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We study a family of stylized assortment planning problems, where arriving customers make purchase

decisions among offered products based on maximizing their utility. Given limited display capacity and no a

priori information on consumers’ utility, the retailer must select which subset of products to offer. By offering

different assortments and observing the resulting purchase behavior, the retailer learns about consumer

preferences, but this experimentation should be balanced with the goal of maximizing revenues. We develop

a family of dynamic policies that judiciously balance the aforementioned tradeoff between exploration and

exploitation, and prove that their performance cannot be improved upon in a precise mathematical sense.

One salient feature of these policies is that they “quickly” recognize, and hence limit experimentation on,

strictly suboptimal products.
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1. Introduction

Motivation and main objectives. Product assortment selection is among the most critical

decisions facing retailers. Inferring customer preferences and responding accordingly with updated

product offerings plays a central role in a growing number of industries, especially for companies

that are capable of revisiting product assortment decisions during the selling season, as demand

information becomes available. From an operations perspective, a retailer is often not capable of

simultaneously displaying every possible product to prospective customers due to limited shelf

space, stocking restrictions and other capacity related considerations. One of the central decisions

is therefore which products to include in the retailer’s product assortment. That is the essence

of the assortment planning problem; see Kok et al. (2008) for an overview. Our interest lies in
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dynamic instances of the problem, where assortment planning decisions can be revisited frequently,

and consumer preferences for products are not known a priori, and need to be learned over the

course of the selling horizon. These instances will be referred to as dynamic assortment planning

problems. Here are two motivating examples that arise in very different application domains.

Example 1: Fast fashion. In recent years “fast” fashion companies, such as Zara, Mango or World

co, have implemented highly flexible and responsive supply chains that allow them to make and

revisit most product design and assortment decisions during the selling season. Customers visiting

one of these retailers’ stores will only see a fraction of the potential products that the retailer has

to offer, and their purchase decisions will effectively depend on the specific assortment presented

at the store. The essence of fashion retail entails offering new products for which no demand

information is available, and hence the ability to revisit these decisions at a high frequency is key

to the “fast fashion” business model; each season there is a need to learn the current fashion trend

by exploring with different styles and colors, and to exploit such knowledge before the season is

over.

Example 2: Online advertising. This emerging area of business is the single most important source

of revenues for thousands of web sites. Giants such as Yahoo and Google, depend almost completely

on online advertisement to subsist. One of the most prevalent business models here builds on the

cost-per-click statistic: advertisers pay the web site (a “publisher”) only when a user clicks on their

advertisements (henceforth, ads). Upon each visit, users are presented with a finite set of ads, on

which they may or may not click depending on what is being presented. Roughly speaking, the

publisher’s objective is to learn ad click-through-rates (and their dependence on the set of ads

being displayed) and present the set of ads that maximizes revenue within the life span of the

contract with the advertiser.

The above motivating applications share common features: (i) a priori information on consumer

purchase/click behavior is scarce or non-existent; (ii) products/ads can be substituted one for the

other, but may differ in the profit they generate, and demand for individual product/ad is affected
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by the assortment decision, which is subject to display constraints; (iii) assortment decisions can

be done in a dynamic fashion.

The purpose of this paper is to study a stylized version of the dynamic assortment planning

problem that incorporates these salient features. Central to this study is the trade-off between

information collection (exploration), which leads to a clearer picture of demand, and revenue max-

imization (exploitation), that strives to make optimal assortment decisions at each point in time.

In this context, the longer a retailer spends learning consumer preferences, the less time remains

to exploit that knowledge and optimize profits. On the other hand, less time spent on studying

consumer behavior translates into more residual uncertainty, which could hamper the revenue

maximization objective.

To isolate the role assortment planning plays in balancing information collection and revenue

maximization, our stylized model ignores a variety of operational considerations, such as pricing

decisions, inventory replenishment, assortment sequencing and switching costs, availability of users’

profile information, etc; further discussion of these aspects can be found in Section 7. The main

salient feature that we build into our stylized model is limited display capacity, as such a constraint

is a defining feature of assortment planning problems (see Fisher and Vaidyanathan (2009) for a

discussion), and our work will elucidate the manner in which it impacts the complexity of the

dynamic assortment problem.

While our focus is on a revenue management objective via assortment decisions, we assume

that product prices are fixed throughout the selling season. Such an assumption is common in the

assortment planning literature and facilitates analysis. We note in passing that dynamic pricing has

been studied as a stand-alone mechanism in the context of choice-driven demand with limited prior

information (see, e.g., Rusmevichientong and Broder (2010)), but incorporating a pricing dimension

into our formulation would obscure insights regarding the role of assortment experimentation in

demand inference.

As stated above, our main focus is on learning consumer behavior via suitable assortment exper-

imentation, and doing this in a manner that guarantees revenue maximization over the selling
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horizon. For that purpose we consider a population of utility maximizing customers: each customer

assigns a (random) utility to each offered product, and purchases the product that maximizes

his/her utility. The retailer needs to devise an assortment policy to maximize revenues over the

relevant time horizon by properly adapting the assortment offered based on observed customer

purchase decisions and subject to capacity constraints that limit the size of the assortment.

Key insights and qualitative results. We consider assortment policies that can only use

observed purchase decisions to adjust assortment choices at each point in time (this will be defined

more formally later as a class of non-anticipating policies). Performance of such policies will be

measured in terms of the expected revenue loss relative to an oracle that knows the product util-

ity distributions in advance, i.e., the loss due to the absence of a priori knowledge of consumer

behavior. Our objective is to characterize the minimum loss attainable by any non-anticipating

assortment policy.

The main findings of this paper are summarized below.

(i) We establish fundamental bounds on the performance of any “good” policy (we formalize

this in Section 4). Specifically, we identify the magnitude of loss relative to the oracle performance

that any policy must incur, and characterize its dependence on: the length of the selling horizon;

the number of products; and the capacity constraint (see Theorem 1 for a precise statement).

(ii) We propose a family of adaptive policies that achieve the fundamental bound mentioned

above. These policies “quickly” identify the optimal assortment of products (the one that maximizes

the expected single sale profit) with high probability while successfully limiting the extent of

exploration. Our performance analysis, in Section 5.2, makes these terms rigorous; see Theorem 3.

(iii) We prove that not all products available to the retailer need to be extensively tested: under

mild assumptions, some of them can be easily and quickly identified as suboptimal. In particular,

a specific subset of said products can be detected in finite time (i.e., independent of the length

of the selling horizon) with high probability; see Theorems 1 and 3. We show that our proposed

policy successfully limits the extent at which such products are offered (see Corollary 1 for a precise

statement).
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(iv) We highlight salient features of the dynamic assortment problem that distinguish it from

similar problems of sequential decision making under model uncertainty, and we show how exploit-

ing these features helps to reduce the complexity of the assortment problem.

The above results establish that an oracle with advance knowledge of customer behavior gains

only a relatively modest additional revenues relative to policies that do not have such prior knowl-

edge. To ensure this modest gap the policies in question must adhere to a critical rate of assortment

experimentation. An interesting feature of these policies is that they can limit exploration on a

certain subset of products (in particular, these products need only be offered to a bounded number

of customers independent of the time horizon). This result differs markedly from most of the liter-

ature on sequential decision making problems under uncertainty; see further discussion in Section

2.

The remainder of the paper. The next section reviews related work. Section 3 formulates the

dynamic assortment problem. Section 4 provides a fundamental limit on the performance of any

assortment policy, and analyzes its implications for policy design. Section 5 proposes a dynamic

assortment algorithm that achieves this performance bound, and Subsection 5.3 customizes our

proposed algorithm for the most widely used customer choice model, namely the Logit. Finally,

Section 7 presents our concluding remarks. Proofs are relegated to Appendix A and to an online

companion. Appendix B contains further details pertaining to some estimation methods used in

the paper.

2. Literature Review

Static assortment planning. The literature here focuses on finding an optimal assortment that

is held unchanged throughout the entire selling season. Customer behavior is assumed to be known

a priori, but inventory decisions are considered; see Kok et al. (2008) for a review of the state-of-

the-art in static assortment optimization. van Ryzin and Mahajan (1999) formulate the assortment

planning problem using a Multinomial Logit model (hereafter, MNL) of consumer choice. Assuming

that customers do not look for a substitute if their choice is stocked out, they prove that the
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optimal assortment is always in the “popular assortment set” and establish structural properties

of the optimal assortment and ordering quantities. In the same setting, Gaur and Honhon (2006)

use the locational choice model and characterize properties of the optimal assortment. In a recent

paper Goyal et al. (2009) prove that the static assortment problem is NP-hard when customers look

for a substitute if their choice is stocked out, and propose a near-optimal heuristic for a particular

choice model; see Mahajan and van Ryzin (2001), Honhon et al. (2009) and Hopp and Xu (2008)

for formulations considering stock-out based substitution.

Our formulation assumes perfect inventory replenishment (thus eliminating stock-out based

substitution) while considering limited display capacity. Fisher and Vaidyanathan (2009) studies

assortment planning under display constraints and highlights how these arise in practice. While the

single-sale profit maximization problem remains NP-hard under the perfect replenishment assump-

tion, Rusmevichientong et al. (2010) presents a polynomial-time algorithm for the single-sale profit

maximization problem when consumer preferences are represented using particular choice models;

hence at least in certain instances the single-sale problem can be solved efficiently.

Dynamic assortment planning. This problem setting allows revisiting assortment decisions at

each point in time as more information is collected about initially unknown demand/consumer

preferences. Caro and Gallien (2007), to the best of our knowledge, were the first to study this type

of problem, motivated by an application in fast fashion. In their formulation, customer demand for a

product is independent of demand and availability of other products, the rate of demand is constant

throughout the selling season and perfect inventory replenishment is assumed. Taking a Bayesian

approach to demand learning, the problem is studied using a dynamic programming formulation:

Caro and Gallien (2007) derive bounds on the value function, and propose an index-based policy

that is shown to be near optimal when there is some prior information on demand. Closer to our

formulation is the work by Rusmevichientong et al. (2010). There, utility maximizing customers

make purchase decisions according to the MNL choice model (a special case of the more general

setting treated here), and an adaptive algorithm for joint parameter estimation and assortment
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optimization is developed, see further discussion below. A different formulation is advanced by

Honhon et al. (2011) who study a dynamic assortment problem using the locational choice model.

Related work in dynamic optimization with limited demand information. Uncertainty

at demand-model level has been considered previously in revenue management settings, in the

context of dynamic pricing. Araman and Caldentey (2009) and Farias and Van Roy (2010), for

example, present dynamic programming formulations with Bayesian updating of initially unknown

parameters; see also Lim and Shanthikumar (2007). Closer to the current paper is the work by

Besbes and Zeevi (2009) that considers the dynamic pricing formulation in Gallego and Van Ryzin

(1994) when the demand function is initially unknown and no prior information is available. In

a slightly simpler setting, Rusmevichientong and Broder (2010) analyze the case where demand

is given by a parametric choice model. Roughly speaking, the latter two papers are instances of

online stochastic convex optimization problem (either with or without path-wise constraints). As

such, the methodology used to study them differs from the discrete and combinatorial nature of

the assortment decision problem.

Connection to the multi-armed bandit literature. The multi-armed bandit problem is one

of the earliest instances of the aforementioned exploration vs. exploitation trade-off. Introduced

in Thompson (1933) and Robbins (1952), in its basic formulation a decision maker seeks to max-

imize cumulative reward by pulling arms (of a slot machine) sequentially over time (one at each

time) when limited prior information on reward distributions is available. The dynamic assortment

planning setup can be viewed as a multi-armed bandit problem via the following analogy: each

arm corresponds to a feasible assortment, hence pulling an arm is the same as offering the assort-

ment to a consumer. Reward distributions are determined by the purchase probabilities, which

are initially unknown, and product profit margins. Application of standard multi-armed bandit

algorithms would result in a regret (we define this concept in the next section) of order-
((
N
C

)
logT

)
,

where N is the total number of products available, C is the assortment capacity, and T is the

length of the planning horizon. However, such an approach fails to incorporate two features that

separates dynamic assortment planning from the multi-armed setting: (i) assortment rewards are
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not independent (a key assumption in the classical multi-armed setting); and (ii) assortments are

not a-priori identical since product profit margins are not necessarily equal (see the discussion

below).

To address (i) it is possible to take advantage of the underlying reward structure. This is essen-

tially the approach in Rusmevichientong et al. (2010) where the authors exploit the connection

between the solution to the single-sale profit maximization problem, and the underlying model

parameters to limit the number of arms (assortments) worthy of consideration. In particular, they

identify order-N arms among which the optimal one is found with high probability, and these arms

are fed to a standard multi-armed bandit algorithm. The proposed algorithm works in cycles, and

explores order-N 2 assortments on each of them. As a consequence, the overall procedure results

in a regret of order-(N logT )2. Alternatively, one can envision the dynamic assortment planning

problem as a multi-armed bandit problem with multiple simultaneous plays; each product con-

stitutes an arm by itself, and the decision maker can select multiple arms at each time. Indeed,

this is the approach in Caro and Gallien (2007) who use a dynamic programming formulation and

Bayesian learning approach to solve the exploration versus exploitation trade-off optimally (see

also Farias and Madan (2011) for a similar bandit-formulation with multiple simultaneous plays

under a more restricted class of policies). In this paper we show how one can restrict exploration

to at most order-N assortments, hence significantly reducing the combinatorial complexity (
(
N
C

)
)

which would characterize the problem if standard bandit approaches were used.

Regarding (ii), note that in the bandit setting arms are ex-ante identical, hence there is always

the possibility that a poorly explored arm is in fact optimal (in their seminal work, Lai and Robbins

(1985) showed that any “good” policy should explore each arm at least order-logT times). In the

assortment planning setting, arms (either assortment or products, depending on the arm analogy

being used) are not ex-ante identical, and revenue is capped by the products’ profit margins. In

Section 4, we show how this observation can be exploited to limit exploration on certain strictly

suboptimal products (a precise definition will be advanced in what follows). Moreover, the possi-

bility to test several products simultaneously has the potential to further reduce the complexity of
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the assortment planning problem. Our work builds on some of the ideas present in the multi-armed

bandit literature, most notably the lower bound technique developed by Lai and Robbins (1985),

but also exploits salient features of the assortment problem in constructing optimal algorithms and

highlighting key differences from traditional bandit results; this will become evident as we flesh

out our main results and return to discuss these connections in Section 7.

3. Problem Formulation

Model primitives and basic assumptions. We consider a price-taking retailer that has N

different products to sell. For each product i∈N := {1, . . . ,N}, let ri and ci denote the price and

the marginal cost of product i, respectively. As mentioned in Section 1, we assume both prices and

marginal costs are fixed and constant throughout the selling horizon. For i∈N , let wi := ri−ci > 0

denote the marginal profit resulting from selling one unit of the product, and let w := (w1, . . . ,wN)

denote the vector of profit margins. Due to display space constraints, the retailer can offer at most

C products simultaneously. We assume, without loss of generality, that C ≤N .

Let T to denote the total number of customers that arrive during the selling season, after which

sales are discontinued. (The value of T is in general not known to the retailer a priori.) We use t

to index customers according to their arrival times, so t= 1 corresponds to the first arrival, and

t= T to the last. We assume a perfect inventory replenishment policy, and that the retailer has the

flexibility to offer a different assortment to every customer without incurring any switching cost.

(While these assumptions do not typically hold in practice, they provide tractability and allow us

to extract structural insights.)

We adopt a random utility approach to model customer preferences over products: customer t

assigns a utility U t
i to product i, for i∈N ∪{0}, with

U t
i := µi + ζti ,

where µi ∈R denotes the mean utility assigned to product i, ζ1i , . . . , ζ
T
i are independent and iden-

tically distributed random variables drawn from a distribution F , and product 0 represents a

no-purchase alternative. (See Section 7 for a discussion of an alternative utility specification.)
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Let µ := (µ1, . . . , µN) denote the vector of mean utilities. We assume all customers assign µ0

to a no-purchase alternative; when offered an assortment, customers select the product with the

highest utility if that utility is greater than the one provided by the no-purchase alternative. For

convenience, and without loss of generality, we set µ0 := 0.

The single-sale profit maximization problem. Let S denote the set of possible assortments,

i.e., S := {S ⊆N : |S| ≤C}, where |S| denotes the cardinality of the set S ⊆N . For a given assort-

ment S ∈ S and a given vector of mean utilities µ, the probability pi(S,µ) that a customer chooses

product i∈ S is given by

pi(S,µ) =

∫ ∞
−∞

∏
j∈S∪{0}\{i}

F (x−µj)dF (x−µi),

and pi(S,µ) = 0 for i /∈ S. The expected single-sale profit r(S,µ) associated with an assortment S

and mean utility vector µ is given by

r(S,µ) =
∑
i∈S

wipi(S,µ).

We let S∗(µ) denote the assortment that maximizes the single-sale profit. That is

S∗(µ)∈ arg max
S∈S

r(S,µ). (1)

In what follows we will assume that the solution to the single-sale problem is unique (this assump-

tion greatly simplifies our exposition, in particular our performance bounds. Such bounds can be

generalized to the case of multiple solutions, and we briefly indicate how one might do so in the

proof of Theorem 1 in Appendix A). We assume that the retailer can compute S∗(µ) for any vector

µ; solving problem (1) efficiently is beyond the scope this paper.

Remark 1 (On solving a special case). The MNL is by far the most commonly used choice

model in the literature. Rusmevichientong et al. (2010) present an order-N 2 algorithm to solve

the single-sale problem when such a choice model is assumed, i.e., when F is assumed to be a

standard Gumbel distribution (with location parameter 0 and scale parameter 1) for all i∈N . The

algorithm, based on a more general solution concept developed by Megiddo (1979), can in fact be
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used to solve the single-sale problem efficiently for any attraction-based choice model (these are

choice models for which pi(S) = νi/(
∑

j∈S νj) for a vector ν ∈RN+ , and any S ⊆N . See, for example,

Anderson et al. (1992)).

The dynamic optimization problem. We assume that the retailer knows F , the distribution

that generates the idiosyncracies of customer utilities, but does not know the mean vector µ. The

retailer is able to observe purchase/no-purchase decisions made by each customer. S/he needs to

decide what assortment to offer to each customer, taking into account all information gathered

up to that point in time, in order to maximize expected cumulative profits. More formally, let

(St ∈ S : 1≤ t≤ T ) denote an assortment process, with St ∈ S for all t≤ T . Let

Zti := 1
{
i∈ St , U t

i >U
t
j , j ∈ St \ {i}∪ {0}

}
denote the purchase decision of customer t regarding product i ∈ St, where here, and in what

follows, 1{A} denotes the indicator function of a set A, i.e., Zti = 1 indicates that customer t decided

to purchase product i, and Zti = 0 otherwise. Also, let Zt0 := 1{U0 >Uj , j ∈ St} denote the overall

purchase decision of customer t, where Zt0 = 1 if customer t opted not to purchase any product, and

Zt0 = 0 otherwise. We denote by Zt := (Zt0,Z
t
1, . . . ,Z

t
N) the vector of purchase decisions of customer

t. Let Ft = σ((Su,Z
u),1 ≤ u ≤ t) t = 1, . . . , T , denote the filtration (history) associated with the

assortment process and purchase decisions up to (including) time t, with F0 = ∅. An admissible

assortment policy π is a mapping from past history to assortment decisions such that the associated

assortment process (St ∈ S : 1≤ t≤ T ) is non-anticipating (i.e., St is Ft−1-measurable, for all t).

We will restrict attention to the set of such policies and denote it by P. We will use Eπ and Pπ

to denote expectations and probabilities of random variables when the assortment policy π ∈P is

used.

The retailer’s objective is to choose a policy π ∈P to maximize the expected cumulative revenues

over the selling season

Jπ(T,µ) :=Eπ

(
T∑
t=1

∑
i∈N

wiZ
t
i

)
.
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If the mean utility vector µ is known at the start of the selling season, the retailer would offer

the assortment that maximizes the single-sale profit, S∗(µ), to every customer. The corresponding

expected cumulative revenues, denoted by J∗(T,µ), would be

J∗(T,µ) := Tr(S∗(µ), µ).

This quantity provides an upper bound on expected revenues generated by any admissible policy,

i.e., J∗(T,µ)≥ Jπ(T,µ) for all π ∈P. Define the regret associated with a policy π to be

Rπ(T,µ) := T − Jπ(T,µ)

r(S∗(µ), µ)
.

The regret of a policy π is a normalized measure of revenue loss due to the lack of a priori knowledge

of consumer behavior, and it can be roughly thought of as the number of customers to whom

non-optimal assortments are offered over {1, . . . , T}.

Maximizing expected cumulative revenues is equivalent to minimizing the regret over the selling

season, and to this end, the retailer must balance suboptimal demand exploration (which adds

directly to the regret) with exploitation of the gathered information. On the one hand, the retailer

has incentives to explore demand extensively in order to guess the optimal assortment, S∗(µ),

with high probability. On the other hand, the longer the retailer explores, the less consumers will

be offered a supposedly optimal assortment; therefore the retailer has incentives to reduce the

exploration efforts in favor of exploitation.

4. Fundamental Limits on Achievable Performance

4.1. A lower bound on the performance of any admissible policy

We begin this section narrowing down the set of policies worthy of consideration. We say that an

admissible policy is consistent if for all µ∈RN

Rπ(T,µ)

T a
→ 0, (2)
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as T →∞, for every a > 0. In other words, the long run single-sale profit of consistent policies

converges to the profit generated by offering the optimal assortment, for all possible mean utility

vectors. (The condition in (2) restricts the rate of such convergence in T .) Let P ′ ⊆P denote the

set of non-anticipating consistent assortment policies.

Suppose the retailer knows upfront the value of the components of µ associated with products

in S∗(µ), while the other components remain unknown: we say a product is potentially optimal if

it cannot be discarded solely on the basis of such prior information; this means that a product i

is potentially optimal if there exists an alternative mean utility vector γ ∈RN for which product

i is optimal (i.e., i ∈ S∗(γ)), and that coincides with the original one, µ, on the components of

products in S∗(µ) (note that this definition does not consider changes in w, the vector of profit

margins). Define N (µ) as the set of potentially optimal products. That is

N (µ) :=
{
j ∈N : j ∈ S∗(γ) for some γ ∈RN such that µi = γi ∀ i∈ S∗(µ)

}
.

Similarly, we say a product is strictly suboptimal if it is not potentially optimal, i.e., if it can be

discarded as suboptimal based on partial knowledge of the mean utility vector; in other words,

these products would not be included in the optimal assortment under any alternative mean utility

vector among those that do not change mean utilities of products in S∗(µ). We define N :=N \N

as the set of strictly suboptimal products (in a slight abuse of notation we drop dependencies on

µ when possible).

It is worth noting that this classification (potential optimality vs. strict sub-optimality) depends

on: (i) the vector of profit margins, which is observable at all times; and (ii) mean utilities of

optimal products, which are initially unknown. Hence the retailer cannot separate these two classes

upfront with certainty.

In constructing bounds on achievable performance we will consider a subclass of potentially

optimal products, namely those that become optimal under some unilateral change on their mean

utilities. Define

Ñ := {i∈N : i∈ S∗(γ) , γ := (µ1, . . . , µi−1, v,µi+1, . . . , µN) for some v ∈R} .
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Potentially optimal products are, by definition, those that become optimal when alternative mean

utility vectors, differing possibly on several coordinates, are considered: for a product in Ñ such

an alternative mean utility configuration differs from µ only on its j-th component. (It follows that

Ñ ⊆N ).

We assume F is absolutely continuous with respect to Lebesgue measure on R, and that its

density function is positive everywhere. This assumption is quite standard and satisfied by many

commonly used distributions. The result below establishes a fundamental limit on what can be

achieved by any consistent assortment policy. Recall that |S| denotes the cardinality of a set S ⊆N .

Theorem 1. For any π ∈P ′, and any µ∈RN , there exist finite constants K and K ′, such that

Rπ(T,µ)≥K
(∣∣∣Ñ \S∗(µ)

∣∣∣/C) logT +K ′,

for all T .

Recall that Ñ is a subset of potentially optimal products, and Ñ \S∗(µ) is the result of removing

S∗(µ) from that set. Expressions for the constants K and K ′ are given in Appendix A. Note

that if one were to treat each possible assortment as a different arm and appeal to standard

bandit-type algorithms, the regret would scale linearly with a combinatorial term of order-
(
N
C

)
,

instead of the much smaller constant (
∣∣∣Ñ \S∗(µ)

∣∣∣/C) appearing above. Theorem 1 also suggests

that when all non-optimal products are strictly suboptimal (and hence Ñ = S∗(µ)), a finite regret

may be attainable. It is worth noting that N = Ñ for Luce-type choice models, the MNL being a

special case (this also holds for other choice models under certain conditions). When this is not

the case, one can adapt our results to provide a tighter bound where the regret scales linearly with

(|N ′ \S∗(µ)|/C) for a set N ′ ⊆N such that Ñ ⊆N ′ ⊆N .

Remark 2 (Implications for design of “good” policies). The proof of Theorem 1, which

is outlined below, suggests certain desirable properties for assortment policies: (i.) potentially

optimal products are to be tested on order-logT customers; and (ii) product experimentation

should be conducted in batches of size C, and only on potentially optimal products. In addition,
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Theorem 1 does not impose a-priori constraints on the number of customers to whom strictly

suboptimal products are offered to. This suggests that strictly-suboptimal products may only be

tested on a finite number of customers (in expectation), independent of T . This will be proved in

what follows (see Corollary 1).

4.2. Proof outline and intuition behind Theorem 1

The proof of Theorem 1 exploits the connection between the regret and testing of suboptimal

assortments. In particular, it bounds the regret by computing lower bounds on the expected number

of tests involving some potentially optimal products that are not optimal (those in Ñ \S∗(µ)): each

time such a product is offered, the corresponding assortment must be sub-optimal, contributing

directly to the policy’s regret.

To bound the number of tests involving non-optimal products, we use a change-of-measure

argument introduced by Lai and Robbins (1985) for proving an analogous result for a multi-

armed bandit problem. To adapt this idea, we need to address the fact that realizations of the

underlying random variables (i.e., product utilities) are non-observable in the assortment setting,

which differs from the bandit setting where reward realizations are observed directly. Our argument

can be roughly described as follows. By construction, any non-optimal product i ∈ Ñ is in the

optimal assortment for at least one alternative (suitable chosen) mean utility vector. When such

an alternative vector is considered, any consistent policy π must offer product i to all but a sub-

polynomial (in T ) number of customers. If this alternative vector does not differ in a “significant

manner” from the original, a notion that is made precise in Appendix A, then one would expect

this product to be offered to a large number of customers under the original mean utility vector

µ. In particular, for a product i in Ñ , the alternative vector differs from µ only on the parameter

associated with product i: one can use this observation to show that for any policy π

Pπ {Ti(T )≤ logT/Ki}→ 0, (3)

as T →∞, i ∈ Ñ , where Ti(t) is the number of customers product i has been offered to up until

customer t− 1, and Ki is a finite positive constant. Note that this asymptotic minimum-testing
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requirement is inversely proportional to Ki, which turns out to be a measure of how close the

vector µ is to a configuration that makes product i be part of the optimal assortment. One can use

the above to bound the expected number of times non-optimal products in such a class are tested:

using Markov’s inequality we have that, for any i∈ Ñ \S∗(µ),

lim inf
T→∞

Eπ {Ti(T )}
logT

≥ 1

Ki

.

The result in Theorem 1 follows directly from the above and the connection between the regret

and testing of suboptimal assortments, mentioned at the beginning of this section.

5. Dynamic Assortment Planning Policies

This section introduces an assortment policy whose structure is guided by the key insights gleaned

from Theorem 1. Our policy is based on the idea that performance of a product in a given assort-

ment, measured in terms of frequency of purchase, should provide information on the performance

of the same product in other assortments. More formally, one might recover mean utilities of prod-

ucts on a given assortment by observing the frequency at which products are purchased when such

an assortment is offered. With this in mind, we introduce the following assumption.

Assumption 1 (Identifiability). For any vector ρ ∈ RN+ such that
∑

i∈N ρi < 1, there exists

a unique vector η(ρ) such that pi(N , η(ρ)) = ρi, for all i ∈ N . In addition, p(N , ·) is Lipschitz

continuous, and η(·)i is locally Lipschitz continuous in the neighborhood of ρ, when ρi > 0.

Note that, since F is absolutely continuous, any i ∈N with ρi = 0 might be regarded as infinitely

unattractive to consumers (i.e. η(ρ)i = −∞), and thus can be ignored. Under this assumption,

one can recover mean utilities for products in a given assortment from the associated purchase

probability vector. We exploit this when estimating the mean utility vector µ: we first estimate

purchase probabilities by observing consumer purchase decisions; then, we use those probabilities

to reconstruct a mean utility vector that is consistent with such observed behavior. Note that the

Logit model, for which F is a standard Gumbel, satisfies this assumption.
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5.1. Intuition and a simple “separation-based” policy

To build some intuition we first consider a policy that separates exploration from exploitation.

Assuming prior knowledge of T , such a policy first engages in an exploration phase, where dN/Ce

assortments, encompassing all products, are offered sequentially to order-logT customers (dne

denotes the smallest integer larger than a real number n); the intuition for this scale comes from

Theorem 1. Then, an estimator for µ is computed based on observed purchase decisions. Later, in

the exploitation phase, this estimator is used to compute a proxy for the optimal assortment, which

is then offered to the remaining customers. Define the set of test-assortments A :=
{
A1, . . . ,AdN/Ce

}
used in the exploration phase, where

Aj = {(j− 1)C + 1, . . . ,min{j C,N}} .

Suppose t−1 customers have arrived: for each Aj ∈A, we use p̂i,t(Aj) to estimate pi(Aj, µ), where

p̂i,t(Aj) :=

∑t−1
u=1Z

u
i 1{Su =Aj}∑t−1

u=1 1{Su =Aj}
, (4)

for i∈Aj ∪{0}, and p̂i,t(Aj) = 0 otherwise. Let p̂t(Aj) := (p̂1,t(Aj), . . . , p̂N,t(Aj)) denote the vector

of estimated purchase probabilities associated with test-assortment Aj.

For i∈N , we use µ̂t,i to estimate µi, with

µ̂t,i := (η(p̂t(Aj)))i ,

where Aj corresponds to the unique test-assortment including product i, and (a)i denotes the

i-th component of the vector a. The procedure above allows one to separate estimation across

subsets of products, as opposed to estimating all parameters simultaneously (which is computa-

tionally expensive for large problem instances). However, the procedure does not allow refining

parameter estimates using information collected from offerings beyond the exploration phase. Let

µ̂t := (µ̂t,1, . . . , µ̂t,N) denote the vector of mean utility estimates. One can show that when Assump-

tion 1 holds, our method is an instance of maximum-likelihood estimation (MLE): see (Daganzo

1979, p.118). See further discussion of key features and possible limitations of our approach in

Section 7.
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The idea behind the separation-based policy is the following: when an assortment Aj ∈ A has

been offered to a large number of customers one would expect p̂t(Aj) to be close to p(Aj, µ). If

this is the case for all assortments in A, by Assumption 1, one would also expect µ̂t to be close to

µ. The separation-based policy, summarized for convenience in Algorithm 1, is defined through a

positive constant κ1 that regulates the length of the exploration phase.

Algorithm 1 : π1 = π(κ1, T,w)

STEP 1. Exploration:

Offer each test assortment in A to dκ1 logT e customers [Exploration]

STEP 2. Exploitation:

Compute estimate µ̂t := {µ̂t,1, . . . , µ̂t,N}.

Offer S∗(µ̂t) to all remaining customers. [Exploitation]

Performance analysis. This policy is constructed to guarantee that the expected revenue loss

during the exploitation phase balances that stemming from exploration efforts, which is of order-

logT . This, in turn, translates into an order-(dN/Ce logT ) regret. The next result formalizes this.

Theorem 2. Let π1 := π(κ1, T,w) be defined by Algorithm 1 and let Assumption 1 hold. There

exist finite constants K1 and κ1, such that the regret associated with π1 is bounded as follows

Rπ1(T,µ)≤ κ1 (dN/Ce) logT +K1,

for all T , provided that κ1 >κ1.

Constants K1 and κ1 are instance-specific, but do not depend on the length of the selling horizon.

Proof of Theorem 2 elucidates that K1 bounds the expected cumulative revenue loss incurred

during the exploitation phase, while κ1 represents the minimum value of κ1 that makes such a

bound finite and independent of T . The bound presented in Theorem 2 is essentially the one in

Theorem 1, with N replacing
∣∣∣Ñ \S∗(µ)

∣∣∣. This indicates that: (i) imposing the right order (in T )

of exploration is enough to obtain the right dependence (in T ) of the regret; and (ii) achieving the

lower bound requires limiting the exploration on strictly suboptimal products.
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Remark 3 (Selection of the tuning parameter κ1). We have established that the lower

bound in Theorem 1 can be achieved, in terms of its dependence on T , for proper choice of κ1.

However, Theorem 2 requires κ1 to be greater than κ1, whose value is not known a priori. In par-

ticular, setting κ1 below the specified threshold might compromise the performance guarantee in

Theorem 2. To avoid the risk of miss-specifying κ1, one can increase the length of the exploration

phase to, say, |A|κ1(log t)1+α, for any α> 0. With this, the upper bound above would read

Rπ(T,µ)≤ κ1dN/Ce(logT )1+α +K1,

for any κ1, and the policy becomes optimal up to a (logT )α-term.

Next, we illustrate the performance of Algorithm 1 in two examples which consider the most

prevalent choice models in the literature, i.e, the Logit and Probit models.

Example 1: performance of the separation-based policy π1 for an MNL choice model.

Consider N = 10 and C = 4, with

w = (0.98,0.88,0.82,0.77,0.71,0.60,0.57,0.16,0.04,0.02),

µ = (0.36,0.84,0.62,0.64,0.80,0.31,0.84,0.78,0.38,0.34),

and assume {ζti} have a standard Gumbel distribution, for all i ∈ N and all t ≥ 1, i.e., we con-

sider the MNL choice model. One can verify that S∗(µ) = {1,2,3,4} and r(S∗(µ), µ) = 0.76. Test-

assortments are given by A1 = {1,2,3,4}, A2 = {5,6,7,8} and A3 = {9,10}.

Example 2: performance of the separation-based policy π1 for a multinomial Probit

choice model. Consider N = 6 and C = 2, with

w = (2.00,1.80,1.50,1.40,1.20,1.00),

µ = (0.20,0.30,0.35,0.45,0.50,0.55),

and assume {ζti} have a standard normal distribution, for all i ∈N and all t≥ 1, i.e., we consider

the multinomial Probit choice model. One can verify that S∗(µ) = {1,2} and r(S∗(µ), µ) = 1.39.

Test-assortments are given by A1 = {1,2}, A2 = {3,4} and A3 = {5,6}.
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Panels (a) and (b) in Figure 1 depict the average performance of policy π1 for instances in Exam-

ples 1 and 2, respectively. In Example 1, parameter estimates are computed via η(p̂t(Aj)) using

the closed form expression for η(·) given in (6). In Example 2, η(·) cannot be expressed in closed

form, and we use maximum simulated likelihood estimation (recall that when Assumption 1 holds

our method is an instance of MLE). Note that existence of an inverse mapping for the trinomial

Probit model is well known: see Daganzo (1979). Additional details on parameter estimation can

be found in Appendix B.

In Examples 1 an 2 we solve the single-sale profit maximization problem via enumeration. Simu-

lation results were conducted over 500 replications, using κ1 = 20, and considering selling horizons

ranging from T = 500 to T = 10000. Dotted lines represent 95% confidence intervals for the sim-

ulation results. Note that the regret in both panels seems to be of order-logT , as predicted by

Theorem 2. Also, note that policy π1 makes suboptimal decisions on a diminishing fraction of

customers, e.g., in panel (a) it ranges from around 10% when the horizon is 2000 sales attempts,

and diminishes to around 2.5% for a horizon of 10,000. (Recall that the regret is directly linked to

the number of suboptimal sales.)

In the case of Example 1, one can show that N = {1,2,3,4} (see Section 5.3). We observe that,

by construction, in this setting assortments A2 and A3 are offered to order-logT customers, despite

being composed exclusively of strictly suboptimal products. That is, the separation algorithm

does not attempt to limit testing efforts over suboptimal products. Moreover, it assumes a priori

knowledge of the total number of customers, T . The next section proposes a policy that addresses

these two issues.

5.2. A refined dynamic assortment policy

Ideally, a policy should offer suboptimal assortments to at most order-logT consumers, and those

assortments should not include strictly suboptimal products. Thus, such a policy should be able

to “identify” strictly suboptimal products when there is no information about the mean utility

provided by any of these products. We observe that, in general, there exists a threshold value,

ω(µ)< r(S∗(µ), µ), such that
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Figure 1 Performance of the separation-based policy π1. The graphs (a) and (b) illustrate the dependence of

the regret on T for instances in Examples 1 and 2, respectively. Dotted lines represent 95% confidence

intervals for the simulation results.

N = {i∈N : wi <ω(µ)} ,

i.e., any product with margin less than this threshold value is strictly suboptimal and vice versa.

This observation follows from noting that products are ex ante differentiated only through their

profit margins, hence it is not possible for a potentially optimal product to have a lower profit mar-

gin than a strictly suboptimal one. One can use this observation in the design of test-assortments:

consider the set of test-assortments A :=
{
A1, . . . ,AdN/Ce

}
, where

Aj =
{
i((j−1)C+1), . . . , i(min{j C,N})

}
,

and i(k) corresponds to the product with the k-th highest profit margin. Suppose one has a proxy

for ω(µ). One can then use this value to identify assortments containing at least one potentially

optimal product and to force the right order of exploration on such assortments. If successful, such

a scheme will limit exploration on assortments containing only strictly suboptimal products. Note

that in practice, ω(µ) must be computed numerically for most choice models. This procedure is

greatly simplified when N = Ñ , so that assessing potential-optimality is equivalent to solving a

one-dimensional single-sale profit maximization problem.
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Next, we propose a policy that limits exploration on strictly suboptimal products, and show that

it performs well for any value of T . The policy executes the following logic upon arrival of customer

t: using µ̂t, the current estimate of µ, it solves for St = S∗(µ̂t), and computes the threshold value

ωt = ω(µ̂t). If all assortments in A containing products with margins greater than or equal to ωt

have been tested on a minimum number of customers, then assortment St is offered to customer t.

Otherwise, we select, arbitrarily, an under-tested assortment in A containing at least one product

with margin greater than or equal to ωt, and offer it to the current customer. (The term under-

tested means tested on less than order-log t customers prior to the arrival of customer t.) Note that

this logic will enforce the correct order of exploration for any value of T .

Algorithm 2 : π2 = π(κ2,w)

STEP 1. Initialization:

Offer each test-assortment in A to a customer [Initial test]

STEP 2. Joint exploration and assortment optimization:

for customer t do

Compute estimate µ̂t := {µ̂t,1, . . . , µ̂t,N}, and ωt = ω(µ̂t).

Set At = {Aj ∈A : max{wi : i∈Aj} ≥ ωt}. [Test-assortments]

if some Aj ∈At has been offered to less than κ2 log t customers then

Offer such Aj to customer t. [Exploration]

else

Offer S∗(µ̂t) to customer t. [Exploitation]

end if

end for

This policy, denoted π2 and summarized for convenience in Algorithm 2, monitors the quality of

the estimates for potentially optimal products by imposing a minimum exploration frequency on

assortments containing such products. The specific structure of A ensures that test assortments do
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not “mix” high-margin products with low-margin products, thus successfully limiting exploration

on strictly-suboptimal products. The policy uses a tuning parameter κ2 to balance exploration

(which contributes directly to the regret), and the expected revenue loss in the exploitation phase.

Performance analysis. The next result characterizes the performance of the proposed assortment

policy. Recall that dne denotes the smallest integer larger than a real number n.

Theorem 3. Let π2 = π(κ2,w) be defined by Algorithm 2 and let Assumption 1 hold. There exist

finite constants K2 and κ2, such that the regret associated with π2 is bounded as follows

Rπ(T,µ)≤ κ2

(
d
∣∣N ∣∣/Ce) logT +K2,

for all T , provided that κ2 >κ2.

The performance guarantee in Theorem 3 manifests the correct dependence on both T and N ,

as per Theorem 1 (up to the size of the optimal assortment, and the difference between N and Ñ ).

The result essentially shows that focusing exploration efforts on a set of products “rich enough”

to provide an optimality guarantee for the incumbent optimal solution, suffices for identifying the

optimal assortment with high probability. Note that the argument in Remark 3 remains valid in

regard to the selection of κ2. Theorem 3 also states (implicitly) that assortments containing only

strictly-suboptimal products will be tested on a finite number of customers (in expectation). The

following corollary formalizes this statement. Recall that Ti(t) denotes the number of customers

product i has been offered to, up to the arrival of customer t.

Corollary 1. Let Assumption 1 hold. Then, for any assortment Aj ∈ A such that Aj ⊆ N ,

and for any selling horizon T

Eπ[Ti(T )]≤K2,

for all i∈Aj, where K2 is a finite positive constant independent of T .

Remark 4 (Relationship to bandit problems). The result in Corollary 1 stands in contrast

to typical multi-armed bandit results, where all suboptimal arms/actions need to be tried at least
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order-log t times (in expectation). In the assortment problem, product rewards are random variables

bounded above by their corresponding margins. Therefore, the contribution of a product to the

overall profit is bounded, independent of its mean utility. More importantly, this feature makes

some products a priori better than others. Such characteristic is not present in the typical bandit

problem, and the above result illustrates some of its implications.

Next, we illustrate the performance of the proposed algorithm for the examples of Section 5.1.

Example 1-continued: performance of the policy π2 for the MNL choice model. Consider

the setting of Example 1 in Section 5.1: in Section 5.3 we show that ω(µ) = r(S∗(µ), µ), hence one

has that N =A2 ∪A3. Note that N =A1, thus one would expect Algorithm 2 to offer suboptimal

assortments to a finite number of consumers, independent of T .

Example 2-continued: performance of the policy π2 for the Probit choice model. Con-

sider the setting of Example 2 in Section 5.1. One can check (numerically) that N = A3. Since

test-assortment A2 is suboptimal, but contains potentially optimal products, Algorithm 2 should

offer it to order-logT consumers.

Panels (a) and (b) in Figure 2 depict the average performance of policies π1 and π2 for instances

in Examples 1 and 2, respectively. Parameter estimation and single-sale profit maximization are

conducted as in Examples 1 and 2. The threshold value ω(µ) is computed through its closed form

expression for the case of Example 1 above. For the case of Example 2, one can show that N = Ñ ,

thus computing At requires verifying potential-optimality for only one product per test-assortment.

Such a step is conducted through numerical maximization and simulation. (Simulation is used

to approximate purchase probabilities, and numerical maximization is used to find an alternative

mean utility configuration that improves the optimal single-sale profit.).

Simulation results were conducted over 500 replications, using κ1 = κ2 = 20. Graphs (a) and (b)

compare the regret produced by the separation-based policy π1 and the proposed policy π2, for

selling horizons ranging from T = 500 to T = 10000. Dotted lines represent 95% confidence intervals

for the simulation results. We observe that policy π2 outperforms substantially the separation-based

policy π1. In particular, for the instance in Example 1, π1 results in lost sales in the range of 2.5-10%
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(200-260 customers are offered non-optimal choices) depending on the length of selling horizon,

while for π2 we observe sub-optimal decisions being made only about 10-20 times, independent of

the horizon. This constitutes more than a 10-fold improvement over the performance of π1. Such

an improvement in performance can be explained as follows: π2 identifies that both A2 and A3

contain only strictly suboptimal products, with increasing probability as t grows large; as a result,

exploration efforts are eventually directed exclusively to the optimal assortment; since incorrect

choices in the exploitation phase are also controlled by π2, we expect the regret to be finite. This

is supported by the numerical results displayed in Figure 2.

Figure 2 Performance of the refined policy π2. The graphs (a) and (b) compare the separation-based policy π1,

given by Algorithm 1, and the proposed policy π2, in terms of regret-dependence on T , for instances

in Examples 1 and 2, respectively. Dotted lines represent 95% confidence intervals for the simulation

results.

5.3. A policy customized to the multinomial Logit choice model

In general, purchase probabilities depend on the offered assortment in a non-trivial way. With no

trivial way to combine information collected from offering different assortments, it is not clear

how to use data gathered in the exploitation phase efficiently. Next, we illustrate how to modify
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parameter estimation to include exploitation-based information in the case of an MNL choice

model. Note that Rusmevichientong et al. (2010) present an efficient algorithm for solving the

single-sale optimization problem in this setting. (As indicated previously, the results in this section

extend directly to Luce-type choice models.)

MNL choice model properties. Taking F to have a standard Gumbel distribution (see, for

example, Anderson et al. (1992))

pi(S,µ) =
νi

1 +
∑

j∈S νj
i∈ S , for any S ∈ S, (5)

where νi := exp(µi), i ∈ N , and ν := (ν1, . . . , νN). For a vector ρ ∈ RN+ such that
∑

i∈N ρi < 1, we

have that η(ρ), the unique solution to {ρi = pi(N , µ), i∈N}, is given by

ηi(ρ) =

{
ln
(
ρi(1−

∑
j∈N ρj)

−1
)
ρi > 0,

−∞ ρi = 0,
(6)

i∈N . One can check that (5) and (6) imply that N = Ñ . Indeed, solving the single-sale optimiza-

tion problem in this setting is equivalent to finding the largest value of λ such that

∑
i∈S

νi(wi−λ)≥ λ, (7)

for some S ∈ S, thus one can characterize the set of strictly suboptimal products as

N = {i∈N : wi < r(S
∗(µ), µ)} .

This implies that ω(µ) = r(S∗(µ), µ) for the MNL model.

A product-based exploration assortment policy. We propose a policy, denoted π3, customized

for the MNL choice model. The policy, summarized for convenience in Algorithm 3, maintains the

general structure of Algorithm 2, however parameter estimation is conducted at the product level.

As in the previous sections, the policy is defined through a positive constant κ3 that regulates the

length of the exploration phase.

Suppose t− 1 customers have shown up so far. We use ν̂i,t to estimate νi, where

ν̂i,t :=

∑t−1
u=1Z

u
i 1{i∈ Su}∑t−1

u=1Z
u
0 1{i∈ Su}

i∈N , (8)
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and define µ̂i,t := ln (ν̂i,t). The estimate above exploits the independence of irrelevant alternatives

(IIA) property of the Logit model, which states that the ratio between purchase probabilities of

any two products is independent of the assortment in which they are offered. That is,

pi(S,µ)

pj(S,µ)
=
νi
νj
, for all products i, j ∈N ∪{0} , for all S ∈ S.

Indeed, the IIA property allows us to perform parameter estimation on subsets of products without

using pre-determined assortments (See Chapter 3 in Train (2009) for further details). In our case,

we perform separate estimation on each pair product/no-purchase alternative. As a result, all

information collected (both from exploration and exploitation phases) is used to construct the

parameter estimates. It is worth noting that a policy exploiting this feature might help correct errors

made in the exploitation phase faster than the previous type of policy; In particular, estimates of

expected single-sale profits for suboptimal assortments offered during exploitation are anticipated

to converge faster to their actual values, thus optimal products are likely to be identified as such

at earlier stages; see the discussion following Example 3.

Performance analysis. The next result characterizes the performance of the proposed assortment

policy.

Theorem 4. Let π3 = π(κ3,w) be defined by Algorithm 3. There exist finite constants K3 and

κ3, such that the regret associated with π3 is bounded as follows

Rπ(T,µ)≤ κ3

(∣∣N \S∗(µ)
∣∣) logT +K3,

for all T , provided that κ3 >κ3.

Theorem 4 is essentially the equivalent of Theorem 3, customized to the Logit case, with the

exception of the dependence on the assortment capacity C (as here exploration is conducted on a

product basis), and the dependence on the set N . The latter matches exactly the order of the result

in Theorem 1: unlike policy π2, the customized policy π3 prevents optimal products from being

offered in suboptimal assortments. Since estimation is conducted using information arising from
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Algorithm 3 : π3 = π(κ3,w)

STEP 1. Initialization:

Offer each product i∈N by itself until a no-purchase occurs. [Initial test]

STEP 2. Joint exploration and assortment optimization:

for customer t do

Compute estimates µ̂t := {µ̂1,t, . . . , µ̂N,t} and set ωt = r(S∗(µ̂t), µ̂t).

Set N t = {i∈N :wi ≥ ωt}. [Potentially optimal products]

if some i∈N t has been offered to less than κ3 log t customers then

Offer S ∈
{
i∈N t : Ti(t)≤ κ3 log t

}
∩S to customer t. [Exploration]

else

Offer S∗(µ̂t) to customer t. [Exploitation]

end if

end for

both the exploration and exploitation phases, one would expect a better empirical performance

from the Logit customized policy. In particular, strictly-suboptimal products will be tested on a

finite number of customers, in expectation, as shown in the following corollary.

Corollary 2. For any strictly-suboptimal product i∈N and for any selling horizon T

Eπ[Ti(T )]≤K3,

for a positive finite constant K3, independent of T .

Regarding selection of the parameter κ3, note that the argument in Remark 3 remains valid.

Example 1-continued: performance of the MNL-customized policy π3. Consider the setup

of Example 1 in Section 5.1. Note that S∗(µ) =A2, i.e. the optimal assortment matches one of the

test assortments. Moreover, one has that N = S∗(µ). As a result, strictly suboptimal detection is

conducted in finite time for both policies π2 and π3, and hence any gain in performance for policy

π3 over π2 is tied in to the ability of the former to incorporate information gathered during both
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exploration and exploitation phases.

Example 3: performance of the MNL-customized policy revisited. Consider the setup of

Example 1 in Section 5.1, but when

w = (0.95,0.81,0.75,0.72,0.68,0.60,0.58,0.41,0.35,0.21),

µ = −(2.83,3.96,5.50,2.90,2.60,2.80,3.20,4.27,4.60,2.78).

This corresponds to a setting in which all products are less attractive than the no-purchase alter-

native. One can verify that S∗(µ) = {1,4,5,6} and r(S∗(µ), µ) = 0.147. Note that N = ∅, thus the

difference in performance between π2 and π3 emanates mainly from the manner in which informa-

tion collected during the exploitation and exploration phases is used.

Panels (a) and (b) in Figure 3 depicts the average performance of policies π2 and π3 for instances

in Examples 1 and 3, respectively. Simulation results were conducted over 500 replications, using

κ2 = κ3 = 20, and considering selling horizons ranging from T = 1000 to T = 10000. Parameter

estimation is conducted according to (8), and single-sale profit maximization is carried out by

enumeration. The graphs compare the more general policy π2 to its Logit-customized version π3, in

terms of regret dependence on T . Dotted lines represent 95% confidence intervals for the simulation

results. In graph (a) one can see that customization to a Logit nets significant, roughly 10-fold,

improvement in performance of π3 relative to π2. Overall, the Logit-customized policy π3 only

offers suboptimal assortments to less than a handful of customers, regardless of the horizon of the

problem. This provides “picture proof” that the regret (number of suboptimal sales) is finite for

any T in the case of Example 1, as predicted by Theorem 4. This also suggests that differences in

performance are mainly due to errors in the exploitation phase. This is reinforced by the results

in graph (b), where we see that the Logit-customized policy π3 outperforms the more general

policy π2, confirming that the probability of error decays faster in the Logit customized version.

Note that when all exploitation efforts are successful, and assuming correct strictly-suboptimal

product detection, the probability of error decays exponentially for the customized policy (π3) and
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Figure 3 Performance of the MNL-customized policy π3. Graphs (a) and (b) compare the more general policy

π2 to its Logit-customized version π3, in terms of regret-dependence on T , for instances in Examples

1 and 3, respectively. Dotted lines represent 95% confidence intervals for the simulation results.

polynomially for the more general policy (π2); see further details in the proof of Theorem 4 in the

online companion.

6. Comparison with Benchmark Results

Our results significantly improve on and generalize the policy proposed by Rusmevichientong et al.

(2010), where an order-(N logT )2 performance upper bound is presented for the case of an MNL

choice model. Their algorithm for solving the single-sale optimization problem identifies a small set

of assortments that contains the optimal one. In its dynamic formulation, the algorithm requires to

test order-N 2 assortments to estimate the parameters allowing to identify such a set of candidate

assortments with high probability. Note that such a dynamic policy, which operates in phases, is a

more direct adaptation of multi-armed bandit ideas. Hence, it does not detect strictly-suboptimal

products nor does it limit exploration on them. In addition, their policy conducts exploration efforts

on order-N 2 test-assortments, and periodically increases the magnitude the exploration effort, while

neglecting information collected in previous exploration phases. The regret of our Logit-customized

policy is at most of order-
∣∣N \S∗(µ)

∣∣ logT , and we show that this cannot be improved upon.
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Consider again Example 1 in Section 5.1. Figure 4 compares the average performance of our

proposed policies with that of Rusmevichientong et al. (2010), denoted RSS for short, over 500

replications, using κ1 = κ2 = κ3 = 20, and considering selling horizons ranging from T = 1000 to

T = 10000. The graph in (a) compares the separation-based policy π1 to the benchmark policy

RSS, in terms of regret-dependence on T . The graph in (b) compares the separation-based policy

π1, the proposed policy π2 and its Logit-customized version π3 in terms of regret-dependence on

T . A further detailed analysis of the results depicted in Figure 4 reveals that the regret of the

benchmark behaves quadratically with logT , as predicted. Panel (a) in Figure 4 shows that the

RSS policy offers suboptimal assortments to about 20 − 25% of the customers, while policy π1

never exceeds 10%, and that loss diminishes as the horizon increases to around 2.5%. Since policies

π2 and π3 limit exploration on strictly-suboptimal products, a feature absent in both RSS and in

the naive separation-based policy π1, they exhibit far superior performance compared to either one

of those benchmarks as illustrated in panel (b) of Figure 4. Note that, unlike our Logit-tailored

Figure 4 Comparison with a benchmark performance. The graph in (a) compares the separation-based policy

π1 to the benchmark policy RSS, in terms of regret-dependence on T . The graph in (b) compares the

separation-based policy π1, policy π2 and its Logit-customized version π3 in terms of regret dependence

on T . Results in both panels are for Example 1.
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policy, the policy in Rusmevichientong et al. (2010) only uses the information collected during the

exploration phase for parameter estimation. The improvement in performance due to this feature

is illustrated in panel (b) of Figure 4. The overall effect is that policy π3 improves performance

by a factor of 200-1000 compared to RSS, and is able to zero in on the optimal assortment much

faster than the benchmark.

7. Discussion and Concluding Remarks

Summary and main insights. In this paper we have studied the role of assortment experimen-

tation in learning consumer preferences, by introducing a stylized model of dynamic assortment

planning. On the theoretical side, we have provided a lower bound on the performance of any

consistent policy, and showed that this lower bound can be achieved, up to constant terms, when

the noise distribution in the utility specification is known, and a product identification condition

holds. In particular, we proposed an assortment-based exploration algorithm whose regret scales

optimally in the selling horizon T , and exhibits the “right” dependence on the number of possible

optimal products when said optimality is reached via unilateral deviations in the mean utility

vector (e.g. under Luce-type models).

The problem studied in this paper, and outlined in Section 3, can be viewed as a multi-armed

bandit problem by means of the following analogies. First, each assortment might constitute an

arm, hence one faces a variant of a multi-armed bandit problem with a combinatorial number of

arms. Note though that arm distributions are not independent and not a-priori indistinguishable,

as is the case with traditional bandit formulations. Second, each product might be viewed as an

arm, hence one faces a variant of a multi-armed problem with multiple simultaneous plays where

arms are not a-priori indistinguishable (due to differences in profit margins). Our main results

clearly demonstrate the inefficiency of using standard bandit methods within the former view,

while elucidating ways to overcome the obstacles present in the latter view.

On the more practical side, our results suggest how to quantify the “right” amount of informa-

tion one should collect on consumer preferences, so that revenue loss due to exploration balances
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with that stemming from errors during exploitation. Our results highlight the importance of lim-

iting information collection by “quickly” identifying and ceasing exploration on products that are

unlikely to be members of the optimal assortment.

Limitations and future research. As indicated in Section 4.1, the lower bound in Theorem 1

can be tightened when N 6= Ñ . The resulting bound, however, might not be proportional to
∣∣N ∣∣,

which suggests even tighter bounds might be developed.

Our proposed parameter estimation method is based on MLE, thus it inherits the associated

advantages and shortcomings (e.g., asymptotic efficiency yet potential for small sample bias). One

can extend the results in this paper to different estimation procedures as long as consistency is

preserved: see Lemma 1 in proof of Theorem 2. In particular, provided that a guarantee similar to

that in Lemma 1 holds. Such a result provides finite-sample confidence intervals for the estimation

error. It is worth noting that the result does not rely on properties of MLE.

An important extension to our model is considering alternative mean-utility specifications. Stud-

ies in fields such as Marketing and Economics usually postulate that mean utilities are driven by

product specific features. In such a setup, the retailer would strive to recover a part-worth vector.

Another important area for future research is relaxing assumptions pertaining to the operational

environment, especially that of perfect inventory replenishment. Practical inventory considerations

play an important role in settings such as fast fashion and display-based online advertisement; the

motivating applications considered in Section 1. An additional important extension is to consider

settings where product prices must be selected as well (for simplicity, assume prices take values in

a finite set). In this regard, the work of Rusmevichientong and Broder (2010) provides an initial

exploration of this possibility, though absent inventory or assortment considerations.

Appendix A: Proof of Theorem 2

We prove the result in 3 steps. First, we compute an upper bound on the probability of the estimates deviating

from the true mean utilities. Second, we address the quality of the solution to the single-sale problem, when

using estimated mean utilities. Finally, we combine the above and analyze the regret. For purposes of this
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proof, let P denote probability of random variables when the assortment policy π1 is used, and the mean

utilities are given by the vector µ. With a slight abuse of notation define pi := {pi(Aj , µ) : Aj ∈A s.t. i∈Aj},

for i∈N , and p := (p1, . . . , pN).

Step1. Define T j(t) to be the number of customers Aj has been offered to, up to customer t−1, for Aj ∈A.

That is,

T j(t) =

t−1∑
u=1

1{Su =Aj} , j = 1, . . . , |A| .

We will need the following side lemma, whose proof is deferred to Appendix D.

Lemma 1. Fix j ≤ |A| and i∈Aj. Then, for any n≥ 1 and ε > 0

P

{∣∣∣∣∣
t−1∑
u=1

(Zui − pi(Aj , µ))1{Su =Aj}

∣∣∣∣∣≥ εT j(t) , T j(t)≥ n
}
≤ 2 exp(−c(ε)n),

for a positive constant c(ε)<∞.

For any vector ν ∈ RN and set A ⊆ N define ‖ν‖A = max{νi : i∈A}. Consider ε > 0 and fix t ≥ 1. By

Assumption 1 we have that for any assortment Aj ⊆A

‖µ− µ̂t‖Aj
≤ κ(ε)‖p− p̂t‖Aj

, (9)

for some constant 1<κ(ε)<∞, whenever ‖p− p̂t‖Aj
< ε. We have that, for n≥ 1,

P
{
‖µ− µ̂t‖Aj

> ε , T j(t)≥ n
}

= P
{
‖µ− µ̂t‖Aj

> ε , ‖p− p̂t‖Aj
≥ ε , T j(t)≥ n

}
+

P
{
‖µ− µ̂t‖Aj

> ε , ‖p− p̂t‖Aj
< ε , T j(t)≥ n

}
≤ P

{
‖p− p̂t‖Aj

≥ ε , T j(t)≥ n
}

+

P
{
‖µ− µ̂t‖Aj

> ε , ‖p− p̂t‖Aj
< ε , T j(t)≥ n

}
(a)

≤ P
{
‖p− p̂t‖Aj

≥ ε , T j(t)≥ n
}

+

P
{
‖p− p̂t‖Aj

> ε/κ(ε) , T j(t)≥ n
}

≤ 2P
{
‖p− p̂t‖Aj

≥ ε/κ(ε) , T j(t)≥ n
}

≤ 2
∑
i∈Aj

P
{
|pi(Aj , µ)− p̂i,t| ≥ ε/κ(ε) , T j(t)≥ n

}
(b)
= 2

∑
i∈Aj

P

{∣∣∣∣∣
t∑

s=1

(Zsi − pi(Aj , µ))1{St =Aj}

∣∣∣∣∣≥ T j(t)ε/κ(ε) ,

T j(t)≥ n}
(c)

≤ 2 |Aj | exp(−c(ε/κ(ε))n), (10)
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where (a) follows from (9), (b) follows from the definition of p̂i,t, and (c) follows from Lemma 1.

Step 2. Fix an assortment S ∈ S. By the Lipschitz-continuity of p(S, ·) we have that, for t≥ 1,

max{|pi(S,µ)− pi(S, µ̂t)| : i∈ S} ≤K‖µ− µ̂t‖S,

for a positive constant K <∞, and therefore

|r(S,µ)− r(S, µ̂t)| ≤ ‖w‖∞KC‖µ− µ̂t‖S. (11)

From here, we conclude that

r(S∗(µ̂t), µ) ≥ r(S∗(µ̂t), µ̂t)−‖w‖∞KC‖µ− µ̂t‖S∗(µ̂t)

≥ r(S∗(µ), µ̂t)−‖w‖∞KC‖µ− µ̂t‖S∗(µ̂t)

≥ r(S∗(µ), µ)− 2‖w‖∞KC‖µ− µ̂t‖(S∗(µ)∪S∗(µ̂t)).

As a consequence, if ‖µ− µ̂t‖(S∗(µ)∪S∗(µ̂t)) < (2‖w‖∞KC)−1δ(µ)r(S∗(µ), µ) then S∗(µ) = S∗(µ̂t), where δ(µ)

is the minimum (relative) optimality gap (see (13) in proof of Theorem 1). This means that if the mean utility

estimates are uniformly close to the underlying mean utility values, then solving the single-sale problem

using estimates returns the same optimal assortment as when solving the single-sale problem with the true

parameters. In particular we will use the following relation:

{S∗(µ) 6= S∗(µ̂t)} ⊆
{
‖µ− µ̂t‖(S∗(µ)∪S∗(µ̂t)) ≥ (2‖w‖∞KC)−1δ(µ)r(S∗(µ), µ)

}
. (12)

Step 3. Let NO(t) denote the event that a non-optimal assortment is offered to customer t. That is NO(t) :=

{St 6= S∗(µ)}. Define ξ := (2‖w‖∞KC)−1δ(µ)r(S∗(µ), µ). For t≥ |A| dκ1 logT e one has that

P{NO(t)}
(a)

≤ P
{
‖µ− µ̂t‖(S∗(µ)∪S∗(µ̂t)) ≥ ξ

}
≤
∑
Aj∈A

P
{
‖µ− µ̂t‖Aj

≥ ξ , T j(t)≥ κ1 logT
} (b)

≤
∑
Aj∈A

2 |Aj |T−κ1c(ξ/κ(ξ)),

where (a) follows from (12) and (b) follows from (10). Considering κ1 > c(ξ/κ(ξ))−1 results in the following

bound for the regret:

Rπ(T,µ)≤
T∑
t=1

P{NO(t)} ≤ |A| dκ1 logT e+

T∑
t>|A|dκ1 logTe

∑
Aj∈A

2 |Aj |T−κ1c(ξ/κ(ξ))

≤ |A|κ1 logT + 2NT 1−κ1c(ξ/κ(ξ))

= dN/Ceκ1 logT +K1,

where K1 = 2N . Setting κ1 = c(ξ/κ(ξ))−1 gives the desired result. �
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Appendix B: Parameter Estimation for the Probit Model

When idiosyncratic shocks to consumer utility are normally distributed purchase probabilities are given by

pi(S,µ) =

∫ ∞
−∞

∏
j∈S∪{0}\{i}

Φ(x−µj)φ(x−µi)dx,

where Φ(·) and φ(·) corresponds to the distribution and density of a standard normal random variable.

Unfortunately, the integral above does not have a closed form and must be approximately numerically. In

our numerical experiments we approximate such an integral through simulation.

Given the empirical probabilities p̂i(S), S ∈A, the average log-likelihood associated with µ is

LL(µ) =
∑

i∈S∪{0}

p̂i(S) log pi(S,µ),

Since purchase probabilities cannot be computed exactly, we replace pi(S,µ) with its simulated counterpart.

In MLE we look for the value of µ that maximizes LL. For that, we check the first order conditions

∂LL(µ)

∂µi
=

∑
j∈S∪{0}

p̂j(S)
1

pj(S,µ)

∂pj(S,µ)

∂µi
= 0 i∈ S.

One can solve the system above using the Newton-Raphson method. However, such a method requires access

to the Jacobian and Hessian of LL, which are not available in closed form. In our numerical experiments we

approximate these quantities numerically. The Jacobian of LL requires approximating

∂pi(S,µ)

∂µi
=

∫ ∞
−∞

x
∏

j∈S∪{0}\{i}

Φ(x−µj)φ(x−µi)dx−µipi(S,µ) i∈ S,

and

∂pj(S,µ)

∂µi
=−

∫ ∞
−∞

∏
h∈S∪{0}\{i,j}

Φ(x−µh)φ(x−µi)φ(x−µj)dx j, i∈ S i 6= j.

Derivatives for p0(S,µ) follow from the fact that purchase probabilities sum up to one. The effort required

to approximate the integrals above is essentially that of approximating the purchase probabilities. (In our

numerical experiments we compute both of them simultaneously.) One can show that the same holds true

for computing the Hessian of LL: for example, one has that

∂2pi(S,µ)

∂2µi
=

∫ ∞
−∞

x2
∏

j∈S∪{0}\{i}

Φ(x−µj)φ(x−µi)dx− 2µi
∂pi(S,µ)

∂µi
− (µ2

i + 1)pi(S,µ) i∈ S,

thus one can approximate the Hessian, Jacobian and log-likelihood function efficiently using Monte Carlo

simulation.

In our experiments we used a sample of size 50,000 to approximate each integral, and used importance

sampling to enhance the precision of our approximation: in particular, we use approximations of the normal



Saure and Zeevi: Optimal Dynamic Assortment Planning with Demand Learning
00(0), pp. 000–000, c© 0000 INFORMS 37

CDF to approximate the integrals above as a sum of properly weighted components. We used incumbent

parameter estimates (those computed in the previous estimation cycle) as a starting point for Newton-

Raphson, and used convergence tolerance parameter of 10−6.
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Online Appendix Companion to Optimal Dynamic

Assortment Planning with Demand Learning

Appendix C: Proof of Main Results

Proof of Theorem 1. The lower bound is trivial when Ñ = S∗(µ), so assume S∗(µ)⊂ Ñ . For i∈N define

Ti(t) as the number of customers product i has been offered to, before customer t’s arrival,

Ti(t) :=

t−1∑
u=1

1{i∈ Su} , t≥ 1.

Similarly, for n≥ 1 define ti(n) as the customer to whom product i is offered for the n-th time,

ti(n) := inf {t≥ 1 : Ti(t+ 1) = n} , n≥ 1.

For i∈ Ñ \S∗(µ), define Γi as the set of mean utility vectors for which product i is in the optimal assortment,

but that differs from µ only on its i-th coordinate. That is,

Γi :=
{
γ ∈RN : γi 6= µi , γj = µj ∀ j ∈N \{i} , i∈ S∗(γ)

}
.

We will use Eγπ and Pγπ to denote expectations and probabilities of random variables, when the assortment

policy π ∈P is used, and the mean utilities are given by the vector γ. Let Ii(µ‖γ) denote the Kullback-Leibler

divergence between F (· −µi) and F (· − γi),

Ii(µ‖γ) :=

∫ ∞
−∞

[log (dF (x−µi)/dF (x− γi))]dF (x−µi).

This quantity measures the “distance” between Pµπ and Pγπ. We have that 0 < Ii(µ‖γ) <∞ for all γ 6= µ,

i∈ Ñ \S∗(µ). Fix i∈ Ñ and consider a configuration γ ∈ Γi. For n≥ 1 define the log-likelihood function

Li(n) :=

n∑
u=1

[
log(dF (U

ti(u)
i −µi)/dF (U

ti(u)
i − γi))

]
.

Note that Li(·) is defined in terms of utility realizations that are unobservable to the retailer. Define δ(η) as

the minimum (relative) optimality gap when the mean utility vector is given by η ∈RN ,

δ(η) := inf {1− r(S,η)/r(S∗(η), η)> 0 : S ∈ S} . (13)

Fix α∈ (0,1). For any consistent policy π one has that for any ε > 0,

Rπ(T,γ) ≥ δ(γ)Eγπ {T −Ti(T )}
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≥ δ(γ)

(
T − (1− ε)
Ii(µ‖γ)

logT

)
Pγπ {Ti(T )< (1− ε) logT/Ii(µ‖γ)} ,

and by assumption on π Rπ(T,γ) = o(Tα). From the above, we have that

Pγπ {Ti(T )< (1− ε) logT/Ii(µ‖γ)}= o(Tα−1). (14)

Define the event

βi :=

{
Ti(T )≤ (1− ε)

Ii(µ‖γ)
logT , Li(Ti(T ))≤ (1−α) logT

}
.

From the independence of utilities across products and the definition of βi, we have that

Pγπ {βi} =

∫
ω∈βi

dPγπ

=

∫
ω∈βi

T−1∏
u=1

∏
i∈Su

dF (Uu
i − γi)

=

∫
ω∈βi

T−1∏
u=1

∏
i∈Su

dF (Uu
i − γi)

dF (Uu
i −µi)

dPµπ

=

∫
ω∈βi

Ti(T )∏
n=1

dF (U
ti(n)
i − γi)

dF (U
ti(n)
i −µi)

dPµπ

=

∫
ω∈βi

exp(−Li(Ti(T )))dPµπ

≥ exp(−(1−α) logT )Pµπ {βi} .

From (14) one has that Pγπ {βi}= o(Tα−1). It follows by (14) that as T →∞

Pµπ {βi} ≤ Pγπ {βi}/Tα−1→ 0. (15)

Indexed by n, Li(n) is the sum of finite mean identically distributed independent random variables, therefore,

by the strong law of large numbers (SLLN).

lim sup
n→∞

max{Li(l) : l≤ n}
n

≤ Ii(µ‖γ)

(1−α)
Pµπ a.s.,

i.e., the log-likelihood function grows no faster than linearly with slope Ii(µ||γ) . This implies that

lim sup
n→∞

Pµπ {∃ l≤ n , Li(l)>nIi(µ‖γ)/(1− ε)}= 0.

In particular,

lim
T→∞

Pµπ
{
Ti(T )<

(1− ε)
Ii(µ‖γ)

logT , Li(Ti(T ))>
(1− ε)
1−α

logT

}
= 0.
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Taking α< ε small enough, and combining with (15) one has that

lim
T→∞

Pµπ
{
Ti(T )<

(1− ε)
Ii(µ‖γ)

logT )

}
= 0.

Finally, defining the positive finite constant Hµ
i := inf {I(µ‖γ) : γ ∈ Γi}, it follows that

lim
T→∞

Pµπ {Ti(T )≥ (1− ε) logT/Hµ
i )}= 1.

For i ∈ N , let T i denote the largest T ≥ 0 such that Pµπ {Ti(T )≥ (1− ε) logT/Hµ
i } < 1/2. By Markov’s

inequality, and letting ε shrink to zero we get

Eµπ {Ti(T )} ≥ (2Hµ
i )−1 logT, (16)

for T > T i. By the definition of the regret, we have that for any policy π ∈P ′,

Rπ(T,µ)
(a)

≥ δ(µ)Eµπ

[
T∑
t=1

Pµπ1{St 6= S∗(µ)}

]
(b)

≥ δ(µ)
1

C

∑
i∈Ñ\S∗(µ)

Eµπ [Ti(T )] .

where (a) follows from the non-optimal assortments contributing at least δ(µ) to the regret, and (b) follows

by assuming non-optimal products are always tested in batches of size C, considering only products in Ñ .

Thus

T∑
u=1

1{Su 6= S∗(µ)} ≥
T∑
u=1

1
{
Su ∩ Ñ \S∗(µ) 6= ∅

}
≥ 1

C

∑
i∈Ñ\S∗(µ)

T∑
u=1

1{i∈ Su}=
1

C

∑
i∈Ñ\S∗(µ)

Ti(T ).

Combining the above with (16) we have that

Rπ(T,µ)≥ δ(µ)
1

C

 ∑
i∈Ñ\S∗(µ)

(2Hµ
i )−1

 logT + δ(µ)T ,

for all T , where T := ‖T i‖N . Taking K := δ(µ) mini∈Ñ\S∗(µ) {(2H
µ
i )−1} and K ′ := δ(µ)T gives the desired

result.

We now comment on the fact that the reasoning above extends to the case when |S∗(µ)|> 1. Note that

(16) remains valid for products in Ñ \N ∗, where N ∗ := {i∈N : i∈ S for some S ∈ S∗(µ)} and

S∗(µ) := arg max{r(S,µ) : S ∈ S} .

In particular, one has that

T∑
u=1

1{Su /∈ S∗(µ)} ≥
T∑
u=1

1
{
Su ∩ Ñ \N ∗ 6= ∅

}
≥ 1

C

∑
i∈Ñ\N∗

T∑
u=1

1{i∈ Su}=
1

C

∑
i∈Ñ\N∗

Ti(T ),
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The result follows from the bound on the expectation over Ti(T ) for products in Ñ \N ∗. �

Proof of Theorem 3. The proof follows the arguments in the proof of Theorem 2. Steps 1 and 2 are

identical.

Step 3. Let NO(t) denote the event that a non-optimal assortment is offered to customer t, and G(t) the

event that there is no forced testing for customer t. That is,

NO(t) := {St 6= S∗(µ)} ,

G(t) :=
{
T j(t)≥ κ2 log t , j ≤ |A| such that‖w‖Aj

≥ ω(µ̂t)
}
. (17)

Define ξ := (2‖w‖∞KC)−1δ(µ)r(S∗(µ), µ). We have that

P{NO(t) , G(t)}
(a)

≤ P
{
‖µ− µ̂t‖(S∗(µ)∪S∗(µ̂t)) > ξ , G(t)

}
≤ P

{
‖µ− µ̂t‖S∗(µ) > ξ , G(t)

}
+P

{
‖µ− µ̂t‖S∗(µ̂t) > ξ , G(t)

}
(b)

≤
∑

j:Aj∩S∗(µ̂t)6=∅

P
{
‖µ− µ̂t‖Aj

> ξ , T j(t)>κ2 log t
}

+

∑
j :Aj∩∈S∗(µ)6=∅

P
{
‖µ− µ̂t‖Aj

> ξ , G(t)
}

(c)

≤
∑

j:Aj∩S∗(µ̂t)6=∅

2 |Aj | t−c(ξ/κ(ξ))κ2 +
∑

j :Aj∩∈S∗(µ)6=∅

P
{
‖µ− µ̂t‖Aj

> ξ , G(t)
}
,

where: (a) follows from (12); (b) follows from the fact that wi ≥ ω(ν) trivially for all i∈ S∗(ν), for any vector

ν ∈RN ; and (c) follows from (10).

Fix j such that Aj ∩S∗(µ) 6= ∅. For such an assortment we have that

P
{
‖µ− µ̂t‖Aj

> ξ , G(t)
}
≤ P

{
‖µ− µ̂t‖Aj

> ξ , T j(t)≥ κ2 log t , G(t)
}

+

P
{
T j(t)<κ2 log t , G(t)

}
.

The first term on the right-hand-side above can be bounded using (10). For the second one, note that

{T j(t)<κ2 log t , G(t)} ⊆
{
‖w‖Aj

<ω(µ̂t), G(t)
}

. Let µ̃ ∈RN be such that µ̃i = µi for all i ∈ S∗(µ) \S∗(µ̂t),

and µ̃i = µ̂t,i otherwise. We have that

{
‖µ− µ̂t‖S∗(µ̂t) ≤ ξ

} (a)

⊆ {r(S∗(µ̂t), µ̂t)< r(S∗(µ), µ̃)}
(b)

⊆
{
‖w‖Aj

≥ ω(µ̂t)
}
,

where (a) follows from (11), and (b) follows from noting that µ̃ makes S∗(µ) optimal, hence products in

Aj ∩S∗(µ) are potentially optimal under µ̂t. This implies that
{
‖w‖Aj

<ω(µ̂t)
}
⊆
{
‖µ− µ̂t‖S∗(µ̂t) > ξ

}
, i.e.,

P
{
T j(t)<κ2 log t , G(t)

}
≤ P

{
‖w‖Aj

<ω(µ̂t), G(t)
}
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≤ P
{
‖µ− µ̂t‖S∗(µ̂t) > ξ , G(t)

}
≤

∑
k :Ak∩S∗(µ̂t)6=∅

P{‖µ− µ̂t‖Ak
> ξ , G(t)}

≤
∑

k :Ak∩S∗(µ̂t)6=∅

2 |Ak| t−c(ξ/κ(ξ))κ2 ,

where the last step follows from (10). Using the above we have that

P{NO(t) , G(t)} ≤
∑

j:Aj∩S∗(µ̂t)6=∅

2 |Aj | t−c(ξ/κ(ξ))κ2 +

∑
j :Aj∩∈S∗(µ)6=∅

2 |Aj | t−c(ξ/κ(ξ))κ2 +
∑

k :Ak∩S∗(µ̂t)6=∅

2 |Ak| t−c(ξ/κ(ξ))κ2


≤ 2C2(2 +C)t−c(ξ/κ(ξ))κ2 . (18)

On the other hand, we have that

P{NO(t) , G(t)c} ≤
∑

j :‖w‖Aj
≥ω(µ)

P{St =Aj , G(t)c}+
∑

j :‖w‖Aj
<ω(µ)

P{St =Aj , G(t)c} .

For the first term above, we have from the policy specification that

T∑
u=1

∑
j :‖w‖Aj

≥ω(µ)

P{Su =Aj , G(u)c} ≤ dN/Ce (κ2 logT + 1) . (19)

To analyze the second term, fix j such that ‖w‖Aj
<ω(µ), and define L(t) as the last customer (previous to

customer t) to whom the empirical optimal assortment (according to estimated mean utilities) was offered.

That is

L(t) := sup{u≤ t− 1 : G(u)} ,

with G(u) given in (17). Note that L(t)∈ {t−b|A|κ2 log tc, . . . , t− 1} for t≥ τ , where τ is given by

τ := inf
{
u≥ 1 : log(u−b|A|κ2 loguc) +κ−1

2 > logu
}
.

Consider t≥ τ and u∈ {t−b|A|κ2 log tc, . . . , t− 1}. Then

P{St =Aj , G(t)c , L(t) = u} ≤ P
{
‖w‖Aj

≥ ω(µ̂t) , G(t)c , G(u)
}

≤ P{G(u),NO(u)}+P
{
‖w‖Aj

≥ ω(µ̂t) , G(t)c , G(u),NO(u)c
}

≤ P{G(u),NO(u)}+P{G(u) , NO(u)c , N (µ̂u) 6=N (µ)}+

P{‖w‖Aj
≥ ω(µ̂t) , G(u) , NO(u)c , N (µ̂u) =N (µ)}. (20)

The first term in (20) can be bounded using (18). For the second, let ν̃ ∈ RN be such that ν̃i = µ̂u,i for

i∈ S∗(µ). Then, for any S ∈ S, one has that

r(S∗(ν̃), ν̃)− r(S, ν̃) ≥ r(S∗(ν), ν̃)− r(S, ν̃)
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≥ r(S∗(ν), ν)− r(S, ν̃)−‖w‖∞KC‖µ− µ̂u‖S∗(µ)

≥ r(S∗(ν), ν)− r(S,ν)− 2‖w‖∞KC‖µ− µ̂u‖S∗(µ),

where ν ∈RN is such that νi = µi for i ∈ S∗(µ) and νi = ν̃i otherwise. The last two inequalities make use of

(11). Define

δ := (2‖w‖∞KC)−1 inf
{
r(S∗(ν), ν)− r(S,ν) : v ∈RN , νi = µi for i∈ S∗(µ) , S ∩N (µ) 6= ∅

}
> 0.

We conclude that {N (µ̂u)⊂N (µ) , NO(u)c} ⊆
{
‖µ− µ̂u‖S∗(µ) > δ , NO(u)c

}
. Repeating the argument

above, one has that {N (µ)⊂N (µ̂u) , NO(u)c} ⊆
{
‖µ− µ̂u‖S∗(µ) > δ , NO(u)c

}
, where

δ := (2‖w‖∞KC)−1 sup
{

inf {r(S∗(ν), ν)− r(S,ν) : S 6= S∗(ν)} : v ∈RN , νi = µi for i∈ S∗(µ)
}
> 0.

Define δ := min
{
δ, δ
}

. (Note that δ > 0, provided that {i∈N :wi = ω(µ)}= ∅.) One has that

P{G(u) , NO(u)c , N (µ) 6=N (µ̂u)}
(a)

≤ P
{
‖µ− µ̂u‖S∗(µ) ≥ δ , T k(t) + 1≥ κ2 log t , ∀k s.t. Ak ∩S∗(µ) 6= ∅

}
≤

∑
k:Ak∩S∗(µ)6=∅

P
{
‖µ− µ̂u‖Ak

≥ δ , T k(t) + 1≥ κ2 log t
}

(b)

≤ D t−c(δ/κ(δ))κ2 ,

where (a) follows from noting that T k(t) ≥ T k(u) ≥ κ2 logu ≥ κ2 log t− 1 for k such that Ak ∩ S∗(µ) 6= ∅,

(b) follows from (10), and D is a positive and finite constant. For the third term in (20), define the event

Ξ :=
{
‖w‖Aj

≥ ω(µ̂t) , G(u) , NO(u)c , N (µ̂u) =N (µ)
}

.

P{Ξ} = P{Ξ , S∗(µ̂t) = S∗(µ)}+P{Ξ , S∗(µ̂t) 6= S∗(µ)} .

From the arguments leading to the bound for the second term in (20), one has that

P{Ξ , S∗(µ̂t) = S∗(µ)} ≤D t−c(δ/κ(δ))κ2 .

On the other hand, one has that

P{Ξ , S∗(µ̂t) 6= S∗(µ)} ≤ P{Ξ , S∗(µ̂t) 6= S∗(µ) , N (µ)∩S∗(µ̂t) = ∅}+

P{Ξ , S∗(µ̂t) 6= S∗(µ) , N (µ)∩S∗(µ̂t) 6= ∅} . (21)

For bounding the first term above, note that N (µ)∩S∗(µ̂t) = ∅ implies that T k(t)≥ κ2 log t−1 for all k such

that Ak ∩S∗(µ̂t) 6= ∅. Thus, the arguments leading to (18) imply that

P{Ξ , S∗(µ̂t) 6= S∗(µ) , N (µ)∩S∗(µ̂t) = ∅} ≤
∑

k:Ak∩S∗(µ̂t)6=∅

P
{
‖µ− µ̂t‖Ak

> ξ , T k(t)>κ2 log t− 1
}

+
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∑
k:Ak∩S∗(µ)6=∅

P
{
‖µ− µ̂t‖Ak

> ξ , T k(t)>κ2 log t− 1
}

≤ D′t−c(ξ/κ(ξ))κ2 ,

for a finite and positive constant D′. For the second term in (21), note that

{
S∗(ν)∩N (µ) 6= ∅ , v ∈RN such that νi = µ̂t,i ∀ i∈ S∗(µ)

}
⊆
{
‖µ̂t−µ‖s∗(µ) > δ

}
,

hence, one has that

P{Ξ , S∗(µ̂t) 6= S∗(µ) , N (µ)∩S∗(µ̂t) 6= ∅} ≤ P
{
‖µ̂t−µ‖∞s∗(µ)> δ , T k(t)≥ κ2 log t− 1 , ∀k s.t. Ak ∩S∗(µ) 6= ∅

}
≤

∑
k:Ak∩S∗(µ)6=∅

P
{
‖µ̂t−µ‖∞Ak > δ , T k(t)≥ κ2 log t− 1

}
≤ D′′t−c(δ/κ(δ))κ2 ,

for some finite and positive constant D′′, where the last inequality follows from (10). Putting the bounds

above together, (20) becomes

P{St =Aj , G(t)c} ≤ D′′′t−ξ̃κ2 ,

for some finite and positive constant D′′′, where ξ̃ := min{c(ξ)/κ(ξ), c(δ)/κ(δ), c(δ)/κ(δ)}. The bound above,

and those in (19) and (18), imply that for κ2 > ξ̃
−1, one has

Rπ(T,µ) ≤
T∑
t=1

P{NO(t),G(t)}+

T∑
t=1

P{NO(t) , G(t)c}

≤
T∑
t=1

P{NO(t),G(t)}+

T∑
t=1

∑
j :‖w‖Aj

≥r(S∗(µ),µ)

P{St =Aj , G(t)c}+

T∑
t=1

∑
j :‖w‖Aj

<r(S∗(µ),µ)

P{St =Aj , G(t)c}

≤
∞∑
t=1

C2(2 +C)u−c(ξ/κ(ξ))κ2 + dN/Ce(κ2 log(T ) + 1) +

∞∑
t=1

∑
j :‖w‖Aj

<r(S∗(µ),µ)

D′′′t−ξ̃κ2

(a)

≤ d
∣∣N ∣∣/Ceκ2 logT +K2,

for a finite constant K2 <∞, where (b) uses the summability of the series implied by (20). Taking κ2 > ξ̃
−1

provides the desired result. �
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Proof of Corollary 1. Fix i∈N , and fix j = {k≤ |A| : i∈Ak}. We have that

Eπ[Ti(T )] ≤ τ +

T∑
t=τ+1

P[NO(t) , G(t)] +P[St =Aj , G(t)c]

≤ K2,

for a finite constant K2, where we have used the summability of the series implied by (20). This completes

the proof. �

Proof of Theorem 4. The proof is an adaptation of the one for Theorem 3, customized for the MNL choice

model. However, we provide a explanation version of each step with the objective of highlighting how the

structure of the MNL model is exploited.

Step 1. We will need the following side lemma, whose proof is deferred to Appendix D.

Lemma 2. Fix i∈N . For any n≥ 1 and ε > 0 one has

P

{∣∣∣∣∣
t−1∑
u=1

(
Zuj −E

{
Zuj
})

1{i∈ Su}

∣∣∣∣∣≥ εTi(t) , Ti(t)≥ n
}
≤ 2 exp(−c(ε)n),

for j ∈ {i,0} and a positive constant c(ε)<∞.

Consider ε > 0 and fix t ≥ 1 and i ∈ N . Define % = 1/2 (1 +C‖w‖∞)−1: one has that p0(S,µ) ≥ 2%, for all

S ∈ S. For n≥ 1 define the event Ξ := {|νi− ν̂i,t|> ε , Ti(t)≥ n}. We have that

P{Ξ} = P

{∣∣∣∣∣
∑t−1

u=1Z
u
i 1{i∈ Su}∑t−1

u=1Z
u
0 1{i∈ Su}

− νi

∣∣∣∣∣> ε , Ti(t)≥ n
}

≤ P

{∣∣∣∣∣
∑t−1

u=1Z
u
i 1{i∈ Su}∑t−1

u=1Z
u
0 1{i∈ Su}

− νi

∣∣∣∣∣> ε ,∣∣∣∣∣
t−1∑
u=1

(Zu0 −E{Zu0 })1{i∈ Su}

∣∣∣∣∣<%Ti(t) , Ti(t)≥ n
}

+

P

{∣∣∣∣∣
t−1∑
u=1

(Zu0 −E{Zu0 })1{i∈ Su}

∣∣∣∣∣≥ %Ti(t) , Ti(t)≥ n
}

(a)

≤ P

{∣∣∣∣∣
t−1∑
u=1

(Zui −Zu0 νi)1{i∈ Su}

∣∣∣∣∣> ε%Ti(t) , Ti(t)≥ n
}

+ 2 exp(−c(%)n)

(b)

≤ P

{∣∣∣∣∣
t−1∑
u=1

(Zui −E[Zui ])1{i∈ Su}

∣∣∣∣∣> ε%/2Ti(t) , Ti(t)≥ n
}

+

P

{∣∣∣∣∣
t−1∑
u=1

(Zu0 −E[Zu0 ])1{i∈ Su}

∣∣∣∣∣> ε%/(2νi)Ti(t) , Ti(t)≥ n
}

+ 2 exp(−c(%)n)

≤ 2 exp(−c(ε%/2)n) + 2 exp(−c(ε%/(2νi))n) + 2 exp(−c(%)n).

where: (a) follows from Lemma 2 and from the fact that∣∣∣∣∣
t−1∑
u=1

Zu0 1{i∈ Su}

∣∣∣∣∣ ≥
∣∣∣∣∣
t−1∑
u=1

E[Zu0 ]1{i∈ Su}

∣∣∣∣∣−
∣∣∣∣∣
t−1∑
u=1

(Zu0 −E[Zu0 ])1{i∈ Su}

∣∣∣∣∣≥ %Ti(t),
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when
∣∣∣∑t−1

u=1 (Zu0 −E{Zu0 })1{i∈ Su}
∣∣∣<%Ti(t); and (b) follows from the fact that EZui = νiEZu0 , for all u≥ 1

such that i∈ Su, i∈N . For ε > 0 define

c̃(ε) := min{c(ε%/2) , c(ε%/(2‖ν‖N )) , c(%)} .

From above we have that for ε > 0

P{|νi− ν̂i,t|> ε , Ti(t)≥ n} ≤ 6 exp(c̃(ε)n), (22)

for all i∈N .

Step 2. Consider two vectors υ, η ∈RN+ , and define υ̃ := lnυ and η̃ := lnη. From (7), for any S ∈ S one has

∑
i∈S

υi(wi− r(S, υ̃)) = r(S, υ̃)∑
i∈S

ηi(wi− r(S, υ̃)) ≥ r(S, υ̃)−C‖w‖∞‖υ− η‖S∑
i∈S

ηi(wi− (r(S, υ̃)−C‖w‖∞‖υ− η‖S) ≥ r(S, υ̃)−C‖w‖∞‖υ− η‖S

This implies that

r(S, η̃)≥ r(S, υ̃)−C‖w‖∞‖η− υ‖S. (23)

From the above we conclude that

{S∗(µ) 6= S∗(µ̂t)} ⊆
{
‖ν− ν̂t‖S∗(µ)∪S∗(µ̂t) ≥ (2‖w‖∞C)−1δ(ν)r(S∗(µ), µ)

}
, (24)

where with a slight abuse of notation δ(ν) refers to the minimum optimality gap, in terms of the adjusted

terms exp(µ).

Step 3. Let NO(t) denote the event that a non-optimal assortment is offered to customer t, and G(t) the

event that there is no “forced testing” on customer t. That is

NO(t) := {St 6= S∗(µ)} ,

G(t) := {Ti(t)≥ κ3 log t , ∀ i∈N such thatwi ≥ r(S∗(µ̂t), µ̂t)} .

Define ξ := (2‖w‖∞C)−1δ(ν)r(S∗(µ), µ). We have that

P{NO(t) , G(t)}
(a)

≤ P
{
‖ν− ν̂t‖(S∗(µ)∪S∗(µ̂t)) > ξ , G(t)

}
≤ P

{
‖ν− ν̂t‖S∗(µ̂t) > ξ , G(t)

}
+P

{
‖ν− ν̂t‖S∗(µ) > ξ , G(t)

}
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(b)

≤
∑

i∈S∗(µ̂t)

P{|νi− ν̂i,t|> ξ , Ti(t)≥ κ3 log t}+
∑

i∈S∗(µ)

P{|νi− ν̂i,t|> ξ , G(t)}

(c)

≤ 6Ct−κ3c̃(ξ) +
∑

i∈S∗(µ)

P{|νi− ν̂i,t|> ξ , G(t)}

where: (a) follows from (24); (b) follows from the fact that wi ≥ r(S∗(η), η) for all i ∈ S∗(η) and for any

vector η ∈RN (see Step 2 above); and (c) follows from (22). Fix i∈ S∗(µ). We have that

P{|νi− ν̂i,t|> ξ,G(t)} ≤ P{|νi− ν̂i,t|> ξ , Ti(t)≥ κ3 log t}+P{G(t), Ti(t)<κ3 log t} .

The first term above can be bounded using (22). Regarding the second one, note that {G(t) , Ti(t)<κ3 log t} ⊆

{wi < r(S∗(µ̂t), µ̂t)}, and that

wi− r(S∗(µ), µ)δ(ν)/2 ≥ r(S∗(µ), µ)(1− δ(ν)/2)

(a)

≥ r(S∗(µ̂t), µ)

(b)

≥ r(S∗(µ̂t), µ̂t)−‖w‖∞C‖ν− ν̂t‖S∗(µ̂t),

where (a) follows from the definition of δ(ν), and (b) follows from (23). The above implies that

{wi < r(S∗(µ̂t), µ̂t)} ⊆
{
‖ν− ν̂t‖S∗(µ̂t) > ξ

}
, i.e.,

P{Ti(t)<κ3 log t , G(t)} ≤ P{wi < r(S∗(µ̂t), µ̂t),G(t)}

≤ P
{
‖ν− ν̂t‖S∗(µ̂t) > ξ , G(t)

}
≤

∑
j∈S∗(µ̂t)

P{|νj − ν̂j,t|> ξ , G(t)}

≤ 6Ct−κ3c̃(ξ),

where the last step follows from (22). Using the above we have that

P{NO(t) , G(t)} ≤ 6C(1 +C)t−κ3c̃(ξ). (25)

From here, we have that

P{NO(t) , G(t)c} ≤
∑

i :wi<r∗(S∗(µ),µ)

P{i∈ St , G(t)c}+
∑

i :wi≥r∗(S∗(µ),µ)

P{i∈ St , G(t)c}

(a)

≤
∑

i :wi<r∗(S∗(µ),µ)

P{i∈ St , G(t)c}+
∣∣N ∣∣ (κ3 logT + 1) .+

∑
i∈S∗(µ)

P{i∈ St , G(t)c}
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where (a) follows from the specification of the policy. Fix i such that wi < r(S
∗(µ), µ), and define L(t) as the

last customer (previous to customer t) to whom the empirical optimal assortment, according to estimated

mean utilities, was offered. That is

L(t) := sup{u≤ t− 1 : G(u)} .

Note that L(t)∈ {t−bNκ3 log tc, . . . , t− 1} for t≥ τ , where τ is given by

τ := inf
{
u≥ 1 : log(u−bNκ3 loguc) +κ−1

3 > logu
}
.

Consider t≥ τ and u∈ {t−bNκ3 log tc, . . . , t− 1}. Then

P{i∈ St , G(t)c , L(t) = u} ≤ P{wi ≥ r(S∗(µ̂t), µ̂t) , G(t)c , L(t) = u}
(a)

≤ P{wi ≥ r(S∗(µ̂t), µ̂t) , G(t)c , G(u)}

≤ P{G(u),NO(u)}+P{wi ≥ r(S∗(µ̂t), µ̂t) , G(t)c , G(u),NO(u)c}
(b)

≤ 6C(1 +C)u−κ3c̃(ξ) +

P{wi ≥ r(S∗(µ̂t), µ̂t) , Tj(t)≥ κ3 log t ∀ j ∈ S∗(µ)} ,

where (a) follows from {L(t) = u} ⊆ {G(u)}, and (b) from (25) and the fact that offering S∗(µ) to customer

u implies (from G(u)) that Tj(u)≥ κ3 logu and therefore (from t≥ τ) that Tj(t)≥ κ3 log t, for all j ∈ S∗(µ).

From (23) we have that

r(S∗(µ), µ̂t)−wi ≥ r(S∗(µ), µ)−‖w‖∞C‖ν− ν̂t‖S∗(µ)−wi.

Define δ := inf {(‖w‖∞C)−1 (1−wi/r(S∗(µ), µ))> 0 : i∈N}. From the above, we have that

{wi ≥ r(S∗(µ̂t), µ̂t)} ⊆ {wi ≥ r(S∗(µ), µ̂t)} ⊆
{
‖ν− ν̂t‖S∗(µ) > δr(S

∗(µ), µ)
}
.

Define δ̄ := δr(S∗(µ), µ), and the event Ξ =wi ≥ r(S∗(µ̂t), µ̂t) , Tj(t)≥ κ3 log t ∀ j ∈ S∗(µ). It follows that

P{Ξ} ≤ P
{
‖ν− ν̂t‖S∗(µ) > δ̄ , Tj(t)≥ κ3 log t ∀ j ∈ S∗(µ)

}
≤

∑
i∈S∗(µ)

P
{
|νi− ν̂t,i|> δ̄ , Ti(t)≥ κ3 log t

}
≤ 6Ct−κ3c̃(δ̄).

Using the above one gets that, when κ3 > c̃(ξ)
−1

P{i∈ St , G(t)c , L(t) = u} ≤ 6C(1 +C)u−κ3c̃(ξ) + 6Ct−κ3c̃(δ̄)
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≤ 6C(1 +C)(t−bNκ3 log tc)−κ3c̃(ξ) + 6Ct−κ3c̃(δ̄).

Since the right hand side above is independent of u, one has that

P{i∈ St , G(t)c} ≤ 6C(1 +C)(t−bNκ3 log tc)−κ3c̃(ξ) + 6Ct−κ3c̃(δ̄), (26)

for all i∈N such that wi < r(S
∗(µ), µ), and t≥ τ .

Now fix i∈ S∗(µ), and consider t≥ τ , u∈ {t−bNκ3 log tc, . . . , t− 1} and κ3 > c̃(ξ)
−1. Then

P{i∈ St , G(t)c , L(t) = u} ≤ P{Ti(t)<κ3 log t , G(t)c , L(t) = u}
(a)

≤ P{Ti(t)<κ3 log t , G(u)}

≤ P{G(u),NO(u)}+P{Ti(t)<κ3 log t , G(u) , NOc(u)}
(b)

≤ 6C(1 +C)u−κ3c̃(ξ)

≤ 6C(1 +C)(t−bNκ3 log tc)−κ3c̃(ξ),

where (a) follows from {L(t) = u} ⊆ {G(u)}, and (b) from (25) and the fact that offering S∗(ν) to customer

u implies (from G(u)) that Ti(u)≥ κ3 logu and therefore (from t≥ τ) that Ti(t)≥ κ3 log t. Since the right

hand side above is independent of u, one has that

P{i∈ St , G(t)c} ≤ 6C(1 +C)(t−bNκ3 log tc)−κ3c̃(ξ), (27)

for all i∈ S∗(µ) and t≥ τ .

Considering κ3 >max
{
c̃(ξ)−1 , c̃(δ̄)−1

}
results in the following bound for the regret

Rπ(T, ν) ≤
T∑
t=1

P{NO(t),G(t)}+

T∑
t=1

P{NO(t) , G(t)c}

(a)

≤ 6C(1 +C)

∞∑
t=1

t−κ3c̃(ξ) +
∣∣N \S∗(µ)

∣∣κ3(logT + 1) + τ +

6C |N ∪S∗(µ)|
∞∑
t=τ

(1 +C)(t−κ3c̃(ξ) + (t−bNκ3 log tc)−κ3c̃(ξ)) + t−κ3c̃(δ̄)

(b)

≤
∣∣N \S∗(µ)

∣∣κ3 logT +K3,

for a finite constant K3 <∞, where (a) follows from (25), (26) and (27), and (b) uses the summability of the

series, implied by the terms in (25), (26) and (27). Taking κ3 >max
{
c̃(ξ)−1 , c̃(δ̄)−1

}
provides the desired

result. �

Proof of Corollary 2. Fix i∈N . We have that

Eπ[Ti(T )] ≤ τ +

T∑
t=τ+1

P[NO(t) , G(t)] +P[i∈ St , G(t)c]
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≤ K3 <∞,

for a finite constant K3, where we have used the summability of the terms in (25) and (26). This concludes

the proof. �

Appendix D: Proof of Auxiliary Results

Proof of Lemma 1. Fix i∈N . For θ > 0 consider the process {Mt(θ) : t≥ 1}, defined as

Mt(θ) := exp

(
t∑

u=1

1{Su =Aj} [θ(Zui − pi(Aj , µ))−φ(θ)]

)
,

where

φ(θ) := logE{exp(θ (Zui − pi(Aj , µ)))}=−θpi(Aj , µ) + log(pi(Aj , µ) exp(θ) + 1− pi(Aj , µ)),

and Aj ∈A such that i∈Aj . One can check that Mt(θ) is an Ft-martingale, for any θ > 0 (see Section 3 for

the definition of Ft). Note that

exp

(
θ

t∑
u=1

1{Su =Aj} ((Zui − pi(Aj , µ))− ε)

)
=
√
Mt(2θ) exp

(
t∑

u=1

1{Su =Aj} (φ(2θ)/2− θε)

)
. (28)

Let χi denote the event we are interested in. That is

χi :=

{
t−1∑
u=1

(Zui − pi(Aj , µ))1{Su =Aj} ≥ T j(t)ε , T j(t)≥ n

}
.

Let ψ(t) denote the choice made by the t-th user. Using the above one has that

P{χi} (a)
≤ E

{
exp

(
θ

t−1∑
u=1

1{Su =Aj} (Zui − pi(Aj , µ)− ε)

)
; Ti(t)≥ n

}

(b)
≤

(
E{Mt−1(2θ)}E

{
exp

(
t−1∑
u=1

1{ψ(u) = i} (φ(2θ)− 2θε)

)
; Ti(t)≥ n

})1/2

(c)
≤

(
E

{
exp

(
t−1∑
u=1

1{ψ(u) = i} (φ(2θ)− 2θε)

)
; Ti(t)≥ n

})1/2

,

where: (a) follows from Chernoff’s inequality; (b) follows from the Cauchy-Schwartz inequality and (28); and

(c) follows from the properties of Mt(θ). Note that when ε < (1− pi(Aj , µ)) minimizing φ(θ)− θε over θ > 0

results on

θ∗ := log

(
1 +

ε

pi(Aj , µ)(1− pi(Aj , µ)− ε)

)
> 0,

with

c(ε) := φ(2θ∗)/2− θ∗ε < 0.
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Using this we have

P

{
t−1∑
u=1

(Zui − pi)1{Su =Aj} ≥ T j(t)ε , T j(t)≥ n

}
≤
√

E{exp(−2c(ε)Ti(t)); Ti(t)≥ n}

≤ exp(−c(ε)n).

Using the same arguments one has that

P

{
t−1∑
u=1

(Zui − pi)1{Su =Aj} ≤−T j(t)ε , T j(t)≥ n

}
≤ exp(−c(ε)n).

The result follows from the union bound. �

Proof of Lemma 2. The proof follows almost verbatim the steps in the proof of Lemma 1. Fix i∈N . For

θ > 0 consider the process
{
M j
t (θ) : t≥ 1

}
, defined as

M j
t (θ) := exp

(
t∑

u=1

1{i∈ Su} [θ(Zuj − pj(Su, µ))−φju(θ)]

)
j ∈ {i,0} ,

where

φju(θ) := logE
{

exp(θ(Zuj − pj(Su, µ)))
}

= logE{exp(−θpj(Su, µ)) (exp(θ)pj(Su, µ) + 1− pj(Su, µ))} .

One can verify that M j
t (θ) is an Ft-martingale, for any θ > 0 and j ∈ {i,0} (see §3 for the definition of Ft).

Fix j ∈ {i,0} and note that

exp

(
θ

t∑
u=1

1{i∈ Su} ((Zuj − pj(Su, µ))− ε)

)
=

√
M j
t (2θ) exp

(
t∑

u=1

1{i∈ Su} (φju(2θ)/2− θε)

)
. (29)

Put

χj :=

{
t−1∑
u=1

(
Zuj − pj(Su, µ)

)
1{i∈ Su} ≥ Ti(t)ε , Ti(t)≥ n

}
.

Let ψ(t) denote the choice made by the t-th customer. Using the above one has that

P{χj} (a)
≤ E

{
exp

(
θ

t−1∑
u=1

1{i∈ Su} (Zuj − pj(Su, µ)− ε)

)
; Ti(t)≥ n

}

(b)
≤

(
E
{
M j
t−1(2θ)

}
E

{
exp

(
t−1∑
u=1

1{ψ(u) = j , i∈ Su} (φju(2θ)− 2θε)

)
; Ti(t)≥ n

})1/2

(c)
≤

(
E

{
exp

(
t−1∑
u=1

1{ψ(u) = j , i∈ Su} (φju(2θ)− 2θε)

)
; Ti(t)≥ n

})1/2

,

where; (a) follows from Chernoff’s inequality; (b) follows from the Cauchy-Schwartz inequality and (28); and

(c) follows from the properties of M j
t (θ). Note that φjs(·) is continuous, φjs(0) = 0, (φjs)

′(0) = 0, and φjs(θ)→∞
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when θ→∞, for all s≥ 1 . This implies that there exists a positive constant c(ε)<∞ (independent of n),

and a θ∗ > 0, such that φjs(2θ
∗)− 2θ∗ε <−2c(ε) for all s≥ 1. Using this we have that

P

{
t−1∑
u=1

(
Zuj − pj(Su, µ)

)
1{i∈ Su} ≥ Ti(t)ε , Ti(t)≥ n

}
≤
√
E{exp(−2c(ε)Ti(t)); Ti(t)≥ n}

≤ exp(−c(ε)n).

Using the same arguments one has that

P

{
t−1∑
u=1

(
Zuj − pj(Su, µ)

)
1{i∈ Su} ≤−Ti(t)ε , Ti(t)≥ n

}
≤ exp(−c(ε)n).

The result follows from the union bound. �


