by rounding the coefficients somewhat deteriorates the
predictive value of our model; however, we still keep very high
correlation with the observed strain energy and practically all the
increased error can be recovered by incorporating the constant
factor.

The predictive significance of these scaling laws is also ob-
served in Fig. 4, which plots the observed strain energy versus
what is predicted for the different models: USLAW-lin, USLAW1, and
USLAW2. The figure shows that the experimental points fall closely
around a straight line of slope one. We notice that the best predic-
tion is given by model USLAW-lin, and that rounding the coefficients
consistently overestimates the strain energy. This effect is com-
pensated by incorporating the constant term in USLAW2.

4.3 Maximum Stress in the Punch Test. The punch test is an
ASTM standard test, developed to determine mechanical proper-
ties of materials, such as ultrahigh molecular weight polyethylene
used in surgical implants �28�. The test consists of using a spheri-
cal tip to push the center of a disk constrained at the edge. Figure
5 shows the geometry of the problem, where a sphere of radius r
is pushing up on the center of a disk of radius L and width t.

The goal in this example is to obtain a scaling law that repro-
duces the maximum stress in the disk �stress at point A in Fig. 5�

of nine numerical experiments †27‡ for the

Em

1011 Pa
�Y

108 Pa
r

10−3 m
�T

10−3

1.28 7.58 6.25 6.85
2.08 1.48 6.25 5.15
1.03 2.40 6.25 2.10
2.06 2.50 6.25 5.15
2.06 2.56 6.25 7.10
1.94 2.90 6.25 7.00
1.20 1.72 6.25 0.505
2.06 2.50 6.25 2.95
2.00 2.56 6.25 4.90

Table 8 Matrix of reference units R for the ceramic-to-metal
bonding example

Units U Ec Em �Y r �T

Pa 1 1 1 1 0 0
m 3 0 0 0 1 0
lts

c

Pa

4
4
4
4
4
4
8
8
8
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as a function of the displacement induced by the spherical tip.
This problem has been addressed in �29�, by an ad hoc analysis of
computational experiments. Here, we show how SLAW automati-
cally recreates the results obtaining the same scaling law. Similar
to the work in �29�, we consider a number of problem parameters
that describe the elastic regime of the problem; these problem

Table 9 Result of Step 3 SLAW for t

Iter. Param. Constant Ec E

1 5 0.138 −0.151 0.1
2 4 −1.051 0.050 0.1
3 3 −1.087 −0.000 0.2
4 2 0.642 −0.000 0.0
5 0 −0.333 −0.000 0.0

Table 10 Correlation and error of the scaling laws for the
ceramic-to-metal bonding example

Model Correlation with U avg. RE

USLAW−lin
0.9840 0.1694

USLAW1
0.9835 0.3704

USLAW2
0.9835 0.1626

Fig. 4 SLAW-generated scaling laws for the ceramic-to-metal
bonding example
Fig. 5 Geometry of the punch test

Journal of Applied Mechanics
parameters and the dependent variable are listed in Table 11.

4.3.1 Input for SLAW. This example considers the effect of
Poisson’s modulus v. In solid mechanics, this parameter typically
appears as a combination of v, 1−v, and 1+v; therefore, we as-
signed three columns corresponding to each possibility. Inputs for
SLAW are the table of experimental data and the units information
of the variables, which is displayed in Table 12 below.

4.3.2 Output From SLAW. We now present the output obtained
from the SLAW algorithm for the input data presented above. The
principal outputs from SLAW are the simple, physically meaning-
ful, scaling law and the most relevant dimensionless groups in
describing the fitting error of the rounded scaling law. By running
Step 1, using the avg. RE criteria with a tolerance of TOL=0.2,
and the rounding procedure of Step 3, we obtain the following
scaling law:

�SLAW1 =
Exmax

a
�15�

We note that Step 1 of the algorithm realized 13 total iterations,
and the last model with an avg. RE less than the tolerance of 0.2
is iteration 12. This scaling law is consistent with �29�. Again, the
SLAW algorithm found this law automatically, while in �29� it took
several hours of identifying trends manually. There is, however, a
significant difference between Eq. �15� and the result in �29�,
which is the absence of Poisson’s coefficient in the former, while
the latter indicates that 1−v should appear in an analytical expres-
sion. SLAW indicates that the error of neglecting v �or any of its
variations� in the error of the approximation is similar to the error
of neglecting other parameters that �29� also ignores. This does
not mean that v would not appear in an algebraic deduction; it
means that for the data set analyzed, neglecting the effect of v
does not introduce a significant error. For comparison purposes,
we will present the correlation and predictive value of the model
found in �29�, which we refer to as �BK.

We can reduce the error of �SLAW1 by using the dimensionless
groups and numerical constants obtained in Step 4 of SLAW. Table
13 displays a subset of the second group of iterations to determine
the dimensionless groups and numerical constant, ranked by

ceramic-to-metal bonding example

�Y r �T avg. RE

−0.224 −0.701 0.128 0.026
−0.221 −0.000 0.143 0.028
−0.221 0.000 0.131 0.030
−0.000 −0.000 0.174 0.082
−0.000 0.000 −0.000 0.163

Table 11 Parameters involved in the punch test example

Symbol Units Description

�max
Pa maximum stress at A �dependent variable�

L m radius of circular sample
t m thickness of circular sample
r m radius of spherical punch tip
a m radius of contact of top constraint
b m corner radius of top constraint
c m corner radius of bottom constraint
E Pa Elastic modulus of sample material
� Friction coefficient
xmax

m Maximum displacement of punch tip

v Poisson’s modulus
1−v 1−Poisson’s modulus
1+v 1+Poisson’s modulus
he

m

92
71
21
00
00
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relevance.
The constant numerical factor compensates for the error intro-

duced in the rounding of the exponents. Including this constant
factor, we obtain the following scaling law:

�SLAW2 = e−0.138Exmax

a
�16�

In Table 14, we show the correlation to maximum stress and av-
erage residual sum-of-square error of �BK, �SLAW1, and �SLAW2.
We note that the average residual sum-of-square error is greatly
reduced by adding the constant factor to �SLAW1. Although this
table also shows that the scaling laws obtained from SLAW are
slightly less correlated than �BK to the observed maximum stress,
they are comparable and were obtained through an automatic
methodology. In fact, �SLAW2 is slightly less correlated to �max
than �BK, but has smaller average residual sum of squares.

The predictive significance of these scaling laws is also ob-
served in Fig. 6, which plots the observed maximum stress versus
what is predicted for the different models: �BK, �SLAW1, and
�SLAW2. The figure shows that the experimental points fall closely
around a straight line of slope one; with model �BK overestimat-
ing the maximum stress, and model �SLAW1 underestimating the
maximum stress. Here, again, the model that incorporates the
most significant dimensionless group �in this case, a constant fac-
tor� is seen as more representative of the observed �max, which is
quantified with a smaller average residual sum of squares.

5 Conclusions
In this paper, we propose a new algorithm, named SLAW, to

obtain scaling laws for complex systems from experimental data.
The algorithm SLAW combines the ideas of dimensional analysis
with statistical linear regression to obtain a representative model
of the complex system. The algorithm automatically generates

Table 12 Matrix of reference u

Units �max L t r a b

Pa 1 0 0 0 0 0
m 0 1 1 1 1 1

Table 13 Summary of results of Ste

Iter. Param. Constant L t

1 12 1.19 0.40 −0.10 −
2 11 0.69 0.37 −0.10 −
3 10 0.72 0.37 −0.10 −
4 9 0.69 0.38 −0.10 −
5 8 0.72 0.38 −0.11 −
6 7 0.78 0.38 −0.11 −
7 6 −0.66 0.37 −0.12 −
8 5 −0.49 0.35 −0.11 −
9 4 0.01 0.22 −0.12 −

10 3 0.10 0.15 −0.15 −
11 1 0.35 −0.00 0.00 −
12 0 −0.14 0.00 0.00

Table 14 Correlation and error of the scaling laws for the
punch test example

Model Correlation with �max avg. RE

�BK
0.9592 0.1527

�SLAW1
0.9573 0.2507

�SLAW2
0.9573 0.1326
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models of the system that not only achieve a high correlation with
the observed experimental data, but are at the same time simple
and physically meaningful. From linear regression, SLAW uses the
concept of backward elimination to simplify the models consid-
ered, and to obtain a rank of the importance of problem param-
eters. Dimensional analysis is used to obtain a model that satisfies
the units constraints and that considers only simple exponents.
The proposed SLAW algorithm is able to:

1. find the simple scaling law that rules many real-life engi-
neering problems.

2. provides a ranking of the significance of the parameters in
the problem.

These two features of SLAW make it a useful tool for engineer-
ing design, where simple and approximate laws can be used by
engineers to narrow down on a configuration during the concep-
tual stage of design. Even though the SLAW algorithm is based on
the standard tools of dimensional analysis and linear regressions,
it outperforms both of these techniques in identifying useful mod-

R for the punch test example

c E � xmax v 1−v 1+v

0 1 0 0 0 0 0
1 0 0 1 0 0 0

of SLAW for the punch test example

� xmax v 1+v avg. RE

−0.10 −0.17 0.72 −0.72 0.030
−0.08 −0.16 0.96 −2.57 0.031
−0.08 −0.16 0.97 −2.67 0.031
−0.08 −0.16 0.96 −2.62 0.032
−0.07 −0.15 0.96 −2.63 0.032
−0.07 −0.16 0.98 −2.73 0.032
−0.08 −0.15 0.37 0.00 0.033

0.00 −0.14 0.36 0.00 0.038
−0.00 −0.00 0.39 −0.00 0.044
−0.00 −0.00 0.43 −0.00 0.049
−0.00 −0.00 0.39 −0.00 0.061
−0.00 0.00 0.00 −0.00 0.092
nits
p 4

r

0.14
0.12
0.11
0.11
0.11
0.11
0.10
0.10
0.10
0.00
0.00
0.00
Fig. 6 SLAW-generated scaling laws for the punch test example
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els for complex systems. The reason for this is that, more often
than not, complex engineering problems can be explained using
only a few of the physical parameters, and SLAW is able to identify
these important parameters.

The SLAW algorithm makes two central assumptions on the
physical system: �i� that a single physical regime is being modeled
and �ii� that at least all the relevant parameters of the system have
been included. The first assumption is necessary to obtain the
simplest possible model. Since different regimes are characterized
by different scaling laws, a data set that includes more than one
regime would necessarily consider more parameters; this in-
creases the complexity of the expression without adding to the
physical understanding of the problem. The second assumption is
standard for both dimensional analysis and linear regression mod-
els for physical systems. Clearly, it is not possible to explain a
system if a key parameter is omitted.

We apply the SLAW algorithm to three very different examples,
and note that SLAW automatically obtains the correct scaling law
in each one. The resulting scaling laws are simple, correlate well
with the experimental data, and are obtained using minimal user
expertise. The only alternative method to obtain scaling laws in
the last two examples involve time-consuming expertise-intensive
analysis of the data.

Future work in this algorithm will involve, for example, inves-
tigating efficient alternative methods of selecting simple models.
Currently, the algorithm eliminates one parameter at a time
through backward elimination, and therefore does not consider all
possible combinations of parameters. Therefore, the algorithm
can, in theory, miss the most adequate model; to evaluate the
impact of this on engineering practice, it is important to investi-
gate other methods of generating simple models such as forward
selection or even an exhaustive analysis of all combinations with
correct units for small problems. An implementation of forward
selection �albeit for predetermined dimensionless groups� was de-
veloped by Li and Lee �14�.

Another potential improvement is a refined analysis of the di-
mensionless groups obtained. Currently, the less relevant dimen-
sionless groups consider a larger number of parameters, which are
also considered by the most relevant dimensionless groups. The
determination of simpler dimensionless groups, minimizing the
overlap of the parameters considered, would enhance their intui-
tive meaning.

Finally, the capability of SLAW of grouping a large amount of
data under a single, simple law could be potentially used for clus-
tering algorithms, separating experimental data into fewer and
well-defined groups characterized by their different simple scaling
laws. Further work will be necessary to explore the application of
SLAW to data sets that cover more than one regime, perhaps draw-
ing inspiration from previous multiple-regime work by Li and Lee
�14� and the artificial intelligence algorithm ABACUS �17�.
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