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René Caldentey

Stern School of Business, New York University,

44 West Fourth Street, Suite 8-77, New York, NY 10012, rcaldent@stern.nyu.edu.

Rafael Epstein

Industrial Engineering Department, University of Chile,

Republica 701, Santiago, Chile. repstein@dii.uchile.cl.

Denis Sauré
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Abstract

In this paper we study the long-term operation of an underground copper mining project. We
model the project as a collection of blocks (minimal extraction units) each with its own mineral
composition and extraction costs. The decision maker’s problem is to maximize the economic value
of the project by controlling the sequence and rate of extraction as well as investing on costly
capacity expansions. We use standard contingent claim analysis and risk-neutral valuation to solve
this problem taking as an input the stochastic process that regulates the dynamics of the copper spot
and futures prices. Our solution method works in two steps. First, we consider a fixed production
capacity and use approximated dynamic programming to compute upper and lower bounds for the
value function in terms of the spot price and mineralogical characteristics of the blocks. We use these
bounds to obtain an approximation that is asymptotically optimal as the spot price grows large. In
the second step, we extend this asymptotic approximation to handle capacity expansion decisions.
Numerical computations are used to evaluate the performance of our proposed policy. We conclude
with an application of our methodology to a real instance of the problem at CODELCO (Chile’s
largest copper producer).

1 Introduction

In this paper, we develop a real options model for optimizing the long-term exploitation of an under-
ground multi-sector copper mining project. This research is part of an ongoing project with CODELCO
–Chile’s largest copper producer– an its main theme has been the development of a long-term decision
support system for production and capacity expansion plans.
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Chile is the world’s largest copper producer with an annual production reaching 5.4 metric million
tons of fine copper (TMF) and holding 38% of the world’s copper reserves. Unsurprisingly, copper is
one of Chile’s most important industries, accounting for approximately 7% and 38% of the country’s
GDP and total exports, respectively. For countries like Chile ensuring an efficient management of
their natural resources is a strategic matter. Most of the complexity of this problem comes from the
combination of two factors: (i) a large scale operation involving multiple inter-temporal decisions and
(ii) an uncertain production and market environment. In the copper industry, production uncertainty
relates to the heterogeneity of the mineral composition, while marketplace uncertainty is due to the
stochastic evolution of spot prices.

Decision-support systems based on large-scale optimization models have been successfully implemented
in the copper sector (e.g., Mondschein and Schilkrut 1997, Santibañez 2000, Caldentey and Mondschein
2003), as well as in other natural resource industries (e.g., Epstein et al. 1999 in the forrest industry,
or Baker and Ladson 1985, Dyer et al. 1990 in the crude oil industry). Through the use of these
systems, managers are able to evaluate alternative operational policies selecting those that maximize
the short-term and long-term profitability of the business. Most of these models, however, operate
under deterministic inputs based on mean estimates of market prices and demand. Furthermore, in
this deterministic world the so-called discounted cash flow (DCF) methodology with a non-adapted
operational and investment strategy is predominately used by companies, despite the fact that it fails
capturing decision makers’ ability to dynamically react to a stochastically changing environment (e.g.,
Myers 1987). As a result, companies operate under suboptimal extraction and investment plans, highly
exposed to operational and financial risks.

The real options approach overcomes these limitations of the DCF criteria by explicitly incorporating
the dynamic nature of the decision making process and the stochastic behavior of output prices and cash
flows. Early research on the subject dates back to the ’80s. One of the earliest example is McDonald
and Siegel 1985 that investigated the optimal operation of a project under stochastic revenues and
production costs if a shut-down option is considered. For a comprehensive exposition on real options
we refer the reader to Dixit and Pindyck (1994) and Trigeoris (1996).

In the context of natural resource management, there is an extensive real options literature that has
focused on operational decisions such as determining optimal extraction policies or evaluating the options
of temporarily closing-up, re-opening, or abandoning a specific project (e.g., Pindyck 1978 and Pindyck
1981, Schwartz et al. 2001, Brennan and Trigeorgis 2000 and Lumley and Zervos 2001). An important
aspect of this real options literature for commodities (such as copper or oil) has to do with the way spot
price risk is incorporated in the valuation process. Specifically, for these commodities the existence of
a futures markets allows the use of risk-neutral (or arbitrage-free) valuation techniques similar to those
used for valuing financial derivatives (e.g., Black and Scholes 1973 and Hull 1993). A notable example
of this risk-neutral approach is Brennan and Schwartz (1985) who consider optimal extraction policies
for a non-renewable natural resource. Other examples are Gibson and Schwartz (1990), Samis et al.
(2001) and Smith and McCardle (1999).

Our paper differs from previous formulation in the way we model the extraction process. Based on our
experience working with CODELCO, most of the previous research favors mathematical tractability by
oversimplifying the production process. In this work we develop a real options model that addresses
some of the limitations of previous approaches. Specifically, and consistent with current practices in the
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industry, we model the mining project as a collection of blocks (minimal extraction units) with different
mineral composition and extraction costs. As a result, a production plan must specifies a sequence of
extraction (that is, the order in which blocks will be processed) as well as the rate of production. We
also model the options of investing in costly capacity expansions over time. Finally, we use real data
from a Chilean copper mining project to calibrate our production and cost parameters and show how
to apply our methodology in a real instance at CODELCO.

Because of our detailed characterization of the production process, we believe our paper contributes to
narrow the gap between the academic literature and current practices in the industry. As a side remark,
and before jumping into the details of the model, we would like to highlight the fact that, although
we focus on a copper mining operations, our model and results can be extended to other non-renewal
natural resources such as crude oil, natural gas, and other type of mineral deposits.

The rest of this paper is organized as follows. In section 2, we provide a description of the model. This
section is subdivided in five subsections that include (i) a brief summary of the operations of an under-
ground mine, (ii) a review of spot and futures price models for commodities, (iii) a detailed description
of the production process, (iv) a discussion of the risk-neutral approach that we use to value the mining
project including a dynamic programming formulation of the problem and (v) a summary of notation
and conventions that we use throughout the paper. In section 3, we fix the sequence of extraction and
the production capacity and derive general properties of an optimal solution. We also compute upper
and lower bounds for the optimal value of the project and use these bounds to propose two simple
methods to control extraction. These bounds are also used to derive an approximation that is asymp-
totically optimal as the spot price and/or production capacity grow large. We conclude section 3 with a
set of numerical experiments that show the quality of our proposed asymptotic approximation with an
average error ranging between 1% and 3%. In section 4 we extend the results of the previous section to
include capacity expansion decisions. Section 5 presents an application of our methodology to identify
an optimal extraction policy for El Diablo, a 230 [million ton] project at El Teniente. Conclusions and
future research are discussed in section 6. Finally, mathematical proofs are relegated to an Appendix
at the end.

2 Model Description

We now present the model in detail. We begin with a brief description of the mining operational
process and then consider the dynamics of the spot and futures prices of copper. Then, we describe
the mathematical formulation that we use to model the production process at an underground deposit.
Finally, we discuss the risk-neutral valuation approach that we use to formulate the optimization problem
as a dynamic programming problem.

2.1 Mining Operations Description

Mining operations can be regarded as a sequence of stages involving geological, extraction, concentra-
tion, and refining activities. Geological activities are necessary for the discovery and characterization
of new deposits. They are of great importance at the early stages of exploration and design of the
mine, and they are continuously required through the lifespan of a mining project for updating the
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geological characteristics of the mineral. Extraction activities are required to obtain the ore that feeds
the processing plants, and their structure depends on whether they are performed on an open pit mine
or on an underground mine.

For an open pit operation, mineral is extracted using controlled explosions on the surface of the resource.
After the blast, mineral is carried out of the pit by huge trucks. Mine sectors are also located at different
heights overlapping each other. Upper sectors must be extracted first for the extraction to be feasible
and safe. Since only exposed mineral can be extracted from the surface, extraction sequence follows
naturally.

In underground mines, extraction is conducted by choosing specific extractions points where the mineral
flows by a combination of controlled explosions and gravity. Charges of explosives are set at the base of
the mineral columns. After the blast, gravity makes the mineral to fall down. This extracting method
is called “block caving” and it is used by almost all Chilean underground mines. Further discussion on
extracting methods can be found on Alford et al. (2005). The ore is then transported outside the mine
and new explosives are set in order to continue the so-called precipitation of the mineral.

The material coming out of the mine has poor grade (percentage of copper) which varies from 0.6% to
2.0%. For this material to have an economic value concentration and refining must be performed. How-
ever, not all the resource is sent to refining plants. For underground mines, material for which net cash
flows are negative is left in-situ. For open pit mines this material is sent to dump deposits. Lane (1988)
proposes a cut-off grade strategy for distinguishing between waste and ore based on approximations to
the “opportunity” cost of the material.

The concentration and refining processes are basically the same for underground and open pit mines.
These processes take place at the concentration and smelting plants. Here, the mineral goes through a
sequence of processes (mechanical and chemical) of size reduction, concentration and refinement. The
resulting ore has 99.9% grade and it is sold as a commodity in the local and international markets as
refined copper. Not all the copper coming from the mines is transformed into high quality copper and
some fraction is lost in the refinement processes. This fraction depends on the quality of the mineral, the
extraction rate, and the relationship between the market price and the processing cost. This fraction is
the so called recovery rate of the process.

Figure 1 shows schematically the entire mining operations process for the underground case. Further
discussion on exploration and geological activities can be found in Schwartz et al. Schwartz et al. (2001)
while the concentration and refining operations are discussed in detail in Caldentey and Mondschein
(2003). A more complete description of the entire process can be found in The Copper Manual Cochilco
(1976).

2.2 Spot and Futures Prices

Copper spot price is a critical ingredient when evaluating mining projects, as it modulates the project
revenues influencing extraction plans, cutoff grades, and capacity expansion, among other decisions. In
addition, the inherently stochastic behavior of these spot prices complicates the optimization and the
evaluation of our project.

Most of the contingent claim literature models on stocks spot prices using the traditional Geometric
Brownian Motion (GBM). Empirical evidence, analytical tractability, the unpredictability of the path,
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Figure 1: Mining process for an underground copper mine.

and the early applications of GBM in mathematical finance (e.g., Samuelson 2001, Black and Scholes
1973, Merton 1973) are some of the main reasons behind this choice. However, it has been recognized
(e.g., Schwartz and Smith 2000, Smith and McCardle 1999) that commodity prices have a mean-reverting
tendency that reflects companies’ flexibility to open/close projects or increase/decrease production
capacity in response to new market prices. Dixit and Pindyck (1994) test the GBM versus mean-
reverting hypothesis using the copper spot price series for the last 200 years and conclude that the
mean reversion hypothesis should be accepted. However, they also claim that the GBM hypothesis
cannot be rejected if only 30 to 40 years of data is included (see Figure 2). Similar conclusions are
reported in Gersovitz and Paxson (1990) for ten different natural resource including copper.

In a series of papers (Schwartz 1997, Gibson and Schwartz 1990 and Schwartz and Smith 2000),
Schwartz proposed three variations of a mean-reverting stochastic model driven by one, two or three
factors. These models were empirically validated for copper, gold and crude oil. Alternative discrete-
time models for the copper spot price are discussed in Engel and Valdés (1990). The authors make use
of chronological series and ARIMA models (among others) to forecast copper prices within a five-year
horizon. They conclude that the two models with the best predictability are the auto-regressive of first
order and the discrete-time version of the GBM.

We assume that the copper spot price, St, follows a single factor mean reverting process, as described
in Schwartz (1997) by the following stochastic differential equation

dSt = κ(µ− ln(St))St dt + σSt dBt, (1)

where Bt a standard Brownian Motion. In what follows we assume that all relevant stochastic processes
are embedded in a filtered probability space (Ω,F ,Ft,P). The speed of adjustment, κ, represents the
degree of mean reversion to the long-run mean µ. Using the Kalman Filter procedure and data from
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Figure 2: Copper spot price evolution since January 1960. (Source: London Metal Exchange)

1988 to 1995 the author obtained the following estimates: κ = 0.369, µ = 4.854 and σ = 0.233.

Copper futures and options contracts are traded on a daily basis at the London Metal Exchange (LME)
with maturities ranging from 3 to 63 months. These derivatives offer buyers and sellers the opportunity
to hedge their risk exposure due to spot price fluctuations. The existence of this future market will
allow us to use a replicating (or risk-neutral) argument optimize the value of the mining project under
consideration.

The relationship between spot and futures price that we consider is based on the model proposed
by Brennan and Schwartz (1985) in which the convenience yield† is proportional to the spot price with
constant of proportionality ρ. For alternative models of this convenience yield we refer the reader to
Casassus and Collin-Dufresne (2005) and references therein. It is well known that the futures price for
the purchase of one unit of the commodity to be delivered at time τ is equal to the expected value of
the spot price Sτ under the risk-neutral measure (e.g., Shreve 2004, chapter 5). Hence, if we let F (S, τ)
be this futures price when the current spot price is S0 = S then

F (S, τ) = S exp((r − ρ) τ), (2)

where r is the risk-free discount rate. For the purpose of numerical computations, we will assume
r = 12% and ρ = 6.3% which is the average value of the (instantaneous) convenience yield for copper
reported in Casassus and Collin-Dufresne (2005, Table V).

2.3 Production Model

We adopt a continuous-time model to represent the operation of an underground mine. We shall also
assume that the exploration stage have been already completed. Hence, the decision maker is mainly

†The convenience yield can be interpreted as the flow of services accruing to the holder of the spot commodity but not

to the owner of a futures contract.
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concerned with determining an optimal extraction and capacity expansion plan for a fixed mining project
with known mineral content and quality.

As a matter of representation, and consistent with current practices at CODELCO, we divide the mine
into a collection of BCUs (Basic cubication units) or blocks each one having specific geological properties.
These blocks represent the minimal extraction units so that production decisions are made at the block
level. Usually, extraction begins at the block with the best grade. Then, it continues by extracting the
surrounding blocks giving priority to those with higher grade. This determines an extraction sequence.
However, there are some restrictions that prevent this greedy sequence to be actually implemented. For
instance, different sectors of the mine are located at different elevations usually overlapping with each
other. Due to safety reasons extraction from upper sectors must be finished before extraction from
lower sectors can start.

From a mathematical standpoint, we model the mine as an undirected graph G = (N ,A) where N =
{1, 2 . . . , N} is the collection of BCUs or blocks. We define Qi and Li to be the amount of ore and
average grade (% of copper), respectively, available in block i ∈ N . We also denote by N0 ⊆ N the
subset of blocks that can be chosen as initial block in a feasible production sequence.

The set of arcs A connecting the blocks in N represents the alternative sequences (paths) of production
in which blocks can be extracted. For instance, if there is an arc connecting nodes i and j (i.e.,
(i, j) ∈ A) then after completing the extraction of block i it is possible to start the extraction of block
j, and viceversa. Hence, the topology induced by A in the graph G is intended to capture the actual
spatial topology of the mining project. It also captures additional production adjacency constraints
among blocks such as those described above.

For a given subset of blocks Ñ ⊆ N , we define A(Ñ ) := {j ∈ N − Ñ : ∃ i ∈ Ñ such that (i, j) ∈ A},
that is, A(Ñ ) is the set of blocks that are adjacent to Ñ . We also define Π to be the set of all possible
permutations π = (π1, . . . , πN ) of N such that π1 ∈ N0 and πi ∈ A({π1, . . . , πi−1}) for all i = 2, . . . , N .
In other words, Π is the set of all possible sequences in which the blocks in N can be extracted.

A production strategy in our model consists of three basic components: (i) the sequence in which blocks
are extracted, (ii) the time at which each block in this sequence starts processing, and (iii) the available
production capacity at these production epochs. We will denote by θ a generic production strategy and
by Θ the set of all feasible production strategies. In what follows, we describe in detail the set Θ and
the three components of a policy θ ∈ Θ.

First, we let πθ = (πθ
1, . . . , π

θ
N ) ∈ Π be the (feasible) production schedule associated to strategy θ ∈ Θ.

We denote by τ θ = (τ θ
1 , . . . , τ θ

N ) the sequence of extraction times of the sequence of blocks in πθ. That
is, τ θ

i is time at which the ith block in the sequence πθ starts production. Given πθ and corresponding
extraction time τ θ, we denote by Kθ = (Kθ

1 , . . . , Kθ
N ) the vector of production capacity. The ith

component of this vector, Kθ
i , is the available production capacity at time τ θ

i when block πθ
i starts

processing. For completeness, we define Kθ
0 = K0 for all θ ∈ Θ, where K0 is the initial level of capacity.

Based on our experience working with CODELCO, we will assume that the decision maker does not
increase production capacity during the extraction of a block. These capacity expansion decisions are
only made in between block extractions. In addition, we will also assume that all the available capacity
is used during the extraction of a block. That is, the decision maker will always run the operation at
100% utilization. We make these assumptions for mathematical tractability but we note that they are
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not far from reality since these decisions involve production and scheduling disruptions that usually
cannot occur in the middle of the extraction of a block. Furthermore, we can always reduce the size of
the blocks (by increasing the cardinality of N ) and so the assumptions are not particularly restrictive
from a theoretical standpoint. In fact, we can show that if we make the size of the blocks infinitesimally
small then a “bang-bang” extraction policy is optimal which is consistent with our previous set of
assumptions.

Given a policy θ ∈ Θ, we will denote by Qθ = (Qθ
1, . . . , Q

θ
N ) and Lθ = (Lθ

1, . . . , L
θ
N ) the vectors of

ore content and average grade, respectively, for the production sequence πθ. We also define T θ =
(T θ

1 , . . . , T θ
N ) where T θ

i = Qθ
i /Kθ

i is the time it takes to process block πθ
i under policy θ.

Finally, we define the set Θ of feasible production policies θ = (πθ, τ θ,Kθ) as those satisfying the
conditions πθ ∈ Π and

τ θ
i ≥ τ θ

i−1 + T θ
i−1 and Kθ

i ≥ Kθ
i−1, for all i = 1, . . . , N,

with border conditions Kθ
0 = K0 and τ θ

0 = T θ
0 = 0. Other constraints such as imposing a fixed planning

horizon T̄ or a maximum production capacity K̄, that is,

τ θ
N + T θ

N ≤ T̄ and Kθ
N ≤ K̄

can also be included. In this paper, we will assume that T̄ = ∞ which is a reasonable assumption for a
company like CODELCO with more than 100 years of copper reserves.

2.4 Project Valuation and Optimality Conditions

The long term planning problem consists on finding an investment and operational policy that maximizes
the net present value of the mineral resource. The investment policy in expansion projects must allow
mineral extraction plan to be feasible in the short and long-term, ensuring the necessary capacities
and technologies. From the decision maker’s perspective this long-term value maximization amounts to
selecting an optimal production strategy θ ∈ Θ as described in the previous section.

Determining the value of the project to be maximized is, in general, a difficult task. In practice,
most mining operators, like CODELCO, consider the average discounted cumulative cashflows of the
project as the appropriate objective function to use. However, this NPV approach imposes some serious
challenges in terms of selecting the appropriate discount factor, or equivalently the correct probability
measure to compute expectations. Fortunately, we can avoid all these complications using the so called
contingent claim valuation approach. Specifically, the existence of a futures market for copper together
with a non-arbitrage condition allow us to use a replicating argument to compute the market value of
our project. For more details, the readers is referred to Brennan and Schwartz (1985) for an application
in the context of a natural resource exploitation and to Shreve (2004) for the general theory. In what
follows, we briefly summarize the main step behind this risk-neutral valuation approach.

We can view the stream of cashflows as a derivative of the underlying copper spot price St, for which a
futures market is available. Using a no-arbitrage argument and under a complete market assumption, it
follows that the economic value of the project cashflows can be obtained using the so called contingent
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claim approach. Let Q be a probability measure (equivalent to P) under which the spot price, St,
discounted at the risk-free rate net of the convenience yield, (r − ρ), is a Q-martingale, that is,

EQ
[
e−(r−ρ) t St |Sτ

]
= e−(r−ρ) τ Sτ , for τ ≤ t. (3)

It follows from the single-factor dynamics of the spot price in equation (1) that this Equivalent Mar-
tingale Measure (EMM) Q exists and is unique. We can compute this EMM by means of a Girsanov
transformation (see chapter 5 in Shreve (2004)). For this, we define the market price of risk to be

λt , κ(µ− ln(St))− (r − ρ)
σ

,

so that the Radon-Nikodym derivate of Q with respect to P is given by

Z , dQ
dP

= exp
(
−

∫ T

0
λt dBt − 1

2

∫ T

0
λ2

t dt

)
.

It is not hard to show that the spot price process St satisfies

dSt = (r − ρ) St dt + σ St dB̃t, (4)

where B̃ is a Brownian motion under Q that satisfies dB̃t = dBt + λt dt.

Under the risk-neutral valuation approach, the economic value of the project for a given policy θ ∈
Θ is equal to the expected value under Q of the project cashflows discounted at the risk-free rate.
In our operational context, these cashflows are the difference between the revenues generated by the
commercialization of the final product in the spot market minus production and capacity investment
costs. We will assume that all production is immediately sold in the market, that is, the company does
not hold any inventory of the final product.

Let us consider the ith block in a feasible production strategy θ ∈ Θ. The extraction of this block πθ
i

starts at time τ θ
i at a constant extraction rate Kθ

i and finishes at time τ θ
i + T θ

i . We will denote by W θ
i

the time τ θ
i discounted cashflows generated by this block.

W θ
i =

∫ T θ
i

0
e−r t [Lθ

i Kθ
i Sτθ

i +t −Aθ
i Kθ

i ] dt,

where Lθ
i Kθ

i is the rate at which copper is produced and Aθ
i is the marginal production cost for block

πθ
i under policy θ. From a modeling perspective, we would like the marginal cost Aθ

i to depend not only
on the particular block πθ

i but more generally on the actual sequence of extraction. This flexibility in
our formulation is particularly useful for modeling underground mining operations in which production
costs tend to increase as extraction progresses. This in part due to the fact that the distance from
the extraction points to the processing plan increases over time. In order to capture this sequence-
depend cost structure in a tractable way, we will assume that Aθ

i depends on θ only through the set
Nθ

i−1 := {πθ
1, . . . , π

θ
i−1}, that is, Aθ

i = Ai(Nθ
i−1). This is not a very restrictive assumption from a

practical standpoint that will allows us to formulate the decision maker’s optimization problem using
standard dynamic programming techniques.

For every θ ∈ Π, we define the decision maker’s cumulative discounted payoff by

U θ =
N∑

i=1

e−r τθ
i

[
W θ

i − γ (Kθ
i −Kθ

i−1)
]
, (5)
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where γ > 0 is the marginal cost of capacity expansion.

A few remarks about equation (5) are in order. First, the term e−r τθ
i γ (Kθ

i −Kθ
i−1) assumes that any

capacity expansion takes place at the same time τ θ
i when the extraction of block πθ

i starts. One could
argue, however, that the decision maker has the ability to build capacity at any point in time in the
interval [τ θ

i−1 + T θ
i , τ θ

i ], before the actual extraction of block i. However, because capacity expansion
are costly, it is in the decision maker’s best interest to postpone as much as possible this outlay which
leads to equation (5). Condition (5) also assumes capacity expansions are instantaneous, otherwise, we
would need to add a time lag between the time expansion begins and the time the additional capacity
becomes available.

The optimization problem that we are interested in solving is

U∗ = sup
θ∈Θ

EQ[U θ].

Using equation (3) we can show that

EQ[W θ
i |Fτθ

i
] = Rθ

i Sτθ
i
− Cθ

i

where

Rθ
i := Lθ

i

(
1− e−ρ T θ

i

ρ

)
Kθ

i and Cθ
i := Ai(Nθ

i−1)

(
1− e−r T θ

i

r

)
Kθ

i .

The optimization problem can be rewritten as

U∗ = sup
θ∈Θ

EQ
[

N∑

i=1

e−r τθ
i

[
Rθ

i Sτθ
i
− Cθ

i − γ (Kθ
i −Kθ

i−1)
]]

. (6)

We can search for a solution to this problem using dynamic programming. The state space of this
dynamic program is the triplet (S, K,N), where S is the spot price, K is the available production
capacity and N ⊆ N is the subset of blocks already extracted. In this state space, we denote by
V (S,K,N) the expected optimal discounted profit to go.

We note that the state space description (S,K,N) is sufficient in our model because of the Markovian
dynamics of the spot price and because we are assuming that capacity and production rates are fixed
during the extraction of a block. Therefore, in order to derive an optimal production strategy it is
enough to evaluate the value function only at those times when a block has finished extraction. In fact,
suppose we look at the system exactly at the time a block has finished extraction and we let (S, K,N)
be the state of the system at this time. At this point in time, the decision maker must decide which is
the next block to extract. This next block i must belong to the set of blocks that are adjacent to N,
that is, i ∈ A(N). In addition, the decision maker must select the time τ when to start processing this
block i. This time τ is a stopping with respect to Ft, the filtration generated by St. Finally, at this
extraction time τ the decision maker must also decide if capacity should be expanded from the current
level K to a new level K̂, with K ≤ K̂ ≤ K̄. (Recall that K̄ is an upper bound on the maximum level
of capacity that can be installed.) Putting all the pieces together, we can write the following recursion
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for the value function V (S, K,N).

V (S, K,N)= sup
τ,i,K̂

EQ
[
e−r τ

(
Ri(K̂)Sτ − Ci(K̂, N)− γ (K̂ −K) + e−r Ti V (Sτ+Ti , K̂, N ∪ {i})

) ∣∣∣S0 = S
]
(7)

subject to the dynamics of the spot price, St, in equation (4), (8)

τ is an Ft stopping time, (9)

i ∈ A(N), Ti =
Qi

K̂
, K ≤ K̂ ≤ K̄, (10)

and the border condition V (S, K,N ) = 0 for all S, K. (11)

We use the notation Ri(K̂) and Ci(K̂, N) to emphasize the dependence of the revenue Ri and cost Ci

on K̂ and N the rate and the sequence of extraction, respectively.

The optimization problem (7)-(11) is not the prototypical dynamic program that we usually encounter in
this type of manufacturing problems. What makes the problem special is the state variable N. Because
of its discrete nature, it is not possible to derive a simple (Hamilton-Jacobi-Bellman) optimality equation
for the value function in terms of its partial derivatives. Instead, we have to set an optimization problem
for each possible value of N and solve a sequence of optimal stopping problems using backward induction
on the cardinality of N.

The idea is as follows. For any set N and i ∈ A(N) define the auxiliary value function V (S, K,N, i)
which is the optimal discounted profit to go if the system is currently in state (S, K,N) and the decision
maker has already decided to extract block i ∈ A(N) next, although not necessarily immediately.

Suppose that we have been able to compute the value of V (S, K,N) for all S, K and N such that
‖N‖ = k. The border condition makes this assumption trivial for k = N . Then, for any set N such
that ‖N‖ = k − 1 and i ∈ A(N) we can compute V (S, K,N, i) reformulating (7)-(11) as an optimal
stopping time problem with S and K as the only state variables. We can tackle the solution to this
subproblem using standard optimal control techniques (e.g., chapters 10 and 11 in Øksendal (2003)).
The specific details of how we solved it are relegated to sections 3 and 4. Once we have computed the
auxiliary value function V (S,K,N, i) for every N such that ‖N‖ = k − 1 and i ∈ A(N), we can recover
the original value function solving V (S, K,N) = maxi∈A(N){V (S,K,N, i)}.
It seems that the only difficulty of the algorithm described in the previous paragraph is solving the
optimal control problem for V (S,K,N, i). Indeed, this is not an easy task. However, there is another
important obstacle in the implementation of this algorithm. For every k there are potentially “N choose
k”, or N !/(k! (N − k)!), subsets of N with cardinality k. Hence, the number of possible subproblems
that we need to solve can be extremely large even for moderate values of N .

We will not deal with this curse of dimensionality directly in this paper. Instead, we will concentrate
on solving the subproblem of determining optimal production and capacity investment decisions for
a given sequence of extraction π. Using some standard terminology of dynamic programming (e.g.,
Bertsekas 1995), we will solve the open-loop version of the problem in which the sequence of extraction
has been already defined. This is an important simplification, however, we view it as the first step
towards solving the general problem. Furthermore, it is often the case in practice that the decision
maker wants to evaluate only a few predetermined extraction sequences. In Proposition 4 below we
propose an efficient method to compare alternative sequences of extraction. We also discuss a concrete
example of this scenario-based valuation in section 5.
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For a fixed extraction sequence, our solution approach works in two steps. First, in section 3, we study
the optimal timing of extraction given a fixed capacity K. Then, in section 4 we relax this assumption
and derive near-optimal capacity expansion decisions.

2.5 Notation and Conventions

Unfortunately, notation will play an important role in our analysis. This is in part due to the fact that
we approach the problem from various angles each one requiring its own set of notation. Hence, we find
convenient to introduce at this point some general notation and conventions that we will use throughout
the rest of paper. First, we say that a function f(S) is asymptotically equal to a function g(S), which
we denote by f(S) S →∞−→ g(S), if limS→∞ |f(S) − g(S)| = 0. Also, the first and second derivatives of
f(S) with respect to S are denoted by f ′(S) and f ′′(S), respectively.

Consider two arbitrary vectors X = (Xj) and α = (αj), we define

X+

k,j ,
j∑

h=k+1

Xh, α×k,j ,
j∏

h=k+1

αh and (α× X)+

k,j ,
j∑

h=k+1

α×h,j Xh.

We also use the specialize notation X+

j , X+

0,j , α×j , α×0,j and (α× X)+

j , (α× X)+

0,j . In the usage of
summations and multiplications we adopt the convention

∑j
h=k Xh = 0 and

∏j
h=k Xh = 1 if j < k.

Consider an arbitrary block j with mineral content Qj , average grade Lj and marginal production cost
Aj . Suppose the spot price is S and the production capacity is K. Then, the time it takes to extract
block j is Tj(K) , Qj/K and the discounted expected profit generated by this block is

Wj(S, K) , EQ
[∫ Tj(K)

0
e−r t [Lj · St −Aj ] K dt

∣∣∣S0 = S

]
, S Rj(K)− Cj(K)

where Rj(K) , Lj(1− e−ρ Tj(K)) K

ρ
and Cj(K) , Aj (1− e−r Tj(K)) K

r
. (12)

We interpret Rj(K) as a modified stock of copper in block j and Cj(K) as the discounted extraction
cost for this block. We will denote by

Cj(K) , Cj(K)
Rj(K)

the resulting per unit average production cost. We also define

Rk,j(K) ,
j∑

h=k+1

e−ρ T+
h,j(K) Rh(K), Ck,j(K) ,

j∑

h=k+1

e−r T+
h,j(K) Ch(K),

Rj(K) , R0,j(K) and Cj(K) , C0,j(K). The interpretation of these quantities is as follows. Suppose
there are j blocks left, the spot price is S and the capacity is K. Then, if the decision maker decides
to extract the j blocks (starting with block j and finishing with block 1) without changing capacity
or stopping at any time then the discounted expected payoff of this non-idling strategy would be
Wj(S,K) , Rj(K) S − Cj(K).
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3 Optimal Production Plan with Fixed Capacity

In this section we solve problem (7)-(11) under the following two assumptions. First, we assume that
the sequence of extraction π has been defined in advance. Without lost of generality, and for notational
convenience, we index the blocks in this sequence by π = {N,N−1, . . . , 2, 1} so that block N is the first
block to be processed and block 1 is the last one. The second condition that we impose is that capacity
expansions are not allowed and we let K be this fixed capacity. We will relax this second assumption
in the following section. Under these two conditions, we derive analytically upper and lower bounds,
as well as two asymptotic approximations, for the corresponding value function. Part of the analysis in
this section follows closely and extends §5.2 in Dixit and Pindyck (1994).

We define Fj(S,K) to be the maximum expected discounted profit when there are j blocks left, the
spot price is S and the capacity is K. The corresponding Bellman equation for this value function is
given by (see §2.5 for notation)

Fj(S, K) = sup
τ>0

EQ
[
e−r τWj(Sτ ,K) + e−r(τ+Tj(K)) Fj−1(Sτ+Tj ,K)

∣∣∣S0 = S
]

(13)

with border condition F0(S, K) = 0 for all S ≥ 0. The sup is taken over the set of stopping times τ

(with respect to St) representing the time when block j should start being produced. Because K is
kept constant in this section, we find convenient to drop the dependence of Fj(S,K), Wj(S, K), Tj(K),
Rj(K) and Cj(K) on K.

Problem (13) is an optimal stopping time problem for which the optimal policy is of the threshold type.
This means that there is a threshold price S∗j such that production of block j should start as soon as
the spot price exceeds this threshold (for more details see sections 4.1.D and 5.2 in Dixit and Pindyck
(1994)).

Using some standard results from optimal stopping time theory (e.g., chapter 10 in Øksendal (2003))
together with the dynamics of the spot price in (4), we can derive the following HJB equation for Fj(S)
inside the continuation region, i.e., the region of spot prices in which it is optimal to postpone the
production of block j.

0 =
1
2
σ2S2 · F ′′

j (S) + (r − ρ) · S · F ′
j(S)− rFj(S), for all S ≤ S∗j (14)

The border conditions for this HJB are

Fj(0) = 0,

Fj(S∗j ) = Wj(S∗j ) + e−r Tj EQ
[
Fj−1(STj )

∣∣∣S0 = S∗j
]

and (15)

F ′
j(S

∗
j ) = W ′

j(S
∗
j ) + e−r Tj

d
dS
EQ[Fj−1(STj )|S0 = S]

∣∣∣
S=S∗j

.

The first condition simply states that if the price process reaches the absorbing state S = 0, then the
value of the mining project will be zero as well. The second and third conditions guarantee that Fj(S)
is continuous and differentiable at the threshold price S = S∗j . These are the so called value matching
and smooth pasting conditions, respectively.

Equation (14) is a second order homogeneous ordinary differential equation. Because of its special
structure, its general solution can be expressed as a linear combination of any two independent solutions.
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The function Sβ satisfies the equation provided that β is a root of the following quadratic equation

1
2
σ2β(β − 1) + (r − ρ)β − r = 0.

The two roots are

β1 , 1
2
− (r − ρ)/σ2 +

√
1/4 + [(r − ρ)/σ2]2 + (r + ρ)/σ2 > 1, and

β2 , 1
2
− (r − ρ)/σ2 −

√
1/4 + [(r − ρ)/σ2]2 + (r + ρ)/σ2 < 0.

The general solution to equation (14) can be written as

Fj(S) = Mj Sβ1 + M̃j Sβ2 ,

for two constants Mj and M̃j . However, the border condition at S = 0 implies that M̃j = 0. In
conclusion, we have the following recursive solution for Fj(S).

Fj(S) =

{
Mj Sβ1 if S ≤ S∗j

Rj S − Cj + e−r Tj EQ[Fj−1(STj )
∣∣S0 = S] otherwise.

(16)

In what follows we redefine β = β1.

To compute the values of S∗j and Mj it is necessary to use the value matching and smooth pasting
conditions. Except for the case of j = 1, this is not easy to do analytically since we cannot get a
tractable representation of Fj−1(S) recursively from condition (16).

For j = 1, condition (16) reduces to

F1(S) =

{
M1 Sβ if S ≤ S∗1

R1 S − C1 S ≥ S∗1
(17)

and the value matching and smooth pasting conditions become

M1 (S∗1)β = R1 S∗1 − C1 and M1 β (S∗1)β−1 = R1

which lead to
S∗1 =

β C1

(β − 1)R1
=

β

β − 1
C1 and M1 =

C1

β − 1
(S∗1)−β . (18)

Recall from section 2.5 that C1 is the average per unit extraction cost for block 1. Hence, the choice of
S∗1 above guarantees a per unit net margin of β

β−1 − 1.

In general, extending the previous analysis to an arbitrary j is difficult because of the expectation
EQ[Fj−1(STj )

∣∣S0 = S] required in (16) and we have not been able to derive a simple characterization
of Fj(S) for j ≥ 2. Nevertheless, we have been able to derive some useful properties of Fj(S) that we
present in the following result (see §2.5 for notation).

Proposition 1 The value function Fj(S) is increasing and convex in S. In addition, let us define
Sm

j , max1≤k≤j{S∗k}, Rm
j , max1≤k≤j{Rk} and

Gj(S) , Sm
j Rm

j

j (j + 1)
2

exp


− 1

σ2
min

1≤k≤j





[
ln

(
S

Sm
j

)
+ (r − ρ− σ2

2
) T+

k,j

]2





 .
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Then, for S ≥ Sm
j exp

(
− mink

{
(r − ρ− σ2

2 ) T+

k,j

})
we have that

0 ≤ Fj(S)− (Rj S − Cj

) ≤ Gj(S). (19)

Since Gj(S) converges to 0 as S goes to infinity, it follows that Fj(S) is asymptotically equal to Wj(S),
that is,

Fj(S) S →∞−→ Wj(S) = Rj S − Cj .

Proof: See the appendix at the end. ¤

Proposition 1 highlights some important properties of the value function but it does not provide tight
estimates of Fj(S) unless S is large. For small values of S we could use numerical methods to solve the
recursion in (16) and get an approximation of the value function. Instead of following this numerical
approach, we have chosen to derive some closed-form approximations for Fj(S) that provide insight
about the structure of this solution and its dependence to the different parameters of the model. First,
we obtain upper and lower bounds for Fj(S) based on a generic type of approximation. Then, we use
asymptotic analysis to extend these bounds. We conclude this section with some numerical computations
that compare the performance of these bounds.

3.1 Upper Bound

To obtain an upper bound on the value of Fj(S) we assume that the extraction of block j − 1 can start
even if the extraction of block j is not fully completed but simply started. We will use a superscript ‘U’
to distinguish those quantities that are derived using this approximation. For example, FU

j (S) denotes
the value function resulting from this approximation. Because FU

j (S) is the solution of a less restricted
problem it follows that Fj(S) ≤ FU

j (S).

Similar to the original optimization in (13), the bound FU
j (S) satisfies the following recursion

FU
j (S) = sup

τ>0
EQ

[
e−r τWj(Sτ ) + e−r τ FU

j−1(Sτ )
∣∣∣S0 = S

]
, (20)

with FU
0 (S) = 0 for all S ≥ 0. It is not hard to see that FU

j (S) satisfies the HJB equation (14) inside
the continuation region. Therefore, it follows that

FU
j (S) =

{
MU

j Sβ if S ≤ SU
j

Rj S − Cj + F̃j−1(S) otherwise.
(21)

We can use backward induction to compute recursively the values of MU
j and SU

j , starting at block 1.
We postpone this analysis to section 3.3 where we derive an algorithm that performs this task efficiently.

3.2 Lower Bound

We can get a lower bound for the value of Fj(S) using the convexity of the value function and Jensen’s
inequality. We will use a superscript ‘L’ to denote quantities that are derived using this approximation.

The basic idea goes as follows. Consider again the optimal stopping time problem for Fj(S) in (13)

Fj(S) = sup
τ>0

EQ
[
e−r τWj(Sτ ) + e−r(τ+Tj) Fj−1(Sτ+Tj )

∣∣∣S0 = S
]
.
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Suppose we are able to find a convex function F L
j−1(S) such that F L

j−1(S) ≤ Fj−1(S) for all S ≥ 0.
Then,

Fj(S) ≥ sup
τ>0

EQ
[
e−r τWj(Sτ ) + e−r(τ+Tj) F L

j−1(Sτ+Tj )
∣∣∣S0 = S

]
.

For an arbitrary stopping time τ let Fτ be the σ-algebra generated by τ . Then, using iterated (condi-
tional) expectation, the convexity of F L

j−1(S) and condition (3) we get that

EQ
[
e−r(τ+Tj) F L

j−1(Sτ+Tj )
∣∣∣S0 = S

]
= EQ

[
EQ

[
e−r(τ+Tj) F L

j−1(Sτ+Tj )
∣∣∣Fτ

] ∣∣∣S0 = S
]

= EQ
[
e−r(τ+Tj) EQ

[
F L

j−1(Sτ+Tj )
∣∣∣Fτ

] ∣∣∣S0 = S
]

≥ EQ
[
e−r(τ+Tj) F L

j−1

(
EQ[Sτ+Tj |Fτ ]

) ∣∣∣ S0 = S
]

= EQ
[
e−r(τ+Tj) F L

j−1

(
e(r−ρ) Tj Sτ

) ∣∣∣ S0 = S
]

and so

Fj(S) ≥ sup
τ>0

EQ
[
e−r τWj(Sτ ) + e−r(τ+Tj) F L

j−1

(
e(r−ρ) Tj Sτ

) ∣∣∣S0 = S
]
.

From this bound, we derive the following recursion for F L
j (S)

F L
j (S) = sup

τ>0
EQ

[
e−r τWj(Sτ ) + e−r(τ+Tj) F L

j−1

(
e(r−ρ) Tj Sτ

) ∣∣∣S0 = S
]
, (22)

with F L
0 (S) = 0 for all S ≥ 0. Using a similar line of arguments to the one used to derive (16), we can

show that

F L
j (S) =

{
ML

j Sβ if S ≤ SL
j

Rj S − Cj + e−r Tj F L
j−1

(
e(r−ρ) Tj S

)
otherwise.

(23)

In the following section, we provide a general method to compute F L
j (S) and verify that it is indeed a

convex function as required. Our approach is based on a general family of approximations that includes
F L

j (S).

3.3 (α, η)-Approximations

The recursions that define the upper bound FU
j (S) in (21) and the lower bound F L

j (S) in (23) share a
similar structure that we will exploit to derive a unified solution method.

Definition 1 Let α = (αk) and η = (ηk) be two positive vectors. We say that a set of continuous and
differentiable functions {Fk(S) : k = 0, . . . , j} is an (α, η)-approximation of the value functions in (16)
if F0(S) = 0 for all S ≥ 0 and

Fk(S) =

{
Mk Sβ if S ≤ Sk

Rk S − Ck + αk Fk−1

(
ηk S

)
otherwise,

k = 1, . . . , j. (24)

Because Fk(S) is continuous and differentiable, the values of Sk and Mk are implicitly determined
imposing value matching and smooth pasting conditions similar to those in equation (15).
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Our main motivation to consider this abstract family of approximations is because they generalize the
upper and lower bounds. In fact, it follows from (21) that the upper bound FU

j (S) is a special case
of (24) with αj = ηj = 1. Similarly, we can recover the lower bound F L

j (S) if we chose αj = exp(−r Tj)
and ηj = exp((r − ρ) Tj). Hence, equation (24) defines a family of approximations that includes the
upper and lower bounds.

In what follows, we derive an efficient algorithm that solves (24) for an arbitrary (α, η)-approximation.
In order to get some intuition on how the algorithm works, let us first consider the special case of two
blocks, j = 2.

Using backward induction, we first compute F1(S). In this case, the solution to (24) is identical to the
solution in (17) and (18). That is,

F1(S) =

{
M1 Sβ if S ≤ S1

R1 S − C1 S ≥ S1

where S1 =
(

β

β − 1

)
C1 and M1 =

(
C1

β − 1

)
(S1)

−β . (25)

Based on this solution, we can solve for F2(S). As before, we compute the value of M2 and S2 using
the value matching and smooth pasting conditions

M2 (S2)β = R2 S2 − C2 + α2F1(η2 S2) and βM2 (S2)β−1 = R2 + α2 η2F ′1(η2 S2).

We recognize two possible cases depending on the value of F1(η2 S2). Suppose first that S1 ≥ η2 S2 then
F1(η2 S2) = M1 (η2 S2)β and the value matching and smooth pasting conditions imply that

S2 =
(

β

β − 1

)
C2 and M2 = α2 ηβ

2 M1 +
(

C2

β − 1

)
(S2)

−β .

The corresponding value of F2(S) has three pieces

F2(S) =





M2 Sβ if S ≤ S2

R2 S − C2 + α2 ηβ
2 Sβ M1 if S2 ≤ S ≤ S1/η2

(R2 + α2 η2 R1) S − (C2 + α2 C1) if S ≥ S1/η2.

(26)

Note that the requirement S1 ≥ η2 S2 is equivalent to C1 ≥ η2C2.

Let us now consider the case where S1 ≤ η2 S2. It follows that F1(η2 S2) = R1 η2 S2 −C1 and the value
matching and smooth pasting conditions lead to

S2 =
(

β

β − 1

)
C2 + α2 C1

R2 + α2 η2 R1
and M2 =

(
C2 + α2 C1

β − 1

)
(S2)

−β

and

F2(S) =

{
M2 Sβ if S ≤ S2

(R2 + α2 η2 R1)S − (C2 + α2 C1) if S ≥ S2.
(27)

In this case, one can show that the condition S1 ≤ η2 S2 is equivalent to C1 ≤ η2C2, which is consistent
with the previous case.

As we can see from this derivation of F2(S), the solution depends on the relationship between C1 and
η2C2. Interestingly, for the case C1 ≤ η2C2 the value of F2(S) in (27) is analogous to the value of
F1(S) in (25). Indeed, in this case we can combine the two blocks into a single one so that the solution
in (27) is equivalent to a single-block project with modified extraction cost C2 + α2 C1 and modified
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mineral content R2 + α2 η2 R1. To get some intuition about why the two blocks are “pooled” together,
let us consider the lower bound approximation. In this case the condition S1 ≤ η2 S2 is equivalent to
SL

1 ≤ exp((r − ρ) T2) SL
2 = EQ[ST2 |S0 = SL

2 ]. In other words, blocks 1 and 2 are combined when the
threshold price for block 1 is below the expected value of the spot price at the time when extraction
of block 2 is completed. Hence, in expectation, the extraction of blocks 1 and 2 is performed without
interruption and so we can view these two blocks as a single one.

The following proposition extends the previous two-block analysis to the case of an arbitrary number
of blocks. Embedded in this proposition, there is an algorithm that takes as input a j-block project
with characteristics {(Ck, Rk, αk, ηk), k = 1, . . . , j} and produces a ̃-block project with characteristics
{(C̃k, R̃k, k̃, η̃k), k = 1, . . . , ̃} and ̃ ≤ j. The purpose of this algorithm is to aggregate blocks using
the same criteria discussed above. The resulting sequence {(C̃k, R̃k, k̃, η̃k), k = 1, . . . , ̃} satisfies some
properties that greatly simplify the computation of Fj(S). (See section 2.5 for notation)

Proposition 2 Consider a single-sector mining project with j blocks and use the following algorithm
to create an artificial sequence of (possibly aggregated) blocks.

Algorithm:

Step 0: (Initialization) Set C̃k = Ck, R̃k = Rk, α̃k = αk and η̃k = ηk, k = 1, . . . , j and ̃ = j.

Step 1: Compute the auxiliary variables

θ̃k = α̃k η̃k, C̃k , C̃k

R̃k

and C̃k,l ,
(
α̃× C̃

)+

k−1,l(
θ̃× R̃

)+

k−1,l

, for all k, l = 1, . . . , ̃, k ≤ l.

Step 2: Find k̃ = min{2 ≤ k ≤ ̃ : C̃k−1 < η̃k C̃k}. If such k̃ does not exist then stop.

Step 3: Find h̃ = max{1 ≤ h ≤ k̃ − 1 : η̃×
h,k̃
C̃h+1,k̃ ≤ C̃h}. If such h̃ does not exist then set h̃ = 0.

Step 4: Define ξ = k̃ − h̃− 1 and introduce the following transformation: ̃ = ̃− ξ and

(R̃k, C̃k, α̃k, η̃k) =





(R̃k, C̃k, α̃k, η̃k) if k ≤ h̃

(
(
θ̃× R̃

)+

h̃,k̃
,

(
α̃× C̃

)+

h̃,k̃
, α̃×

h̃,k̃
, η̃×

h̃,k̃
) if k = h̃ + 1

(R̃k+ξ, C̃k+ξ, α̃k+ξ, η̃k+ξ) if h̃ + 2 ≤ k ≤ ̃.

(Note that in this step we have created a new block h̃ + 1 by aggregating all the blocks from h̃ + 1 to k̃,
hence the total number of blocks has decreased by ξ.)

Step 5: Goto step 1. ¤

After the algorithm has stopped no further block aggregation is possible. The output of the algorithm
is a modified project that has ̃ blocks. The kth block in this new sequence has mineral content R̃k and
extraction cost C̃k. For this modified sequence of (possibly aggregated) blocks we define

S̃k =
(

β

β − 1

)
C̃k and M̃k = α̃k η̃β

k M̃k−1 +

(
C̃k

β − 1

)
(S̃k)−β, k ≤ ̃, (28)

18



with M̃0 = 0. Finally, for block j in the original configuration we have that Sj = S̃̃ and

Fj(S) =
(
θ̃× R̃

)+

h,̃
S − (

α̃× C̃
)+

h,̃
+ M̃h α̃×h,̃

(
η̃×h,̃

)β
Sβ, (29)

where h = max
{
0 ≤ k ≤ ̃ | S̃k ≥ η̃×h,̃ S

}
and S̃0 = ∞.

Proof: See the appendix at the end. ¤

Example 1: To illustrate the mechanics of the algorithm in proposition 2, let us consider a six-block mining

sector with the following characteristics.

Block Rk Ck Tk Ck

1 0.25 14 1.2 56

2 0.3 9 1.6 30

3 0.4 16 1 40

4 0.32 10 2 31.25

5 0.35 12.25 0.7 35

6 0.4 18 0.9 45

The discount factor is r = 0.12 and the convenience yield is ρ = 0.06. Let us specialize the result in

Proposition 2 to the case of the lower bound F L(S). To do this, we set αk = e−r Tk and ηk = e(r−ρ) Tk ,

k = 1, . . . , 6.

In the first iteration of the algorithm we find (step 2) that k̃ = 3. We then compute C̃2,3 · e(r−ρ)·T+
2,3 =

41.07 < C̃1 and C̃3,3 · e(r−ρ)·T+
3,3 = 40 > C̃2 and conclude (step 3) that h̃ = 1. From step 4, we get

ξ = 1 and the new number of blocks is ̃ = 5 (blocks 2 and 3 are pooled together). The following four

tables summarize the resulting values of R̃k and C̃k after the first, second, third and fourth iterations of the

algorithm. Note that in order to update the values of α̃k and η̃k it is sufficient to update the values of the

processing time T̃k.

After Iteration 1

Block Number R̃k C̃k T̃k

New Original

1 1 0.25 14 1.2
2 2 and 3 0.68 24 2.6
3 4 0.32 10 2
4 5 0.35 12.25 0.7
5 6 0.4 18 0.9

After Iteration 2

Block Number R̃k C̃k T̃k

New Original

1 1 0.25 14 1.2
2 2, 3 and 4 0.93 29.5 4.6
3 5 0.35 12.25 0.7
4 6 0.4 18 0.9

After Iteration 3

Block Number R̃k C̃k T̃k

New Original

1 1 0.25 14 1.2
2 2, 3, 4 and 5 1.25 39.43 5.3
3 6 0.4 18 0.9

After Iteration 4

Block Number R̃k C̃k T̃k

New Original

1 1 0.25 14 1.2
2 2, 3, 4, 5 and 6 1.58 53.39 6.2

As we can see, the algorithm finishes after four iteration and in the final configuration the mining project

consists of only two blocks. The initial block 1 and a new block 2 that aggregates the original blocks 2, 3,
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4, 5 and 6. From equation (28), we derive the threshold price for block 6 in the original block configuration

which is

S̃6 =
(

β

β − 1

) (
53.39
1.58

)
=

33.79β

β − 1
,

The interpretation of this price is as follows: As soon as the spot price goes above S̃6 we should start

extracting block 6. ¤

The algorithm in proposition 2 provides a simple method to reduce the size of the mining project by
appropriately aggregating blocks and then computing the value function and threshold prices for the
modified block configuration. In practice, blocks cannot be pooled together and must be extracted one
at a time and so the modified sequence of block is of little use for extraction purposes. Nevertheless,
we can define a simple feasible extraction policy based on the solution proposed by proposition 2 as
follows.

Extraction Policy based on the Approximation Fj(S):

1. Consider a sector with j blocks. Using the algorithm in proposition 2, aggregate blocks to

obtain a new block configuration with ̃ ≤ j blocks.

2. For this artificial configuration compute the threshold price S̃̃ using equation (28).

3. For the original block configuration with j blocks start extracting block j as soon as the

spot price exceeds S̃̃. Note that S̃̃ = Sj , which the optimal threshold price for the

approximation Fj(S).

4. Once the extraction of block j is completed, iterate this sequence of steps for the remaining

j − 1 blocks. ¤

As we can see, the previous policy uses the artificial configuration of blocks proposed by proposition 2
only to compute the threshold price that determines when the last block (in the original sequence)
should start being processed. For instance, the results in Example 1 suggests that block 6 should start
processing as soon as the spot price satisfies St ≥ 33.79 β

(β−1) .

We conclude this section with a brief discussion on how the sequence of extraction is chosen in practice.
When a mining project is designed its extraction sequence its implicitly built. The most common design
rule is to select the initial extraction front in the sector with higher grade. The idea behind this (greedy)
rule is to extract the better material first at the lowest marginal cost. This simple rule has two important
consequences from the point of view of our solution. First, the quality of the ore tends to be a decreasing
function of the extraction front and so the parameter Rk is usually increasing in k. (Remember that
we have indexed blocks backward with block 1 being the last block in the sequence.) Second, as the
operation advances through the extraction fronts, it is executed farther away from the initial front and
the extracted materials must be moved a longer distance. This additional transportation increases the
marginal extraction cost, that is, Ck is generally decreasing in k. Hence, we expect Ck = Ck

Rk
to be a

decreasing function of j under this greedy design. According to step 2 in the algorithm in proposition 2
there is no block aggregation if Ck−1 ≥ ηk Ck. Hence, we can roughly say that there should be no block
aggregation under this greedy design rule if ηk does not exceed one by much. This condition holds
trivially for the case of the upper bound that has ηk = 1. For the lower bound, ηk = e(r−ρ) Tk and so we
expect no block aggregation if the discount factor and/or the processing times are small.
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3.4 Asymptotic Approximations

In this subsection we characterize the limiting behavior of the upper and lower bounds as the spot price
goes to ∞ and use it to propose two simple approximations for the value function.

Figure 3 (left panel) plots the value function Fj(S) (numerically computed), the upper bound FU
j (S)

and the lower bound F L
j (S) as a function of S using the data in Example 1. We note that both bounds
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Figure 3: Left Panel: Value function (Fj(S)), upper bound (F U
j (S)) and lower bound (F L

j (S)) as a function of the

spot price (S) using the data in Example 1. The dashed lines correspond to linear asymptotes for the upper and lower bound

approximations. Right Panel: Asymptotic approximations of the value function based on equations (31) and (32).

perform well for small values of S, however, as S gets large the lower bound performs substantially
better. The upper bound has an optimality gap FU

j (S) − Fj(S) that increases monotonically with S.
This is in part due to the fact that the upper bound assumes that it is possible to extract all blocks
simultaneously; an option that is more valuable when S is large. Furthermore, we can show that for S

sufficiently large the upper and lower bounds are linear functions of S. The dashed lines in Figure 3 (left
panel) represent these linear asymptotes. Based on the results in proposition 2 we have the following
corollary (see §2.5 and Proposition 2 for notation).

Corollary 1 Consider a mining project with j blocks and let Fj(S) be the approximation in (24) for
some pair (αk, ηk), k = 1, . . . , j. Let (R̃k, C̃k, S̃k, M̃k, α̃k, η̃k, θ̃k), k = 1, . . . , ̃ be the characteristics of
the resulting mining project produced by the algorithm in Proposition (2). Then, for S sufficiently large
the approximation Fj(S) is a linear function of S. In particular,

Fj(S) =
(
θ̃× R̃

)+

̃
S − (

α̃× C̃
)+

̃
, for all S ≥ S̃1/η̃×̃ . (30)

For the special case of the upper bound FU
j (S), αk = ηk = 1 and we get

FU
j (S) = R+

j S − C+

j , for all S ≥ S̃1.

Similarly, if we set αk = e−r Tk and ηk = e(r−ρ) Tk we recover the lower bound F L
j (S) and equation (30)

reduces to
F L

j (S) = Rj S − Cj , for all S ≥ S̃1 e−(r−ρ) T+
1,j .
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Proof: The proof of this corollary follows directly from proposition 2 and it is omitted. ¤

It is interesting to note that F L
j (S) has exactly the same linear asymptote than the one derived for

Fj(S) in Proposition 1. This explains the quality of the lower bound F L
j (S) depicted in Figure 3 (left

panel).

Corollary 1 suggests a simple approximation for Fj(S) based on these linear asymptotes. Recall from
condition (16) that Fj(S) satisfies

Fj(S) =

{
Mj Sβ1 if S ≤ S∗j

Wj(S) + e−r Tj EQ[Fj−1(STj )
∣∣S0 = S] if S ≥ S∗j ,

with F0(S) = 0. As we mentioned before, the difficult part of solving this recursion is computing the
expectation EQ[Fj−1(STj )

∣∣S0 = S]. Since this expectation is evaluated for values of S greater than the
threshold S∗j , we can get a simple (asymptotic) approximation if we replace Fj−1(S) by one of the linear
asymptotes derived in Corollary 1.

Using the upper bound asymptote FU
j−1(S) = R+

j S − C+

j and the martingale property (3) we get that
EQ[R+

j S − C+

j

∣∣S0 = S] = R+

j e(r−ρ) Tj S − C+

j . It follows that we can approximate Fj(S) by

F̂U
j (S) ,

{
M̂U

j Sβ1 if S ≤ ŜU
j(

Rj + e−ρ Tj R+

j−1

)
S −

(
Cj + e−r Tj C+

j−1

)
if S ≥ ŜU

j .
(31)

(We will use a hat ‘∧’ to denote quantities that are derived using the asymptotic approximation.) Using
the value matching and smooth pasting conditions we can approximate the values of S∗j and Mj by

ŜU
j =

β
(
Cj + e−r Tj C+

j−1

)

(β − 1)
(
Rj + e−ρ Tj R+

j−1

) and M̂U
j =

(
Cj + e−r Tj C+

j−1

β − 1

) (
ŜU

j

)−β
.

Using exactly the same steps, we can get an alternative approximation for Fj(S) based on the lower
bound asymptote in Corollary 1.

F̂ L
j (S) ,

{
M̂L

j Sβ if S ≤ ŜL
j

Rj S − Cj if S ≥ ŜL
j .

(32)

and
ŜL

j =
β Cj

(β − 1)Rj
and M̂L

j =
( Cj

β − 1

) (
ŜL

j

)−β
.

Figure 3 (right panel) plots the values of F̂U
j (S) and F̂ L

j (S) as well as the value function Fj(S) (numeri-
cally computed). As we can see, F̂ L

j (S) performs quite well over the entire range of prices. This in part
due to the fact that by construction F̂ L

j (S) has exactly the same linear behavior than Fj(S) and F L
j (S)

as S goes to infinity.

In an effort to support the conclusions that we have drawn from Figure 3, we conclude this section
comparing numerically the performance of the upper bound FU

j (S), the lower bound F L
j (S) and the

asymptotic approximations F̂U
j (S) and F̂ L

j (S). We measure this performance as the average relative
error of these approximations across a large range of initial spot prices for different values of the model
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parameters. More specifically, if Fj(S) is an arbitrary approximation for the value function Fj(S) then
we measure the performance of this approximation by

P(Fj) , 1
Smax − Smin

∫ Smax

Smin

|Fj(S)− Fj(S)|
Fj(S)

dS.

We choose the interval of spot prices [Smin, Smax] large enough so that it includes the entire range of
historical spot prices of copper (see Figure 2). In particular, we chose Smin = 0.6 [$/lb] and Smax =
6 [$/lb].

Table 1 presents the value of P(Fj) for the four approximations using the data of Example 1. In the far
leftmost table we vary the volatility of the spot price σ2. The middle table compares the performance
of these approximations for different values of the discount factor r. Finally, in the far rightmost table
we vary the extraction capacity K.

In all three cases, we can see that F L
j and F̂ L

j have a significantly better performance than FU
j and

F̂U
j . This is consistent with our previous discussion based on Figure 3. In addition, we note that

the asymptotic approximation F̂ L has the best performance across all instances with an average error
between 1% and 3%.

σ2 FU FL bFU bFL

0.5 0.20 0.08 0.13 0.03

1.0 0.20 0.08 0.13 0.04

1.5 0.21 0.07 0.13 0.04

2.0 0.21 0.06 0.14 0.03

2.5 0.22 0.06 0.14 0.03

3.0 0.22 0.05 0.15 0.03

3.5 0.23 0.04 0.15 0.02

4,0 0.23 0.03 0.16 0.02

4.5 0.24 0.02 0.16 0.01

5.0 0.24 0.02 0.16 0.01

Av. 22.0% 5.1% 14.4% 2.6%

r FU FL bFU bFL

0.1 0.20 0.09 0.13 0.04

0.2 0.19 0.05 0.13 0.02

0.3 0.19 0.02 0.13 0.01

0.4 0.19 0.01 0.14 0.01

0.5 0.19 0.00 0.14 0.00

0.6 0.19 0.01 0.15 0.00

0.7 0.19 0.01 0.15 0.00

0.8 0.19 0.01 0.15 0.00

0.9 0.19 0.01 0.16 0.01

1.0 0.20 0.01 0.16 0.01

Av. 19.2% 2.1% 14.2% 1.0%

K FU FL bFU bFL

1.0 0.20 0.08 0.13 0.04

2.0 0.09 0.06 0.06 0.03

3.0 0.06 0.04 0.03 0.02

4.0 0.04 0.04 0.02 0.02

5.0 0.03 0.03 0.02 0.02

6.0 0.03 0.03 0.01 0.01

7.0 0.02 0.02 0.01 0.01

8.0 0.02 0.02 0.01 0.01

9.0 0.02 0.02 0.01 0.01

10.0 0.02 0.02 0.01 0.01

Av. 5.2% 3.5% 3.0% 1.7%

Table 1: Performance measure (P) for the approximations F U, F L, bF U and bF L as a function of the spot price volatility σ2

(left panel), discount factor r (center panel) and extraction capacity K (right panel). The data used in these computations

is described in Example 1.

In terms of the sensitivity of these results, we can see that the volatility of the spot price σ2 has a
different impact on these approximations. Both P(FU) and P(F̂U) increase with σ2 while the opposite
is true for P(F L) and P(F̂ L). The results in the middle panel in Table 1 suggest that the discount
factor r does not have a significant effect on the approximations. Finally, the extraction capacity K

affects these four approximations in a similar way, they are all monotonically decreasing with K. This
behavior is a consequence of the following result.

Proposition 3 Let Fj(S,K), FU
j (S, K) and F L

j (S, K) be the value function and upper and lower bounds,
respectively, for sector j when the spot price is S and the extraction capacity is K.

Then, in the limit as K goes to infinity the upper and lower bound approximations converge to the true
value function, that is,

lim
K→∞

FU
j (S,K) = lim

K→∞
F L

j (S, K) = lim
K→∞

Fj(S, K), for all S ≥ 0.
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Hence, in the limit as K goes to infinity, P(F̃ ) = P(F̂ ) = 0.

Proof: We only provide a sketch of the proof. As K → ∞, one can show the algorithm in propo-
sition 2 produces exactly the same sequence of aggregated blocks for the upper and lower bound
approximations. From this observation, it follows that the upper and lower bounds have the same
limit: limK→∞ FU

j (S,K) = limK→∞ F L
j (S, K). Finally, since Fj(S, K) is bounded above and below by

FU
j (S, K) and F L

j (S, K), respectively, the result follows. ¤

We conclude this section, we a simple observation that is particularly useful when selecting an optimal
sequence of extraction. Suppose we have a mining sector with j blocks and we want to compare two
possible sequences of extraction π1 and π2. Based on Proposition 1, the expected discounted value of
the project under sequence πi is asymptotically equal to Rπi

j S − Cπi

j , i = 1, 2. Hence, for S sufficiently
large the best sequence is the one that maximizes the value of Rπi

j . For moderate value of S, on the
other hand, the comparison is not straightforward. However, we can try to extend this condition if
we use the asymptotic approximation F̂ L(S) instead of the real value function F (S) to perform the
comparison between π1 and π2.

Proposition 4 Consider two possible sequences of extraction π1 and π2 for a mining project with j

blocks. Let F̂ L
i (S) = Rπi

j S − Cπi

j be the (lower bound) asymptotic approximation for the value function
if sequence πi is used, i = 1, 2. Then F̂ L

1 (S) ≥ F̂ L
2 (S) for all S ≥ 0 if and only if the following two

conditions are satisfied:

Rπ1

j ≥ Rπ2

j and

(
Rπ1

j

Rπ2

j

)β

≥
(
Cπ1

j

Cπ2

j

)β−1

.

Proof: See the appendix at the end. ¤

4 Capacity Expansions

In the previous section we derived a set of approximations for the value function assuming a fixed
processing capacity K. In this section, we relax this assumption and show how to extend these bounds
to include capacity expansion decisions. In particular, we will only discuss how to extend the lower
bound asymptote F̂ L

j (S) that has shown the best numerical performance.

With a slight abuse in notation, we will denote by Fj(S, K) the value function for a single-sector project
when there are j blocks left, the spot price is S and the processing capacity is K. In this case, however,
K can increase over time so Fj(S,K) is not necessarily equal to the value function of the previous
section.

Recall that we have assumed that there is an upper bound K̄ on the maximum level of capacity. Hence,
we find convenient to define F̄j(S) = Fj(S, K̄). We use a similar convention to denote other quantities
that depend on K such as W̄j(S) = Wj(S, K̄), R̄j = Rj(K̄), C̄j = Cj(K̄) and T̄j = Tj(K̄), all defined
in equation (12).

Similar to equation (13), the dynamic programming recursion in this case takes the form

Fj(S,K) = sup
τ>0, K≤K̃≤K̄

EQ
[
e−r τWj(Sτ , K̃) + e−r(τ+Tj(K̃)) Fj−1(Sτ+Tj(K̃), K̃)− e−r τ γ (K̃ −K)

∣∣∣S0 = S
]
,

(33)
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where F0(S, K) = 0 and γ is the is the marginal cost rate of expanding capacity.

We can attempt a solution to (33) in two steps. First, we determine the optimal capacity expansion
for a given pair (S,K) and then we determine the optimal extraction time. For a given S and K let us
define the auxiliary function

Gj(S, K) , sup
K≤K̃≤K̄

EQ
[
Wj(S, K̃) + e−r Tj(K̃) Fj−1(STj(K̃), K̃)− γ (K̃ −K)

∣∣∣S0 = S
]

(34)

and let K∗
j (S, K) be the value of K̃ at which the maximum is attained. This function computes the

optimal expected payoff if the state of the system (S, K) and the decision maker is forced to start
production immediately. It follows that once Gj(S,K) is determined, the unrestricted value function
satisfies

Fj(S, K) = sup
τ>0

EQ
[
e−r τ G(Sτ ,K)

∣∣∣S0 = S
]
.

Using a similar line of arguments to the one used to derive equation (16) from equation (13), we can
show that there exist two functions Mj(K) and S∗j (K) such that

Fj(S, K) =

{
Mj(K) Sβ if S ≤ S∗j (K)
Gj(S,K) if S ≥ S∗j (K).

(35)

The functions Mj(K) and S∗j (K) are determined using the smooth-pasting and value-matching condi-
tions and satisfy

β G(S∗j (K),K) = G′(S∗j (K),K) S∗j (K) and M j(K) = G(S∗j (K),K)
(
S∗j (K)

)−β
.

Hence, most of the difficulty of computing the value function Fj(S, K) in (35) boils down to determining
the auxiliary function Gj(S,K). Equation (35) also suggests that we only need to compute the value of
Gj(S,K) for S sufficiently large, that is, greater than the threshold S∗j (K). As in the previous section,
we will use an asymptotic approximation to estimate Gj(S, K) in this range.

Proposition 5 In the limit as S goes to infinity, the optimal capacity K∗
j (S, K) converges to the upper

bound K̄ and the function Gj(S,K) converges to a linear function of the price. In particular,

Gj(S, K) S →∞−→ R̄j S − C̄j − γ (K̄ −K),

where

R̄j ,
j∑

k=1

R̄k e−ρ T̄+
k,j and C̄j ,

j∑

k=1

C̄k e−r T̄+
k,j .

Proof: It follows directly from Proposition 1 and it is left to the reader. ¤

If we use this linear asymptotic behavior of Gj(S, K) in equation (35), we get the following estimates
of S∗j (K) and Mj(K).

S∗j (K) ≈
(

β

β − 1

) ( C̄j + γ (K̄ −K)
R̄j

)
and,

Mj(K) ≈
(R̄j

β

)β (
β − 1

C̄j + γ (K̄ −K)

)β−1

. (36)
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According to these solutions, the threshold price S∗j (K) is a linear and deceasing function of K. That
is, when capacity is large a small spot price is enough to induce the decision maker to start production.

In order to complete our characterization of an optimal strategy in this case where capacity expansion are
possible, we need to identify a rule that specifies K∗

j (S, K), that is, how the decision maker should expand
capacity over time. The optimization in equation (34) is in general difficult to solve. However, since
Fj(S,K) = Gj(S,K) for S sufficiently large, we can exploit one more time the asymptotic approximation
in Proposition 5 to get

K∗
j (S, K) ≈ argmax

K≤K̃≤K̄

{
R(K̃) S − C(K̃)− γ (K̃ −K)

}

= max {K ; Kj(S)} , (37)

where
Kj(S) , argmax

0≤K̃≤K̄

{
R(K̃) S − C(K̃)− γ K̃

}
. (38)

The function Kj(S) represents the optimal capacity expansion if there is no installed capacity and the
spot price is S. This is an increasing function of S and we denote by S̄j the lowest price at which its
maximum K̄ is achieved. That is, we define S̄j , inf{S ≥ 0 : Kj(S) = K̄}. From the decision maker’s
point of view, this price S̄j is the threshold above which it is always optimal to expand capacity to its
maximum possible level K̄ independently of the original level of capacity.

The left panel in Figure 4 plots the values of Kj(S) for j = 1, . . . , 6 using the data in Example 1. As
expected, we can see that K1(S) ≤ K2(S) ≤ · · · ≤ K6(S) for all S. This ordering reflects the fact that
additional capacity is more valuable when the mining project has more blocks. This monotonicity also
implies that S̄6 ≤ S̄5 ≤ · · · ≤ S̄1.
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Figure 4: Left Panel: Capacity expansion function Kj(S) for j = 1, . . . 6 using the data in Example 1, γ = 10 and a

maximum capacity K̄ = 5. Right Panel: Optimal production and capacity expansion decisions based on the switching curves

S∗j (K) and Kj(S) using the data of Example 1, γ = 5 and K̄ = 5.

Based on the thresholds S∗j (K) and Kj(S) we can divide the state space S , {(S, K) : 0 ≤ K ≤
K̄ and S ≥ 0} in three subregions depicted in the right panel in Figure 4. In Region I , {(S, K) ∈
S : 0 ≤ S ≤ S∗j (K)} the spot price is very low and the decision maker is better off idling production
until the price reaches the threshold S∗j (K). On the other hand, in Region II , {(S, K) ∈ S : S∗j (K) ≤
S and Kj(S) ≤ K ≤ K̄} the spot price and capacity are both high and production should start but no
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capacity expansion is required. Finally, in Region III , {(S, K) ∈ S : S∗j (K) ≤ S and 0 ≤ K ≤ Kj(S)}
the spot price is high but production capacity is low. In this region, the decision maker should expand
capacity from K to Kj(S) and produce. For example, if the system is point A in Figure 4 then capacity
should be expanded to point B and then production should start.

We note that the negative slope of S∗j (K) implies that the opportunity cost of idling production increases
as capacity increases. In other words, a large mining project will tend to operate almost independently
of the price while small project will turn production on and off as the spot price oscillates. On the other
hand, the positive slope of Kj(S) reflects the intuitive fact that capacity becomes more valuable as the
spot price increases.

5 Application to a Real Instance

In this section, we use the methodology proposed in the previous sections to estimate the economic
value of a mining project at El Teniente.

El Teniente, located in the central region of Chile, at 2,500 meters over the sea level, is nowadays
the largest underground copper mine in the world. With a processing capacity of almost 47.5 [million
tons/year], it produces annually more than 400,000 metric tons of refined copper.

Opened in 1904, this mine have more than 10 active sectors and it is in a continuous expansion with
a number of new sectors beginning operations in the following years. One of these sectors, called El
Diablo, has proven to be rather challenging in term of sequencing design. Because of its unusual spatial
distribution, several extraction sequences have been proposed, each one requiring a different economic
evaluation. Since El Diablo is scheduled to start production in just a few more years, mining operators
are pressured to evaluate a large number of potential extraction sequences in a limited amount of time.

In what follows, we show how we can use the methodology proposed in this paper to tackle the sequencing
problem for El Diablo. Based on the original extraction sequence, we divide the almost 230 million tons
of mineral in this sector into ten blocks. Figure 5 shows schematically the spatial distribution of these
blocks. Table 2 (left panel) summarizes mineral content, grade and extraction time for the ten blocks in
El Diablo. Based on the spatial distribution of the blocks, we evaluate six extraction sequences (shown
in the right panel), where sequence N1 is the one considered in the original design at El Teniente. The
first block on each of these sequences is the first one to be extracted. We note that this set of sequences
represents only a small fraction of the total number of possible extraction sequences for El Diablo.

Because production costs depend on the actual sequence of extraction, we do not have a fixed extraction
cost for each block. For the purpose of the computational experiments reported in these section, we use
a simplified method to estimates these extraction costs. If we let π = (π1, π2, . . . , π10) be any of the six
sequences that we consider, then the marginal extraction cost (in US$ per lb) for the jth block in this
sequence π is

Aπ
j = 4.857 + 0.0162 · dπ1πj

where dij denotes the distance between blocks i and j (see Table 3). In other words, we are modeling
the marginal extraction cost of a block as an affine function of the distance from the block to the initial
extraction front. The intercept 4.857 and slope 0.0162 were estimated using current production costs
at El Teniente.

27



Figure 5: Block spatial distribution at El Diablo.

Block Qj [Ton] Lj [%] Tj [years]

1 21415510 0.827 2.93
2 21268610 0.915 2.91
3 29526438 0.823 4.04
4 28351480 0.881 3.88
5 24854221 0.845 3.40
6 23931346 0.848 3.28
7 21476937 0.768 2.94
8 26110339 0.727 3.58
9 14913691 0.694 2.04
10 13126378 0.776 1.80

Sequence Order

N1 1-2-3-4-5-6-7-8-9-10
N2 10-9-8-7-1-2-5-3-4-6
N3 4-3-2-1-7-8-9-10-5-6
N4 6-5-2-1-3-4-7-8-9-10
N5 1-2-7-8-9-10-5-6-3-4
N6 1-2-5-3-7-8-6-4-9-10

Table 2: Left Panel: Mineral content Qj , copper grade Lj and extraction time Tj for the ten blocks in El Diablo. Right

Panel: Six feasible extraction sequences.

Finally, we considered a fixed production capacity of 7.3 [million tons/year] for this sector. Additional
parameters are: a recovery factor of 85%, r = 12%, ρ = 6%, σ = 0.5.

For each of the six sequences we compute the value function (numerically) and the asymptotic approx-
imation based on the lower bound in equation (32). Table 4 summarizes the results. We conclude
that the best extraction sequence (as measured by the value function F ) is given by N1 (the original
sequence). Similarly, if we use the asymptotic approximation F̂ L to decide we also conclude that N1 is
the best extraction sequence. In terms of the value of this project, the relative error between F and F̂ L

is reported in the farmost right column in Table 4. Note that the values computed using the asymptotic
approximations have a relative small error that ranges from 9% to 0.3%. This error is decreasing in the
spot price S, a result consistent with Proposition 1 and Corollary 1. The fact that sequence N1 is the
best alternative is also consistent with Proposition 4. Indeed, analyzing the data for this instance we
notice that sequence N1 has the best asymptotic behavior with the highest slope RN1 = 24.78 among
the six sequences.
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dij 1 2 3 4 5 6 7 8 9 10
1 0 90 190 321 191 314 159 189 275 367
2 90 0 102 234 174 295 157 240 350 438
3 190 102 0 133 233 336 182 299 424 507
4 321 234 133 0 343 425 272 399 532 607
5 191 174 233 343 0 124 327 380 454 547
6 314 295 336 425 124 0 450 503 569 661
7 159 157 182 272 327 450 0 128 263 335
8 189 240 299 399 380 503 128 0 136 209
9 275 350 424 532 454 569 263 136 0 93
10 367 438 507 607 547 661 335 209 93 0

Table 3: Distance (in meters) among the blocks at El Diablo.

Price N1 N2 N3 N4 N5 N6 Relative
S F F̂ L F F̂ L F F̂ L F F̂ L F F̂ L F F̂ L Error

50 607 552 556 499 598 543 599 541 587 535 602 549 9.1%
100 1367 1251 1255 1130 1350 1232 1352 1227 1325 1213 1356 1245 8.5%
150 2143 2007 1975 1812 2120 1975 2123 1967 2078 1945 2125 1996 6.3%
200 2926 2803 2704 2534 2896 2761 2901 2751 2837 2717 2901 2786 4.2%
250 3721 3614 3446 3295 3684 3567 3691 3562 3608 3505 3689 3590 2.9%
300 4509 4416 4183 4053 4465 4363 4474 4363 4373 4283 4469 4384 2.1%
350 5298 5219 4921 4810 5247 5159 5259 5164 5138 5062 5251 5178 1.5%
400 6097 6030 5670 5577 6040 5965 6054 5975 5914 5849 6043 5982 1.1%
450 6888 6832 6410 6335 6823 6762 6840 6776 6681 6628 6827 6777 0.8%
500 7679 7635 7152 7092 7607 7558 7627 7577 7449 7406 7611 7571 0.6%
550 8480 8446 7902 7859 8401 8364 8423 8388 8226 8194 8404 8375 0.4%
600 9272 9248 8644 8617 9186 9160 9211 9189 8995 8972 9189 9169 0.3%

Table 4: Value function for the six extraction sequences in El Diablo. The F columns represent the numerically computed

value function and the bF L columns represent the asymptotic approximation using the lower bound in equation (32).

We conclude this section discussing how to use the results of section 4 to estimate an optimal capacity
expansion policy for El Diablo. Supposing that initially there is no installed capacity we can use equa-
tions (36) and (37) to obtain an approximation for the optimal initial capacity. In these computations
we considered γ = 7.5 [US$/(Ton/year)] and K = 20 [M Tons/year].

For each of the six sequences we compute the asymptotic approximation based on the lower bound in
equation (35) and the expansion rule in equation (37). Table 5 summarizes the results.

Interestingly, the optimal sequence in this case is N5 as opposed to N1 that is optimal when capacity
is fixed at 7.3 [M Tons/year]. Since sequence N1 is the one considered in the original design of El
Diablo, it seems that management at El Teniente has misvalued the option of increasing capacity. Of
course, there are other practical considerations that are not included in our model that might explain
this discrepancy. Finally, we note that it is optimal to expand capacity to its maximum level K̄ = 20 [M
Tons/year] if the spot price exceeds 100 [cUS$/lb]. This is a rather small value compared to the current
spot price which is above 300 [cUS$/lb].
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Price N1 N2 N3 N4 N5 N6
S K∗ F K∗ F K∗ F K∗ F K∗ F K∗ F

30 0.01 66.78 0.01 58.23 0.01 61.82 0.01 58.75 0.01 68.09 0.01 66.69
40 5.1 89.04 0.01 77.64 0.9 82.43 0.01 78.33 4.7 90.79 4.4 88.91
50 7.75 111.29 0.01 97.05 4.65 103.04 0.01 97.91 7.2 113.49 7.4 111.14
60 10.6 133.55 5.2 116.47 7.25 123.65 6.7 117.5 9.95 136.19 10.45 133.37
70 13.9 155.81 7.3 135.88 10.05 144.25 9.4 137.08 13.05 158.89 13.85 155.6
80 17.5 178.07 9.55 155.29 13.25 164.86 12.45 156.66 16.5 181.59 17.6 177.83
90 20 200.33 12.1 174.7 16.85 185.47 15.85 176.25 20 204.28 20 200.06
100 20 222.59 14.95 194.11 20 206.08 19.55 195.83 20 226.98 20 222.29
110 20 244.85 18.1 213.52 20 226.68 20 215.41 20 249.68 20 244.51
120 20 267.11 20 232.93 20 247.29 20 234.99 20 272.38 20 266.74
130 20 289.36 20 252.34 20 267.9 20 254.58 20 295.08 20 288.97
140 20 311.62 20 271.75 20 288.51 20 274.16 20 317.78 20 311.2

Table 5: Optimal capacity K∗ and expected value F (numerically computed) for the six sequences of extraction at El Diablo as

a function of the price S in [cUS$/lb]. The value of K∗ is computed using the asymptotic approximation bF L and equation (37).

6 Conclusions and Future Research

In this paper, we have developed a tractable continuous-time model of an underground mining oper-
ation and have proposed a methodology to compute near-optimal production and capacity expansion
strategies.

On the modeling side, we have represented the mining project as a finite collection of basic cubication
units or blocks. These blocks can be arbitrarily defined and differ in terms of ore content, mineralogical
composition and extraction costs. In this setting, an optimal production strategy defines the sequence
in which blocks should be extracted as well as the timing and rate of extraction. Our discrete block
representation of the mine is consistent with current practices and deviates from previous research that
commonly models mine characteristics (such as ore content, grade and production costs) as continuous
variables. In this respect, we believe our model contributes to bridge the gap between the academic
research and current practices in the mining industry.

We use a two-step approach to solve the production problem. First, in section 3, we fixed the sequence
and production capacity and solved for the optimal timing of extraction contingent upon the evolution
of the spot price. In Proposition 1, we derived general properties of an optimal solution and showed
that the value of the project is asymptotically equal to an affine function of the price. Unfortunately, for
moderate values of the price we were not able to get a simple characterization of the solution. For this
reason, we derived in §3.1 and §3.2 upper and lower bounds for the value function, respectively, and used
them to propose two simple extraction policies. In addition, we used these bounds in §3.4 to derive a pair
of asymptotic approximations. Out of these two approximations, the one derived from the lower bound
in equation (32), F̂ L(S), turned out to be asymptotically equal to the true value function. Moreover,
a set of numerical computations reported in Table 1 show that F̂ L(S) performs extremely well for a
wide range of prices and other parameters with an average error of 2%. We concluded section 3 with
Proposition 4 that provides necessary and sufficient conditions to decide when a sequence of extraction
dominates another one for all values of the spot price.
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In section 4, we undertook the second step of our solution approach. Here, we showed how to extend
the models of the previous section to identify optimal capacity expansion strategies. Our discussion
was based on the asymptotic approximation F̂ L(S) but the same methodology can be extended to other
approximations of the value function. The resulting production/capacity strategy is of the threshold
type. Specifically, the state space (S, K) (spot price, installed capacity) is partitioned into three regions
(see the right panel in Figure 4). In region I, the spot price is relatively small and the optimal strategy
is to idle production. In region II both the price and the capacity are large and so production is running
with no increase in capacity. Finally, in region III the spot price is high but capacity is relatively small.
The strategy in this case is to increase capacity to a level that depends on the current spot price and
then produce. Our analysis provides a set of simple equations that characterize the threshold functions
that separate these three regions. As a general rule, we noted that as the capacity of a project increases
the option to idling production becomes less valuable. In other words, large mining projects will tend
to operate almost independently of the output price while small projects will switch production on and
off as the spot price oscillates.

We conclude the paper, in section 5, with an application of our methodology to a real instance of the
problem at El Teniente. The example is based on a specific project, called El Diablo, that is scheduled
to start production in few years. Management at El Teniente has proposed a preliminary extraction
sequence (N1 in Table 2). Our analysis showed that this sequence is optimal if production capacity is
fixed at its nominal value of 7.3 (million tons/year). However, if we allow the capacity to be optimally
chosen then it turns out that sequence N5 maximizes the economic value of El Diablo.

There are a number of possible extensions to our model. First of all, an important component of an
optimal production strategy is the sequence in which blocks are extracted. In this paper, we did not
handle explicitly the question of how to dynamically choose this sequence. Instead, we took a scenario-
based approach and assumed that the decision maker has identified a set of potential sequences that
wants to evaluate. This open-loop approach is indeed consistent with how mining projects are evaluated
at CODELCO. However, it lacks the flexibility of adjusting the sequence of extraction based on the
evolution of the spot price. On the other hand, as we noted in section 2.4, the problem of dynamically
adjusting the sequence of extraction has a combinatorial structure which makes it extremely hard to
solve. We think that extending our methodology to explicitly include this dynamic sequencing problem
is a challenging research problem that is important from both a theoretical and practical standpoints.

Another interesting direction in which our model could be extended is by looking more carefully at the
relationship between spot price and production levels. In our model the spot price in equation (1) is
independent of the output of the mining project. This is a standard assumption in the literature which
is reasonable if the producer is a small player with limited market power. However, this is arguably
the case for a company like CODELCO that produces 18% of the world’s copper production. In this
situation, we should expect some correlation between output and spot (and futures) price trajectories
(see Pincheira (1999)). This type of large investor effect has received some attention in the mathematical
finance literature (e.g. Cuoco and Cvitanić 1998, Frey 1998) but it seems to have been overlooked in
the operational context of real options.
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Appendix

1. Proof of Proposition 1

Let us first prove the monotonicity and convexity of Fj(S) using induction over j. For j = 1 these two
properties follow directly from equation (17). So let us assume that Fj−1(S) is increasing and convex
in S for some j ≥ 2 and let us prove that Fj(S) is also increasing and convex.

Equation (16) together with the fact that Wj(S) = Rj S −Cj and St = S0 exp
(
(r− ρ− 1

2 σ2) t + σ B̃t

)

(this follows after integrating (4)) imply that Fj(S) satisfies

Fj(S) =

{
Mj Sβ if S ≤ S∗j

Rj S − Cj + e−r Tj EQ[Fj−1(S exp
(
(r − ρ− 1

2 σ2) Tj + σ B̃Tj

)
)] if S ≥ S∗j .

The constants Mj and S∗j are chosen so that Fj(S) is continuous and differentiable at S∗j . Since β ≥ 1
and Fj−1(S) is increasing and convex it follows that Fj(S) is also increasing and convex.

We now prove the linear asymptotic behavior of Fj(S). In order to do so, we will derive an upper an
lower bound approximation for Fj(S) from which the result will follow. First, we can get a lower bound
on Fj(S) if we assume that the decision maker is unable to idle production when prices are below the
production thresholds {S∗k}. Under this non-idling restriction it follows that

Fj(S) ≥ EQ
[

j∑

k=1

e−r T+
k,j Wj(STk,j

)

]
=

j∑

k=1

e−r T+
k,j

(
Rk EQ[ST+

k,j
|S0 = S]− Ck

)
= Rj S − Cj . (A1)

To get an upper bound, let us introduce a modified price process St given by

St = St +
∑

k:Tk,j≤t

(
S∗k − ST+

k,j−
)+

, S0− = S0.

Recall that S∗k is the switching price for block k, that is, the extraction of block k should start as soon
as the spot price exceeds this threshold. Let us define the auxiliary value function Fj(S) which is the
expected payoff for a project with j blocks under the modified price process St and using the switching
prices {S∗k : 1 ≤ k ≤ j} to control production.

It is not hard to see that St ≥ St pathwise, hence it follows that Fj(S) ≤ Fj(S) for all S. In addition,
because of the specific construction of St it follows that under St the decision maker will never idle
production. That is, ST+

k,j
≥ S∗k (a.s.) for all 1 ≤ k ≤ j. Therefore, we have that

Fj(S) ≤ Fj(S) =
j∑

k=1

e−r T+
k,j

(
Rk EQ[STk,j

|S0 = S]− Ck

)

= Rj S − Cj +
j∑

k=1

e−r T+
k,j Rk EQ[ST+

k,j
− ST+

k,j
|S0 = S]. (A2)

Combining (A1) and (A2), we get that

0 ≤ Fj(S)− (Rj S − Cj

) ≤
j∑

k=1

e−r T+
k,j Rk EQ[ST+

k,j
− ST+

k,j
|S0 = S].

To complete the proof, we need to show that the term on the right is bounded above the expression in
right-hand side in (19) for S sufficiently large. In order to see this, we first note that by the definition
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of St we have

EQ[ST+
k,j
− ST+

k,j
|S0 = S] =

j∑

n=k

EQ
[(

S∗k − ST+
k,j−

)+|S0 = S
]
≤

j∑

n=k

S∗k Q(ST+
k,j− ≤ S∗k |S0 = S)

≤
j∑

n=k

S∗k Q(ST+
k,j
≤ S∗k |S0 = S),

where the last inequality uses the (a.s.) facts that St ≥ St and St is continuous. Under measure Q, St

is log-normal with drift r− ρ− σ2/2 and diffusion coefficient σ (see equation (4)). So, it is not hard to
show that

Q(ST+
k,j
≤ S∗k |S0 = S) = Q

(
B̃T+

k,j
≥ 1

σ

[
ln

(
S

S∗k

)
+ (r − ρ− σ2

2
) T+

k,j

])
,

where B̃t is a standard Q-Brownian motion. Hence, for S ≥ Sm
j exp

(
− mink

{
(r − ρ− σ2

2 ) T+

k,j

})
, we

can bound the tail probability by (e.g., Asmussen 2003, Theorem XIII-2.1)

Q
(

B̃T+
k,j
≥ 1

σ

[
ln

(
S

S∗k

)
+ (r − ρ− σ2

2
) T+

k,j

])
≤ exp

(
− 1

σ2

[
ln

(
S

S∗k

)
+ (r − ρ− σ2

2
) T+

k,j

]2
)

≤ exp


− 1

σ2
min

1≤k≤j





[
ln

(
S

Sm
j

)
+ (r − ρ− σ2

2
) T+

k,j

]2





 .

Based on this bound, it is not hard to show that for S ≥ Sm
j exp

(
− mink

{
(r − ρ− σ2

2 ) T+

k,j

})
we have

j∑

k=1

e−r T+
k,j Rk EQ[ST+

k,j
−S

T+
k,j
|S0 = S] ≤ Sm

j Rm
j

j (j + 1)
2

exp


− 1

σ2
min

1≤k≤j





[
ln

(
S

Sm
j

)
+ (r − ρ− σ2

2
)T+

k,j

]2





 ,

which competes the proof. ¤

2. Proof of Propositions 2

The following intermediate result will be used at some point during the proof.

Lemma 1 Consider a j-block project with characteristics (Rk, Ck, αk, ηk), k = 1, . . . , j. Suppose that

Ck−1

Rk−1
≥ ηk

Ck

Rk
, k = 2, 3, . . . , j.

Then, for any k ≤ j − 1

η×k,j

(α× C)+

k−1,j

(θ× R)+

k−1,j

≤ Ck

Rk
, where θ = (θk) = (αk ηk).

Proof Lemma 1: The proof follows using backward induction over k = j − 1, j − 2, . . . and it is left
to the reader. ¤
We divide the proof of Proposition 2 in two parts.

Part I: Let us first prove the correctness of equations (28) and (29). For this, we will consider the
“modified” sequence of blocks produced by the algorithm and we will show that these equations do
characterize Sj , Mj , and Fj for this modified sequence.
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We find convenient to drop the tildes ‘∼’ in the notation. Consider an arbitrary j-block project with
characteristics (Rk, Ck, αk, ηk), k = 1, . . . , j such that

Ck−1 ≥ ηk Ck, k = 2, 3, . . . , j. (A3)

Note that according to step 2 in the algorithm, condition (A3) ensures that there is no block aggregation
as required.

Let us now use induction over j to prove that for a j-block project satisfying condition (A3) the sets
of threshold prices {Sk}j

k=1 and constants {Mk}j
k=1 are given by equation (28) and the approximation

Fj(S) satisfies equation (29), that is,

Fj(S) =
(
θ× R

)+

h,j
S − (

α× C
)+

h,j
+Mh α×h,j

(
η×h,j

)β
Sβ, (A4)

where h = max
{
0 ≤ k ≤ j | Sk ≥ η×k,j S

}
and S0 = ∞.

• For j = 1 the result follows directly from equation (25).

• Let us assume that the result is true for some j − 1. That is, the values of {Sk}j−1
k=1 and {Mk}j−1

k=1

are given by equation (28) and Fj−1(S) is given by equation (A4). Combining condition (A3) and the
value of Sk (k = 1, . . . , j − 1) in equation (28) we conclude that

Sk−1 ≥ ηk Sk, k = 2, 3, . . . , j − 1. (A5)

• We now prove the result for j. First of all, let us show that Sj−1 ≥ ηj Sj . Suppose, by contradiction,
that this is not the case, i.e., Sj−1 < ηj Sj . Then, condition (A5) and the fact that S0 = ∞ imply that
there exists a k̂ ≤ j − 2 such that

ηk̂+1 Sk̂+1 < ηk̂+1 ηk̂+2 · · · ηj Sj ≤ Sk̂ or equivalently ηk̂+1 Sk̂+1 < η×
k̂,j
Sj ≤ Sk̂. (A6)

Now, by the definition of Sj and Mj and the value matching and smooth pasting conditions we get

Mj Sβ
j = Rj Sj − Cj + αj Fj−1(ηj Sj) and βMj Sβ−1

j = Rj + αj ηj F ′j−1(ηj Sj).

Using the induction hypothesis we can replace Fj−1(ηj Sj) using equation (A4). For this, note that
the value of the index h used in (A4) to evaluate Fj−1(ηj Sj) is exactly equal to k̂ in (A6). In fact,
at S = ηj Sj , h is equal to max

{
0 ≤ k ≤ j − 1 | Sk ≥ η×k,j−1 (ηj Sj)

}
or equivalently max

{
0 ≤ k ≤

j − 1 | Sk ≥ η×k,j Sj

}
. This is k̂ by definition and we get that

Fj−1(ηj Sj) =
(
θ× R

)+

k̂,j−1
ηj Sj −

(
α× C

)+

k̂,j−1
+Mk̂ α×

k̂,j−1

(
η×

k̂,j−1

)β (ηj Sj)β.

After some algebra, the value matching and smooth pasting conditions imply that

Sj =
(

β

β − 1

) (α× C)+

k̂,j

(θ× R)+

k̂,j

and Mj = Mk̂ α×
k̂,j

(η×
k̂,j

)β +

(
(α× C)+

k̂,j

β − 1

)
Sβ

j . (A7)

However, condition (A3), the induction hypothesis Sk̂+1 = (β Ck̂+1/((β−1) Rk̂+1)) and Lemma 1 imply

η×
k̂,j
Sj = ηk̂+1 η×

k̂+1,j
Sj = ηk̂+1 η×

k̂+1,j

(
β

β − 1

) (α× C)+

k̂,j

(θ× R)+

k̂,j

≤ ηk̂+1

(
β

β − 1

)
Ck̂+1

Rk̂+1

= ηk̂+1 Sk̂+1.

The inequality contradicts (A6) and we conclude that Sj−1 ≥ ηj Sj as claimed. This conclusion implies
that k̂ = j − 1 and we can compute the values of Sj and Mj replacing k̂ by j − 1 in equation (A7)
which leads to

Sj =
(

β

β − 1

)
Cj

Rj
and Mj = αj ηβ

j Mj−1 +
(

Cj

β − 1

)
(Sj)

−β ,
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proving equation (28) as required. Finally, from the condition ηj Sj ≤ Sj−1 and the induction hypothesis
it is straightforward to show that Fj(S) is given by equation (29), which completes the induction.

Part II: Let us now carry out the second part of the proof. In this part, we prove that for an arbitrary
j-block project with characteristics (Rk, Ck, αk, ηk), k = 1, . . . , j, the values of Fj(S) and Sj are given
by equations (28) and (29). The difference with respect to Part I is that we are not assuming that
condition (A3) is satisfied.

We will proceed one more time using induction over the number of blocks, j.

• For j = 1 the result follows directly from equation (25).

• Let us suppose that the result is true for j − 1.

• Let us prove the result for j. The induction hypothesis implies that the value of Fj−1(S) is derived
using a modified sequence of blocks that satisfies condition (A3). Furthermore, all what we need to
know about the characteristics of blocks {j − 1, j2, . . . , 1} to compute Fj(S) is contained in Fj−1(S).
Hence, we can assume without lost of generality that the sequence of blocks {j−1, j2, . . . , 1} does satisfy
condition (A3), that is,

Ck−1

Rk−1
≥ ηk

Ck

Rk
, k = 2, 3, . . . , j − 1. (A8)

If this condition is also satisfied for block j then the entire sequence satisfied condition (25) and the
result follows from Part I. Hence, we will assume that block j does not satisfy (A3), that is,

Cj−1

Rj−1
< ηj

Cj

Rj
. (A9)

In the remaining of this proof, we will apply the algorithm in Proposition 2 to a sequence of block
satisfying conditions (A8) and (A9) and we will verify that the value of Fj(S) and Sj are given by
equations (28) and (29).

First, note that the inequality in (A9) and condition (A8) imply that k̃ = j in Step 2 of the algorithm.

We now let h̃ be the solution to Step 3 in the algorithm, that is

h̃ = max{1 ≤ h ≤ j − 1 : η×h,j Ch+1,j ≤ Ch}.

Using these values of k̃ and h̃, Step 4 of the algorithm will pooled together blocks h̃ + 1, h̃ + 2, . . . , j
into a single block. Hence, after this first iteration of the algorithm, the resulting sequence of blocks
has ̃ = h̃ + 1 blocks with characteristics

R̃k = Rk, C̃k = Ck, α̃k = αk, η̃k = ηk, k = 1, . . . , ̃− 1

and
R̃̃ = (θ× R)+

h̃,j
, C̃̃ = (α× C)+

h̃,j
, α̃̃ = α×

h̃,j
η̃̃ = η×

h̃,j
.

Note that by (A8) and the definition of h̃, the resulting sequence satisfies

C̃k−1

R̃k−1

≥ η̃k
C̃k

R̃k

, k = 2, 3, . . . , ̃.

Therefore, after the first iteration the algorithm will stop. Using this modified sequence, equation (28)
leads to

Sj =
(

β

β − 1

)
C̃̃

R̃̃

=
(

β

β − 1

) (α× C)+

h̃,j

(θ× R)+

h̃,j

.

To verify the correctness of this solution, let us compute Sj using its definition in equation (24).
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Fj(S) =
{ Mj Sβ if S ≤ Sj

Rj S − Cj + αj Fj−1

(
ηj S

)
otherwise.

Recall that the value of Fj−1

(
S

)
is known by the induction hypothesis and it is given by equation (29).

This induction hypothesis, and in particular condition (A8) imply that

Sk−1

η×k−1,j−1

≥ Sk

η×k,j−1

, k = 2, . . . , j − 1.

Let us suppose that the value of Sj satisfies

Sh̄+1

η×
h̄+1,j−1

< ηj Sj ≤ Sh̄

η×
h̄,j−1

, (A10)

for some h̄ ≤ j − 1. These inequalities implies and equation (29) imply that

Fj−1(ηj Sj) =
(
θ× R

)+

h̄,j−1
ηj Sj −

(
α× C

)+

h̄,j−1
+Mh̄ α×

h̄,j−1

(
η×

h̄,j−1

)β (ηj Sj)β.

Using this condition and the value matching and smooth pasting conditions we can show, after some
algebra, that

Sj =
(

β

β − 1

) (α× C)+

h̄,j

(θ× R)+

h̄,j

.

Hence, in order for this solution to be consistent with the inequalities in (A10) we need that

h̄ = max

{
1 ≤ h ≤ j − 1 : ηj

(
β

β − 1

) (α× C)+

h,j

(θ× R)+

h,j

Sh

η×h,j−1

}
= max{1 ≤ h ≤ j − 1 : η×h,j Ch+1,j ≤ Ch}.

Hence, h̄ = h̃, which proves that the value of Sj derived in the proposition is indeed correct. Now that
we know the value of Sj , it is a matter of simple (but tedious) calculations to verify that the values of
Mj and F(S) are exactly those reported in equations (28) and (29). ¤

3. Proof of Proposition 4

The proof follows directly from equation (32). Indeed, suppose first that F L
1 (S) ≥ F L

2 (S) for all S.
Then, for S sufficiently small (that is, S ≤ min{S∗π1

j , S∗π2
j }, where S∗πi

j is the threshold price under
sequence πi, i=1,2) equation (32) implies that Mπ1

j ≥ Mπ2
j . This is equivalent to

(
Rπ1

j

Rπ2

j

)β

≥
(
Cπ1

j

Cπ2

j

)β−1

.

Similarly, for S sufficiently large F L
1 (S) ≥ F L

2 (S) implies that Rπ1

j ≥ Rπ2

j .

Conversely, let us suppose that the following conditions are satisfied.

Rπ1

j ≥ Rπ2

j and

(
Rπ1

j

Rπ2

j

)β

≥
(
Cπ1

j

Cπ2

j

)β−1

.

Then, equation (32) immediately implies that F L
1 (S) ≥ F L

2 (S) for S sufficiently small and sufficiently
large. Finally, the inequality extends to all S ≥ 0 by the convexity of F L

1 (S) and F L
2 (S). ¤
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