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Abstract

We consider an online retailer facing heterogeneous customers with initially unknown prod-

uct preferences. Customers are characterized by a diverse set of demographic and transactional

attributes. The retailer can personalize the customers’ assortment offerings based on available

profile information to maximize cumulative revenue. To that end, the retailer must estimate

customer preferences by observing transaction data. This, however, may require a consider-

able amount of data and time given the broad range of customer profiles and large number of

products available. At the same time, the retailer can aggregate (pool) purchasing information

among customers with similar product preferences to expedite the learning process. We propose

a dynamic clustering policy that estimates customer preferences by adaptively adjusting cus-

tomer segments (clusters of customers with similar preferences) as more transaction information

becomes available. We test the proposed approach with a case study based on a dataset from

a large Chilean retailer. The case study suggests that the benefits of the dynamic clustering

policy can be substantial and result (on average) in more than 37% additional transactions

compared to a data-intensive policy that treats customers independently and in more than 27%

additional transactions compared to a linear-utility policy that assumes that product mean util-

ities are linear functions of available customer attributes. We support the insights derived from

the numerical experiments by analytically characterizing settings in which pooling transaction

information is beneficial for the retailer, in a simplified version of the problem. We also show

that there are diminishing marginal returns to pooling information from an increasing number

of customers.

Keywords: Data-Driven Assortment Planning, Personalization, Dynamic Clustering, Multi-

Armed Bandit

1 Introduction

Motivation and Objective. According to a recent study by eMarketer (eMarketer 2014), world-

wide business-to-consumer e-commerce sales will reach $2.357 trillion in 2017. With the rapid

growth of online sales, many tech entrepreneurs and traditional retailers are finding unprecedented
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opportunities to both enhance the customer experience and increase revenue. Assortment person-

alization is one such opportunity. Personalization refers to the practice of offering a marketing

or product mix to each customer based on previously collected data (Arora et al. 2008). These

offers are tailored to each customer’s taste. The benefits of personalization are twofold: on one

hand, it results in higher revenue for the retailer due to the increase in sales that results from

providing customers with a set of products that more accurately matches their preferences (Arora

et al. 2008); on the other hand, it attracts customer attention and fosters customer loyalty and

satisfaction (Ansari and Mela 2003).

Personalization in online retailing is well-documented. For example, Amazon.com uses collabo-

rative filtering to personalize recommendations to its users (Linden et al. 2003, Arora et al. 2008).

A recent New York Times article reviews a growing number of start-ups that are investing in highly

personalized online shopping technology (Wood 2014). These include Stitch Fix, a women’s clothing

retailer that periodically sends its customers boxes containing five pieces of clothing personalized to

each customer’s taste (e.g., size, favorite brand and color, budget). Trunk Club is another similar

company catering to male customers. Ropazi is a text messaging-base service that specializes in

personalized clothing offerings for kids. As noted in the New York Times article, in personalized

shopping “the magic comes from data.” Online retailers collect an abundance of customer data (e.g.,

demographic, transactional, etc.). However, given the broad range of customer profiles, collecting a

sufficient amount of transaction data on each customer profile may not be possible. This, in turn,

limits the retailer’s ability to accurately estimate preferences and offer personalized assortments.

The goal of this paper is to explore the efficient use of data for assortment personalization

in online retailing. In particular, we study the revenue impact of adaptively pooling transaction

information across customers with similar taste.

Model. We consider an online retailer that sells multiple products over a finite selling season.

Customers arrive sequentially and the retailer offers each customer an assortment of products. The

retailer may face display or capacity constraints that limit the number of products in the offered

assortment. The customer then decides whether or not to make a purchase. The retailer’s objective

is to maximize expected cumulative revenue over the selling season.

Customers are divided into different profiles according to their observable attributes, such as

demographic profiles (e.g., gender, age, location) and past transaction information (e.g., purchase

history, payment method). This information is exogenous and available upon arrival via the cus-

tomer’s login information or internet cookies. We assume that, from the perspective of the retailer,

customers with a common profile are homogeneous with respect to their product preferences (in

practice, the definition of profiles reflects the degree of customer information available to the retailer

and the level of granularity that allows the retailer to operationalize other marketing decisions).

A central assumption in this work is that the retailer has limited prior information on customers’

preferences. Personalizing assortments thus requires the estimation of such preferences which, in

turn, requires observing the customers’ purchasing decisions (that are themselves affected by the

retailer’s assortment decisions). This gives rise to an exploration (learning preferences) versus
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exploitation (earning revenue) trade-off. As such, we formulate the assortment selection problem as

a multi-armed bandit problem (Thompson 1933, Robbins 1985) with multiple simultaneous plays:

each product represents an arm and including a product in the offered assortment is equivalent to

pulling that arm – see Caro and Gallien (2007).

Off-the-shelf bandit approaches to the assortment problem call for solving an independent in-

stance for each customer profile. However, practical instances of the problem might have scores of

different profiles. This implies that arriving to reasonable preference estimates for a given profile

might take an unreasonably large amount of time. More importantly, such an approach ignores

the possibility that customers with different profiles may share similar product preferences. In this

paper, we show that the retailer can exploit these similarities by pooling information across cus-

tomers with similar purchasing behavior. To that end, we consider the existence of an underlying

mapping from profiles to clusters, where a cluster is defined as a set of customer profiles with the

same product preferences. This mapping is initially unknown to the retailer.

We propose a dynamic clustering policy under which the retailer estimates both the underlying

mapping of profiles to clusters and the preferences of each cluster. Assortment decisions are based

on the estimated mapping by adapting decision rules from traditional bandit algorithms. We use

a Bayesian semi-parametric framework, called the Dirichlet Process Mixture model, to represent

uncertainty about the mapping of profiles to clusters. This model arises as a natural selection given

the discrete nature of the mapping and allows us to draw inference without having to predetermine

the number of clusters upfront. The dynamic clustering policy approximates the posterior distri-

bution of the mapping of profiles to clusters as well as that of the preference parameters for each

cluster by using a Markov Chain Monte Carlo (MCMC) sampling scheme.

Main Contributions. The contributions of this paper are as follows:

We propose a prescriptive approach, called the dynamic clustering policy, for assortment per-

sonalization in an online setting. The proposed policy combines existing tools from the Bayesian

data analysis literature (for estimating customer preferences through dynamic clustering) and from

the machine learning / operations management literature (to prescribe personalized assortment de-

cisions). This approach is motivated by the retailers’ interest in identifying segments of customers

with similar preferences and in offering personalized assortments to their customers. Unlike most

existing work that focuses on offline settings (i.e., using historical data), we propose an online

tool for assortment personalization that can be implemented in real-time. Moreover, the proposed

dynamic clustering policy is fairly general and flexible as the number of clusters (segments) is

endogenous and does not need to be pre-determined.

We illustrate the practical value of the dynamic clustering policy in a realistic setting by using a

dataset from a large Chilean retailer. We use the case study to quantify the efficiency and demon-

strate the implementability of the dynamic clustering policy. The dataset consists of roughly 95,000

customer-tied click records in the retailer’s website for 19 products in the footwear category. We

contrast the performance of the proposed policy to that of a data-intensive policy that ignores any

potential similarity in preferences across profiles and thus estimates product preferences for each
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profile separately. We find that, in the case study, the proposed policy generates more than 37% ad-

ditional transactions (on average) compared to the data-intensive policy. This finding quantifies the

potential benefit of leveraging similarity in customer preferences by adaptively pooling information

across profiles with similar purchase behavior to expedite the learning process. The performance of

the dynamic clustering policy is remarkable, considering that the underlying customer population

in the case study is rather heterogeneous. We also compare the performance of the proposed policy

to that of a linear-utility policy that assumes a more structured model of customer preferences.

In particular, the linear-utility policy assumes that demand is driven by a customer choice model

in which mean utilities are linear functions of customer attributes. The findings from the case

study show that the proposed policy generates more than 27% additional transactions (on average)

compared to the linear-utility policy. While this can be partially explained by the fact that pref-

erences in the dataset do not exhibit a linear structure, the advantage of the dynamic clustering

policy persists even when using synthetic data (based on the dataset) under which mean utilities

are linear functions of customer attributes by construction. This finding reinforces the benefits of

pooling information through the proposed dynamic clustering approach.

To support the insights derived from the numerical experiments, we analyze a simplified version

of the dynamic assortment selection problem in which a single product is offered to each arriving

customer. First, we compare the performance of the data-intensive policy to that of a semi-oracle

policy that knows upfront the mapping of customer profiles to clusters and thus conducts preference

estimation and assortment optimization independently for each cluster (as opposed to each profile).

This policy exploits the structure of preferences across profiles. Aligned with intuition, we show that

the semi-oracle policy outperforms the data-intensive policy, indicating that pooling information

is beneficial for the retailer. We also show that there are diminishing marginal returns to pooling

information from an increasing number of customer profiles. Next, we contrast the performance of

the data-intensive policy with that of a pooling policy that aggregates information across all profiles

(regardless of whether their preferences are similar or not). This scenario favors the data-intensive

policy, as pooling information across all customers may lead to erroneous estimates and thus to

suboptimal assortment offerings. Despite its shortcomings, we characterize conditions under which

the pooling policy outperforms the data-intensive policy. The result highlights the benefit of pooling

information in the short-term, when there is insufficient data to accurately estimate preferences for

each customer profile.

Organization of the Paper. Section 2 provides a review of the relevant literature. Section 3

describes the model. Section 4 presents the dynamic clustering policy, while Section 5 illustrates its

effectiveness through a case study. Section 6 discusses theoretical results characterizing settings in

which pooling information is beneficial for the retailer. Section 7 provides concluding remarks. All

proofs are relegated to Appendix A. Appendix B discusses the extension of the results of Section 6

for Thompson Sampling.
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2 Literature Review

This paper proposes a prescriptive approach that integrates dynamic clustering and demand learn-

ing with assortment personalization. The paper contributes to and lies at the intersection of three

streams of research: dynamic assortment planning with demand learning, personalization, and seg-

mentation methods. The literature on dynamic assortment planning with demand learning mostly

focuses on a homogeneous population of customers with unknown demand. The second stream of

work is generally concerned with assortment or pricing personalization for a heterogeneous popu-

lation of customers, but does not consider online demand learning or clustering. Finally, from a

methodological standpoint, this paper is related to the literature on Bayesian hierarchical and seg-

mentation methods. Most of papers in this stream of work focus on offline settings, given historical

data for estimation purposes.

We next review these streams of work in more detail.

Dynamic Assortment Planning with Demand Learning. Our paper contributes to the vast

and growing literature on assortment planning. We refer to Kök et al. (2015) for a comprehensive

review of the assortment planning literature and industry practices. To the best of our knowledge,

there are only a handful of papers that study dynamic assortment planning with demand learning.

Using a Bayesian approach to learn customer preferences, Caro and Gallien (2007) formulate the

problem as a multi-armed bandit with multiple plays per period and employ a Lagrangian relaxation

approach to propose an index policy for dynamic assortment selection. Ulu et al. (2012) study the

dynamic assortment decisions of a firm with horizontally differentiated products for which customers

have heterogeneous tastes modeled as locations on a Hotelling line. Following a frequentist approach

to estimate customer preferences, Rusmevichientong et al. (2010) study an assortment optimization

problem with capacity constraints under the Multinomial Logit (MNL) model. Sauré and Zeevi

(2013) study a similar problem under a more general random utility model which subsumes the MNL

as a special case. They prove a fundamental limit on the achievable performance of any admissible

policy. Using this bound, they propose adaptive policies that balance the implied exploration versus

exploitation trade-off. We use elements of this policy in the numerical study in Section 5. In a

similar setting, Agrawal et al. (2016) propose an online upper-confidence-bound-type policy for

which they prove a performance upper bound. Most of the papers in this stream of work assume

a homogeneous population of customers and therefore do not focus on clustering or assortment

personalization.

Our work is also related to the literature on dynamic pricing with demand learning. Ferreira

et al. (2016) consider a price-based network revenue management problem and extend the Thomp-

son Sampling policy to a setting that involves inventory constraints. Cheung et al. (2016) study

a dynamic pricing problem where the demand function is unknown but belongs to a known finite

set. They propose an online policy and prove performance bounds. We refer the reader to Besbes

and Zeevi (2009), Harrison et al. (2012), and the references therein.
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Personalization. Personalization has been studied in the marketing literature from both concep-

tual and methodological perspectives. Murthi and Sarkar (2003) present a review of research on

personalization with a focus on learning customer preferences. See also Montgomery and Smith

(2009) and Arora et al. (2008) for two more recent reviews of past research on personalization and

some of its examples in practice. In the operations management literature, Bernstein et al. (2015)

study a dynamic assortment planning problem with limited inventory under a mixed Logit choice

model. The authors prove structural properties of the optimal policy in certain settings and pro-

pose a heuristic for assortment customization. In a similar setting, Golrezaei et al. (2014) study an

assortment planning problem with a general choice model and limited inventories. They propose an

index-based policy and prove performance bounds. Chen et al. (2015) consider personalized pricing

(or assortment) decisions in an offline setting given customers’ contextual information, using Logit

models. Gallego et al. (2015) study a problem of resource allocation with applications to personal-

ized assortment optimization. Jasin and Kumar (2012) propose certainty-equivalent heuristics for a

network revenue management problem with customer choice where the seller chooses a collection of

products to offer to customers based on their type. Ciocan and Farias (2014) propose a demand es-

timation algorithm for a high-dimensional network revenue management problem for online display

advertising. Kallus and Udell (2016) study a high-dimensional dynamic assortment personalization

problem where the number of customer types is large. Assuming that the underlying parameter

matrix is of low rank, they use a nuclear-norm regularized maximum likelihood approach for es-

timation. While these papers study assortment personalization, they do not integrate assortment

decisions with online demand learning or clustering.

Segmentation Methods and Methodological Background. Customer segmentation has been

widely studied in the marketing literature. Wedel and Kamakura (2012) provide a comprehensive

review of market segmentation methodologies such as clustering, mixture models, and profiling seg-

ments. In our paper, the proposed Bayesian representation of uncertainty on the mapping of profiles

to clusters is based on the Dirichlet Process Mixture model – see Heller and Ghahramani (2005)

for a Bayesian hierarchical clustering algorithm which can be used as a deterministic alternative

(approximation) to MCMC inference in Dirichlet Process Mixture models. Our adaptation of the

Dirichlet Process Mixture model is based on Neal (2000). While, to the best of our knowledge, ours

is the first paper in the operations management literature to employ this model, researchers in other

fields have used the Dirichlet Process Mixture model to capture heterogeneity in the customers’

population. In the marketing literature, Ansari and Mela (2003) use this model to customize the

design and content of emails to increase web traffic (click-through). In the economics literature,

Burda et al. (2008) use this model to estimate the parameters of a Logit-Probit choice model. In

these papers, the estimation is conducted offline using historical data.

As noted earlier, the dynamic assortment selection problem we study can be thought of as a

multi-armed bandit problem with multiple plays per period. In their seminal work, Lai and Robbins

(1985) prove a fundamental limit on the achievable performance of any so-called consistent policy

in a classic bandit setting (we use this lower bound for the analysis in Section 6). Anantharam et al.
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(1987) extend the fundamental limit of Lai and Robbins (1985) to a multi-armed bandit problem

with multiple plays. The dynamic assortment selection problem can alternatively be formulated as

a combinatorial multi-armed bandit problem envisioning each feasible assortment as an arm. This

is the approach used in Rusmevichientong et al. (2010) and Sauré and Zeevi (2013). We refer the

reader to Modaresi et al. (2014) and the references therein for a combinatorial multi-armed bandit

formulation and a review of the relevant literature.

3 Model and Preliminaries

In this section, we formalize the retailer’s assortment personalization problem. In particular, we

introduce the notion of clusters, which captures the presence of heterogeneity in the customer

population, and discuss the connection of the model to the multi-armed bandit problem.

Problem Definition. Consider an online retailer endowed with N products and let T denote the

total number of customers that arrive during the selling season. Let N := {1, . . . , N} denote the

set of all products. The retailer has a limited display or capacity constraint of C products, i.e.,

the retailer can show a selection of at most C products to each arriving customer. Without loss

of generality, we assume that C ≤ N . Such display constraints have been motivated and used in

different settings in previous studies (see, e.g., Besbes and Sauré (2016), Fisher and Vaidyanathan

(2014), Rusmevichientong et al. (2010), and Caro and Gallien (2007)). In an online retail setting,

this constraint may be related to limitations on the time customers spend searching for a product,

or the number of products displayed in the webpage. In the context of companies such as Ropazi

(mentioned in Section 1), customers are shown a subset of the entire product set. For j ∈ N , we

let rj denote product j’s unit price, which we assume to be fixed throughout the selling season.

Customers arrive sequentially throughout the selling season. We use t to index customers

according to their arrival times, so that time t = 1 corresponds to the first customer arrival and

time t = T to the last one. The retailer classifies customers according to their profile information.

Each profile is encoded as a unique vector of attributes (e.g., gender, age, location, past transactions,

payment method). For example, in the case study presented in Section 5, we use customers’ gender,

age, and location to define their profile information. Thus, in that case, a customer profile is

described by the attribute vector x = (xgender, xage, xlocation). The profile of an arriving customer is

observed by the retailer via the customer’s login information or internet cookies. Let I := {1, . . . , I}
denote the set of customer profiles, where each profile i is associated with a unique vector of

attributes xi, i ∈ I. A customer with profile i arrives with probability pi, where 0 < pi < 1 for

i ∈ I and
∑

i∈I pi = 1. Let it ∈ I denote the profile of customer t. Upon arrival, a customer is

offered an assortment of at most C products. Let S denote the set of feasible assortments, i.e.,

S := {S ⊆ N : |S| ≤ C}, where |S| denotes the cardinality of set S, and let St ∈ S denote the

assortment offered to customer t.
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Demand Model. The retailer’s revenue is contingent on the customers’ purchasing decisions. Let

Zij,t denote the purchasing decision of a customer with profile i arriving at time t regarding product

j ∈ St. More specifically, Zij,t = 1 if customer t is from profile i and purchases product j ∈ St and

Zij,t = 0, otherwise. We consider two cases in terms of the underlying demand model:

MNL Demand. In this setting, a customer with profile i arriving at time t assigns a (random)

utility U ij,t to product j, with

U ij,t := µij + ζij,t, j ∈ N ∪ {0} ,

where µij is the mean utility of product j for profile i (which is unknown to the retailer), ζij,t are

independent (across i, j, and t) and identically distributed random variables drawn from a standard

Gumbel distribution, and product 0 denotes the no-purchase alternative. We assume, without loss

of generality, that µi0 = 0 for all i ∈ I. We do not assume any particular relation between the mean

utilities and customer attributes. In Section 5.5, we compare this model to another approach that

assumes that mean utilities are linear functions of customer attributes. When offered an assortment

St ∈ S, customer t selects the product with the highest utility (including, possibly, the no-purchase

alternative).

For a given assortment S ∈ S and a given vector of mean utilities µi := (µi1, . . . , µ
i
N ), let

Πj(S, µ
i) denote the probability that a customer with profile i purchases product j ∈ S ∪ {0}. We

have that

Πj(S, µ
i) :=

νij
1 +

∑
j′∈S ν

i
j′
, j ∈ S ∪ {0} , Πj(S, µ

i) := 0, otherwise, (1)

where νij := exp(µij) are the exponentiated mean utilities for j ∈ N ∪ {0}. Thus, for a customer

with profile i arriving at time t and offered assortment St, Z
i
j,t = 1 with probability Πj(St, µ

i).

Moreover, we let Zi0,t = 1 if a customer with profile i arriving at time t opts not to purchase any

product, and Zi0,t = 0 otherwise.

Independent Demand. In this setting, we assume that the purchasing decision Zij,t of a customer with

profile i arriving at time t for product j is a Bernoulli random variable independent of the customer’s

purchasing decision for the other products1. In particular, we assume that a customer with profile i

purchases product j ∈ St with probability µij , independent of the assortment in which it is offered.

Thus, in this setting, the vector µi = (µi1, . . . , µ
i
N ) represents the purchase probabilities (i.e., mean

of the Bernoulli distributions) for a customer with profile i. These purchase probabilities are

unknown to the retailer. For a given assortment S ∈ S and a given vector of purchase probabilities

µi, we let Πj(S, µ
i) denote the probability that a customer with profile i purchases product j ∈ S,

i.e.,

Πj(S, µ
i) := µij , j ∈ S. (2)

A setting in which this demand model may be appropriate is one in which customers make purchas-

1We focus on the Bernoulli distribution for clarity of exposition. The framework introduced in this paper applies
to other distributions as well.
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ing decisions across various products that are not necessarily substitutes, as may be in the cases of

Stitch Fix and Ropazi mentioned in Section 1.

Because of the dual role of the parameters (µi, i ∈ I) in these two demand models (as mean

utilities under MNL demand and as purchase probabilities under independent demand), throughout

the paper, we use the terms purchase probabilities and preferences interchangeably.

Assortment Selection. Let Wt := (it, Zt) denote the profile of customer t together with the vector

of purchasing decisions, where Zt := (Zit1,t, . . . , Z
it
N,t). Let Ft := σ ((Sτ ,Wτ ), 1 ≤ τ ≤ t) , t = 1 . . . , T,

denote the filtration (history) associated with the assortment and purchasing decisions up to (and

including) time t, with F0 = ∅. An admissible assortment selection policy π is a mapping from

the available history to assortment decisions such that St ∈ S is non-anticipating (i.e., St is Ft−1-

measurable) for all t. Let P denote the set of admissible policies. The retailer’s objective is to

choose an assortment selection policy π ∈ P to maximize expected cumulative revenue over the

selling season:

Jπ(T, I) := Eπ

 T∑
t=1

I∑
i=1

∑
j∈St

rjZ
i
j,t

 ,

where Eπ denotes the expectation when policy π ∈ P is used.

Market Heterogeneity (Clusters). Although profiles differ in their observable attributes, cus-

tomers with different profiles may have similar preferences for products. We define a cluster (or

segment) as a set of customer profiles that have identically distributed preferences.2 (We use the

terms cluster and segment interchangeably in the paper.) This implies the existence of an under-

lying mapping of profiles to clusters M : I → K, where K := {1, . . . ,K} is the set of cluster labels

and K ≤ I is the number of clusters. The mapping M assigns a cluster label M(i) ∈ K to each

profile i ∈ I, so that any two profiles with the same cluster label share the same set of preference

parameters. That is, µi = µi
′

if i and i′ are such that M(i) = M(i′). The underlying mapping M

of profiles to clusters is unknown to the retailer. In this regard, the case study presented in Section

5 as well as the analytical results in Section 6 show that the retailer benefits from estimating the

mapping of profiles to clusters as it helps to expedite the estimation of preferences. This, in turn,

translates into higher revenue for the retailer.

Connection to the Multi-Armed Bandit Problem. The retailer does not know the customers’

preferences, so assortment personalization requires estimating such preferences by observing the

customers’ purchasing decisions. The history of purchasing decisions is, in turn, affected by past

assortment decisions. This leads to an exploration (learning preferences) versus exploitation (earning

revenue) trade-off. The multi-armed bandit problem is the standard framework for addressing this

trade-off. The assortment selection problem can be formulated as a multi-armed bandit by means

2In order to formalize the definition of a cluster, we define it as a set of customer profiles with identically distributed
preferences. However, the notion of “similar taste” is embedded in the dynamic clustering algorithm (introduced in
Section 4) that produces the clusters.
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of the following analogy: each product j ∈ N corresponds to an arm, and offering a product

(i.e., including that product in the offered assortment) is equivalent to pulling that arm (see, e.g.,

Caro and Gallien (2007)). Thus, one can think of the problem as a finite horizon multi-armed

bandit with multiple plays per period, where at each point in time, at most C out of N arms are

pulled. Following the bandit literature, we restate the retailer’s objective of maximizing expected

cumulative revenue in terms of the regret. To that end, we first define S∗i ∈ S as the optimal

assortment that the retailer would offer to customers with profile i if µi was known. That is,

S∗i ∈ argmax
S∈S

∑
j∈S

rj Πj(S, µ
i).

We define the regret associated with any policy π as3

Rπ(T, I) :=
∑
i∈I

pi

∑
j∈S∗i

rj Πj(S
∗
i , µ

i)

T − Jπ(T, I). (3)

The regret measures the retailer’s expected cumulative revenue loss relative to a clairvoyant retailer

that knows the purchase probabilities (and thus the underlying mapping of profiles to clusters).

That is, the regret represents the retailer’s expected cumulative revenue loss due to the lack of prior

knowledge of purchase probabilities which results in suboptimal assortment offerings. Maximizing

expected cumulative revenue is equivalent to minimizing the regret over the selling season.

An assortment selection policy in this setting is comprised of two elements: an estimation tool

for estimating the customers’ preferences and an optimization tool for deciding what assortment to

offer to each arriving customer. As stated earlier, we focus on bandit algorithms as the optimization

tool (we discuss this in more detail in Section 4.4). When comparing the performance of different

policies, we assume that they follow the same bandit algorithm.

Model Discussion. This paper focuses on the efficient use of information to make personalized

assortment offerings. In particular, we investigate the retailer’s potential revenue benefit from ag-

gregating transaction information across customers with similar product preferences. To this end,

we make a few assumptions to facilitate the study. We assume perfect inventory replenishment

for the retailer, and that the retailer incurs no operational costs (e.g., switching costs) for offer-

ing different assortments to different customers. Such assumptions are common in the dynamic

assortment planning literature and allow us to isolate the role of dynamic personalized assortment

planning in maximizing retailer’s revenue. We also assume that the products’ prices are constant

throughout the selling season. This assumption is also common in the assortment planning litera-

ture and facilitates analysis (see, e.g., Sauré and Zeevi (2013)). Finally, we assume that customers’

purchasing decisions are independent over time and across customers (i.e., we ignore word-of-mouth

and other related effects).

3Note that Jπ(T, I) and Rπ(T, I) are functions of µi and pi for all i ∈ I as well, but we drop such dependence to
simplify the notation.
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4 Dynamic Assortment Personalization

In this section, we introduce a prescriptive approach for dynamic assortment personalization which

we call the dynamic clustering policy. This policy adaptively estimates both the customers’ pref-

erences and the mapping of profiles to clusters in a Bayesian manner. In what follows, we first

present the Bayesian model of preferences in Section 4.1, followed by the dynamic clustering policy

in Section 4.2. Section 4.3 discusses the estimation procedure based on the observed purchase

history, while Section 4.4 reviews the bandit policies we use. We illustrate the performance of the

dynamic clustering policy in a case study in Section 5.

4.1 Bayesian Model of Preferences

In this section, we present a Bayesian framework to model customers’ preferences. In section 4.3, we

present a Markov Chain Monte Carlo (MCMC) sampling technique to estimate the model discussed

in this section.

Recall that Zij,t denotes the random variable that captures the purchasing decision of a customer

with profile i arriving at time t regarding product j ∈ St. We define Zit := (Zi1,t, . . . , Z
i
N,t) and let

F (·|µi) denote the distribution of Zit as a function of the vector of parameters µi. This distribution

is independent of t as preferences are time-homogeneous. For the case of MNL demand, F (Zit =

ej |µi) = Πj(S, µ
i), where Πj(S, µ

i) is as defined in (1) and ej denotes the j-th unit vector (although

F (·|µi) also depends on the assortment S, we drop such dependence to simplify notation). For the

case of independent demand, F (Zij,t = 1|µi) = Πj(S, µ
i), where Πj(S, µ

i) is as defined in (2) and

Zij,t are independent across j. The retailer knows the family of distributions F , but does not know

the vector of parameters µi that characterizes this distribution for customers with profile i.

We adopt a hierarchical Bayesian model to represent the retailer’s uncertainty with respect to

the underlying mapping M from profiles to clusters and to the vector of parameters µi governing

the preferences of customer profiles. More specifically, we model the distribution from which the

Zit ’s are drawn as a mixture of distributions of the form F (·|µi). We denote the mixing distribution

over µi by H and let the prior distribution of H be a Dirichlet Process (Ferguson 1973, Antoniak

1974). A Dirichlet Process prior is a natural selection as its realizations are (discrete) probability

distributions. The Dirichlet Process is specified by a distributionH0, which serves as a baseline prior

for H, and a precision parameter α (which is a positive real number) that modulates the deviations

of H from H0 – the larger the precision parameter α, the more concentrated the Dirichlet Process

prior is around the baseline location H0. We denote the Dirichlet Process by DP(H0, α). We

therefore model the uncertainty over customers’ preferences as follows:

Zit |µi ∼ F (·|µi) (4a)

µi|H ∼ H (4b)

H ∼ DP(H0, α). (4c)

Being an infinite mixture model, the Dirichlet Process Mixture provides a flexible framework for
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capturing heterogeneity in the customer population without the need to predetermine the number

of clusters. In fact, the number of clusters is endogenously determined based on the observed

transaction data. Further details on the Dirichlet Process can be found in Ferguson (1973) and

Ferguson (1983).

4.2 Dynamic Clustering Policy

We introduce the dynamic clustering policy by presenting a general description of the sequence of

events that takes place for each customer arrival t. Let Φ denote the set of time indices (periods)

in which the dynamic clustering policy updates the mapping of profiles to clusters. For instance, in

the case study in Section 5, we take Φ = {100, 200, 300, . . .}; that is, we update the mapping after

every 100 customer arrivals (to expedite the computation time of the algorithm).

Step 1 (Arrival). Observe the profile of the arriving customer t (i.e., it).

Step 2 (Assortment Selection). Follow a bandit algorithm to determine the assortment

St ∈ S to offer customer t based on the current preference and mapping estimates. (For

the first customer arrival, start with an arbitrary mapping that randomly assigns profiles to

clusters and select preferences randomly.) See Section 4.4 for details.

Step 3 (Transaction). Observe the purchasing decision of customer t and update the

assortment and purchase history.

Step 4 (Mapping and Preference Estimation). If t ∈ Φ, then perform the estimation

procedure described in Section 4.3 to approximate the posterior distribution of the parameters

in model (4) given the updated history; otherwise, only update the preference estimates using

the prevailing mapping estimate.

Assortment
Selection

Purchase 
Transaction

C=2

Mapping and 
Preference Estimation

Using a bandit policy 
(e.g., Thompson Sampling)

(male, age= 33, location= South)
Cluster 1

Cluster 2

Cluster 3

≽ ≽ ≽

≽ ≽ ≽

≽ ≽ ≽
Customer 

Arrival

Mapping

(male, age= 32, location= South)

(male, age= 35, location= North)

(male, age= 25, location= North)

(male, age= 40, location= Center)

(male, age= 45, location= Center)

Figure 1: Illustration of the dynamic clustering policy.
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Figure 1 illustrates the steps in the dynamic clustering policy. This policy adapts existing

tools from the Bayesian data analysis and machine learning/operations management literature. In

Step 2 (i.e., optimization step), we use a bandit algorithm to determine the assortment to offer

each arriving customer based on the current mapping and preference estimates. We discuss the

implementation details of the bandit algorithm in Section 4.4. In Step 4 (i.e., estimation step), we

implement the estimation procedure that will be introduced in Section 4.3 to update the mapping

of profiles to clusters and the corresponding preference estimates associated with each cluster.

4.3 Mapping and Preference Estimation

We estimate the mapping and preferences in Step 4 of the dynamic clustering policy by approxi-

mating the posterior distribution of the parameters in model (4). To that end, we use an MCMC

sampling scheme comprised of a Metropolis-Hastings step to update the mapping of profiles to

clusters followed by a Gibbs sampling step to update the posterior distribution of preference pa-

rameters for each cluster. This implementation is an adaptation of the sampling scheme in Neal

(2000), which is tailored for the case of a Dirichlet Process Mixture model. The output of the

MCMC sampling scheme is a sequence of mappings of profiles to clusters and preference parameter

vectors. The sampling procedure is tailored so that the samples approximate a set of independent

draws from the posterior distribution of the model parameters. (See Gelman et al. (2014) for further

details on MCMC methods.)

Next, we provide details on the sampling scheme within the MCMC procedure. Consider

an arriving customer t, with t ∈ Φ. After observing the profile of the customer, offering an

assortment, and recording the purchasing decision, the dynamic clustering algorithm approximates

the posterior distribution of the model parameters (mapping and preferences). Let X it denote the

assortment and purchase history associated with profile i up to (and including) time t ≤ T . That

is, X it :=
{

(Su, Z
iu
u ) : iu = i, 1 ≤ u ≤ t

}
, and set X i0 = ∅. Define Xt := (X 1

t , · · · ,X It ). The following

sampling procedure generates a sequence of mappings and parameter vectors (one for each cluster

in each mapping). Let the tuning parameter η denote the number of samples to be collected.

MCMC Sampling. Start with an arbitrary mapping M1 that assigns profiles to clusters and

sample the preference parameters from H0 for each cluster. For s = 1, . . . , η, repeat the sampling

process as follows:

• Step 1 (Cluster Update). Let ci = Ms(i) denote the cluster associated with profile i under

the mapping Ms and let c denote a generic cluster. For each profile i ∈ I, update the cluster

label ci associated with that customer profile as follows. Let n−i,c be the number of profiles,

excluding profile i, that are mapped to an existing cluster c under the mapping Ms. Draw a
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candidate cluster label c∗i according to the following probability distribution:4

P (assign ci to an existing cluster c) =
n−i,c

I − 1 + α

P (assign ci to a new cluster) =
α

I − 1 + α
.

If c∗i ∈ {c1, . . . , cI}, then use the corresponding parameter vector µc
∗
i . If c∗i 6∈ {c1, . . . , cI}, i.e.,

if the candidate cluster does not correspond to any of the existing clusters under Ms, then

sample µc
∗
i from H0.

Set the new value of ci to c∗i with probability

a(c∗i , ci) := min

{
1,
L(X it , µc

∗
i )

L(X it , µci)

}
and do not change ci with probability 1 − a(c∗i , ci), where L(X it , µci) denotes the likelihood

function given the purchase history X it and the vector of parameters µci . Let Ms+1 be the

updated mapping given by the new assignment of profiles to clusters (i.e., updated ci’s).

• Step 2 (Preference Update). Update the vector of preference parameters for each cluster:

for each c ∈ {c1, . . . , cI}, compute the posterior distribution of µc (given the history Xt) and

draw a new realization for µc from its posterior distribution.

To approximate the posterior distribution of the mapping, we discard the first ηb samples

drawn (“burn-in” period), and select every other ηd-th draw (e.g., every 10th draw) from the

remaining samples (both ηb and ηd are tuning parameters). Let m′ = (η − ηb)/ηd denote the

number of MCMC draws used for estimation. Denote the corresponding (distinct) mappings by

M1,M2, . . . ,Mm, with m ≤ m′ as the mappings corresponding to several sample points may be

identical. Let 0 < f1, f2, . . . , fm ≤ 1 be the associated frequency proportions (i.e., the relative

number of occurrences of each mapping in the set of selected samples). We approximate the

posterior distribution of the mapping as a discrete probability distribution that takes the value

Mn with probability fn, n ≤ m. Note that the number of possible mappings from profiles to

clusters is combinatorial in I, the number of profiles. In this regard, the approximation we propose

alleviates the complexity of calculating the posterior distribution of the mapping. We discuss

further implementation details in Section 5.

The preference update in Step 2 above depends on the underlying demand model. Under

MNL demand, it is necessary to introduce a separate Metropolis-Hastings step to update the

posterior distribution of µc, as there is no conjugate prior for the MNL model. This, however,

comes at the expense of additional computational effort. To alleviate this computational burden,

we approximate the parameters of the MNL model by using frequentist point estimates. (Because of

this approximation, we do not need to specify the prior distribution H0.) Specifically, suppose that

4This distribution is derived in Neal (2000), where α is the precision parameter of the Dirichlet Process Mixture
model.
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t− 1 customers have arrived so far and that the first step of the MCMC has resulted in a mapping

of profiles to clusters denoted by Ms. In Step 2 of the MCMC, we estimate the exponentiated mean

utility νij by ν̂
Ms(i)
j,t , where

ν̂
Ms(i)
j,t :=

∑t−1
l=1 Z

il
j,l 1 {j ∈ Sl,Ms(il) = Ms(i)}∑t−1

l=1 Z
il
0,l 1 {j ∈ Sl,Ms(il) = Ms(i)}

, j ∈ N . (6)

We then estimate µ
Ms(i)
j by µ̂

Ms(i)
j,t := ln(ν̂

Ms(i)
j,t ). Note that this parameter estimation is conducted

at the product level by exploiting the independence of irrelevant alternatives (IIA) property of the

MNL model. Moreover, such estimates are obtained for each cluster by pooling transaction data

across customers within the same cluster. The numerical results reported in Section 5 suggest that

this approximation results in a reasonable performance and computation time. Under independent

demand, we take H0 in the Dirichlet Process Mixture to be the product of independent Beta

distributions, as the Beta distribution is the conjugate prior of the Bernoulli distribution. Thus,

the posterior distribution of µc in Step 2 can be computed in closed-form using Bayes’ rule.

4.4 Assortment Optimization

We next describe the bandit policies used for the assortment selection rule.

MNL demand. For the MNL model, we adapt Algorithm 3 of Sauré and Zeevi (2013) to our setting.

This algorithm determines whether to explore or exploit for each arriving customer t, as follows.

If all products have been explored at least a number of times (which is of order ln(t)), then the

algorithm exploits the current optimal assortment. Otherwise, it offers an assortment containing

under-tested products (exploration). We refer to Sauré and Zeevi (2013) for further details. Sauré

and Zeevi (2013) assume a homogeneous population of customers. However, in the Bayesian setup

of the dynamic clustering policy, estimates are derived from the approximation to the posterior

distribution of the mapping and customer preferences. Thus, we adapt the algorithm in Sauré and

Zeevi (2013) for the dynamic clustering policy. To that end, suppose that t − 1 customers have

arrived so far, and the Mapping and Preference Estimation procedure (discussed in Section 4.3)

has resulted in the distinct mappings M1,M2, . . . ,Mm with frequency proportions f1, f2, . . . , fm,

respectively. Let customer t have profile i. We estimate the exponentiated mean utilities νij by ν̂ij,t,

where

ν̂ij,t :=
m∑
l=1

fl ν̂
Ml(i)
j,t ,

and ν̂
Ml(i)
j,t is as defined in (6). Moreover, we let

T ij (t) :=

m∑
l=1

fl T
Ml(i)
j (t),

where T
Ml(i)
j (t) is the number of times that product j has been offered to a customer from cluster
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Ml(i) up to (and excluding) time t. In other words, T ij (t) is the average number of times (over

different mappings) that product j has been offered to a customer from the cluster associated with

profile i up to (and excluding) time t. The quantities ν̂ij,t and T ij (t) are used to select the assortment

to offer customer t in Algorithm 3 of Sauré and Zeevi (2013).

Independent demand. For the independent demand model, we adapt the Thompson Sampling policy

(Thompson 1933) to our setting. We first present details of this policy for a classic setting (i.e.,

a homogeneous population of customers, a single product offering to each customer, and equal

product prices) and then discuss how we adapt this policy to our setting.

• In a classic bandit setting, let Beta(1, 1), i.e., a uniform distribution, be the conjugate prior

of the purchase probability of customers for each product. Let Beta(aj,t, bj,t) denote the

posterior distribution with parameters aj,t and bj,t for product j ∈ N , where aj,0 = bj,0 = 1

for all products j ∈ N , aj,t = aj,t−1 + 1 and bj,t = bj,t−1 if customer t purchases product

j ∈ St, and aj,t = aj,t−1 and bj,t = bj,t−1 + 1 if customer t does not purchase product j ∈ St.
Moreover, aj,t = aj,t−1 and bj,t = bj,t−1 for all other products j ∈ N \ St (i.e., the products

that are not offered to customer t). Sample Qj,t randomly from the posterior distribution

Beta(aj,t−1, bj,t−1), and offer product St ∈ argmax
j∈N

{Qj,t} at time t.

• In our setting, suppose that the Mapping and Preference Estimation procedure has resulted in

the distinct mappingsM1,M2, . . . ,Mm with frequency proportions f1, f2, . . . , fm, respectively.

Let Q
Ml(it)
j,t be the index of product j corresponding to cluster Ml(it). Note that the functions

aj,t and bj,t are defined (and updated) separately for each cluster. Set product j’s index as

Qj,t =
∑m

l=1 flQ
Ml(it)
j,t . Offer an assortment St that contains C products with the highest Qj,t

indices.5

Remark 1. An alternative adaptation of Thompson Sampling would first randomly draw a map-

ping from M1,M2, . . . ,Mm according to the frequency proportions f1, f2, . . . , fm, and then draw

from the corresponding posterior Beta distributions. We favor our proposed approach because dif-

ferent mappings may only differ in terms of the composition of a few clusters. By averaging over

different mappings, we take into account the similarities across different mappings. Our approach

performs well, as evidenced in the case study.

5 Case Study

In this section, we discuss the results of several numerical experiments conducted on a dataset from

a large Chilean retailer. We first provide a brief overview of the dataset in Section 5.1. We then

discuss implementation details in Section 5.2. In Section 5.3, we compare the performance of the

dynamic clustering policy to those of the data-intensive and linear-utility policies. We then study

5We can similarly adapt any index-based bandit policy, e.g., UCB1 of Auer et al. (2002). We obtained similar
numerical results for UCB1 and therefore report only those based on Thompson Sampling in Section 5.3.
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the impact of a finer representation of customer attributes (leading to a larger number of profiles)

on the performance of policies in Section 5.4. We finally provide a more detailed comparison

between the dynamic clustering policy and the linear-utility model in Section 5.5. The case study

demonstrates the practical value of the dynamic clustering policy in a realistic setting. We find

that the dynamic clustering policy outperforms the data-intensive and linear-utility policies as it

benefits from pooling information and learning about customer preferences relatively faster. The

case study also demonstrates the efficiency and scalability of the dynamic clustering policy in terms

of computation time.

5.1 Dataset

The dataset that we use for the case study is from a chain of department stores owned by a Chilean

multinational company headquartered in Santiago, Chile. The company sells clothing, footware,

furniture, housewares, and beauty products, both through its network of department stores and

through its online channel. In 2014, the company reported US$ 4.4 billion in gross profit. The

dataset was collected as part of a larger field study by the retailer. In this study, the assortments

offered to customers were chosen randomly without testing any assortment personalization strategy.

The dataset consists of 94,622 customer-tied click records for a set of 19 products in the footware

category (see Figure 2 below).6 The dataset used in this study was collected through an experiment

in which the 19 products were randomly assigned to 8 different assortments of 4 products each (i.e.,

N = 19 and C = 4). The experiment was conducted during a 32-day period through the retailer’s

online channel. Each arriving customer was shown one of these 8 assortments, chosen at random.

Figure 2 illustrates an example of an assortment shown to customers. If the customer clicked on

one of the products, that click was recorded in the dataset. Otherwise, a no-click was recorded.

Therefore, each customer visit resulted in at most one click record. The dataset recorded the

assortment history as well as the purchase/no-purchase decision (i.e., click/no-click decision in the

context of the experiment) of each customer. The company uses information about the customers’

location in Chile (according to a partition of the country into 7 different regions, determined by the

retailer’s marketing department: “Far North”, “North,” “Center,” “South,” “Far South,” “Santiago

West,” and “Santiago East”), age group (the retailer uses three age groups, namely, [0, 29], [30, 39],

and [40, 99]), and gender. This leads to a total of 42 unique vector of customer attributes. (The

dataset actually contains more granular information on the age of customers, but we mostly use

the age groups as determined by the Chilean retailer.)

5.2 Implementation Details

Estimation of Underlying Demand Model. We begin by using the dataset to estimate the

parameters of the model. First, we estimate the distribution of customer arrivals (i.e., pi) based on

the number of transactions associated with each customer profile. Next, we estimate the underlying

6Each product is actually a “banner” that directs the customer to a page containing footware of that particular
style/manufacturer – e.g., the second banner in Figure 2 leads to a page containing shoes with a 1970’s style.
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Figure 2: Example of an assortment shown on the retailer’s website.

demand model from data. Because the set of available products belongs to the same category (shoes

in this study), we use the MNL demand model as it accounts for product substitution. We also

report on experiments based on the independent demand to explore the robustness of the results

with respect to the underlying demand model.

For the MNL demand model, we estimate the exponentiated mean utility of each product for

each customer profile separately. That is, we estimate 19 parameters for each of the 42 customer

profiles using the transaction data only from that customer profile in the dataset. We do not

assume any particular relation between the mean utilities and customer attributes when estimating

the underlying demand model from data. Formally, for a profile i and product j, we estimate the

exponentiated mean utility νij by

ν̂ij :=

∑
u Z

i
j,u 1 {j ∈ Su, iu = i}∑

u Z
i
0,u 1 {j ∈ Su, iu = i}

, j ∈ N , i ∈ I.

Note that, as in (6), the parameter estimation is conducted at the product level by exploiting the

IIA property of the MNL model. For the case of independent demand, we estimate the purchase

probability of each product for each profile as the sample mean of the number of purchases from

data.

Data-Intensive Policy. We compare the performance of the dynamic clustering policy to that

of the data-intensive policy, in which assortment decisions are made by treating each customer

profile independently (as if each customer profile had a different distribution of preferences for

products – even if this is not the case). Thus, under the data-intensive policy, the retailer assumes

a deterministic mapping of customer profiles to clusters where each profile is mapped to a distinct

cluster, i.e., M(i) = i for i ∈ I. The data-intensive policy emphasizes the accuracy of preference

estimation. That is, under this policy the retailer eventually learns the customers’ preferences

accurately, but at the expense of requiring a considerable amount of transaction data on each

customer profile. Therefore, the data-intensive policy is prone to suffer from a slow learning speed.7

We find that the dynamic clustering policy outperforms the data-intensive policy as a result of a

7We measure the speed of learning by evaluating the root mean squared error (between the actual and estimated
parameters) over time.
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faster learning speed achieved by pooling information across customers with similar preferences.

Linear-Utility Policy. We also compare the performance of the dynamic clustering policy

to that of a policy that assumes a linear structure on the underlying demand model in terms

of the dependence of utilities on customer attributes. We describe the MNL model in terms

of the specific dataset available from the Chilean retailer. In particular, for this model, x =

(xM , xF , xA1 , xA2 , xA3 , xL1 , xL2 , . . . , xL7) denotes the vector of attributes of a customer, where each

variable is binary – xM and xF identify the gender of the customer (male and female, respectively),

xAi , i ∈ {1, 2, 3} identifies the age group, and xLj , j ∈ {1, . . . , 7} identifies the location of the

customer. The mean utility µxj of a product j for a customer with profile x is assumed to take the

form

µxj := β>j x = β0
j + βMj xM + βA2

j xA2 + βA3
j xA3 + βL2

j xL2 + βL3
j xL3 + . . .+ βL7

j xL7 , (7)

where βj denotes the vector of coefficients, and β0
j captures the nominal utility of product j together

with the effect of attributes “female”, first age group (i.e., [0, 29]), and Location 1. The vector of

coefficient βj is unknown to the retailer and must be estimated from the customers’ transaction

data. Similar to the data-intensive policy, the linear-utility policy treats each customer profile

independently for optimization (i.e., following the same bandit algorithm). However, because this

policy assumes that the underlying mean utilities of products are linear functions of customer

attributes, the estimation of the βj ’s is based on maximum likelihood estimation (MLE). Because

different profiles might share some attributes, the MLE leverages information from similar profiles

to estimate the preference parameters.

MCMC and Operating Machine. In order to estimate the mapping and customers’ preferences

under the dynamic clustering policy, we use η = 300 and a burn-in period of ηb = 100 iterations

in the MCMC sampling scheme, after which every ηd =10th MCMC draw is used to estimate the

mapping of profiles to clusters (this alleviates the auto-correlation between the MCMC draws). We

also set the precision parameter of the Dirichlet Process to α = 1. To expedite the computation time

of the dynamic clustering policy, we set Φ = {100, 200, 300, . . .}; that is, we update the mapping

of profiles to clusters every 100 customer arrivals. In between these periods, we use the prevailing

mapping to update the preference parameters. (For consistency, we also update the estimates of

the attribute-specific parameters in the linear-utility policy every 100 customer arrivals and use

the prevailing estimates in between these periods.) All experiments were run on a machine with

an Intel(R) i7-6700 3.40GHz CPU and 16GB of memory. In what follows we discuss the results of

numerical experiments.

5.3 Performance Comparison

In this section, we compare the performance (in terms of regret) of the dynamic clustering policy

to that of the data-intensive and linear-utility policies using the dataset from the Chilean retailer.
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Figure 3: Average performance in a market with I = 42 profiles and independent demand (left),
and MNL demand (right).

We consider the cases of both MNL and independent demands as the underlying demand models.

We also compare the speed of learning between the dynamic clustering and data-intensive policies.

The underlying demand model and distribution of customer arrivals are estimated from the

dataset. We run the experiments in markets with T = 5000 customers. There are nineteen products

(N = 19) and the display constraint is of size four (C = 4). Moreover, there are I = 42 distinct

customer profiles. We set prices rj = 1 for all j ∈ N . The reported performances are averaged

over 100 replications and the dashed lines around a regret function represent the 95% confidence

interval.

Figure 3 illustrates the average performance for the case of independent demand (left panel)

and MNL demand (right panel). The dynamic clustering policy significantly outperforms the data-

intensive and linear-utility policies as a result of pooling information. At the same time, the

linear-utility policy outperforms the data-intensive policy as the latter suffers from a relatively

slower learning speed.

Figure 4 (left panel) illustrates the evolution of the root mean squared error (RMSE) of esti-

mated MNL parameters (i.e., exponentiated mean utilities) for the dynamic clustering and data-

intensive policies in the case of the MNL demand model. This error is averaged over all products

and profiles. As noted from the graph, the RMSE associated with the dynamic clustering policy

decreases significantly faster than that of the data-intensive policy, implying a faster learning speed.

The right panel of Figure 4 shows the evolution of the average number of clusters that emerge from

the dynamic clustering policy over time (i.e., with the arrival of new customers). As can be noted

from the graph, early on in the selling season, when only a limited number of transactions have been

observed, the average number of clusters is small. That is, the policy pools transaction information

across a large number of customer profiles. As more transaction data is collected, the dynamic

clustering policy refines the composition of customer segments (clusters) and better personalizes

the assortment offering using a larger number of clusters.
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Figure 4: Speed of learning for different policies (left) and the evolution of the average number of
clusters under the dynamic clustering policy (right) for MNL demand and I = 42.

The dynamic clustering policy outperforms the data-intensive and linear-utility policies in terms

of regret (i.e., revenue collection) in the case study based on the Chilean retailer. We find that the

dynamic clustering policy results (on average) in more than 37.7% and 27.3% additional transac-

tions compared to the data-intensive and linear-utility policies, respectively. Moreover, the dynamic

clustering policy results in more than 65% additional transactions compared to a randomized as-

sortment policy (which was used by the retailer while collecting the data). Furthermore, the

dynamic clustering policy has a significantly faster learning speed compared to the data-intensive

policy. The proposed policy pools information across most profiles early on in the selling season,

but personalizes the assortment offerings as more transaction data becomes available.

5.4 Customer Attributes

In this section, we study the impact of a finer definition of customer attributes on policy per-

formance. Moreover, we compare the computation times of different policies and illustrate the

efficiency and scalability of the dynamic clustering policy. In addition, we discuss an approach to

further expedite the computation time of the dynamic clustering policy. We finally discuss how

one can incorporate management knowledge about customer similarity into the dynamic clustering

policy.

As discussed before, the Chilean retailer uses 42 different customer profiles, based on their

understanding of the Chilean retail market. For example, the attribute corresponding to the cus-

tomer’s location is based on the retailer’s knowledge about the customer base in Chile (e.g., urban

versus rural locations, etc.). The retailer also groups customers according to their ages into three

age groups [0, 29], [30, 39], and [40, 99], presumably based on an understanding of different purchas-

ing patterns of customers in each of these three groups. In order to study the impact of a finer

definition of customer attributes, we have extended the study beyond the 42 original customer

profiles used by the retailer. The raw dataset available to us contains more granular information
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Figure 5: Average performance in a market with MNL demand and I = 75 (left), I = 140 (middle),
and I = 450 (right).

about the customers’ age (but not about the customers’ location). As a result, we consider three

additional studies that progressively refine the age attribute definition. These three studies con-

sist of 75, 140, and 450 profiles, respectively. The first experiment with 75 distinct profiles uses

age groups [0, 30], [31, 40], [41, 50], . . . , [91, 99]. The second one has 140 customer profiles using age

groups [0, 20], [21, 25], [26, 30], . . . , [96, 99]. The third set of experiments has 450 customer profiles

using exact ages 18, 19, 20, . . . , 99. In each experiment, we only kept the profiles for which there

was at least one no-purchase transaction in the dataset.

Figure 5 illustrates the average performance of the dynamic clustering, data-intensive, and

linear-utility policies for the case of MNL demand. In all settings, the dynamic clustering policy

outperforms the other policies in terms of regret (and thus revenue). That is, the better performance

of the dynamic clustering policy relative to the other policies is robust with respect to the definition

of customer attributes.

A finer set of customer attributes leads to an increased number of profiles, potentially slowing

down the mapping estimation process and thus affecting computation times. Table 1 reports the

computation time of all three policies for the cases of 42, 75, 140, and 450 customer profiles (all

under the MNL demand model). The dynamic clustering policy requires the estimation of the

mapping (by running the MCMC). In Table 1, we separate the running time of a customer arrival

for which the mapping is updated (noted as MCMC) and the running time of those arrivals for

which there is no mapping update (in which case the policy uses the prevailing mapping of profiles to

clusters). Similarly, the linear-utility model requires the estimation of attribute-specific parameters

through the maximum likelihood estimation (MLE). Table 1 reports the running time of a customer

arrival for which the attribute-specific parameters are updated (noted as MLE) and the running

time of those arrivals in which there is no parameter update (and for which the linear-utility policy

operates under the prevailing estimates). The computation time of the MCMC and MLE increases

with the granularity of customer attributes (and therefore the number of customer profiles).

The computation time of the dynamic clustering policy is reasonable and scales well with the

number of profiles. All experiments were run on a personal computer – a retailer with more
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sophisticated computational resources would experience even faster results. Note that, as expected,

the data-intensive policy has the fastest computation time (at the expense of a lower revenue

performance), as this policy treats each profile independently. The dynamic clustering policy can

also handle a large number of products without significantly affecting computation times. In the

estimation stage, the number of products impacts the calculation of the likelihood functions and

the updates of preference parameters, which are computed in closed-form as discussed in Section

4.3. For the assortment optimization stage, there are efficient algorithms for the MNL model (for

example, the algorithm in Rusmevichientong et al. (2010) scales polynomially in the number of

products). The optimization in the case of independent demand is trivial.

Dynamic Clustering Linear-Utility Data-Intensive
No mapping update MCMC No parameter update MLE Each customer arrival

I = 42 0.00031 1.0818 0.00017 2.7827 0.00015

I = 75 0.00039 1.7121 0.00018 3.9762 0.00015

I = 140 0.00054 2.9850 0.00018 5.9750 0.00016

I = 450 0.00117 8.1729 0.00018 9.1619 0.00017

Table 1: Average computation time (in seconds) of different policies for MNL demand and T = 5000.

We next discuss an approach to further improve the computation time of the dynamic cluster-

ing policy, without significantly impacting its performance. This approach involves reducing the

number of customer profiles for clustering purposes. In particular, this version of the dynamic clus-

tering policy considers customer profiles within each specific location in isolation and therefore the

policy runs the MCMC for different locations in parallel. We refer to this version of the dynamic

clustering policy as “Location-DC.” Table 2 below reports the computation times of this version

of the dynamic clustering policy, together with that of the original policy (which we refer to as

“Original-DC”), for the setting with I = 450 profiles and MNL demand. As can be noted from the

table, the “Location-DC” version of the policy brings significant savings in terms of computation

time. While this version is slightly outperformed by the original dynamic clustering policy in terms

of regret, it still performs significantly better than the data-intensive and linear-utility policies.

No mapping update MCMC

Original-DC 0.00117 8.1729

Location-DC 0.00048 1.5575

Table 2: Average computation time (in seconds) of the original and a location-based version of the
dynamic clustering policy for MNL demand with I = 450 and T = 5000.

We finally discuss how one can incorporate management knowledge about customer similar-

ity into the dynamic clustering policy. Suppose that existing management insight indicates that

“neighboring” profiles (e.g., two profiles with the same gender and location and very close in age)

are likely to have “similar” preferences for products. The dynamic clustering algorithm can accom-

modate management knowledge about customers by restricting attention to mappings that only

23



group “neighboring” profiles. (This can be implemented in the MCMC sampling procedure: while

updating the cluster label c∗i of a customer with profile given by a vector xi, the candidate cluster

label is drawn only from clusters that currently include profiles that are “similar” to xi – the no-

tion of similarity can be formally defined based on attributes.) An alternative approach consists

of merging upfront profiles that are known to have similar preferences for products. For example,

it may be that, based on an understanding of the customer base, management is confident that

customers from two particular ZIP codes or locations have similar tastes for products. Unlike the

previous approach, these customer profiles with similar preferences may not have similar attributes.

One can use this additional information to speed up the learning process by grouping such profiles

together before running the dynamic clustering algorithm.

In sum, we find that the better performance of the dynamic clustering policy relative to the

other policies is robust with respect to the definition of customer attributes. At the same time,

a finer definition of customer attributes (i.e., a larger number of customer profiles) increases the

computation time. However, we show that the computation time of the dynamic clustering pol-

icy is still reasonable and scales well with the number of profiles. One can further expedite the

computation time of the policy by reducing the number of customer profiles for clustering purposes.

5.5 Comparison to Linear-Utility Model

In this section, we compare the dynamic clustering policy to the linear-utility approach in more

detail. We first discuss the advantages of each approach and then introduce a set of experiments

to compare the performance of the two policies.

In addition to better performance of the dynamic clustering policy over the linear-utility model,

the dynamic clustering policy has several other advantages. Retailers are generally interested in

identifying customer segments (i.e., clusters of customers with similar preferences). These seg-

ments are part of the output of the dynamic clustering policy and can be interpreted based on

customers’ attributes – see Figure 6 below for a representative example based on the dataset from

the Chilean retailer. Figure 7 also illustrates the optimal assortments for different clusters in an

example in which the profiles only differ by their geographical location in Chile. Moreover, the

mean utilities may not be linear in customer attributes. The dynamic clustering policy makes no

assumption about the structure of the mean utilities with respect to customer attributes. In par-

ticular, the transaction dataset from the Chilean retailer exhibits a non-linear dependence between

mean utilities and attributes. In such cases, the linearity assumption could result in inaccurate es-

timates which, in turn, could hurt the retailer’s revenue. Also, the dynamic clustering policy takes

a Bayesian semi-parametric approach and is designed to expedite the learning process, especially

in the short-term when the amount of transaction data is limited. Overall, the dynamic clustering

policy leads to 27.3% more transactions (on average) than the linear-utility policy in the experi-

ments based on the dataset from the Chilean retailer. The linear-utility approach, however, uses

maximum-likelihood estimation and thus is better suited for (offline) settings with large amounts

of transaction data. As such, the linear-utility approach can identify whether an attribute is sta-
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tistically significant (relevant) through the estimates of the attribute-specific parameters. One can

make similar observations based on the output of the dynamic clustering policy. For example, as

noted in Figure 6, customers in Santiago West tend to have different preferences for products than

customers from Santiago East.
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Figure 6: Illustration of clusters (under the most likely mapping) for women from age groups [0, 29]
(left), [30, 39] (middle), and [40, 99] (right) based on customers’ location in Chile.

Because the linear-utility approach may be better suited for an offline setting, we designed

an additional set of experiments which mimics an offline setting. More specifically, because the

estimation approach (and underlying model assumption) is different under the dynamic clustering

and linear-utility policies, we further compare the performance of these policies in a setting in

which the performance is mainly affected by the quality of estimation which, in turn, impacts

the assortment decisions made by different policies. To that end, we consider separation-based

versions of these policies, which separate exploration from exploitation. In the separation-based

experiments, we randomly generate a sample of transaction data with random assortment offerings

and random customer arrivals based on the estimated MNL parameters and arrival distribution

of profiles from the dataset. All policies use the same sample to estimate the MNL parameters

(exploration stage). Each policy then finds the optimal assortment for each customer profile. We

then generate another random sample of customer arrivals with the same size as that used in the

exploration phase (according to the estimated arrival distribution) over which each policy offers its

personalized optimal assortment to each arriving customer (exploitation stage). We consider the

cumulative regret and revenue of all policies only for the exploitation phase as all policies use the

same sample (and thus incur the same regret) in the exploration phase. As a result, any difference

in performance is due to the quality of estimation. We consider two scenarios in terms of the
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Figure 7: Illustration of optimal assortments for women from age group [30, 39].

underlying demand model.

The first scenario is based on the original transaction dataset, which exhibits a non-linear

dependence of mean utilities on customer attributes. We experiment with different sample sizes T .

The dynamic clustering policy outperforms both the data-intensive and linear-utility policies in all

instances. Table 3 below reports the percentage improvement of the dynamic clustering policy over

the other policies, both in terms of regret and revenue (i.e., expected number of transactions). The

revenue improvements can be as high as 50% and 25.4% compared to the data-intensive and linear-

utility policies, respectively. Moreover, the improvements are generally higher for smaller samples

sizes, as the dynamic clustering policy performs particularly well in settings with limited transaction

data by pooling information. Table 4 reports the average estimation times (i.e., computation

time of MCMC and MLE for the dynamic clustering and linear-utility policies, respectively). As

expected, the data-intensive policy has the lowest computation time as the estimation can be

done independently for each customer profile. The linear-utility model is faster than the dynamic

clustering policy for smaller sample sizes. However, its computation time increases significantly

for larger sample sizes, suggesting that the linear-utility policy may be better suited for an offline

setting.

While the original dataset does not exhibit a linear dependence on customer attributes, we

generate a second set of (synthetic) experiments in which the underlying demand model is linear

as in (7). To that end, we estimate βj in model (7) for each product j from the dataset and use

such estimates to randomly generate synthetic (linear) transaction data for simulation. We find

that the dynamic clustering policy outperforms the linear-utility approach in all instances except
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Regret Revenue
Data-Intensive Linear-Utility Data-Intensive Linear-Utility

T = 500 34.2% 24.6% 47.8% 25.4%

T = 1000 42.6% 28.4% 50.0% 21.6%

T = 5000 39.0% 26.6% 20.7% 10.7%

T = 10000 24.3% 12.9% 8.9% 3.9%

T = 20000 6.7% 3.6% 1.5% 0.8%

Table 3: Average percentage improvement of dynamic clustering policy over data-intensive and
linear-utility policies in separation-based experiments using the original dataset.

T = 500 T = 1000 T = 5000 T = 10000 T = 20000

Dynamic Clustering 1.214 1.301 2.307 3.861 7.010

Data-Intensive 0.003 0.006 0.025 0.048 0.096

Linear-Utility 0.508 0.922 5.872 13.877 31.168

Table 4: Average estimation time (in seconds) in separation-based experiments based on original
dataset.

for that with the largest transaction sample (i.e., T = 20000). This suggests that the benefit of

pooling information achieved by clustering can lead to better performance even when the underlying

demand model is, in fact, linear. Such benefits are more pronounced in the short-term, i.e., for

small and moderate sample sizes.

The dynamic clustering policy outperforms the linear-utility approach in the case study with the

Chilean retailer’s dataset. Each approach has its advantages and may be deemed more appropriate

depending on the specific setting. For example, the Chilean retailer that provided the dataset is

interested in identifying customer segments (i.e., clusters of customers with similar preferences).

These segments are part of the output of the dynamic clustering policy and can be interpreted

based on customers’ attributes (as in the examples in Figures 6 and 7).

6 Value of Pooling Information

In this section, we provide analytical support for the insights derived in the case study in Section

5. More specifically, this section explores the impact of pooling information about customers’

preferences on the retailer’s revenue by considering a stylized version of the dynamic assortment

personalization problem. To this end, we focus on three policies that differ in the extent by which

they aggregate information across customers. The data-intensive policy, described in Section 5.2,

treats customer profiles independently to estimate preferences and make assortment decisions. We

further introduce a semi-oracle policy that knows upfront the underlying mapping of profiles to

clusters but not the customer preferences for each cluster. The semi-oracle policy reflects the key

element of the dynamic clustering policy – in that it pools transaction information across customers

with similar preferences – but it bypasses the estimation of the mapping of profiles to clusters by

assuming that it is known to the retailer. Working with the dynamic clustering policy analytically
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is not possible, as it requires a Bayesian update of the mapping that cannot be done in closed-

form. In the other extreme, we consider a pooling policy that aggregates transaction data across all

customer profiles (regardless of whether the customers have similar preferences or not). We show

that the semi-oracle outperforms the data-intensive policy. Moreover, we analytically characterize

settings in which the pooling policy outperforms the data-intensive policy.

All policies we consider in this section – the data-intensive policy (πd-int), the semi-oracle

policy (πs-orc), and the pooling policy (πpool) – follow the same bandit algorithm to determine

what assortment to offer each arriving customer. The policies, however, differ in how they use the

available information to estimate the customers’ preferences and make assortment decisions. Thus,

the results in this section provide insights about the benefit of pooling information by analytically

exploring a simplified version of the problem. For ease of analysis, we focus on the independent

demand model in this section.8 We also assume, for tractability, that C = 1 and rj = 1 for all

products j ∈ N .

Let Rπ
d-int

, Rπ
s-orc

, and Rπ
pool

denote the regrets associated with the data-intensive, semi-oracle,

and pooling policies, respectively. To simplify notation, we denote them as Rd-int, Rs-orc, and Rpool

hereafter. We further define the gap functions

G1 := Rd-int −Rs-orc and G2 := Rd-int −Rpool.

Our goal is to determine conditions under which these gaps are non-negative. Because characterizing

the regret functions in closed-form is not possible, we use upper bounds on the regret for the semi-

oracle and pooling polices, denoted by Us-orc and Upool, respectively, and a lower bound on the

regret for the data-intensive policy, denoted by Ld-int. Therefore, Ld-int − Us-orc provides a lower

bound for the gap function G1 and Ld-int − Upool provides a lower bound for the gap function G2.

Hence, we focus on characterizing settings in which these lower bounds are non-negative, which in

turn implies that G1, G2 ≥ 0.9 Lai and Robbins (1985) prove an asymptotic lower bound (for large

T ) on the achievable performance of any consistent policy in the classic bandit setting (i.e., with

a homogeneous population of customers).10 Roughly speaking, the long-run number of mistakes

(associated with pulling suboptimal arms) under any consistent policy is smaller than T a for large

T and every a > 0. In particular, it is smaller than a linear function of T , which corresponds to

making mistakes for every customer. Let P ′ ⊆ P denote the set of consistent admissible policies.

We restrict attention to consistent policies π ∈ P ′ and use Lai and Robbins’ lower bound to derive

Ld-int. More specifically, we derive a lower bound on the regret associated with each profile and

define Ld-int as the sum of these lower bounds.

The upper bound on the regret for the semi-oracle and pooling policies depend on the specific

bandit algorithm used for selecting the product to offer each arriving customer. We focus here on

8One can obtain similar results for the MNL demand model as well.
9While the lower bounds are not always tight, the goal is to show the non-negativity of the gap functions. As a

result, working with the bounds enables the analysis and leads to the desired results.
10An admissible policy π is consistent if, for any distribution of preferences F (that satisfies certain regularity

conditions), Rπ(T )
Ta

→ 0, as T →∞, for every a > 0. That is, if Rπ(T ) = o(T a). See Lai and Robbins (1985).
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the celebrated upper confidence bound (UCB1) policy of Auer et al. (2002). After an initialization

phase during which each product is offered once, UCB1 offers customer t a product j with the

highest index µ̄j +
√

2 ln(t− 1)/kj(t− 1), where µ̄j is the sample mean of the number of purchases

for product j, and kj(t − 1) is the number of times that product j has been offered up to (and

including) time t − 1. The UCB1 policy is easy to implement and its regret admits a finite-time

upper bound which is simple to use. We extend the results of Sections 6.1 and 6.2 for Thompson

Sampling in Appendix B.

6.1 Semi-Oracle

In this section, we compare the performance of the data-intensive policy to that of the semi-oracle

policy. As expected, the semi-oracle outperforms the data-intensive policy in terms of regret (i.e.,

revenue). This result emphasizes the benefit of estimating the mapping of profiles to clusters as

it helps expedite the learning process by pooling transaction information across customer profiles

within a cluster. (We provide a formal statement and proof of the result in Theorem A.1 in

Appendix A.)

We next show that there are diminishing marginal returns to pooling information from an

increasing number of customer profiles. To that end, consider a general market with K clusters

where 1 ≤ K < I. We assume, without loss of generality, that K < I, since if K = I, then both

the semi-oracle and data-intensive policies incur the same regret and therefore G1 = 0. Let Ik
denote the set of profiles belonging to cluster k and Ik := |Ik|. Also, let I ′ := (I1, . . . , IK). This

vector summarizes the mapping of profiles to clusters. We assume, without loss of generality, that

product 1 has the highest purchase probability for each profile, i.e., µij < µi1 for j = 2, . . . , N and

all i ∈ I. Computing the lower bound Ld-int−Us-orc for the gap function G1 requires an additional

approximation as the setting studied in Lai and Robbins (1985) considers a homogeneous population

of customers. This additional approximation involves a first-order Taylor expansion and, as such,

the resulting approximate lower bound is very close to Ld-int −Us-orc. We denote by G1l(T, I ′) the

approximation to the lower bound for the gap function G1. This approximate lower bound depends

on the total number of customer arrivals T and on the vector I ′ which encodes the mapping of

profiles to clusters. We provide a detailed derivation of G1l(T, I ′) in Appendix A.

Theorem 1. Consider the case of uniform arrivals within each cluster, i.e., pi = Pk/Ik for all

i ∈ Ik where Pk :=
∑

i∈Ik pi is constant. We then have that G1l(T, I ′) is increasing in Ik for

T > eIk/Pk (e is the Euler’s number) and concave in Ik for T ≥ 1.

Theorem 1 shows the first- and second-order effects of the number of customer profiles Ik on

the approximate lower bound. We find that, for sufficiently large T , G1l(T, I ′) is increasing in the

number of profiles Ik. That is, the benefit of pooling information increases with the number of

profiles within any cluster k, as it becomes increasingly more time-consuming for the data-intensive

policy to learn the preferences of each customer profile when Ik increases. In addition, the result

shows that G1l(T, I ′) is concave in Ik. That is, there are diminishing marginal returns to pooling
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information from an increasing number of customer profiles within any cluster.

We also explore whether the result in Theorem 1 applies to the dynamic clustering policy and

MNL demand model by considering an example based on the dataset from the Chilean retailer.

Specifically, we estimate the MNL parameters for the customer profile (female, [40, 99], Center)

from the dataset and assume that a cluster’s demand follows such MNL model. We then increase

the number of profiles in that cluster and evaluate the gap between the regrets of the data-intensive

and dynamic clustering policies in a market with T = 5000 customers. Figure 8 shows the result of

this experiment, where Rd-int and Rdc denote the regrets of data-intensive and dynamic clustering

policies, respectively. As noted in the graph, and consistent with Theorem 1, the (actual) gap

between the regrets of the two policies is increasing and concave in the number of customer profiles

within the cluster.
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Figure 8: Gap between the regrets of data-intensive and dynamic clustering policies as a function
of number of profiles.

6.2 Pooling in the Short-Term

In this section, we consider a setting with heterogeneous customers and a pooling policy that

aggregates information across all customer profiles. As one would expect, pooling information

across all customer profiles is not necessarily beneficial for the retailer in a heterogeneous market

as it could lead to erroneous estimates. However, we show that, under some conditions, the pooling

policy tends to outperform the data-intensive policy in the short-term even if customer preferences

are heterogeneous. This, in turn, allows us to examine the key drivers of efficiency gains derived

by pooling information.

Consider a market with K ≥ 2 clusters. Without loss of generality, we assume that K = N ,

where N is the number of products. We also assume that cluster k’s customers have the highest

purchase probability for product k, for k = 1, . . . ,K. Furthermore, we assume that µkk−µkj = ∆ for

some ∆ > 0 and for all k = 1, . . . ,K and j 6= k, where, to simplify notation, µkj denotes the purchase

probability of product j for all profiles in cluster k. Let P := (P1, P2, . . . , PK) where Pk =
∑

i∈Ik pi
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is the proportion of profiles belonging to cluster k. We also define P ′ := (P2, . . . , PK−1). We

assume, without loss of generality, that Pk < P1 ≤ 1 for all k = 2, . . . ,K. Note that P1 is a

measure of heterogeneity in this setting and a smaller P1 leads to a more heterogeneous customer

population. In the extreme, P1 = 1 reduces this setting to one with a homogeneous market.

As in Section 6.1, we consider an approximate lower bound on the regret of the data-intensive

policy, based on Lai and Robbins (1985). Existing upper bounds in the bandit literature (including

that of the UCB1 policy) assume a homogeneous market. This introduces additional complexity

in the computation of the upper bound on the regret of the pooling policy. This upper bound is

derived in Appendix A. Let G2l(t, I, P ) be the approximation of the lower bound Ld-int − Upool
to the gap function G2 at any time period t. We provide a detailed derivation of G2l(t, I, P ) in

Appendix A. The next result provides conditions under which the pooling policy outperforms the

data-intensive policy (subject to the approximations), that is, G2l(t, I, P ) ≥ 0.

Theorem 2. Consider the case of uniform arrivals, i.e., pi = 1/I for all i ∈ I. There exist

thresholds Ĩl(P ) and P̃1(I, P ′) such that if I ≥ Ĩl(P ) and P̃1(I, P ′) < P1 ≤ 1, then

G2l(t, I, P ) ≥ 0 for t̃l(I, P ) ≤ t ≤ t̃u(I, P ),

with 1 < t̃l(I, P ) ≤ t̃u(I, P ) ≤ ∞. Moreover, Ĩl(P ) and P̃1(I, P ′) are non-increasing in P1 and I,

respectively.

The result in Theorem 2 shows that, under some conditions, the pooling policy outperforms

the data-intensive policy (subject to the approximations) for a range of customer arrivals, even

if the retailer learns the customers’ preferences inaccurately in a heterogeneous market under the

pooling policy. This is the result of faster learning under the pooling policy achieved by aggregating

information across all customer profiles. In particular, Theorem 2 illustrates the benefit of pooling

information in the short-term, when transaction data is limited. Moreover, Theorem 2 implies that

three key factors favor the performance of the pooling policy over the data-intensive policy:

• Heterogeneity (P1): If the population is not too heterogeneous (i.e., if P1 > P̃1(I, P ′)), then

the pooling policy tends to outperform the data-intensive policy for a range of customer

arrivals. This is because, under such condition, the benefit associated with faster learning

by aggregating information outweighs the cost associated with the errors the pooling policy

makes by not differentiating between clusters (and therefore offering suboptimal assortments).

Moreover, the threshold P̃1(I, P ′) decreases as the number of profiles increases.

• Number of profiles (I): An increase in the number of profiles impacts negatively on the

performance of the data-intensive policy. As I increases, the average number of customer

arrivals per profile decreases and thus it takes longer for the data-intensive policy to learn the

preferences for each profile. On the other hand, the pooling policy aggregates information

across all customers and thus its performance does not degrade as long as P1 > P̃1(I, P ′). As

the population becomes more homogeneous in terms of preferences (i.e., as P1 increases), the
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pooling policy tends to outperform the data-intensive policy for an even smaller number of

customer profiles.

• Number of Customers (t): Although a relatively more homogeneous market and a large num-

ber of profiles can favor the performance of the pooling policy, the key factor is the amount

of transaction information available to the retailer. When the number of customer arrivals is

still relatively small, the data-intensive policy does not have enough sample points to accu-

rately learn the preference of each customer profile. On the other hand, the pooling policy

aggregates information and therefore tends to outperform the data-intensive policy as long

as the population is not too heterogeneous with respect to their product preferences. As

more customers arrive, the performance of the data-intensive policy prevails. In particular,

G2l(t, I, P )→ −∞ (and G2(t, I, P )→ −∞) as t→∞ if P1 < 1.

The result in Theorem 2 is consistent with the observations about the dynamic clustering policy

illustrated in the right panel of Figure 4. Early on in the selling season, when only a limited number

of transactions have been observed, the average number of clusters that emerge from the dynamic

clustering policy is small. This echoes the preceding discussion – when limited information is

available, the retailer might be better off pooling all available data (even if they correspond to

profiles with different preferences) to speed up the learning process. The number of clusters then

increases as more data becomes available (as can be noted in the right panel of Figure 4) and the

retailer is able to personalize the assortment offerings by better matching customer preferences.

7 Conclusion

This paper considers a retailer endowed with multiple products that dynamically personalizes the

assortment offerings over a finite selling season. Customers are assigned to different profiles based

on their observable personal attributes. Their preferences are unknown to the retailer and must

be learned over time. The primary goal of the paper is to explore the efficient use of data in retail

operations and its benefits (in terms of revenue) for assortment personalization. To that end, we

propose the dynamic clustering policy as a prescriptive approach for assortment personalization in

an online setting. We take advantage of existing tools from the literature and introduce a policy

that adaptively combines estimation (by estimating customer preferences through dynamic clus-

tering) and optimization (by making dynamic personalized assortment decisions using a bandit

policy) in an online setting. The dynamic clustering policy adaptively adjusts the composition of

customer segments (i.e., mapping of profiles to clusters) based on the observed customers’ purchas-

ing decisions. The policy exploits the similarity in preferences of customers in the same cluster by

aggregating their transaction information and expediting the learning process. Using the estimated

mapping and preferences, the policy uses existing bandit algorithms to make assortment decisions.

To illustrate the practical value of the dynamic clustering policy in a realistic setting, we apply

the policy to a dataset from a large Chilean retailer. We compare the performance of the dynamic
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clustering policy with two alternatives: a data-intensive policy that treats each customer profile

independently and a linear-utility policy that estimates product mean utilities as linear functions of

customer attributes. The case study suggests that the dynamic clustering policy can significantly

increase the average number of transactions relative to the other policies. We also demonstrate the

scalability and efficiency of the dynamic clustering policy in terms of computation time.

We then study a simplified version of the problem in which the retailer offers a single product

to each arriving customer. We show that a semi-oracle policy that knows upfront the mapping

of profiles to clusters (but not the customers’ preferences) outperforms the data-intensive policy,

indicating that pooling information is beneficial for the retailer. We also demonstrate that there are

decreasing marginal returns to pooling information as the number of customer profiles increases.

Finally, we characterize conditions under which a policy that pools information across all customer

profiles outperforms the data-intensive policy even when customer preferences are different. This

result emphasizes the benefit of pooling information in the short-term, when there is insufficient

data to accurately estimate preferences for each customer profile.

In this work, we have made some simplifying assumptions for tractability. Future work can take

into consideration the presence of inventory constraints in the model. Moreover, we have assumed

that prices are constant throughout the selling season. Incorporating pricing decisions is another

direction for future research.
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Sauré, D. and Zeevi, A. (2013). Optimal dynamic assortment planning with demand learning.

Manufacturing Service Oper. Management 15(3), 387–404.

Thompson, W. R. (1933). On the likelihood that one unknown probability exceeds another in view

of the evidence of two samples. Biometrika pp. 285–294.
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Online Appendix Companion to A Dynamic Clustering Approach
to Data-Driven Assortment Personalization

A Proofs

Detailed Derivation of the approximate lower bound G1l(T,I ′). We define product j’s op-

timality gap for customers with profile i as ∆i
j := max{1≤l≤N}{µil} − µij for j ∈ N and i ∈ I. Let

kij(t) denote the number of times that product j has been offered to a customer with profile i up

to (and including) time t. One can rewrite the retailer’s regret associated with a policy π, defined

in (3), as Rπ(T, I) =
∑I

i=1R
π
i (T ) where Rπi (T ) is the regret associated with profile i and policy π:

Rπi (T ) :=
N∑
j=1

∆i
j Eπ

[
kij(T )

]
.

The regret is proportional to the number of times that suboptimal assortments are offered to

customers over the selling season.

In their seminal work, Lai and Robbins (1985) proved that the regret of any consistent policy in

a classic bandit setting grows asymptotically with order at least ln(T ). Formally, for any consistent

policy π, we have that

lim inf
T→∞

Rπ(T )

ln(T )
≥

∑
j∈N :∆j>0

∆j

Dj
, (A.1)

where ∆j is the optimality gap and Dj is the Kullback-Leibler divergence associated with arm

j ∈ N .11

Because all profiles within a cluster have the same distribution of preferences, with some abuse

of notation, we let ∆k
j denote the optimality gap of product j for all profiles in cluster k; that is,

∆i
j = ∆k

j for all i ∈ Ik. Similarly, we let Di
j = Dk

j for all i ∈ Ik. Building on Lai and Robbins’ result

in (A.1), we consider the following (asymptotic) lower bound on the regret for the data-intensive

policy:

Ld-int(T, I ′) :=
K∑
k=1

 N∑
j=2

∆k
j

Dk
j

∑
i∈Ik

E [ln(Ti)] ,

where Ti is the (random) number of customers from profile i that arrive during the selling season.

Hence,
∑I

i=1 Ti = T almost surely.12 Note that Ld-int is the sum of the lower bound on the regret

associated with each profile (or cluster). Unlike the setting studied in Lai and Robbins (1985),

which considers a homogeneous population of customers, the number of customer arrivals from

11The Kullback-Leibler divergence measures the difference between two probability distributions. For the Bernoulli
distribution, we have Dj := µj ln(µj/µ

∗) + (1− µj) ln((1− µj)/(1− µ∗)), where µ∗ := maxj∈N {µj}.
12Although the lower bound in (A.1) is attained when T →∞, one can obtain a similar lower bound on the regret

associated with each profile i, Rπi (T ), as Ti →∞. This is because Ti →∞ almost surely as T →∞, as long as pi > 0
for each profile i ∈ I.
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each profile (i.e, Ti) is random. This introduces additional complexity in the computation of the

lower bound, which we address by using a first-order Taylor expansion of the term ln(Ti).
13 We

therefore approximate Ld-int by replacing ln(Ti) by its first-order Taylor expansion around the

mean E(Ti) = piT . To this end, we have that ln(Ti) ≈ ln(piT ) + (1/(piT ))(Ti − piT ) and taking

expectation on both sides, we have that E [ln(Ti)] ≈ ln(piT ) as E(Ti) = piT . Thus, we approximate

the lower bound function Ld-int with Lapxd-int where

Ld-int(T, I ′) ≈ Lapxd-int(T, I
′) :=

K∑
k=1

 N∑
j=2

∆k
j

Dk
j

∑
i∈Ik

ln(piT ).

Using the results in Auer et al. (2002) for the UCB1 policy, an upper bound on the regret for

the semi-oracle policy is given by:

Us-orc(T, I ′) :=

K∑
k=1

 N∑
j=2

(
8

∆k
j

)
E
[
ln(T ′k)

]
+

(
1 +

π2

3

) N∑
j=2

∆k
j

 ,

where T ′k denotes the (random) number of customers from cluster k. Using a similar first-order

Taylor expansion as in Lapxd-int, we approximate the upper bound function Us-orc with Uapxs-orc where

Us-orc(T, I ′) ≈ Uapxs-orc(T, I ′) :=

K∑
k=1

 N∑
j=2

(
8

∆k
j

)
ln(PkT ) +

(
1 +

π2

3

) N∑
j=2

∆k
j

 ,

where Pk :=
∑

i∈Ik pi.

We therefore approximate the lower bound function Ld-int(T, I ′)− Us-orc(T, I ′) by

G1l(T, I ′) := Lapxd-int(T, I
′)− Uapxs-orc(T, I ′).

Since the gap function can be defined as the gap associated with each cluster, we further define

G1l(T, I ′) :=
∑K

k=1G
k
1l(T, Ik) where

Gk1l(T, Ik) :=

 N∑
j=2

∆k
j

Dk
j

∑
i∈Ik

ln(piT )

−
 N∑
j=2

(
8

∆k
j

)
ln(PkT ) +

(
1 +

π2

3

) N∑
j=2

∆k
j

 .

The next result provides conditions under which G1l(T, I ′) ≥ 0.

Theorem A.1. For each k ∈ {1, . . . ,K}, suppose that Ik ≥ Ikl for some Ikl independent of T and

of the distribution of customer arrivals. Then, there exist thresholds tkl (Ik) such that G1l(T, I ′) ≥ 0

for T ≥ maxk
{
tkl (Ik)

}
.

13In deriving the bounds, we use a first-order Taylor expansion which, as one may expect, provides a reasonable
approximation for smooth functions – we also verified this numerically.
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Proof. (i) To prove that G1l(T, I ′) ≥ 0, we first characterize conditions under which Gk1l(T, Ik) ≥ 0.

After some algebra, we obtain that

Gk1l(T, Ik) = A ln(T )−B,

where A := Ik

(∑N
j=2 ∆k

j /D
k
j

)
−
∑N

j=2 8/∆k
j ,

B := −

 N∑
j=2

∆k
j /D

k
j

 ln

∏
i∈Ik

pi

+

 N∑
j=2

8/∆k
j

 ln(Pk) +
(
1 + π2/3

) N∑
j=2

∆k
j ,

Pk =
∑

i∈Ik pi, and Dk
j is the Kullback-Leibler divergence number. Let Ikl be the smallest integer

greater than
(∑N

j=2 8/∆k
j

)
/
(∑N

j=2 ∆k
j /D

k
j

)
and set Ik ≥ Ikl . Note that A > 0 for Ik ≥ Ikl . We

therefore have that Gk1l(T, Ik) ≥ 0 if

T ≥ tkl (Ik) := dexp(B/A)e.

The result follows from noting that G1l(T, I ′) =
∑K

k=1G
k
1l(T, Ik).

(ii) This part follows immediately as G1l(T, I ′) =
∑K

k=1G
k
1l(T, Ik) where Gk1l(T, Ik) = A ln(T )−B

(where A and B are as defined in part (i)), and A > 0 for Ik ≥ Ikl .

Proof of Theorem 1. We assume for simplicity that Ik is continuous. The results follow directly

for the discrete case. We prove the results by taking the first- and second-order partial derivatives.

We first prove that ∂G1l(T, I ′)/∂Ik > 0. We have that ln
(∏

i∈Ik pi

)
= Ik ln(Pk)− Ik ln(Ik). Then,

∂G1l(T, I ′)
∂Ik

=

 N∑
j=2

∆k
j

Dk
j

 (ln(T ) + ln(Pk)− ln(Ik)− 1) .

Note that ∂G1l(T, I ′)/∂Ik > 0 if T > eIk/Pk. To prove concavity, note that

∂2G1l(T, I ′)
∂Ik

2 = −

 N∑
j=2

∆k
j

Dk
j

( 1

Ik

)
< 0.
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Detailed Derivation of the approximate lower bound G2l(T, I, P ). We assume that ∆k
j =

∆ > 0 for all k = 1, . . . ,K and j 6= k, where recall that ∆k
j denotes the optimality gap of product j

for all profiles in cluster k. Similarly, we let Dk
j = D > 0 for all k = 1, . . . ,K and j 6= k, where Dk

j

denotes the Kullback-Leibler divergence associated with product j for all profiles in cluster k. As

in derivation of the approximate lower bound G1l(T, I ′), we consider the (asymptotic) lower bound

on the regret of the data-intensive policy:

Ld-int(T, I, P ) :=
(K − 1)∆

D

I∑
i=1

E [ln(Ti)] .

Existing upper bounds in the bandit literature (including that of the UCB1 policy) assume a

homogeneous market. This introduces additional complexity in the computation of the upper

bound on the regret of the pooling policy, which we address in the following result.

Lemma 1. The regret for the pooling policy in this setting is at most

Upool(T, I, P ) =

[
8 ln(T )

∆

K∑
k=2

(
1

P1 − Pk

)
+

(
1 +

π2

3

)
(KP1 − 1)∆

]
+ T (1− P1)∆.

Note that Upool in Lemma 1 has an additional term compared to its counterpart in the case

of a homogeneous market. The term inside square brackets is the upper bound on the regret

of the pooling policy relative to a “weak” oracle. The “weak” oracle assumes that the market is

homogeneous and therefore always offers product 1 (as it has a higher purchase probability averaged

over all customer profiles) to any arriving customer. However, the regret has to also account for the

pooling policy’s inability to differentiate between clusters. The second term in Upool incorporates

such a penalty. Note that this penalty term disappears as P1 ↑ 1.

Let G2l(T, I, P ) be the approximation of the lower bound Ld-int(T, I, P ) − Upool(T, I, P ), ob-

tained by replacing ln(Ti) with its first-order Taylor expansion. That is,

G2l(T, I, P ) :=

[
(K − 1)∆

D

I∑
i=1

ln(piT )

]
−

[
8 ln(T )

∆

K∑
k=2

(
1

P1 − Pk

)
+ T (1− P1)∆ +

(
1 +

π2

3

)
(KP1 − 1)∆

]
.

Proof of Lemma 1. We construct Upool in two steps. First, consider a “weak” oracle that assumes

that the market is homogeneous, and therefore, presumes that the purchase probabilities are P1µ
1
j+

P2µ
2
j + · · · + PKµ

K
j for each product j, where µkj denotes the purchase probability of product j

for cluster k. Since the optimality gap of products in all clusters is the same (i.e., ∆k
j = ∆ for

any cluster k and product j 6= k) and P1 > max {P2, . . . , PK}, the weak oracle offers product 1

to all arriving customers regardless of their profiles. As a result, the optimality gap of product

k = 2, . . . ,K (averaged over all profiles) for the weak oracle is:

∆′k := (P1µ
1
1 + P2µ

2
1 + · · ·+ PKµ

K
1 )− (P1µ

1
k + P2µ

2
k + · · ·+ PKµ

K
k ) = (P1 − Pk)∆ > 0.
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If the pooling policy follows the UCB1 algorithm of Auer et al. (2002) (which assumes a homoge-

neous market), its regret relative to the weak oracle is at most

K∑
k=2

[
8 ln(T )

∆′k
+

(
1 +

π2

3

)
∆′k

]
=

8 ln(T )

∆

K∑
k=2

(
1

P1 − Pk

)
+

(
1 +

π2

3

)
(KP1 − 1)∆.

The pooling policy’s regret, however, has to also account for its inability to differentiate between

the clusters. Now, consider a “strong” oracle that knows the purchase probabilities of all customer

profiles (and thus the mapping of profiles to clusters). The strong oracle offers product k to

customers from cluster k for k = 1, . . . ,K, while the weak oracle offers product 1 to all arriving

customers regardless of their profiles (or clusters). As a result, the weak oracle incurs an additional

cost (regret) relative to the strong oracle whenever a customer from a cluster other than cluster 1

arrives. Hence, the weak oracle’s regret relative to the strong oracle due to the lack of knowledge

of the mapping of profiles to clusters is T (1− P1)∆. Therefore, we obtain

Upool(T, I, P ) =

[
8 ln(T )

∆

K∑
k=2

(
1

P1 − Pk

)
+

(
1 +

π2

3

)
(KP1 − 1)∆

]
+ T (1− P1)∆.

Proof of Theorem 2. Note that if P1 = 1, this setting coincides with a homogeneous market and

thus the results follow from Theorem A.1. Therefore, we prove the results for P1 < 1.

We first characterize conditions under which G2l(t, I, P ) ≥ 0. For simplicity we assume that t

is continuous, but similar arguments apply to the discrete case. After some algebra, we obtain that

G2l(t, I, P ) = A′ ln(t)−B′t− C ′,

where A′ := (K − 1)I∆/D − 8β/∆, B′ := (1 − P1)∆, C ′ := (−(K − 1)∆/D) ln
(∏I

i=1 pi

)
+(

1 + π2/3
)

(KP1 − 1)∆, β :=
∑K

k=2 1/ (P1 − Pk), and D is the Kullback-Leibler divergence. Note

that if A′ ≤ 0, then G2l(t, I, P ) < 0 for all t ≥ 1 as B′ > 0 and C ′ > 0. Thus, we need A′ > 0

which requires that

I >
8βD

(K − 1)∆2
. (A.2)

Having A′ > 0 implies that G2l(t, I, P ) is a concave function of t, and this function has a maximum

at t = A′/B′. Let Gmaxl := maxt>0 {G2l(t, I, P )} = G2l(A
′/B′, I, P ). Note that ∂G2l(t, I, P )/∂t ≥

(<) 0 for t ≤ (>) A′/B′, and G2l(t, I, P )→ −∞ as t→∞ (since B′ > 0). Therefore, if Gmaxl > 0,

we have that G2l(t, I, P ) ≥ 0 for t̃l(I, P ) ≤ t ≤ t̃u(I, P ) for some thresholds 1 < t̃l(I, P ) ≤
t̃u(I, P ) ≤ ∞. In what follows, we provide conditions that guarantee that Gmaxl > 0. We have that

Gmaxl = A′ ln(A′/B′)−A′ − C ′.

5



It follows that Gmaxl > 0 if
A′

B′
> exp

(
C ′

A′
+ 1

)
. (A.3)

Considering the fact that arrivals are uniform, i.e., pi = 1/I, ∀i, we have that ln
(∏I

i=1 pi

)
=

−I ln(I). This implies that

C ′

A′
=

((K − 1)∆/D) I ln(I) +
(
1 + π2/3

)
(KP1 − 1)∆

(K − 1)I∆/D − 8β/∆

= ln(I) +
(8β/∆) ln(I) +

(
1 + π2/3

)
(KP1 − 1)∆

(K − 1)I∆/D − 8β/∆

= ln(I) + f(I, P ),

where

f(I, P ) :=
(8β/∆) ln(I) +

(
1 + π2/3

)
(KP1 − 1)∆

(K − 1)I∆/D − 8β/∆
.

Therefore, to ensure that (A.3) holds, we provide conditions that guarantee that

A′

B′
> exp(ln(I) + f(I, P ) + 1) = (exp(f(I, P ) + 1)) I. (A.4)

After some algebra, we obtain that (A.4) is true if(
K − 1

(1− P1)D
− exp(f(I, P ) + 1)

)
I >

8β

(1− P1)∆2
. (A.5)

Note that for the above inequality to hold, the left-hand side of (A.5) must be positive. This

requires that P1 > Π1(I, P ) where

Π1(I, P ) := 1− K − 1

D exp(f(I, P ) + 1)
.

For any given I and P ′, we let P̃1(I, P ′) := inf {P1 : P1 > Π1(I, P ),max {P2, . . . , PK} < P1 < 1}
where PK = 1 − (P1 + P2 + · · · + PK−1). Note that Π1(I, P ) < 1. Moreover, in what follows

(Lemma 2), we show that f(I, P ) (and thus Π1(I, P )) is decreasing in P1 for I > e. Therefore,

such P̃1(I, P ′) exists for I > e. It follows that, if P1 > P̃1(I, P ′) and I > e, then after some algebra

we have that (A.5) is true if

I >
8βD

∆2 ((K − 1)− exp(f(I, P ) + 1)(1− P1)D)
. (A.6)

We now present the intermediate result.

Lemma 2. f(I, P ) is decreasing in I and P1 (assuming that the vector P ′ is constant) for I > e.

6



Proof. We prove the result by taking the first-order partial derivatives. We have that

∂f

∂I
=

8(K − 1)β/D − (8β/∆)2 (1/I)− ((K − 1)∆/D)
[
(8β/∆) ln(I) +

(
1 + π2/3

)
(KP1 − 1)∆

]
((K − 1)I∆/D − 8β/∆)2

=
[(8(K − 1)β/D) (1− ln(I))]− (8β/∆)2 (1/I)−

(
1 + π2/3

)
(K − 1)(KP1 − 1)∆2/D

((K − 1)I∆/D − 8β/∆)2 .

Note that (8(K − 1)β/D) (1− ln(I)) < 0 guarantees that ∂f/∂I < 0. The former inequality holds

if I > e.

We note that PK = 1− (P1 + P2 + · · ·+ PK−1). We then have that

∂β

∂P1
= −

[
1

(P1 − P2)2
+

1

(P1 − P3)2
+ · · ·+ 1

(P1 − PK−1)2
+

2

(2P1 + P2 + P3 + · · ·+ PK−1 − 1)2

]
< 0.

Thus, β is decreasing in P1 which implies that the denominator of function f is increasing in P1.

Therefore, to show that function f is decreasing in P1, we provide conditions that guarantee that

its numerator is decreasing in P1. Let fnum denote the numerator of function f . We then have that

∂fnum
∂P1

= − (8 ln(I)/∆) γ +K
(
1 + π2/3

)
∆,

where γ := −∂β/∂P1. Therefore, ∂fnum/∂P1 < 0 if

ln(I) >
K
(
1 + π2/3

)
∆2

8γ
.

Since γ ≥ K, we have that I > exp
((

1 + π2/3
)

∆2/8
)

guarantees that ∂f/∂P1 < 0. Because

exp(1) = e > exp
((

1 + π2/3
)

∆2/8
)

as 0 < ∆ ≤ 1, we conclude that I > e guarantees that

∂fnum/∂P1 < 0.

We conclude that in order to have Gmaxl > 0, we need that P1 > P̃1(I, P ′) and the inequalities

(A.2) and (A.6) to hold. Seeing that the right-hand side of inequality (A.6) is larger than that

for inequality (A.2), for any given P , we set Ĩl(P ) to be the smallest integer I greater than e

that satisfies the inequality (A.6) and take I ≥ Ĩl(P ). From Lemma 2, we know that f(I, P ) is

decreasing in I for I > e. Because the right-hand side of the inequality (A.6) is increasing in

f(I, P ) (and thus decreasing in I for I > e), such Ĩl(P ) exists (note that the right-hand side of the

inequality (A.6) converges to 8βD/
(
∆2((K − 1)− (1− P1)eD)

)
as I → ∞). This completes the

proof of G2l(t, I, P ) ≥ 0.

We next prove that Ĩl(P ) is non-increasing in P1 (assuming that the vector P ′ is constant). We

know that Ĩl(P ) is the smallest integer I greater than e that satisfies the inequality in (A.6). The

result follows from noting that the right-hand side of inequality (A.6) is decreasing in P1 for I > e

as a result of Lemma 2.
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We finally prove that P̃1(I, P ′) is non-increasing in I. We have from above that

P̃1(I, P ′) = inf {P1 : P1 > Π1(I, P ),max {P2, . . . , PK} < P1 < 1} ,

where Π1(I, P ) = 1− (K − 1)/(D exp(f(I, P ) + 1)). The result follows from noting that Π1(I, P )

is decreasing in I for I > e as a result of Lemma 2.
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B Extension of Theoretical Results for Thompson Sampling

Consider a classic bandit setting with N arms and Bernoulli rewards and suppose, without loss of

generality, that arm 1 is the unique optimal arm. Let ∆j denote the optimality gap of product j.

Agrawal and Goyal (2011) prove the following upper bound on the regret of Thompson Sampling

policy in this setting:

Rπ(T ) ≤ C1 ln(T ) + C2,

where π denotes the Thompson Sampling policy,

C1 := 1152

 N∑
j=2

1

∆2
j

2

+ 288
N∑
j=2

1

∆2
j

+ 72
N∑
j=2

1

∆j

and

C2 := 192N
N∑
j=2

1

∆2
j

+ 104(N − 1).

Using the upper bound above, extending the results of Section 6.1 is immediate. In what follows,

we discuss the changes to the proof of Lemma 1 and Theorem 2. Following the same arguments as

in the proof of Lemma 1, we have in this setting that

Upool(T, I, P ) =
(
C ′1 ln(T ) + C ′2

)
+ T (1− P1)∆,

where

C ′1 := 1152

(
K∑
k=2

1

∆′k
2

)2

+ 288
K∑
k=2

1

∆′k
2 + 72

K∑
k=2

1

∆′k

and

C ′2 := 192N

K∑
k=2

1

∆′k
2 + 104(N − 1),

and ∆′k = (P1 − Pk)∆ is as defined in the proof of Lemma 1. After some algebra, we obtain that

G2l(t, I, P ) = A′ ln(t)−B′t− C ′,

where A′ := (K − 1)I∆/D − C ′1, B′ := (1 − P1)∆, C ′ := (−(K − 1)∆/D) ln
(∏I

i=1 pi

)
+ C ′2.

Following the same arguments as in the proof of Theorem 2, we need A′ > 0 which requires that

I >
C ′1D

(K − 1)∆
. (B.1)

The only change to the rest of the proof is the definition of the functions f(I, P ) and Ĩl(P ), and

inequality (A.6). In this setting, we have that

f(I, P ) :=
C ′1 ln(I) + C ′2

(K − 1)I∆/D − C ′1
.
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After some algebra, we have that the inequality (A.6) in this setting becomes

I >
C ′1D

∆ ((K − 1)− exp(f(I, P ) + 1)(1− P1)D)
. (B.2)

Similar to the proof of Theorem 2, we note that the right-hand side of inequality (B.2) is larger

than that for inequality (B.1). Thus, we define Ĩl(P ) as the smallest integer I greater than e that

satisfies the inequality in (B.2).

To conclude the extension, we only need to prove Lemma 2 in this setting. Following the same

arguments as in the proof of Lemma 2, we have that

∂f

∂I
=

[(C ′1(K − 1)∆/D) (1− ln(I))]− C ′1
2/I − ((K − 1)∆C ′2/D)

((K − 1)I∆/D − C ′1)2 .

Note that I > e guarantees that ∂f/∂I < 0. To show that f(I, P ) is decreasing in P1, note that

∆′k is increasing in P1 which, in turn, implies that C ′1 and C ′2 are decreasing in P1.

The non-increasing property of Ĩl(P ) and P̃1(I, P ′) in P1 and I, respectively, follows from similar

arguments as in the proof of Theorem 2 and the discussion above.
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