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Optimal Exploitation of a Mineral Resource
under Stochastic Market Prices

René Caldentey, Rafael Epstein, and Denis Sauré

Abstract

In this chapter we study the operation and optimal exploitation of a mining project.
We model the project as a collection of minimal extraction units or blocks, each with
its own mineral composition and extraction costs. The decision maker’s problem is
to maximize the economic value of the project by controlling the sequence and time
of extraction, as well as investing in costly capacity expansions. We use a real op-
tions approach based on contingent claim analysis and risk-neutral valuation to solve
the problem for a fixed extraction sequence, taking as an input the stochastic pro-
cess that regulates the time dynamics of futures prices. Our solution method works
in two steps. First, we consider a fixed production capacity and use approximate
dynamic programming to compute upper and lower bounds on the value function
in terms of the spot price and mineralogical characteristics of the blocks. We use
these bounds to obtain an operating policy that is asymptotically optimal as the spot
price grows large. In the second step, we extend this asymptotic approximation to
handle capacity expansion decisions. Our numerical computations suggest that the
proposed policy is near optimal. Finally, we test our methodology in a setting based
on data from a real project at Codelco (the worlds’s largest copper producer).

1.1 Introduction

In this chapter, we develop a real options model for optimizing the long-term ex-
ploitation of multi-sector mining projects. This research is part of an ongoing project

Stern School of Business, New York University, e-mail: rcaldent@stern.nyu.edu · Indus-
trial Engineering Department, University of Chile, e-mail: repstein@dii.uchile.cl, e-mail:
dsaure@dii.uchile.cl

1



2 René Caldentey, Rafael Epstein, and Denis Sauré

with Codelco–the World’s largest copper producer–and its main theme has been the
development of a long-term decision support system for production and capacity
expansion plans.

Chile is the world’s largest copper producer with an annual production reaching 5.7
million tons in 2013, followed by China with 1.7, and Peru with 1.2 [14]. Chile also
holds 28% of the world’s copper reserves, of which 17% is held by state-owned
Codelco. Unsurprisingly, copper is one of Chile’s most important industries, ac-
counting for approximately 20% and 50% of the country’s GDP and total exports,
respectively. For countries like Chile ensuring an efficient management of their nat-
ural resources is a strategic matter. Most of the complexity associated with such a
task is due to the combination of two factors: (i) large-scale operations involving
multiple inter-temporal decisions and (ii) an uncertain production and market en-
vironment. In the copper industry, production uncertainty relates to factors such as
heterogeneity of the mineral composition and equipment breakdowns, while mar-
ketplace uncertainty is driven by demand volatility and the stochastic evolution of
market prices.

Decision-support systems based on large-scale optimization models have been suc-
cessfully implemented in the copper sector (see e.g., [21] for a recent example in the
Chilean copper industry), as well as in other natural resource industries (e.g., [22] in
the forest industry, or [4] and [20] in the crude oil industry). By using these systems,
managers evaluate alternative operational policies striving to select those that max-
imize the short-term and long-term profitability of their businesses. Most of these
models, however, operate under deterministic input, based on average estimates of
market prices and demand. As a consequence, non-adaptive operational and invest-
ment strategies, based on the so-called discounted cashflow valuation methodology,
are predominately used by these companies, despite their failure to capture the deci-
sion maker’s ability to dynamically react to a stochastically changing environment
(e.g., see [37]). As a result, companies operate under suboptimal extraction and in-
vestment plans.

The real options approach overcomes these limitations of the discounted cashflow
criteria by explicitly incorporating the dynamic nature of the decision-making pro-
cess and the stochastic behavior of output prices and cash flows. Early research on
the subject dates back to the ‘80s. One of the earliest example are Mc Donald and
Siegel [35] who studied the optimal operation of a project under stochastic revenues
and production costs when a shut-down option is available. For a comprehensive
exposition on the real options approach we refer the reader to [19], [50] and [48].

In the context of natural resource management, there is an extensive real options lit-
erature that focuses on operational decisions such as determining optimal extraction
policies or evaluating the options of temporarily closing-up, re-opening, or aban-
doning a specific project (e.g., [1], [13], [18], [34] [38], [39], [44] and [47]). An
important aspect of this literature is the way in which risk over commodities’ spot
prices is incorporated in the valuation process. Specifically, the existence of a well-
established futures market allows the use of risk-neutral (or arbitrage-free) valuation
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techniques similar to those used for valuing financial derivatives (e.g., [5] and [31]).
An early example of this risk-neutral approach is the work of Brennan and Schwartz
[7] who consider optimal extraction policies for a non-renewable natural resource.
Other examples are [15], [16], [30] and [49].

Our work builds on Brennan and Schwartz [7] in the way we model the stochastic
evolution of spot prices and in the resulting risk-neutral valuation approach. On the
other hand, our work distinguishes itself from previous formulations in the way we
model the extraction process. Most of this previous research either favors mathe-
matical tractability by simplifying the production process, or considers realistic but
intractable production models that can only be solved numerically. In this chapter,
we develop a real options model that addresses some of the limitations of previous
approaches, preserving tractability. Specifically, and consistent with current prac-
tice in the industry (see e.g., [21]), we model the mining project as a collection of
minimal extraction blocks with different mineral composition and extraction costs.
As a result, a production plan must specify an extraction sequence (that is, the or-
der in which blocks will be extracted and processed) as well as the timing of such
an extraction. We also model the option to invest in capacity expansions over time.
Finally, we use real data from a Chilean mining project to illustrate the application
of our methodology.

It is important to note that our model does not capture some relevant features of the
operations of a mining project. Most notoriously, we do not incorporate the switch-
ing costs of temporarily idling the project or of shutting it down permanently. How-
ever, these omissions are not particularly severe for large mining companies such as
Codelco that can reallocate resources when a particular project is suspended. An-
other limitation of our model is its focus on calculating the economic value of a pre-
specified sequence of blocks as opposed to determining such an optimal sequence.
Two reasons support this modeling feature. First, the problem of determining an
optimal dynamic (adaptive) extraction sequence is a stochastic sequencing problem
in a directed network, which is difficult to solve exactly due to the curse of dimen-
sionality. In this regard, we view this research as a necessary building block for
tackling the more general stochastic network formulation. Second, our experience
at Codelco suggests that in practice mining companies are interested in a relatively
small set of predetermined extraction sequences. Hence, managers of these firms
evaluate each of these extraction sequences and determine the one that maximizes
the economic value of the mining projects.

Because of our characterization of the production process and the incorporation
of stochastic market prices, our research contributes to narrow the gap between
the academic literature and current practice in the copper industry. For instance,
most market-leading mine planning optimization softwares (e.g., Whittle, Chronos,
MineMax, and NPV Scheduler; see e.g., [32]) operate with deterministic price paths
that cannot capture market risk. Also, it is worth highlighting that, although we focus
on copper mining operations, our model and results can be extended to the produc-
tion of other non-renewable natural resources, such as crude oil, natural gas, and
other types of mineral deposits.
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The rest of this chapter is organized as follows. Section 1.2 provides a description
of the exact model. In Section 1.3, we assume that production capacity is fixed and
we derive general properties of an optimal operating policy. We then derive a fam-
ily of approximations to the optimal value of the project that include valid lower
and upper bounds as special cases. We used these bounds to propose two simple
extraction policies and to derive an approximate operating policy that is asymptoti-
cally optimal as the spot price and/or production capacity grow large. We conclude
Section 1.3 with a set of numerical experiments that show the quality of our pro-
posed approximations. In Section 1.4 we extend the results of the previous section
to include capacity expansion decisions. Section 1.5 presents an application of our
methodology to identify an optimal extraction policy for El Diablo Regimiento, a
230 [million ton] project at Codelco. Conclusions and future research are discussed
in Section 1.6. Mathematical proofs are relegated to an Appendix, unless otherwise
noted.

1.2 Model Description

We begin this section with a brief description of the mining operational process and
then consider the dynamics of the spot copper prices. Subsequently, we describe
our mathematical formulation of the production process. Finally, we discuss the
risk-neutral valuation approach that we use to formulate the optimization problem
as a dynamic programming problem.

1.2.1 Mining Operations Description

Mining operations can be seen as a sequence of stages involving geological, extrac-
tion, concentration, and refining activities. Geological activities are necessary for
the discovery and characterization of new deposits. They are of great importance at
the early stages of exploration and design of the mine, and are continuously required
through the lifespan of a mining project for updating the geological characteristics
of the mineral. Extraction activities are required to feed the concentration plants,
and their structure depends on whether they are performed on an open pit mine or
on an underground mine.

For an open pit operation, mineral is extracted using controlled explosions on the
surface of the resource. After a blast, mineral is carried out of the pit by large trucks.
In underground mines, extraction is typically conducted at specific locations (extrac-
tions points) where the material is removed using a combination of controlled explo-
sions and gravity. In both settings, as mine sectors are located at different heights,
possibly overlapping each other, upper sectors must be extracted first for the extrac-
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tion to be feasible and safe. Further discussion on extracting methods can be found
in [2].

The grade (percentage of copper) of the extracted material is variable, but typi-
cally below 2.0%. The material with grade over a pre-determined cut-off threshold
goes though a sequence of size-reducing processes (both mechanical and chemical),
concentration and refinement, which output ore with 99.9% grade that is sold as a
commodity in the marketplace. Material with grade below the threshold is either
left in situ in the case of underground mines, or sent to dump deposits in the case
of open pit mines. Cut-off grade strategies are typically defined in the early stages
of the planning process using an approximate “opportunity” cost of the mineral (see
e.g. [33]).

Figure 1.1 shows schematically the entire mining operations process for the un-
derground case. Further discussion on exploration and geological activities can be
found in [16], while the concentration and refining operations are discussed in detail
in [9]. A description of the entire process can be found in [11].Epstein et al.: Optimizing Long-Term Production Plans in Copper Mines
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Figure 1. Description of underground mining operations.
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3.2. Open-Pit Mining

Open-pit mining is conceptually similar to underground
mining, except that the orebody is reached from above,
which requires removing plenty of overburden from the
soil. A preliminary definition of the regions to be mined
is done using geological models that take into account the
geometry of the pit and technical requirements (e.g., the
maximum slope to prevent the walls of the pit from col-
lapsing). The regions are called expansions, which are also
known as pushbacks or phases. In figurative terms, an

Figure 2. Description of open-pit mining operations.
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perforation and blasting, where the bench is separated from

and

Fig. 1.1 Mining process for an underground copper mine.
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1.2.2 Spot Prices

Copper’s spot price is a critical ingredient in the valuation of a mining project, as
it modulates project revenues, influencing extraction plans and capacity expansion,
among other decisions. In addition, the inherently stochastic behavior of the spot
price complicates the optimization and the evaluation of a project.

Traditionally, the early real options literature modeled commodity spot prices using
Geometric Brownian Motions (GBM). Empirical evidence, analytical tractability,
the unpredictability of the price path, and the early applications of GBM in mathe-
matical finance (e.g., [41], [5], [36]) are some of the main reasons behind this choice.
However, it has been recognized (e.g., [43], [49]) that many commodity prices ex-
hibit a mean-reverting trend that captures the natural market-equilibrium tendency
of these prices to revert towards a level that reflects production costs and compa-
nies’ flexibility to adjust production capacity (i.e., open/close projects) to balance
demand and supply in response to changing market conditions. For example, the
following mean reverting process is proposed by Schwartz [42]

dS t = κ (µ− ln(S t))S t dt +σS t dBt

to model the spot price S t of a commodity, where Bt a standard Brownian Motion.
(In what follows we assume that all relevant stochastic processes are embedded in
a filtered probability space (Ω,F ,Ft,P).) The speed of adjustment, κ, represents the
degree of mean reversion to the long-run adjusted mean µ while σ measures the
volatility of the price process. In a series of papers ([42], [30] and [43]), Schwartz
propose three variations of a mean-reverting stochastic model driven by one, two
and three factors. These models are empirically validated for copper, gold and crude
oil.

Despite being economically sound, mean-reverting processes do not systematically
dominate GBM models when it comes to statistically fitting the empirical data of
commodity prices. Dixit and Pindyck [19] test the GBM versus a mean-reverting
hypothesis using copper prices for the last 200 years and conclude that the mean
reversion hypothesis should be accepted. However, they also claim that the GBM
hypothesis cannot be rejected if only 30 to 40 years of data is included (see Figure
1.2). Similar conclusions are reported in [29] for ten different natural resources,
including copper. More recently, [27] and [28] analyze energy commodity prices (oil
and natural gas) and conclude that depending on the time period the GBM model
offers a better fit than a mean-reverting one.

In what follows, for clarity of exposition and mathematical tractability, we will adopt
the GBM framework, à la Brennan and Schwartz [7], to model the stochastic evo-
lution of copper’s spot price. We refer the interested reader to Chapter 3 in [26] and
to the recent monograph [45] for further discussion on the modeling of commodity
prices and their economic implications for project valuation.
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Fig. 1.2 Copper spot price evolution since 1950. (Source: London Metal Exchange)

1.2.3 Production Model

We adopt a continuous-time model to represent the operation of the mine, and as-
sume that exploration stages have been already completed. Hence, the decision
maker is mainly concerned with determining an optimal extraction and capacity
expansion plan for a fixed mining project with known mineral content and quality.

Consistent with current industry practice, we represent the mine as a collection of
mineral blocks, each having specific geological properties. These blocks represent
the minimal extraction units so that production decisions are made at the block level.
Executing a mining plan results in an extraction sequence for these blocks. However,
not all sequences are feasible due to technical or safety reasons. For instance, differ-
ent sectors of the mine are located at different elevations, usually overlapping with
each other. Due to safety reasons, extraction from upper sectors must be finished
before extraction from lower sectors can start. While the problem of identifying an
optimal sequence is an important and challenging one, in this chapter we assume a
fixed and feasible extraction sequence is given and focus exclusively on determining
the timing of the extraction and how production capacity should be expanded. We
note, however, that fixing the sequence of extraction is not a serious limitation as
it is often the case in practice that the decision maker only wants to evaluate a few
predetermined sequences. In Proposition 4 below we propose an efficient method
to compare alternative extraction sequences. We also discuss a concrete example of
this scenario-based valuation approach in Section 1.5.

From a mathematical standpoint, we model the mining sector as a collection of N
blocks. Without loss of generality, and for notational convenience, we use a back-
ward indexing of these blocks {N, . . . ,1} so that block N is the first block to be ex-
tracted and block 1 is the last one. We define Q j and L j to be the amount of material
and average grade (% of copper), respectively, available in block j = 1, . . . ,N.

A production policy has two basic components: (i) the time at which each block
starts being extracted, and (ii) the available processing capacities at these extraction
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epochs. We denote byT :=(τ1, . . . , τN) the sequence of extraction times of the blocks.
That is, τ j is time at which block j starts being extracted. (We define τN+1:=0.)
Given the extraction times T , we denote by K :=(K1, . . . ,KN) the vector of produc-
tion capacities.2 The j-th component of this vector, K j, is the available production
capacity at time t = τ j when block j starts extraction. For completeness, we define
KN+1 to be the initial level of capacity.

For simplicity, we assume that the decision maker does not increase production ca-
pacity during the extraction of a block, and expansion decisions are only made in
between block extractions. In addition, we assume that all the available capacity is
used during the extraction of a block. That is, the decision maker will always run
the operation at 100% utilization (recall we assume that mining capacity is binding).
While these assumptions provide mathematical tractability, they are not particularly
restrictive from a theoretical standpoint, as one can always reduce the size of the
blocks by increasing their number (N). (We can show that a “bang-bang” extraction
policy is optimal when blocks are infinitesimally small.) Furthermore, in practice
these decisions involve production disruptions that usually cannot occur in the mid-
dle of the extraction of a block.

Given a production policy (T ,K), we define T :=(T1, . . . ,TN) where T j:=Q j/K j is
the time it takes to extract and process block j. Finally, we say a production policy
(T ,K) is feasible if it satisfies the sequencing conditions

τ j ≥ τ j+1 + T j+1 and K j ≥ K j+1, for all j = 1, . . . ,N,

where we define TN+1:=0. Other constraints such as imposing a fixed planning hori-
zon T̄ or a maximum production capacity K̄, that is,

τ1 + T1 ≤ T̄ and K1 ≤ K̄

can also be included. In this chapter, we will assume an infinite horizon T̄ =∞.

1.2.4 Project Valuation and Optimality Conditions

The long-term planning problem consists on finding an investment and operational
policy that maximizes the net present value of the mineral resources. From the de-
cision maker’s perspective, this long-term value maximization amounts to selecting
an optimal production policy (T ,K) as described in the previous section.

Determining the value of the project to be maximized is, in general, a difficult task.
In practice, most mining companies consider the average discounted value of the
cashflows of the project as the appropriate objective function to use. However, this

2 For simplicity we assume that the production capacity refers to a binding mining capacity, rather
than to treating and marketing capacity [33].
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approach imposes some serious challenges in terms of selecting the appropriate dis-
count factor, or equivalently, the correct probability measure to compute expecta-
tions. Fortunately, these complications can be circumvented by exploiting the exis-
tence of a futures market for copper, so that a no-arbitrage condition allows the use a
replicating-portfolio argument to compute the market value of the mining project3.
For more details, the reader is referred to [7] for an application of this approach in
the context of a natural resource exploitation and to [46] for the general theory. In
what follows, we briefly summarize the main step behind this risk-neutral valuation
approach.

We can view the stream of cashflows as a derivative of the underlying copper spot
price S t, for which a futures market is available. Using a no-arbitrage argument
and under a complete market assumption, it follows that the economic value of the
project cashflows can be obtained using a contingent claim approach. To this end,
let S t be the spot price of copper which we assume evolves according to a GBM
(see Section 1.2.2 for details)

dS t = µS t dt +σS t dBt, (1.1)

where σ is the instantaneous spot price volatility, which we assume is known and
constant, and µ is the drift of the spot price that could be stochastic. Following Bren-
nan and Schwartz [7], we assume the existence of a constant convenience yield rate
ρ on the commodity, which captures the benefit associated with physically hold-
ing the commodity instead of holding a contract for future delivery. Our constant
convenience yield assumption is certainly restrictive and it is mainly imposed for
mathematical tractability. For alternative and more realistic models of this conve-
nience yield we refer the interested reader to [6], [42], [30], [12] and references
therein. We also refer the reader to the recent monograph [45] for a discussion of
the merit of the classical interpretation of the concept of convenience yield as a
pseudo-dividend and to the chapter by Evans and Guthrie [23] in this volume for a
different interpretation of this concept.

Let Q be a probability measure (equivalent to P) under which the spot price, S t,
discounted at the risk-free rate, r, net of the convenience yield, ρ, is a Q-martingale,
that is,

EQ
[
e−(r−ρ) t S t |S τ

]
= e−(r−ρ)τ S τ, for τ ≤ t. (1.2)

Assuming that the spot price follows the GBM dynamics in equation (1.1), this
Equivalent Martingale Measure (EMM) Q exists and is unique. We can compute
this EMM by means of a Girsanov transformation (see Chapter 5 in [46]). Define
the market price of risk to be

λt:=
µ− (r−ρ)

σ
,

so that the Radon-Nikodym derivate of Q with respect to P is given by

3 Copper futures and options contracts are traded on a daily basis at the London Metal Exchange
(LME) with maturities ranging from 3 to 63 months. These derivatives offer buyers and sellers the
opportunity to hedge their risk exposure due to spot price fluctuations.
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dQ
dP

= exp
(
−

∫ ∞

0
λt dBt −

1
2

∫ ∞

0
λ2

t dt
)
.

It is not hard to show that the spot price process S t satisfies

dS t = (r−ρ)S t dt +σS t dB̃t, (1.3)

where B̃ is a Brownian motion under Q that satisfies dB̃t = dBt +λt dt. Solving equa-
tion (1.3) leads to

S t = S 0 exp
((

r−ρ−
σ2

2

)
t +σB̃t)

)
,

where S 0 represents the spot price at time t = 0.

Under the risk-neutral valuation approach, the economic value of the project for a
given production policy is equal to the expected value (under Q) of the project cash-
flows discounted at the risk-free rate. In our operational context, these cashflows are
the difference between the revenues generated by the commercialization of the final
product in the spot market minus production and capacity investment costs. Follow-
ing the standard practice at Codelco, we assume that all production is immediately
sold in the market, that is, the company does not hold any inventory of the final
product.

Let us consider the j-th block in the extraction sequence. The extraction of this block
j starts at time τ j at a constant extraction rate K j and finishes at time τ j +T j. We let
W j(S ,K) denote the expected cashflows generated by this block discounted to time
τ j, conditional on S τ j = S and K j = K. That is,

W j(S ,K):=EQ
{∫ T j(K j)

0
e−r t [L j K j S τ j+t −A j K j]dt

∣∣∣∣∣∣S τ j = S , K j = K},

where L j K j is the rate at which copper is produced and A j is the marginal production
cost for block j. For simplicity, we assume that the marginal cost A j is constant but
depends on j. This allows us to model mining operations in which production costs
tend to increase as extraction progresses, which might be attributed to the fact that
the distance from the extraction points to the processing plan increases over time.
(Note that in practice, however, processing costs might depend on additional factors,
such as the spot price, as they should impact cut-off policies.) Using (1.2) we can
show that W j(S ,K) = R j(K)S −C j(K) where

R j(K):=L j

(
1− e−ρT j(K)

ρ

)
K and C j(K):=A j

(
1− e−r T j(K)

r

)
K.

The decision maker selects a production policy that maximizes the expected cumu-
lative discounted payoff. That is, the decision maker solves
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F∗:= sup
T ,K

EQ

 N∑
j=1

e−rτ j
[
R j(K j)S τ j −C j(K j)−γ (K j−K j+1)

] . (1.4)

where γ > 0 is the marginal cost of capacity expansion.

A few remarks about (1.4) are in order. First, the term e−rτ j γ (K j −K j+1) assumes
that any capacity expansion takes place at the same time τ j when the extraction of
block j starts. Note, however, that while the decision maker might have the ability
to build capacity at any point in time in the interval [τ j+1 + T j+1, τ j], because ca-
pacity expansions are costly, it is in the decision maker’s best interest to postpone
this action as much as possible. Second, formulation (1.4) also assumes capacity
expansions are instantaneous; otherwise, we would need to add a time lag between
the time expansion begins and the time the additional capacity becomes available.
Finally, note that (1.4) assumes that the cost of expansion is linear, while in practice,
it might exhibit a non-linear behavior.

We can reformulate (1.4) using dynamic programming. The state space of this dy-
namic program represents the state of the project at the time a block has finished
being extracted, and it is given by the triplet (S , j,K), where S is the spot price, j is
the index of the block to be extracted next and K is the available production capac-
ity. In this state space, we denote by F j(S ,K) the expected optimal discounted profit
to go.

We note that the state space description (S , j,K) is sufficient in our model because of
the Markovian dynamics of the spot price and because we are assuming that capacity
and production rates are fixed during the extraction of a block. Therefore, in order to
derive an optimal production policy it is enough to evaluate the value function only
at those time epochs when a block has finished extraction. In fact, suppose we look
at the system exactly at the time block j−1 has finished extraction and let (S , j,K)
be the state of the system at such a time. The decision maker must select the time
τ j when to start extracting block j. This time τ j is a stopping time with respect to
Ft, the filtration generated by S t. Finally, at this extraction time the decision maker
must also decide if capacity should be expanded from the current level K to a new
level K j, with K ≤ K j ≤ K̄. (Recall that K̄ is an upper bound on the maximum level
of capacity that can be installed.) Putting all these pieces together, we can write the
following recursion for the value function F j(S ,K).

F j(S ,K):= sup
τ j,K j

EQ
[
e−rτ j

(
R j(K j)S τ j −C j(K j)−γ (K j −K) + e−r T j F j−1(S τ j+T j ,Ki)

)∣∣∣∣S 0 = S
]

(1.5a)

subject to the dynamics of the spot price, S t, in equation (1.3), (1.5b)
τ j is an Ft stopping time, (1.5c)

T j =
Q j

K j
, K ≤ K j ≤ K̄, (1.5d)

and the border condition F0(S ,K) = 0 for all S ,K. (1.5e)
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The dynamic program (1.5) is in general difficult to solve, so in the sequel we ap-
proximate its solution in two steps. First, in Section 1.3, we study the optimal timing
of extraction for a fixed capacity K. Then, in Section 1.4 we relax this assumption
and derive near-optimal capacity expansion decisions.

1.2.5 Notation and Conventions

Unfortunately, notation will play an important role in our presentation. This is in part
due to the fact that we approach the problem from various angles each one requiring
its own set of notation. Hence, we find convenient to introduce at this point some
general notation and conventions that we will use throughout the rest of the chapter.

First, we say that a function f (S ) is asymptotically equal to a function g(S ), which
we denote by f (S )

S →∞
−→ g(S ), if limS→∞ | f (S )−g(S )| = 0. Also, the first and second

derivatives of a smooth function f (S ) with respect to S are denoted by f ′(S ) and
f ′′(S ), respectively.

We let Ck(R+) be the set of real-valued continuous functions on R+ having deriva-
tives of order k ≥ 0. We also define the set C2

+ that plays a key role in our character-
ization of the value function:

C2
+ :=

{
f ∈ C1(R+) : there exist a scalar θ f and a finite set N f ⊆ R+ (both possibly

depend on f ) such that | f ′(S )| ≤ θ f ∀S ∈ R+ and f ′′(S ) exists ∀S ∈ R+ \N f
}
.

Consider two arbitrary vectors X = (X j) and α = (α j), we define

X+

k, j :=
j∑

h=k+1

Xh, α×k, j :=
j∏

h=k+1

αh and (α× X)+

k, j :=
j∑

h=k+1

α×h, j Xh.

We use the specialized notation X+

j := X+

0, j, α
×

j := α×0, j and (α× X)+

j := (α× X)+

0, j. In the

usage of summations and multiplications we adopt the convention
∑ j

h=k Xh = 0 and∏ j
h=k Xh = 1 if j < k.

For j ≤ N, define the average production cost C j(K):=C j(K)/R j(K), and

Rk, j(K) :=
j∑

h=k+1

e−ρT +

h, j(K) Rh(K), Ck, j(K) :=
j∑

h=k+1

e−r T +

h, j(K) Ch(K),

R j(K) := R0, j(K) and C j(K) , C0, j(K). The interpretation of these quantities is
as follows. Suppose there are j blocks left, the spot price is S and the capac-
ity is K. Then, if the decision maker decides to extract the j blocks (starting
with block j and finishing with block 1) without changing capacity or stopping
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at any time then the discounted expected payoff of this non-idling policy would be
W j(S ,K):=R j(K)S −C j(K).

1.3 Optimal Production Plan with Fixed Capacity

In this section we solve formulation (1.5) under the assumption that capacity expan-
sions are not allowed and we let K be this fixed capacity. (Thus, for convenience,
we drop dependencies on K in this section.) We will relax this assumption in the
following section. In this setting, we derive analytically upper and lower bounds, as
well as two asymptotic approximations, for the corresponding value function. Part
of the analysis in this section follows closely and extends the results in §5.2 of [19].

Let F j(S ) be the maximum expected discounted profit when there are j blocks left
and the spot price is S . We solve for the sequence of value functions {F j(S ) : j =

1, . . . ,N} using forward induction on j. That is, starting with the border condition
F0(S ) = 0, we can compute sequentially F1(S ),F2(S ), . . . ,FN(S ) solving (1.5). To
this end, suppose that we have already computed the value function F j−1(S ) and let
us solve for F j(S ). For this, let us define the auxiliary function

G j(S ) := W j(S ) + e−r T j EQ
[
F j−1(S T j )

∣∣∣∣S 0 = S
]
.

With this definition, problem (1.5) is equivalent to

F j(S ) = sup
τ≥0
EQ

[
e−rτG j(S τ)

∣∣∣∣S 0 = S
]
, (1.6)

where the supremum is taken over the set of stopping times τ with respect to Ft (the
filtration generated by S t) which represents the time when block j should start being
produced. To solve this optimal stopping problem, we impose optimality conditions
in the form of a set of partial differential inequalities (quasi-variational inequali-
ties or QVI) that characterize the optimal stopping time. To this end, let us define
the operator A that applies on functions F ∈ C2

+ as follows (see section §1.2.5 for
definitions):

AF(S ) :=
1
2
σ2S 2 F′′(S ) + (r−ρ)S F′(S )− rF(S ), for all S ∈ R+ \NF .

Definition 1 (QVI) The function F ∈ C2
+ satisfies the quasi-variational inequalities

for problem (1.6) if the following three conditions are satisfied:

AF(S ) ≤ 0 for all S ∈ R+ \NF ,

F(S )−G j(S ) ≥ 0 for all S ≥ 0, and (1.7)
(F(S )−G j(S ))AF(S ) = 0 for all S ∈ R+ \NF . �
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As one would expect, a solution to these QVI conditions partition the state space
S ≥ 0 into two regions: a continuation region in which the optimal policy is to delay
production, and an intervention region in which production should start immedi-
ately.

Continuation: D:=
{
S ≥ 0 : F(S ) >G j(S ) and AF(S ) = 0

}
,

Intervention: I:=
{
S ≥ 0 : F(S ) = G j(S ) and AF(S ) ≤ 0

}
.

For every solution of the QVI we can associate a stopping time τ as follows.

Definition 2 Let F ∈ C2
+ be a solution of the QVI in (1.7). We define the QVI-control

τ as follows
τ:= inf

{
t ≥ 0 : F(S t) = G j(S t)

}
.

We are now ready to formalize the verification theorem that provides the connection
between the QVI conditions and the original optimization problem in (1.6).

Theorem 1 (Verification) Let F ∈ C2
+ be a nonnegative solution of the QVI in (1.7).

Then,
F(S ) ≥ F j(S ) for every S ≥ 0.

In addition, if the continuation region D is bounded and there exists a QVI-control
τ associated with F, i.e., EQ[τ] <∞, then it is optimal and F(S ) = F j(S ).

According to this result, we can tackle the problem of determining the value func-
tion F j(S ) by solving the QVI conditions. This is in general a difficult task given the
free boundary nature of these conditions (i.e., part of the problem is to determine
the intervention and continuation regions). We approach this problem using an “ed-
ucated guess”. Intuitively, we expect that if the spot price is sufficiently large then
immediate production should be an optimal decision. If this intuition is correct, then
we expect that there exists a single threshold value S ∗j such that D = {0 ≤ S < S ∗j}
and I = {S ≥ S ∗j}. In what follows, we solve the QVI conditions imposing this ad-
ditional condition, and then use Theorem 1 to verify that our proposed solution is
indeed optimal.

Based on our previous discussion, the QVI conditions imply that

0 = AF j(S ) for all S < S ∗j , (1.8)
F j(S ) = G j(S ) for all S ≥ S ∗j .

The first equation above corresponds to the Hamilton-Jacobi Bellman (HJB) equa-
tion, and the second is known as a value-matching condition. In addition, we expect
the following two conditions to hold

F j(0) = 0 and F′j(S
∗
j) = G′j(S

∗
j).
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The first condition simply states that if the price process reaches the absorbing state
S = 0, then the value of the mining project will be zero as well. The second condition
guarantees that F j(S ) is differentiable at the threshold price S = S ∗j (i.e., a smooth-
pasting condition). This condition is necessary to ensure that F j(S ) ∈ C2

+.

Equation (1.8) is a second-order homogeneous ordinary differential equation. Be-
cause of its special structure, its general solution can be expressed as a linear com-
bination of any two independent solutions. The function S β satisfies the equation
provided that β is a root of the following quadratic equation

1
2
σ2β(β−1) + (r−ρ)β− r = 0.

The two roots are

β :=
1
2
− (r−ρ)/σ2 +

√
1/4 +

[
(r−ρ)/σ2]2

+ (r +ρ)/σ2 > 1, and

β̃ :=
1
2
− (r−ρ)/σ2−

√
1/4 +

[
(r−ρ)/σ2]2

+ (r +ρ)/σ2 < 0.

The general solution to equation (1.8) can be written as

F j(S ) = M j S β + M̃ j S β̃,

for two constants M j and M̃ j. However, the border condition at S = 0 implies that
M̃ j = 0. In conclusion, our candidate solution F j(S ) is given by

F j(S ) =

{
M j S β, if S < S ∗j ,
G j(S ), otherwise.

(1.9)

We are now ready to state the main result of this section.

Theorem 2 For every block j, there exists a pair of nonnegative scalars (M j,S ∗j)
such that the value function F j(S ) in (1.6) is given by (1.9). The values of M j and
S ∗j are equal to

M j := min
{
M ≥ 0 : M S β ≥G j(S ) for all S ≥ 0

}
and

S ∗j := min
{
S ≥ 0 : M j (S )β = G j(S )

}
.

Moreover, the value function F j(S ) is increasing and convex in S ≥ 0.

The proof of Theorem 2, which can be found in [10], shows that the characteriza-
tion above implies that M j and S ∗j satisfy the value matching and smooth-pasting
conditions

M j (S ∗j)
β = G j(S ∗j) and βM j (S ∗j)

β−1 = G′j(S
∗
j). (1.10)
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For j = 1, condition (1.9) reduces to

F1(S ) =

{
M1 S β, if S < S ∗1,

R1 S −C1, if S ≥ S ∗1,
(1.11)

and the value-matching and smooth-pasting conditions become

M1 (S ∗1)β = R1 S ∗1−C1 and M1 β (S ∗1)β−1 = R1,

which lead to

S ∗1 =
βC1

(β−1)R1
=

β

β−1
C1 and M1 =

C1

β−1

(
S ∗1

)−β
. (1.12)

Recall from Section 1.2.5 that C1 is the average per unit extraction cost for block 1.
Hence, the choice of S ∗1 above guarantees a per unit net margin of 1

β−1 .

Unfortunately, extending the previous analysis to compute F j(S ) for an arbitrary
j is difficult because of the expectation EQ[F j−1(S T j )

∣∣∣S 0 = S ] in the definition of
G j(S ) and there is no simple characterization of F j(S ) for j ≥ 2. Nevertheless, we
have been able to establish a useful asymptotic property of F j(S ) (see §1.2.5 for
notation).

Proposition 1 The value function F j(S ) is asymptotically equal toW j(S ), that is,

F j(S )
S →∞
−→ W j(S ) = R j S −C j.

Proposition 1 highlights some important properties of the value function but it does
not provide tight estimates of F j(S ) unless S is large. For small values of S we could
use numerical methods to solve the recursion in (1.9) and get an approximation of
the value function. Instead of following this numerical approach, we have chosen
to derive some closed-form approximations for F j(S ) that provide insight about
the structure of this solution and its dependence on the model parameters. First,
we develop a family of approximations for F j(S ), which include valid lower and
upper bounds as special cases. Then, we use asymptotic analysis to extend these
bounds. We conclude this section with some numerical computations that compare
the performance of these bounds.

1.3.1 Upper Bound

To obtain an upper bound on the value of F j(S ) we assume that the extraction of
block j− 1 can start even if the extraction of block j is not fully completed but
simply started. We will use a superscript ‘U’ to distinguish those quantities that are
derived using this approximation. For example, FU

j (S ) denotes the value function
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resulting from this approximation. Because FU
j (S ) is the solution of a less restricted

problem it follows that F j(S ) ≤ FU
j (S ).

Similar to the original optimization in (1.6), the bound FU
j (S ) satisfies the following

recursion
FU

j (S ) = sup
τ≥0
EQ

[
e−rτW j(S τ) + e−rτ FU

j−1(S τ)
∣∣∣∣S 0 = S

]
,

with FU
0(S ) = 0 for all S ≥ 0. It is not hard to see that FU

j (S ) satisfies the HJB equa-
tion (1.8) inside the continuation region. Therefore, it follows that

FU
j (S ) =

 MU
j S β, if S ≤ S U

j ,

R j S −C j + FU
j−1(S ), otherwise. (1.13)

We can use backward induction to compute recursively MU
j and S U

j , starting at block
1. We postpone this analysis to Section 1.3.3 where we derive an algorithm that
performs this task efficiently.

1.3.2 Lower Bound

We can get a lower bound for the value of F j(S ) using the convexity of the value
function and Jensen’s inequality. We will use a superscript ‘L’ to denote quantities
that are derived using this approximation.

Consider again the optimal stopping time problem for F j(S ) in (1.6)

F j(S ) = sup
τ≥0
EQ

[
e−rτW j(S τ) + e−r(τ+T j) F j−1(S τ+T j )

∣∣∣∣S 0 = S
]
.

Suppose there exists a convex function FL
j−1(S ) such that FL

j−1(S ) ≤ F j−1(S ) for all
S ≥ 0. Then,

F j(S ) ≥ sup
τ≥0
EQ

[
e−rτW j(S τ) + e−r(τ+T j) FL

j−1(S τ+T j )
∣∣∣∣S 0 = S

]
.

For an arbitrary stopping time τ let Fτ be the σ-algebra generated by τ. Then, using
iterated (conditional) expectation, the convexity of FL

j−1(S ) and condition (1.2) we
get that

EQ
[
e−r(τ+T j) FL

j−1(S τ+T j )
∣∣∣∣S 0 = S

]
= EQ

[
e−r(τ+T j)EQ

[
FL

j−1(S τ+T j )
∣∣∣∣Fτ] ∣∣∣∣S 0 = S

]
≥ EQ

[
e−r(τ+T j) FL

j−1

(
EQ[S τ+T j |Fτ]

) ∣∣∣∣S 0 = S
]

= EQ
[
e−r(τ+T j) FL

j−1

(
e(r−ρ)T j S τ

) ∣∣∣∣S 0 = S
]
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and so

F j(S ) ≥ sup
τ≥0
EQ

[
e−rτW j(S τ) + e−r(τ+T j) FL

j−1

(
e(r−ρ)T j S τ

) ∣∣∣∣S 0 = S
]
.

From this bound, we derive the following recursion for FL
j(S )

FL
j(S ) = sup

τ≥0
EQ

[
e−rτW j(S τ) + e−r(τ+T j) FL

j−1

(
e(r−ρ)T j S τ

) ∣∣∣∣S 0 = S
]
,

with FL
0(S ) = 0 for all S ≥ 0. Using a line of arguments similar to the one used to

derive (1.9), we can show that

FL
j(S ) =

 ML
j S β, if S ≤ S L

j,

R j S −C j + e−r T j FL
j−1

(
e(r−ρ)T j S

)
, otherwise, (1.14)

where ML
j and S L

j satisfy value-matching and smooth-pasting conditions, and that
FL

j(S ) ≤ F j(S ) for all S ≥ 0 and j.

In the following section, we provide a general method to compute FL
j(S ) and verify

that it is indeed a convex function as required (see Corollary 1 below). Our approach
is based on a general family of approximations that includes FU

j (S ) and FL
j(S ) as

special cases.

1.3.3 (α,η)-Approximations

The recursions that define the upper bound FU
j (S ) in (1.13) and the lower bound

FL
j(S ) in (1.14) share a similar structure that can be exploited to derive a unified

approximation method.

Definition 3 Let α = (α j) and η = (η j) be two positive vectors. We say that a
set of continuous and differentiable functions {F j(S ) : j = 0, . . . ,N} is an (α,η)-
approximation of the value functions in (1.9) if F0(S ) = 0 for all S ≥ 0 and

F j(S ) =

{
M j S β, if S ≤ S j,

R j S −C j +α jF j−1
(
η j S

)
, otherwise, j = 1, . . . ,N. (1.15)

Because F j(S ) is continuous and differentiable, the values of S j and M j are im-
plicitly determined imposing value matching and smooth pasting conditions similar
to those in equation (1.10).

Note that this family of approximations generalizes the upper and lower bounds.
Indeed, it follows from (1.13) that the upper bound FU

j (S ) is a special case of (1.15)
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with α j = η j = 1. Similarly, we can recover the lower bound FL
j(S ) if we chose

α j = exp(−r T j) and η j = exp((r−ρ)T j).

In what follows, we derive an efficient algorithm that solves (1.15) for an arbitrary
(α,η)-approximation. In order to get some intuition on how the algorithm works, let
us first consider the special case of two blocks, that is, N = 2.

Using backward induction, we first compute F1(S ). In this case, the solution
to (1.15) is identical to the solution in (1.11) and (1.12). That is,

F1(S ) =

{
M1 S β, if S ≤ S1,

R1 S −C1, if S ≥ S1,
where S1 =

(
β

β−1

)
C1 and M1 =

(
C1

β−1

)
(S1)−β .

(1.16)
Based on this solution, we can solve for F2(S ). As before, we compute the value of
M2 and S2 using the value matching and smooth pasting conditions

M2 (S2)β = R2S2−C2 +α2F1(η2S2) and βM2 (S2)β−1 = R2 +α2 η2F
′
1 (η2S2).

We identify two possible cases depending on the value of F1(η2S2). Suppose first
that S1 ≥ η2S2, then F1(η2S2) =M1 (η2S2)β and the value-matching and smooth-
pasting conditions imply that

S2 =

(
β

β−1

)
C2 and M2 = α2 η

β
2M1 +

(
C2

β−1

)
(S2)−β .

The corresponding value of F2(S ) has three pieces

F2(S ) =


M2 S β if S ,≤ S2,

R2 S −C2 +α2 η
β
2 S βM1, if S2 ≤ S ≤ S1/η2,

(R2 +α2 η2 R1)S − (C2 +α2 C1), if S ≥ S1/η2.

Note that the requirement S1 ≥ η2S2 is equivalent to C1 ≥ η2C2.

Let us now consider the case whereS1 < η2S2. It follows thatF1(η2S2) = R1 η2S2−

C1 and the value-matching and smooth-pasting conditions lead to

S2 =

(
β

β−1

)
C2 +α2 C1

R2 +α2 η2 R1
and M2 =

(
C2 +α2 C1

β−1

)
(S2)−β

and

F2(S ) =

{
M2 S β, if S ≤ S2,

(R2 +α2 η2 R1)S − (C2 +α2 C1), if S ≥ S2.
(1.17)

In this case, one can show that the condition S1 < η2S2 is equivalent to C1 < η2C2,
which is consistent with the previous case.

Note that the actual value of F2(S ) depends on the relationship between C1 and
η2C2. Interestingly, for the case C1 < η2C2 the value of F2(S ) in (1.17) is analogous
to the value of F1(S ) in (1.16). Indeed, in this case we can combine the two blocks
into a single one so that the solution in (1.17) is equivalent to a single-block project
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with modified extraction cost C2 +α2 C1 and modified mineral content R2 +α2 η2 R1.
To get some intuition about why the two blocks are “pooled” together, let us consider
the lower bound approximation. In this case the condition S1 < η2S2 is equivalent
to S L

1 < exp((r − ρ)T2)S L
2 = EQ[S T2 |S 0 = S L

2]. In other words, blocks 1 and 2 are
combined when the threshold price for block 1 is below the expected value of the
spot price at the time when extraction of block 2 is completed. Hence, in expectation,
the extraction of blocks 1 and 2 is performed without interruption and so we can
view these two blocks as a single one.

The following proposition extends the previous two-block analysis to the case of
an arbitrary number of blocks. Embedded in this proposition, there is an algorithm
that takes as input a j-block project with characteristics {(Ck,Rk,αk,ηk), k = 1, . . . , j}
and produces a ̃-block project with characteristics {(C̃k, R̃k, α̃k, η̃k), k = 1, . . . , ̃} and
̃ ≤ j. The algorithm aggregates blocks using the same criteria discussed above. The
resulting sequence {(C̃k, R̃k, α̃k, η̃k), k = 1, . . . , ̃} satisfies some properties that greatly
simplify the computation of F j(S ). (See section 1.2.5 for notation)

Proposition 2 Consider a project with j blocks with characteristics {(Ck,Rk,αk,ηk),
k = 1, . . . , j} and use the following algorithm to create an artificial sequence of (pos-
sibly aggregated) blocks.

Algorithm:

Step 0: (Initialization) Set C̃k = Ck, R̃k = Rk, α̃k = αk and η̃k = ηk, k = 1, . . . , j and
̃ = j.

Step 1: Compute the auxiliary variables

θ̃k:=α̃k η̃k, C̃k:=
C̃k

R̃k
and C̃k,l:=

(
α̃× C̃

)+

k−1,l(̃
θ× R̃

)+

k−1,l

, for all k, l = 1, . . . , ̃, k ≤ l.

Step 2: Find k̃ = min{2 ≤ k ≤ ̃ : C̃k−1 < η̃k C̃k}. If such k̃ does not exist then stop.

Step 3: Find h̃ = max{1 ≤ h ≤ k̃−1 : η̃×
h,k̃
C̃h+1,k̃ ≤ C̃h}. If such h̃ does not exist then

set h̃ = 0.

Step 4: Define ξ = k̃− h̃−1 and introduce the following transformation: ̃ = ̃−ξ and

(R̃k, C̃k, α̃k, η̃k) =



(R̃k, C̃k, α̃k, η̃k), if k ≤ h̃,

(
(̃
θ× R̃

)+

h̃,k̃,
(
α̃× C̃

)+

h̃,k̃, α̃
×

h̃,k̃
, η̃×

h̃,k̃
), if k = h̃ + 1,

(R̃k+ξ, C̃k+ξ, α̃k+ξ, η̃k+ξ), if h̃ + 2 ≤ k ≤ ̃.

(Note that in this step we have created a new block h̃ + 1 by aggregating all the
blocks from h̃ + 1 to k̃, hence the total number of blocks has decreased by ξ.)

Step 5: Goto step 1. �
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After the algorithm has stopped no further block aggregation is possible. The output
of the algorithm is a modified project that has ̃ blocks. The k-th block in this new
sequence has mineral content R̃k and extraction cost C̃k. For this modified sequence
of (possibly aggregated) blocks we define

S̃k =

(
β

β−1

)
C̃k and M̃k = α̃k η̃

β
k M̃k−1 +

 C̃k

β−1

 (S̃k)−β, k ≤ ̃,

(1.18)
with M̃0 = 0. Finally, for block j in the original configuration we have that S j = S̃̃
and

F j(S ) =
(̃
θ× R̃

)+

h,̃ S −
(
α̃× C̃

)+

h,̃ +M̃h α̃
×

h,̃
(̃
η×h,̃

)β S β, (1.19)

where h = max
{
0 ≤ k ≤ ̃ | S̃k ≥ η̃

×

h,̃ S
}

and S̃0 =∞.

Corollary 1 The function F j(S ) in equation (1.19) is convex in S .

Example 1: To illustrate the mechanics of the algorithm in Proposition 2, let us
consider a six-block mining sector with the following characteristics.

Block Rk Ck Tk Ck

1 0.25 14 1.2 56
2 0.3 9 1.6 30
3 0.4 16 1 40
4 0.32 10 2 31.25
5 0.35 12.25 0.7 35
6 0.4 18 0.9 45

Consider a discount factor r = 0.12 and a convenience yield ρ = 0.06. Let us
specialize the result in Proposition 2 to the case of the lower bound FL(S ). For
this, set αk = e−r Tk and ηk = e(r−ρ)Tk , for k ≤ 6.

In the first iteration of the algorithm we find (step 2) that k̃ = 3. We then compute
C̃2,3 · e

(r−ρ)·T +

2,3 = 41.07 < C̃1 and C̃3,3 · e
(r−ρ)·T +

3,3 = 40 > C̃2 and conclude (step 3)
that h̃ = 1. From step 4, we get ξ = 1 and the new number of blocks is ̃ = 5
(blocks 2 and 3 are pooled together). The following four tables summarize the
resulting values of R̃k and C̃k after the first, second, third and fourth iterations of
the algorithm. Note that in order to update the values of α̃k and η̃k it is sufficient
to update the values of the processing time T̃k.

As we can see, the algorithm finishes after four iterations and in the final config-
uration the mining project consists of only two blocks. The initial block 1 and a
new block 2 that aggregates the original blocks 2 to 6. From equation (1.18), we
derive the threshold price for block 6 in the original block configuration which is

S̃6 =

(
β

β−1

) (
53.39
1.58

)
=

33.79β
β−1

,
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After Iteration 1
Block Number R̃k C̃k T̃k
New Original

1 1 0.25 14 1.2
2 2 and 3 0.68 24 2.6
3 4 0.32 10 2
4 5 0.35 12.25 0.7
5 6 0.4 18 0.9

After Iteration 2
Block Number R̃k C̃k T̃k
New Original

1 1 0.25 14 1.2
2 2, 3 and 4 0.93 29.5 4.6
3 5 0.35 12.25 0.7
4 6 0.4 18 0.9

After Iteration 3
Block Number R̃k C̃k T̃k

New Original
1 1 0.25 14 1.2
2 2, 3, 4 and 5 1.25 39.43 5.3
3 6 0.4 18 0.9

After Iteration 4
Block Number R̃k C̃k T̃k

New Original
1 1 0.25 14 1.2
2 2, 3, 4, 5 and 6 1.58 53.39 6.2

The interpretation of this price is as follows: As soon as the spot price goes
above S̃6 we should start extracting block 6. �

The algorithm in Proposition 2 provides a simple method to reduce the size of
the mining project by appropriately aggregating blocks and then computing the
value function and threshold prices for the modified block configuration. In prac-
tice, blocks cannot be pooled together and must be extracted one at a time and so
the modified sequence of blocks is of limited practical use for extraction purposes.
Nevertheless, we can define a simple feasible extraction policy based on the solution
proposed by Proposition 2 as follows.

Extraction Policy based on the Approximation F j(S ):

1. Consider a sector with j blocks. Using the algorithm in proposition 2, aggregate
blocks to obtain a new block configuration with ̃ ≤ j blocks.

2. For this artificial configuration compute the threshold price S̃̃ using equation (1.18).
3. For the original block configuration with j blocks start extracting block j as soon as

the spot price exceeds S̃ ̃. Note that S̃̃ = S j, which the optimal threshold price for
the approximation F j(S ).

4. Once the extraction of block j is completed, iterate this sequence of steps for the
remaining j−1 blocks. �

The previous policy uses the artificial configuration of blocks proposed by Propo-
sition 2 only to compute the threshold price that determines when the first block
(in the original sequence) should start being processed. For instance, the results in
Example 1 suggests that block 6 should start processing as soon as the spot price
satisfies S t ≥ 33.79β/(β−1).

We conclude this section with a brief discussion on how the sequence of extraction
is chosen in practice. When a mining project is designed, its extraction sequence
is implicitly built. For example, in underground mines, a common design rule is to
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select the initial extraction front near blocks with higher grade. The idea behind this
(greedy) rule is to extract the better material first at the lowest marginal cost. This
simple rule has two important consequences from the point of view of our solution.
First, the quality of the ore tends to be a decreasing function of the extraction front
and so the parameter Rk is usually increasing in k (remember that we have indexed
blocks backward with block 1 being the last block in the sequence). Second, as
the operation advances through the extraction fronts, it is executed farther away
from the initial front and the extracted materials must be moved a longer distance.
This additional transportation increases the marginal extraction cost, that is, Ck is
generally decreasing in k. Hence, we expect Ck =

Ck
Rk

to be a decreasing function of
k under this greedy design. According to step 2 in the algorithm in Proposition 2,
there is no block aggregation if Ck−1 ≥ ηkCk. Hence, we can roughly say that there
should be no block aggregation under this greedy design rule if ηk does not exceed
one by much. This condition holds trivially for the case of the upper bound (ηk = 1).
For the lower bound, ηk = e(r−ρ)Tk and so we expect no block aggregation if the
discount factor and/or the processing times are small.

1.3.4 Asymptotic Approximations

In this subsection we characterize the limiting behavior of the upper and lower
bounds as the spot price goes to ∞ and use it to propose two simple approxima-
tions for the value function.

Figure 1.3 (left panel) plots the value function F j(S ) (numerically computed), the
upper bound FU

j (S ) and the lower bound FL
j(S ) as a function of S using the data in

Example 1. We note that both bounds perform well for small values of S , however,
as S gets large the lower bound performs substantially better. The upper bound has
an optimality gap FU

j (S )−F j(S ) that increases monotonically with S . This is in part
due to the fact that the upper bound assumes that it is possible to extract all blocks
simultaneously; an option that is more valuable when S is large. Furthermore, we
can show that for S sufficiently large the upper and lower bounds are linear functions
of S . The dashed lines in Figure 1.3 (left panel) represent these linear asymptotes.
Based on the results in Proposition 2 we have the following corollary whose proof
follows directly from this proposition and it is omitted (see §1.2.5 for notation).

Corollary 2 Consider a project with j blocks and let F j(S ) be the approximation
in (1.15) for some pair (αk,ηk), k = 1, . . . , j. Let (R̃k,C̃k, S̃ k, M̃k, α̃k, η̃k, θ̃k), k = 1, . . . , ̃
be the characteristics of the resulting mining project produced by the algorithm in
Proposition 2. Then, for S sufficiently large the approximation F j(S ) is a linear
function of S . In particular,

F j(S ) =
(
θ×R

)+

 S −
(
α×C

)+

 , for all S ≥ S̃ 1/̃η
×

 . (1.20)
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Fig. 1.3 Left Panel: Value function F j(S ), upper bound FU
j (S ) and lower bound FL

j (S ) as a function of the spot
price S (in [cUS$/lb]) using the data in Example 1. The dashed lines correspond to linear asymptotes for the upper
and lower bound approximations. Right Panel: Asymptotic approximations of the value function based on equations
(1.21) and (1.22).

For the special case of the upper bound FU
j (S ), αk = ηk = 1 and we get

FU
j (S ) = R+

j S −C+

j, for all S ≥ S̃ 1.

Similarly, if we set αk = e−r Tk and ηk = e(r−ρ)Tk we recover the lower bound FL
j(S )

and equation (1.20) reduces to

FL
j(S ) = R j S −C j, for all S ≥ S̃ 1 e−(r−ρ)T +

1, j .

Note that FL
j(S ) has exactly the same linear asymptote than the one derived for

F j(S ) in Proposition 1. This explains the quality of the lower bound FL
j(S ) depicted

in Figure 1.3 (left panel) as S grows large.

Corollary 2 also suggests a simple approximation for F j(S ) based on these linear
asymptotes. Recall from condition (1.9) that F j(S ) satisfies

F j(S ) =

 M j S β1 , if S ≤ S ∗j ,
W j(S ) + e−r T j EQ[F j−1(S T j )

∣∣∣S 0 = S ], if S ≥ S ∗j ,

with F0(S ) = 0. As we mentioned before, the difficult part of solving this recursion is
computing the expectation EQ[F j−1(S T j )

∣∣∣S 0 = S ]. Because this expectation is evalu-
ated for values of S greater than the threshold S ∗j , we can get a simple (asymptotic)
approximation if we replace F j−1(S ) by one of the linear asymptotes derived in
Corollary 2.

Using the upper bound asymptote FU
j−1(S ) = R+

j S −C+

j and the martingale prop-
erty (1.2) we get that EQ[R+

j S −C+

j

∣∣∣S 0 = S ] = R+

j e(r−ρ)T j S −C+

j. Thus, we can ap-
proximate F j(S ) by
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F̂U
j (S ) :=

 M̂U
j S β1 , if S ≤ Ŝ U

j ,(
R j + e−ρT j R+

j−1

)
S −

(
C j + e−r T j C+

j−1

)
, if S ≥ Ŝ U

j .
(1.21)

(We will use a hat ‘∧’ to denote quantities that are derived using the asymptotic
approximation.) Using the value matching and smooth pasting conditions we obtain

Ŝ U
j =

β
(
C j + e−r T j C+

j−1

)
(β−1)

(
R j + e−ρT j R+

j−1

) and M̂U
j =

C j + e−r T j C+

j−1

β−1

 (
Ŝ U

j

)−β
.

Using exactly the same steps, we can get an alternative approximation for F j(S )
based on the lower bound asymptote in Corollary 2.

F̂L
j(S ) :=

 M̂L
j S β, if S ≤ Ŝ L

j,

R j S −C j, if S ≥ Ŝ L
j.

(1.22)

with

Ŝ L
j =

βC j

(β−1)R j
and M̂L

j =

(
C j

β−1

) (
Ŝ L

j

)−β
.

Figure 1.3 (right panel) plots the values of F̂U
j (S ) and F̂L

j(S ) as well as the value

function F j(S ) (numerically computed). As we can see, F̂L
j(S ) performs quite well

over the entire range of prices. This in part due to the fact that by construction F̂L
j(S )

has exactly the same linear behavior than F j(S ) and FL
j(S ) as S goes to infinity.

In an effort to support the conclusions that we have drawn from Figure 1.3, we
conclude this section comparing numerically the performance of the upper bound
FU

j (S ), the lower bound FL
j(S ) and the asymptotic approximations F̂U

j (S ) and F̂L
j(S ).

We measure this performance as the average relative error of these approximations
across a large range of initial spot prices for different values of the model parame-
ters. More specifically, if F j(S ) is an arbitrary approximation for the value function
F j(S ) then we measure the performance of this approximation by

P(F j) :=
1

S max−S min

∫ S max

S min

|F j(S )−F j(S )|
F j(S )

dS .

We choose the interval of spot prices [S min,S max] large enough so that it includes
almost the entire range of historical spot prices of copper. In particular, we chose
S min = 1.3K [US$/Ton] and S max = 13K [US$/Ton].

Table 1.1 presents the value of P(F j) for the four approximations using the data of
Example 1. In the table on the left we vary the volatility of the spot price σ2. The
middle table compares the performance of these approximations for different values
of the discount factor r. Finally, in the right table we vary the extraction capacity K.
In all three cases, we can see that FL

j and F̂L
j have a significantly better performance

than FU
j and F̂U

j . This is consistent with our previous discussion based on Figure 1.3.
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In addition, we note that the asymptotic approximation F̂L has the best performance
across all instances with an average error between 1% and 3%.

σ2 FU FL F̂U F̂L

0.5 0.20 0.08 0.13 0.03
1.0 0.20 0.08 0.13 0.04
1.5 0.21 0.07 0.13 0.04
2.0 0.21 0.06 0.14 0.03
2.5 0.22 0.06 0.14 0.03
3.0 0.22 0.05 0.15 0.03
3.5 0.23 0.04 0.15 0.02
4,0 0.23 0.03 0.16 0.02
4.5 0.24 0.02 0.16 0.01
5.0 0.24 0.02 0.16 0.01
Av. 22.0% 5.1% 14.4% 2.6%

r FU FL F̂U F̂L

0.1 0.20 0.09 0.13 0.04
0.2 0.19 0.05 0.13 0.02
0.3 0.19 0.02 0.13 0.01
0.4 0.19 0.01 0.14 0.01
0.5 0.19 0.00 0.14 0.00
0.6 0.19 0.01 0.15 0.00
0.7 0.19 0.01 0.15 0.00
0.8 0.19 0.01 0.15 0.00
0.9 0.19 0.01 0.16 0.01
1.0 0.20 0.01 0.16 0.01
Av. 19.2% 2.1% 14.2% 1.0%

K FU FL F̂U F̂L

1.0 0.20 0.08 0.13 0.04
2.0 0.09 0.06 0.06 0.03
3.0 0.06 0.04 0.03 0.02
4.0 0.04 0.04 0.02 0.02
5.0 0.03 0.03 0.02 0.02
6.0 0.03 0.03 0.01 0.01
7.0 0.02 0.02 0.01 0.01
8.0 0.02 0.02 0.01 0.01
9.0 0.02 0.02 0.01 0.01
10.0 0.02 0.02 0.01 0.01
Av. 5.2% 3.5% 3.0% 1.7%

Table 1.1 Performance measure (P) for the approximations FU, FL, F̂U and F̂L as a function of the spot price
volatility σ2 (left panel), discount factor r (center panel) and extraction capacity K (right panel). The data used in
these computations is described in Example 1.

In terms of the sensitivity of these results, we can see that the volatility of the spot
price σ2 has a different impact on these approximations. Both P(FU) and P(F̂U)
increase with σ2 while the opposite is true for P(FL) and P(F̂L). The results in
the middle panel in Table 1.1 suggest that the discount factor r does not have a
significant effect on the approximations. Finally, the extraction capacity K affects
these four approximations in a similar way, they are all monotonically decreasing
with K. This behavior is a consequence of the following result.

Proposition 3 Let F j(S ,K), FU
j (S ,K) and FL

j(S ,K) be the value function and upper
and lower bounds, respectively, for block j when the spot price is S and the extrac-
tion capacity is K. Then, in the limit as K goes to infinity the upper and lower bound
approximations converge to the true value function. That is,

lim
K→∞

FU
j (S ,K) = lim

K→∞
FL

j(S ,K) = lim
K→∞

F j(S ,K), for all S ≥ 0.

Hence, in the limit as K goes to infinity, P(F̃) = P(F̂) = 0.

Proof: We only provide a sketch of the proof. As K → ∞, one can show the
algorithm in Proposition 2 produces exactly the same sequence of aggregated
blocks for the upper and lower bound approximations. From this observation, it
follows that the upper and lower bounds have the same limit: limK→∞ FU

j (S ,K) =

limK→∞ FL
j(S ,K). Finally, since F j(S ,K) is bounded above and below by FU

j (S ,K)
and FL

j(S ,K), respectively, the result follows. �

We conclude this section with a simple observation that is particularly useful when
selecting an optimal sequence of extraction. Suppose we have a mining sector with
j blocks and we want to compare two possible sequences of extraction π1 and π2.
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Based on Proposition 1, the expected discounted value of the project under sequence
πi is asymptotically equal to Rπ

i

j S −Cπ
i

j , i = 1,2. Hence, for S sufficiently large the

best sequence is the one that maximizes the value of Rπ
i

j . For moderate value of S ,
on the other hand, the comparison is not straightforward. However, we can try to
extend this condition if we use the asymptotic approximation F̂L(S ) instead of the
real value function F(S ) to perform the comparison between π1 and π2.

Proposition 4 Consider two possible sequences of extraction π1 and π2 for a min-
ing project with j blocks. Let F̂L

i (S ) = Rπ
i

j S − Cπ
i

j be the (lower bound) asymp-
totic approximation for the value function if sequence πi is used, i = 1,2. Then
F̂L

1(S ) ≥ F̂L
2(S ) for all S ≥ 0 if and only if the following two conditions are satis-

fied:

Rπ
1

j ≥ R
π2

j and

Rπ
1

j

Rπ
2

j


β

≥

Cπ
1

j

Cπ
2

j


β−1

.

1.4 Capacity Expansions

In the previous section we derived a set of approximations for the value function
assuming a fixed processing capacity K. In this section, we relax this assumption
and show how to extend some of these approximations to include capacity expan-
sion decisions. In particular, we will only discuss how to extend the lower bound
asymptote F̂L

j(S ) that has shown the best numerical performance.

Using the notation in Section 1.2, we let quantities depend on K, when appropri-
ate. For example, recall that F j(S ,K) denotes the value function for a single-sector
project when there are j blocks left, the spot price is S and the processing capacity
is K. We find convenient to define F̄ j(S ):=F j(S , K̄), W̄ j(S ):=W j(S , K̄), R̄ j:=R j(K̄),
C̄ j:=C j(K̄) and T̄ j:=T j(K̄), where K̄ is the upper bound on the maximum level of
capacity.

For a given S and K let us define the auxiliary function

G j(S ,K) := sup
K≤K̃≤K̄

W j(S , K̃) + e−r T j(K̃)EQ
[
F j−1(S T j(K̃), K̃)

∣∣∣∣S 0 = S
]
−γ (K̃ −K),

(1.23)
and let K∗j (S ,K) be the value of K̃ at which the maximum is attained. This function
computes the optimal expected payoff if the state of the system (S ,K) and the de-
cision maker is forced to start production immediately. In this case, and similar to
equation (1.6), the dynamic programming recursion takes the form

F j(S ,K) = sup
τ≥0
EQ

[
e−rτG j(S τ,K)

∣∣∣∣S 0 = S
]
,
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where F0(S ,K) = 0. Using a similar line of arguments to the one used to derive
equation (1.9) from equation (1.6), we can show that there exist two functions M j(K)
and S ∗j(K) such that

F j(S ,K) =

{
M j(K)S β, if S ≤ S ∗j(K),
G j(S ,K), if S ≥ S ∗j(K). (1.24)

The functions M j(K) and S ∗j(K) are determined using the smooth-pasting and value-
matching conditions

βG j(S ∗j(K),K) = G′j(S
∗
j(K),K)S ∗j(K) and M j(K) = G j(S ∗j(K),K)

(
S ∗j(K)

)−β,
where G′j denotes the derivative of G j with respect to its first parameter. Most of the
difficulty of computing the value function F j(S ,K) in (1.24) boils down to deter-
mining the auxiliary function G j(S ,K). Equation (1.24) suggests that we only need
to compute the value of G j(S ,K) for S greater than the threshold S ∗j(K). As in the
previous section, we will use an asymptotic approximation as a proxy for G j(S ,K)
in this range.

Proposition 5 In the limit as S goes to infinity, the optimal capacity K∗j (S ,K) con-
verges to the upper bound K̄ and the function G j(S ,K) converges to a linear function
of the price. In particular,

G j(S ,K)
S →∞
−→ R̄ j S −C̄ j−γ (K̄ −K),

where

R̄ j :=
j∑

k=1

R̄k e−ρ T̄ +

k, j and C̄ j :=
j∑

k=1

C̄k e−r T̄ +

k, j .

Proof: It follows directly from Proposition 1 and it is left to the reader. �

If we use this linear asymptotic behavior of G j(S ,K) in equation (1.24), we get the
following approximations of S ∗j(K) and M j(K).

S ∗j(K) ≈
(
β

β−1

) (
C̄ j +γ (K̄ −K)

R̄ j

)
and,

M j(K) ≈
(
R̄ j

β

)β (
β−1

C̄ j +γ (K̄ −K)

)β−1

. (1.25)

According to these solutions, the threshold price S ∗j(K) is a linear and decreasing
function of K. That is, when capacity is large a small spot price is enough to induce
the decision maker to start production.

In order to complete our approximation when capacity expansion is possible, we
also need to approximate K∗j (S ,K), that is, how the decision maker should expand
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capacity over time. The optimization in equation (1.23) is in general difficult to
solve. However, since F j(S ,K) = G j(S ,K) for S sufficiently large, we can exploit
one more time the asymptotic approximation in Proposition 5 to get K∗j (S ,K) ≈

max
{
K ; K j(S )

}
, where

K j(S ):=argmax
0≤K̃≤K̄

{
R(K̃)S −C(K̃)−γ K̃

}
. (1.26)

The functionK j(S ) represents the optimal capacity expansion if there is no installed
capacity and the spot price is S . (Note that this is an increasing function of S .)
Define S̄ j := inf{S ≥ 0 : K j(S ) = K̄}. For the decision maker’s, S̄ j is the threshold
price above which it is always optimal to expand capacity to its maximum possible
level K̄ independently of current capacity.

The left panel in Figure 1.4 plots the values ofK j(S ) for j = 1, . . . ,6 using the data in
Example 1. As expected, we can see thatK1(S )≤K2(S )≤ · · · ≤K6(S ) for all S . This
ordering reflects the fact that additional capacity is more valuable when the mining
project has more blocks. This monotonicity also implies that S̄ 6 ≤ S̄ 5 ≤ · · · ≤ S̄ 1.
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Fig. 1.4 Left Panel: Capacity expansion function K j(S ) for j = 1, . . .6 using the data in Example 1, γ = 10 and
a maximum capacity K̄ = 5. Right Panel: Optimal production and capacity expansion decisions based on the
switching curves S ∗j (K) and K j(S ) using the data of Example 1, γ = 5 and K̄ = 5. Both panels display spot prices
in [cUS$/lb].

Based on the thresholds S ∗j(K) and K j(S ) we can divide the state space {(S ,K) :
0 ≤ K ≤ K̄ and S ≥ 0} in three subregions depicted in the right panel in Figure 1.4.
In Region I := {(S ,K) : 0 ≤ S ≤ S ∗j(K), K ≤ K̄} the spot price is very low and the
decision maker is better off idling production until the price reaches the threshold
S ∗j(K). On the other hand, in Region II := {(S ,K) : S ∗j(K) ≤ S ,K j(S ) ≤ K ≤ K̄} the
spot price and capacity are both high and production should start but no capacity
expansion is required. Finally, in Region III := {(S ,K) ∈ S : S ∗j(K) ≤ S and 0 ≤
K ≤ K j(S )} the spot price is high but production capacity is low. In this region, the
decision maker should expand capacity from K toK j(S ) and produce. For example,
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if the system is in point A in Figure 1.4 then capacity should be expanded to point
B and then production should start.

We note that the negative slope of S ∗j(K) implies that the opportunity cost of idling
production increases as capacity increases. In other words, a large mining project
will tend to operate almost independently of the price while a small project will turn
production on and off as the spot price oscillates. On the other hand, the positive
slope of K j(S ) reflects the intuitive fact that capacity becomes more valuable as the
spot price increases.

1.5 Case Study

In this section, we use the methodology proposed in the previous sections to esti-
mate the economic value of a mining project at El Teniente. This mine is located in
the central region of Chile, 3,000 meters above the sea level, and is reported as the
largest underground copper mine in the world. With a processing capacity of almost
50 [million tons/year], it produced more than 450,000 metric tons of refined copper
in 2013. This mine has multiple active sectors and is in continuous expansion. One
of these sectors is El Diablo Regimiento, which started production in 2005 and is
scheduled to finish its operations circa 2020. Because of its unusual spatial distri-
bution, several extraction sequences were considered, each one requiring a different
economic evaluation. The project is currently on its third phase (out of five), and
mining operators continually are pressured to evaluate large changes to production
plans in limited amount of time.

In what follows, we show how we can use the methodology proposed in this chapter
to tackle the sequencing problem for El Diablo Regimiento. Based on the original
extraction sequence, we divide the almost 230 million tons of material in this sec-
tor into ten blocks. Figure 1.5 shows schematically the spatial distribution of these
blocks. Table 1.2 (left panel) summarizes mineral content, grade and extraction time
for the ten blocks in El Diablo Regimiento. Based on the spatial distribution of the
blocks, we evaluate six extraction sequences (shown in the right panel), where se-
quence N1 is the one considered in the original design at El Teniente. The first block
on each of these sequences is the first one to be extracted. We note that this set of
sequences represents only a small fraction of the total number of possible extraction
sequences.

Because production costs depend on the actual sequence of extraction, we do not
have a fixed extraction cost for each block. For the purpose of the computational
experiments reported in this section, we use a simplified method to approximate
these extraction costs. If we let π = (π1,π2, . . . ,π10) be any of the six sequences that
we consider, then the marginal extraction cost (in [cUS$/lb]) for the jth block in this
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Fig. 1.5 Block spatial distribution at El Diablo Regimiento.

Block Q j [million tons] L j [%] T j [years]
1 21.415 0.827 2.93
2 21.268 0.915 2.91
3 29.526 0.823 4.04
4 28.351 0.881 3.88
5 24.854 0.845 3.40
6 23.931 0.848 3.28
7 21.476 0.768 2.94
8 26.110 0.727 3.58
9 14.913 0.694 2.04
10 13.126 0.776 1.80

Sequence Order
N1 1-2-3-4-5-6-7-8-9-10
N2 10-9-8-7-1-2-5-3-4-6
N3 4-3-2-1-7-8-9-10-5-6
N4 6-5-2-1-3-4-7-8-9-10
N5 1-2-7-8-9-10-5-6-3-4
N6 1-2-5-3-7-8-6-4-9-10

Table 1.2 Left Panel: Mineral content Q j, copper grade L j and extraction time T j for the ten blocks in El Diablo
Regimiento. Right Panel: Six feasible extraction sequences.

sequence π is4

Aπj = 0.4857 + 0.0162 ·dπ1π j

where di j denotes the distance between blocks i and j (see Table 1.3). In other words,
we are approximating the marginal extraction cost of a block as an affine function
of the distance from the block to the initial extraction front, understanding that in
practice, additional factors should be considered.

Finally, we considered a fixed production capacity of 7.3 [million tons/year] for this
sector. For this exercise, we set additional parameters as follows: a recovery factor
of 85% (this value further penalizes Li and represents the loss in recovery of mineral

4 The intercept and slope were estimated using production costs at El Teniente considering the
extraction sequence N1 and using aggregate .
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di j 1 2 3 4 5 6 7 8 9 10
1 0 90 190 321 191 314 159 189 275 367
2 90 0 102 234 174 295 157 240 350 438
3 190 102 0 133 233 336 182 299 424 507
4 321 234 133 0 343 425 272 399 532 607
5 191 174 233 343 0 124 327 380 454 547
6 314 295 336 425 124 0 450 503 569 661
7 159 157 182 272 327 450 0 128 263 335
8 189 240 299 399 380 503 128 0 136 209
9 275 350 424 532 454 569 263 136 0 93
10 367 438 507 607 547 661 335 209 93 0

Table 1.3 Distance (in meters) among the blocks at El Diablo Regimiento.

during the concentration and refinement processes), r = 12%, σ = 0.5, and ρ = 6%
(as a reference, [12] report an average value of the (instantaneous) convenience yield
for copper of 6.3%).

For each of the six sequences we compute the value function (numerically) and the
asymptotic approximation based on the lower bound in equation (1.22). Table 1.4
summarizes the results. We conclude that the best extraction sequence (as measured

Price N1 N2 N3 N4 N5 N6 Relative
S F F̂L F F̂L F F̂L F F̂L F F̂L F F̂L Error
50 607 552 556 499 598 543 599 541 587 535 602 549 9.1%
100 1367 1251 1255 1130 1350 1232 1352 1227 1325 1213 1356 1245 8.5%
150 2143 2007 1975 1812 2120 1975 2123 1967 2078 1945 2125 1996 6.3%
200 2926 2803 2704 2534 2896 2761 2901 2751 2837 2717 2901 2786 4.2%
250 3721 3614 3446 3295 3684 3567 3691 3562 3608 3505 3689 3590 2.9%
300 4509 4416 4183 4053 4465 4363 4474 4363 4373 4283 4469 4384 2.1%
350 5298 5219 4921 4810 5247 5159 5259 5164 5138 5062 5251 5178 1.5%
400 6097 6030 5670 5577 6040 5965 6054 5975 5914 5849 6043 5982 1.1%
450 6888 6832 6410 6335 6823 6762 6840 6776 6681 6628 6827 6777 0.8%
500 7679 7635 7152 7092 7607 7558 7627 7577 7449 7406 7611 7571 0.6%
550 8480 8446 7902 7859 8401 8364 8423 8388 8226 8194 8404 8375 0.4%
600 9272 9248 8644 8617 9186 9160 9211 9189 8995 8972 9189 9169 0.3%

Table 1.4 Value function for the six extraction sequences in El Diablo Regimiento. Prices in column S are ex-
pressed in [cUS$/lb]. The F columns represent the numerically computed value function (in M US$) and the F̂L

columns represent the asymptotic approximation using the lower bound in equation (1.22) (in M US$).

by the value function F) is given by N1 (the original sequence). Similarly, if we
use the asymptotic approximation F̂L to decide we also conclude that N1 is the
best extraction sequence. In terms of the value of this project, the relative error
between F and F̂L is reported in the far most right column in Table 1.4. Note that
the values computed using the asymptotic approximations have a relative small error
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that ranges from 9% to 0.3%. This error is decreasing in the spot price S , a result
consistent with Proposition 1 and Corollary 2. The fact that sequence N1 is the
best alternative is also consistent with Proposition 4. Indeed, analyzing the data for
this instance we notice that sequence N1 has the best asymptotic behavior with the
highest slope RN1 = 24.78 among all six sequences.

We conclude this section discussing how to use the results of section 4 to estimate an
optimal capacity expansion policy for El Diablo Regimiento. Supposing that initially
there is no installed capacity we can use equations (1.25) and (1.26) to obtain an
approximation for the optimal initial capacity. In these computations we considered
γ = 7.5 [US$/(Ton/year)] and K = 20 [M Tons/year].

For each of the six sequences we compute the asymptotic approximation based on
the lower bound in equation (1.24) and the expansion rule in equation (1.26). Ta-
ble 1.5 summarizes the results.

Price N1 N2 N3 N4 N5 N6
S K∗ F K∗ F K∗ F K∗ F K∗ F K∗ F
30 0.01 66.78 0.01 58.23 0.01 61.82 0.01 58.75 0.01 68.09 0.01 66.69
40 5.1 89.04 0.01 77.64 0.9 82.43 0.01 78.33 4.7 90.79 4.4 88.91
50 7.75 111.29 0.01 97.05 4.65 103.04 0.01 97.91 7.2 113.49 7.4 111.14
60 10.6 133.55 5.2 116.47 7.25 123.65 6.7 117.5 9.95 136.19 10.45 133.37
70 13.9 155.81 7.3 135.88 10.05 144.25 9.4 137.08 13.05 158.89 13.85 155.6
80 17.5 178.07 9.55 155.29 13.25 164.86 12.45 156.66 16.5 181.59 17.6 177.83
90 20 200.33 12.1 174.7 16.85 185.47 15.85 176.25 20 204.28 20 200.06
100 20 222.59 14.95 194.11 20 206.08 19.55 195.83 20 226.98 20 222.29
110 20 244.85 18.1 213.52 20 226.68 20 215.41 20 249.68 20 244.51
120 20 267.11 20 232.93 20 247.29 20 234.99 20 272.38 20 266.74
130 20 289.36 20 252.34 20 267.9 20 254.58 20 295.08 20 288.97
140 20 311.62 20 271.75 20 288.51 20 274.16 20 317.78 20 311.2

Table 1.5 Optimal capacity K∗ (in [M Tons/year]) and expected value F (numerically computed, in [M US$]) for
the six sequences of extraction at El Diablo Regimiento as a function of the price S in [cUS$/lb]. The value of K∗

is computed using the asymptotic approximation F̂L and equation (1.26).

Interestingly, the optimal sequence in this case is N5 as opposed to N1 that is optimal
when capacity is fixed at 7.3 [M Tons/year]. Because sequence N1 is the one consid-
ered in the original design of El Diablo Regimiento, it seems that management at El
Teniente has not fully valued the option of increasing capacity. Of course, there are
other practical considerations that are not included in our model that might explain
this discrepancy. Finally, we note that it is optimal to expand capacity to its maxi-
mum level K̄ = 20 [M Tons/year] if the spot price exceeds 100 [cUS$/lb]. This is a
rather small value compared to the current spot price which is around 300 [cUS$/lb],
but higher than the prevalent price at the early stages of the planning process, circa
2003.
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1.6 Conclusions and Future Research

In this chapter, we develop a tractable continuous-time model of a mining opera-
tion and propose a methodology to compute near-optimal production and capacity
expansion policies.

On the modeling side, we represent the mining project as a finite collection of min-
eral blocks. These blocks are defined in terms of ore content, mineralogical compo-
sition and extraction costs. In our model, an optimal production policy defines the
sequence in which blocks should be extracted as well as the timing of extraction.
Our discrete block representation of the mine is consistent with current practice and
deviates from previous research that commonly models mine characteristics (such
as ore content, grade and production costs) as continuous variables. In this respect,
we believe our model contributes to bridge the gap between the academic research
and current practice in the mining industry, and represents a first step towards a
methodology for optimal sequence selection.

We use a two-step approach to approximate the optimal operating and capacity ex-
pansion policy. First, in Section 1.3, we fix the sequence and production capacity
and solve for the optimal timing of extraction contingent upon the evolution of the
spot price. In Proposition 1, we derive general properties of an optimal policy and
show that the value of the project is asymptotically equal to an affine function of
the price. Unfortunately, for moderate values of the price we do not obtain a sim-
ple characterization of the value function. For this reason, we derive in §1.3.1 and
§1.3.2 upper and lower bounds on the value function, respectively, and use them to
propose two simple extraction policies. In addition, we use these bounds in §1.3.4
to derive a pair of asymptotic approximations to the value function. Out of these
approximations, the one derived using asymptotic analysis and based on the lower
bound in equation (1.22), F̂L(S ), turns out to be asymptotically equal to the true
value function. Moreover, the set of numerical computations in Table 1.1 shows that
F̂L(S ) performs extremely well for a wide range of prices and other parameters with
an average error of 2%. We conclude Section 1.3 with Proposition 4 that provides
necessary and sufficient conditions to decide when a sequence of extraction domi-
nates another one for all values of the spot price.

In Section 1.4, we undertake the second step of our solution approach. There, we
show how to extend the models of the previous section to identify efficient capacity
expansion policies. Our discussion is based on the asymptotic approximation F̂L(S )
but the same methodology can be extended to other approximations of the value
function. The resulting production/capacity policy is of the threshold type. Specif-
ically, the state space (S ,K) (spot price, installed capacity) is partitioned into three
regions (see the right panel in Figure 1.4). In region I, the spot price is relatively
small and the optimal policy is to idle production. In region II both the price and
the capacity are large and so production is performed with no increase in capacity.
Finally, in region III the spot price is high but capacity is relatively small. The policy
in this case is to increase capacity to a level that depends on the current spot price
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and then produce accordingly. Our analysis provides a set of simple equations that
characterize the threshold functions that separate these three regions. As a general
rule, we observe that as the capacity of a project increases the option to idle pro-
duction becomes less valuable. In other words, large mining projects will tend to
operate almost independently of the output price while small projects will switch
production on and off as the spot price oscillates.

We conclude the chapter, in Section 1.5, with an application of our methodology to
a real instance of the problem at El Teniente. The example is based on a real project,
called El Diablo Regimiento. Our analysis shows that the original planned sequence
is optimal if production capacity is fixed at its nominal value of 7.3 (M Tons/year).
However, if we allow the production capacity to be optimally chosen then it turns
out a different sequence maximizes the economic value of El Diablo Regimiento.

There are a number of possible extensions to our model. First of all, an important
component of an optimal production policy is the sequence in which blocks are
extracted. In this chapter, we do not handle explicitly the question of how to dynam-
ically choose this sequence. Instead, we take a scenario-based approach and assume
that the decision maker has identified a set of potential sequences that wants to eval-
uate. This open-loop approach is indeed consistent with how mining projects are
evaluated at Codelco. However, it lacks the flexibility of adjusting the sequence of
extraction based on the evolution of the spot price. On the other hand, as we note in
Section 1.2.4, the problem of dynamically adjusting the sequence of extraction has
a combinatorial structure which makes it extremely hard to solve. Extending our
methodology to explicitly include dynamic sequencing is a challenging research
problem that is important from both theoretical and practical standpoints.

Another interesting direction in which our model could be extended is by looking
more carefully at the relationship between spot price and production levels. In our
model the spot price in equation (1.1) is independent of the output of the mining
project. This is a standard assumption in the literature, which is reasonable if the
producer is a small player with limited market power. However, this is arguably
not the case for a company like Codelco that produces 10% of the world’s copper
production. In this situation, we should expect some correlation between output and
spot (and futures) price trajectories (see [8]). This type of large investor effect has
received some attention in the mathematical finance literature (e.g. [17], [25]) but it
seems to have been overlooked in the operational context of real options (see [24]
for an analysis of this issue for the German natural gas market).

Acknowledgements The authors would like to thank Nicola Secomandi and an anonymous ref-
eree for their helpful and constructive comments on the initial version of this chapter.
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Appendix

Proof of Theorem 1

Let F(S ) ∈ C2
+ be a solution to QVI conditions in equation (1.7). Given the assump-

tions on F(·), we can apply integration by parts followed by Itô’s lemma (see [40])
to get

e−rτ F(S τ) = F(S ) +

∫ τ

0
e−r tAF(S t)dt +

∫ τ

0
e−r tF′(S t)σS t dB̃t.

Using the fact that AF(S ) ≤ 0 (first QVI condition) and the non negativity of F
yields

0 ≤ e−rτ F(S τ) ≤ F(S ) +

∫ τ

0
e−r tF′(S t)σS t dB̃t.

Hence, the process

Yt := F(S ) +

∫ t

0
e−r uF′(S u)σS u dB̃u

is a nonnegative local Q-martingale, and, hence, a Q-supermatingale. Taking expec-
tation with respect to EQ[·] in the inequality above we obtain

EQ[e−rτ F(S τ)] ≤ F(S ).

Furthermore, using the second QVI condition gives

EQ[e−rτG j(S τ)] ≤ F(S ).

Because this inequality holds for any stopping time τ, we conclude that F(S ) ≥
F j(S ). Finally, we note that all the inequalities above become equalities for the
QVI-control associated to F(·). This follows from Dynkin’s formula and the fact
that the QVI-control is the first exit time from a bounded set (continuation region
D). �

Proof of Proposition 1

We will derive an upper an lower bound approximation for F j(S ) from which the
result will follow. First, we can get a lower bound on F j(S ) if we assume that the
decision maker is unable to idle production when prices are below the production
thresholds {S ∗k}. Under this non-idling restriction it follows that

F j(S )≥EQ
 j∑

k=1

e−r T +

k, j W j(STk, j )

 =

j∑
k=1

e−r T +

k, j

(
RkE

Q[S T +

k, j
|S 0 = S ]−Ck

)
=R j S −C j.

(A1)
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To get an upper bound, let us introduce a modified price process St given by

St = S t +
∑

k:Tk, j≤t

(
S ∗k −ST +

k, j−
)+, S0− = S 0.

Recall that S ∗k is the switching price for block k, that is, the extraction of block
k should start as soon as the spot price exceeds this threshold. Let us define the
auxiliary value function F j(S ) which is the expected payoff for a project with j
blocks under the modified price process St and using the switching prices {S ∗k : 1 ≤
k ≤ j} to control production.

It is not hard to see that St ≥ S t pathwise, hence it follows that F j(S ) ≤ F j(S ) for all
S . In addition, because of the specific construction of St it follows that under St the
decision maker will never idle production. That is, ST +

k, j
≥ S ∗k (a.s.) for all 1 ≤ k ≤ j.

Therefore, we have

F j(S ) ≤ F j(S ) =

j∑
k=1

e−r T +

k, j
(
RkE

Q[STk, j |S 0 = S ]−Ck
)

= R j S −C j +

j∑
k=1

e−r T +

k, j RkE
Q[ST +

k, j
−S T +

k, j
|S 0 = S ]. (A2)

Combining (A1) and (A2), we get

0 ≤ F j(S )−
(
R j S −C j

)
≤

j∑
k=1

e−r T +

k, j RkE
Q[ST +

k, j
−S T +

k, j
|S 0 = S ].

To complete the proof, we need to show that the term on the right goes to 0 as S
goes to infinity. In order to see this, we first note that by the definition of St we have

EQ[ST +

k, j
−S T +

k, j
|S 0 = S ] =

j∑
n=k

EQ
[(

S ∗k −ST +

k, j−
)+
|S 0 = S

]

≤

j∑
n=k

S ∗kQ(ST +

k, j−
≤ S ∗k |S 0 = S )

≤

j∑
n=k

S ∗kQ(S T +

k, j
≤ S ∗k |S 0 = S ),

where the last inequality uses the (a.s.) facts that St ≥ S t and S t is continuous. Under
measure Q, S t is log-normal with drift r−ρ−σ2/2 and diffusion coefficient σ (see
equation (1.3)). So, it is not hard to show that

Q(S T +

k, j
≤ S ∗k |S 0 = S ) = Q

(
B̃T +

k, j
≥

1
σ

[
ln

(
S
S ∗k

)
+ (r−ρ−

σ2

2
)T +

k, j

])
,
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where B̃t is a standard Q-Brownian motion.

Hence, for S ≥ S m
j exp

(
−mink

{
(r−ρ− σ2

2 )T +

k, j

})
, we can bound the tail probability

by (e.g., [3, Theorem XIII-2.1])

Q

(
B̃T +

k, j
≥

1
σ

[
ln

(
S
S ∗k

)
+ (r−ρ−

σ2

2
)T +

k, j

])
≤ exp

− 1
σ2

[
ln

(
S
S ∗k

)
+ (r−ρ−

σ2

2
)T +

k, j

]2
≤ exp

− 1
σ2 min

1≤k≤ j


ln S

S m
j

+ (r−ρ−
σ2

2
)T +

k, j

2
 .

Based on this bound, it is not hard to show that for S ≥ S m
j exp

(
−mink

{
(r−ρ− σ2

2 )T +

k, j

})
we have

j∑
k=1

e−r T +
k, j RkE

Q[ST +
k, j
−S T +

k, j
|S 0 = S ]≤ S m

j Rm
j

j ( j + 1)
2

exp

− 1
σ2 min

1≤k≤ j


ln S

S m
j

+ (r−ρ−
σ2

2
)T +

k, j

2
 ,

which goes to 0 as S goes to infinity. This completes the proof. �

Proof of Proposition 2

We use the following intermediate result.

Lemma 1 Consider a j-block project with characteristics (Rk,Ck,αk,ηk), k = 1, . . . , j.
Suppose that

Ck−1

Rk−1
≥ ηk

Ck

Rk
, k = 2,3, . . . , j.

Then, for any k ≤ j−1

η×k, j

(α×C)+

k−1, j

(θ×R)+

k−1, j
≤

Ck

Rk
, where θ = (θk) = (αk ηk).

Proof Lemma 1: The proof follows using backward induction on k = j−1, j−2, . . .
and it is left to the reader. �

We divide the proof of Proposition 2 in two parts.

Part I: Let us first prove the correctness of equations (1.18) and (1.19). For this,
we will consider the “modified” sequence of blocks produced by the algorithm and
we will show that these equations do characterize S j,M j, and F j for this modified
sequence.

We find convenient to drop the tildes ‘∼’ in the notation. Consider an arbitrary j-
block project with characteristics (Rk,Ck,αk,ηk), k = 1, . . . , j such that

Ck−1 ≥ ηkCk, k = 2,3, . . . , j. (A3)
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Note that according to step 2 in the algorithm, condition (A3) ensures that there is
no block aggregation, as required.

Let us now use induction on j to prove that for a j-block project satisfying condi-
tion (A3) the sets of threshold prices {Sk}

j
k=1 and constants {Mk}

j
k=1 are given by

equation (1.18) and the approximation F j(S ) satisfies equation (1.19), that is,

F j(S ) =
(
θ×R

)+

h, j S −
(
α×C

)+

h, j +Mhα
×

h, j
(
η×h, j

)β S β, (A4)

where h = max
{
0 ≤ k ≤ j |Sk ≥ η

×

k, j S
}

and S0 =∞.

• For j = 1 the result follows directly from equation (1.16).

• Let us assume that the result is true for some j− 1. That is, the values of {Sk}
j−1
k=1

and {Mk}
j−1
k=1 are given by equation (1.18) and F j−1(S ) is given by equation (A4).

Combining condition (A3) and the value of Sk (k = 1, . . . , j− 1) in equation (1.18)
we conclude that

Sk−1 ≥ ηkSk, k = 2,3, . . . , j−1. (A5)

•We now prove the result for j. First of all, let us show that S j−1 ≥ η jS j. Suppose,
by contradiction, that this is not the case, i.e., S j−1 < η jS j. Then, condition (A5)
and the fact that S0 =∞ imply that there exists a k̂ ≤ j−2 such that

ηk̂+1Sk̂+1 < ηk̂+1 ηk̂+2 · · · η jS j ≤ Sk̂ or equivalently ηk̂+1Sk̂+1 < η
×

k̂, j
S j ≤ Sk̂.

(A6)

Now, by the definition of S j and M j and the value matching and smooth pasting
conditions we get

M jS
β
j = R jS j−C j +α jF j−1(η jS j) and βM jS

β−1
j = R j +α j η jF

′
j−1(η jS j).

Using the induction hypothesis we can replace F j−1(η jS j) using equation (A4).
For this, note that the value of the index h used in (A4) to evaluate F j−1(η jS j) is
exactly equal to k̂ in (A6). In fact, at S = η jS j, h is equal to max

{
0 ≤ k ≤ j−1 |Sk ≥

η×k, j−1 (η jS j)
}

or equivalently max
{
0 ≤ k ≤ j−1 |Sk ≥ η

×

k, jS j
}
. This is k̂ by definition

and we obtain

F j−1(η jS j) =
(
θ×R

)+

k̂, j−1 η jS j−
(
α×C

)+

k̂, j−1 +Mk̂α
×

k̂, j−1

(
η×

k̂, j−1

)β (η jS j)β.

After some algebra, the value matching and smooth pasting conditions imply

S j =

(
β

β−1

) (α×C)+

k̂, j

(θ×R)+

k̂, j

and M j =Mk̂α
×

k̂, j
(η×

k̂, j
)β +

 (α×C)+

k̂, j

β−1

 Sβj . (A7)

However, condition (A3), the induction hypothesis Sk̂+1 = βCk̂+1/((β−1)Rk̂+1) and
Lemma 1 imply
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η×
k̂, j
S j = ηk̂+1 η

×

k̂+1, j
S j = ηk̂+1 η

×

k̂+1, j

(
β

β−1

) (α×C)+

k̂, j

(θ×R)+

k̂, j

≤ ηk̂+1

(
β

β−1

)
Ck̂+1

Rk̂+1
= ηk̂+1Sk̂+1.

This inequality contradicts (A6) and we conclude that S j−1 ≥ η jS j as claimed. This
conclusion implies that k̂ = j− 1 and we can compute the values of S j and M j
replacing k̂ by j−1 in equation (A7) which leads to

S j =

(
β

β−1

)
C j

R j
and M j = α j η

β
jM j−1 +

(
C j

β−1

) (
S j

)−β
,

proving equation (1.18) as required. Finally, from the condition η jS j ≤ S j−1 and
the induction hypothesis it is straightforward to show that F j(S ) is given by equa-
tion (1.19), which completes the induction.

Part II: Let us now carry out the second part of the proof. In this part, we prove
that for an arbitrary j-block project with characteristics (Rk,Ck,αk,ηk), k = 1, . . . , j,
the values of F j(S ) and S j are given by equations (1.18) and (1.19). The difference
with respect to Part I is that we are not assuming that condition (A3) is satisfied.

We will proceed one more time using induction on the number of blocks, j.

• For j = 1 the result follows directly from equation (1.16).

• Let us suppose that the result is true for j−1.

• Let us prove the result for j. The induction hypothesis implies that the value
of F j−1(S ) is derived using a modified sequence of blocks that satisfies condi-
tion (A3). Furthermore, all that we need to know about the characteristics of blocks
{ j− 1, j2, . . . ,1} to compute F j(S ) is contained in F j−1(S ). Hence, we can assume
without loss of generality that the sequence of blocks { j− 1, j2, . . . ,1} does satisfy
condition (A3), that is,

Ck−1

Rk−1
≥ ηk

Ck

Rk
, k = 2,3, . . . , j−1. (A8)

If this condition is also satisfied for block j then the entire sequence satisfies con-
dition (1.16) and the result follows from Part I. Hence, we will assume that block j
does not satisfy (A3), that is,

C j−1

R j−1
< η j

C j

R j
. (A9)

In the remainder of this proof, we will apply the algorithm in Proposition 2 to a
sequence of blocks satisfying conditions (A8) and (A9) and we will verify that the
value of F j(S ) and S j are given by equations (1.18) and (1.19).

First, note that the inequality in (A9) and condition (A8) imply that k̃ = j in Step 2
of the algorithm.

We now let h̃ be the solution to Step 3 in the algorithm, that is,
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h̃ = max{1 ≤ h ≤ j−1 : η×h, jCh+1, j ≤ Ch}.

Using these values of k̃ and h̃, Step 4 of the algorithm will pool together blocks
h̃+1, h̃+2, . . . , j into a single block. Hence, after this first iteration of the algorithm,
the resulting sequence of blocks has ̃ = h̃ + 1 blocks with characteristics

R̃k = Rk, C̃k = Ck, α̃k = αk, η̃k = ηk, k = 1, . . . , ̃−1

and
R̃̃ = (θ×R)+

h̃, j
, C̃̃ = (α×C)+

h̃, j
, α̃̃ = α×

h̃, j
η̃̃ = η×

h̃, j
.

Note that by (A8) and the definition of h̃, the resulting sequence satisfies

C̃k−1

R̃k−1
≥ η̃k

C̃k

R̃k
, k = 2,3, . . . , ̃.

Therefore, after the first iteration the algorithm will stop. Using this modified se-
quence, equation (1.18) leads to

S j =

(
β

β−1

) C̃̃

R̃̃
=

(
β

β−1

) (α×C)+

h̃, j

(θ×R)+

h̃, j

.

To verify the correctness of this solution, let us compute S j using its definition in
equation (1.15). We have

F j(S ) =

{
M j S β, if S ≤ S j,

R j S −C j +α jF j−1
(
η j S

)
, otherwise.

Recall that the value of F j−1
(
S
)

is known by the induction hypothesis and it is given
by equation (1.19). This induction hypothesis and, in particular condition (A8), im-
ply

Sk−1

η×k−1, j−1
≥
Sk

η×k, j−1
, k = 2, . . . , j−1.

Let us suppose that the value of S j satisfies

Sh̄+1

η×
h̄+1, j−1

< η jS j ≤
Sh̄

η×
h̄, j−1

, (A10)

for some h̄ ≤ j−1. These inequalities and equation (1.19) imply

F j−1(η jS j) =
(
θ×R

)+

h̄, j−1 η jS j−
(
α×C

)+

h̄, j−1 +Mh̄α
×

h̄, j−1
(
η×h̄, j−1

)β (η jS j)β.

Using this condition and the value matching and smooth pasting conditions we can
show, after some algebra,
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S j =

(
β

β−1

) (α×C)+

h̄, j

(θ×R)+

h̄, j

.

Hence, in order for this solution to be consistent with the inequalities in (A10) we
need

h̄ = max

1 ≤ h ≤ j−1 : η j

(
β

β−1

) (α×C)+

h, j

(θ×R)+

h, j

Sh

η×h, j−1


= max{1 ≤ h ≤ j−1 : η×h, jCh+1, j ≤ Ch}.

Hence, we have that h̄ = h̃, which proves that the value of S j in (1.18) is indeed
correct. Now that we know the value of S j, it is a matter of simple (but tedious)
calculations to verify that the values ofM j and F j(S ) are exactly those reported in
equations (1.18) and (1.19). �

Proof of Proposition 4

The proof follows directly from equation (1.22). Indeed, suppose first that FL
1(S ) ≥

FL
2(S ) for all S . Then, for S sufficiently small (that is, S ≤ min{S ∗π1

j ,S ∗π2
j }, where

S ∗πi
j is the threshold price under sequence πi, i=1,2) equation (1.22) implies that

Mπ1
j ≥ Mπ2

j . This inequality is equivalent to

Rπ
1

j

Rπ
2

j


β

≥

Cπ
1

j

Cπ
2

j


β−1

.

Similarly, for S sufficiently large FL
1(S ) ≥ FL

2(S ) implies that Rπ
1

j ≥ R
π2

j .

Conversely, let us suppose that the following conditions are satisfied:

Rπ
1

j ≥ R
π2

j and

Rπ
1

j

Rπ
2

j


β

≥

Cπ
1

j

Cπ
2

j


β−1

.

Then, equation (1.22) immediately implies that FL
1(S ) ≥ FL

2(S ) for S sufficiently
small or sufficiently large. Finally, the inequality (FL

1(S ) ≥ FL
2(S )) extends to all

S ≥ 0 by the convexity of FL
1(S ) and FL

2(S ). �
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