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Abstract

The role of assortment planning and pricing in shaping sales and profits of retailers is well
documented and studied in monopolistic settings. However, such a role remains relatively unex-
plored in competitive environments. In this paper, we study equilibrium behavior of competing
retailers in two settings: i.) when prices are exogenously fixed, and retailers compete in as-
sortments only; and ii.) when retailers compete jointly in assortment and prices. For this, we
model consumer choice using a multinomial Logit, and assume each retailer selects products
from a predefined set, and face a display constraint. We show that when the sets of products
available to retailers do not overlap, there always exists one equilibrium that pareto dominates
all others, and that such an outcome can be reached through an iterative process of best re-
sponses. A direct corollary of our results is that competition leads a firm to offer a broader set
of products compared to when it is operating as a monopolist, and to broader offerings in the
market compared to a centralized planner. When some products are available to all retailers,
i.e., assortments might overlap, we show that display constraints drive equilibrium existence
properties.

Keywords: assortment planning, competition, choice models, multinomial Logit, pricing

1 Introduction

Assortment planning decisions are fundamental drivers of consumers’ purchase decisions and ulti-

mately of a retailer’s profitability. Retailers face significant challenges to understand the mapping

from assortment decisions to consumer behavior as this mapping should synthesize complex as-

pects of purchase decisions such as, for example, substitution behavior, consumers’ collection and

aggregation of information, consumer heterogeneity, and the effect of competition. A key input in

most assortment models is a consumer choice model. In this regard, and despite its documented

deficiencies, the multinomial Logit model (MNL) of consumer choice has been widely used in the

economics, operations and marketing literatures (see Ben-Akiva and Lerman (1985), Train (2002),
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and Guadagni and Little (1983)), and also in practice. Thus, it is important to study its prop-

erties and its implications on decision-making of firms in competitive settings, which predominate

in practice. However, the theory on competitive outcomes in assortment and/or prices appears

underdeveloped. For example, recently assortment and pricing decisions under the MNL have been

analyzed in Misra (2008), but only best-responses, specific to the joint selection of assortment and

prices, were studied. In particular, no results on general equilibrium properties, such as existence

or uniqueness, or the structure of the equilibrium set are known.

The present paper aims to develop a general framework that enables to analyze equilibrium

outcomes from competition in assortment-only or in joint assortment and pricing decisions. In

particular, the goals of the present paper are two-fold: our main objective is, given the widespread

use of the MNL model, to advance the theory pertaining to equilibrium outcomes under this model.

In addition, we also aim to derive insights on assortment and pricing actions in competitive settings

using the MNL model, complementing those in the existing literature.

To this end, we analyze a model of assortment and price competition in a duopolistic setting.

On the consumers’ side, we assume that customers select from the set of products offered by

both retailers according to an MNL model. On the firms’s side, each retailer has access to a

set of products from which to select an assortment and is constrained by limited display capacity.

The set of products from which retailers may select products are general and may overlap. In

particular, we differentiate between common products, i.e., those that are available to select in

an assortment for both competitors, and exclusive products, those that are unavailable to a firm’s

competitors. We first analyze competition when product prices are exogenous, a setting we refer to

as assortment-only competition. We then analyze competition when prices are endogenous, i.e., are

decided by the retailers. In this case, we consider a general formulation when firms face arbitrary

minimum margins, and analyze the setting in which firms simultaneously select assortments and

prices. Unless otherwise stated, we analyze the interactions between retailers as a game and focus

on pure strategy Nash equilibria.

Regarding our first goal above, our results may be summarized as follows:

i.) We establish that, when retailers have access only to exclusive products, an equilibrium in pure

strategies always exists for both assortment-only and joint assortment and price competition.

ii.) We prove that, in those settings, when multiple equilibria exist, an equilibrium will always

pareto dominate all others. In other words, all retailers would prefer to settle at the same

equilibrium. Moreover, we show that this equilibrium arises naturally starting from a monop-

olistic setup, when retailers periodically react through best-responses to the competitors’ last
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observed offerings.

iii.) We establish that when retailers have access to exclusive and common products, an equilibrium

in pure strategies is guaranteed to exist as long as there are no shelf space constraints. When

shelf space constraints bind, it is possible that the number of non-pareto dominated equilibria

grows exponentially with the retailers’ display capacity. In addition, while an equilibrium in

mixed strategies always exists, it is now possible that an equilibrium in pure strategies fails

to exist.

Many of these results extend to the case of an oligopoly with an arbitrary number of firms and we

comment on how to do so along the way.

Regarding our second goal, our results allow to measure the impact of competition on offerings in

the market. For example, when retailers compete only through exclusive products, the introduction

of a product by a retailer leads the competitor to also broaden her assortment. Also, we show that

the competitor might be better off reducing the breadth of the assortment offered, so as to induce

the retailer to reduce her assortment as well, which leads both retailers to increase their profit

(this is the case when the original equilibrium is not pareto dominant). In terms of comparisons

with monopolists, our analysis indicate that a retailer will offer a broader set of products than

if she were operating as a monopolist (with the same capacity), and that the set of retailers will

jointly offer a broader set of products than if a central planner (facing the same display constraints)

coordinated the assortment decisions. In this regard, our results complement those from studies in

assortment selection and pricing in different competitive settings (e.g. Cachon et al. (2008), Dukes

et al. (2009) and Coughlan and Shaffer (2009)). Our analysis also indicates that when retailers

have access to both common and exclusive products, the interactions between retailers may take a

fundamentally different form. The presence of common products introduces an interplay between

retailers’ decisions at the product level: a product that otherwise should not be included in an

assortment might be so if the competitor includes it in her assortment, and vice versa. We show

that this interplay is softened when display constraints are absent since there is no longer an

opportunity cost associated with offering a given product. In particular, we show that display

constraints are the driver of the possibility of equilibrium non-existence in pure strategies.

Assortment optimization is in general a complex combinatorial problem. Thus, characterizing and

analyzing properties of the outcome of competition among retailers may appear to be a daunting

task a priori. This is probably why most formulations in the existing literature abstract away

from this combinatorial structure. The main contribution of the present paper is to establish that

under an MNL model, the problems of assortment-only and assortment and price competition

3



are actually amenable to analysis, despite the combinatorial nature of the problems solved by the

retailers. In this regard, our work contributes to similar work on equilibria computation in large

structured games (see e.g. Immorlica et al. (2011)). From a methodological viewpoint, the analysis

builds on the idea of computing best responses via a problem transformation. Such an approach

has been previously used in various settings when faced with a combinatorial optimization problem

with a rational objective function. It was, for example, used by Dantzig et al. (1966) for finding

the minimal cost to time ratio cycle in a network, by Megiddo (1979) for computational complexity

results on the optimization of rational objective functions, and more recently by Rusmevichientong

et al. (2010) in the closely related context of monopolistic assortment optimization with Logit

demand. The current paper leverages this transformation in a novel fashion, and shows that it can

serve as one of the building blocks for a unified framework to analyze a competitive setting. In

addition, the resulting framework is shown to be fairly flexible, enabling one to, e.g., incorporate

endogenous prices.

Literature review. Misra (2008) studies joint assortment and price competition of retailers

offering exclusive products with MNL demand and in the presence of display constraints, and

conducts an empirical study to analyze the impact of competition on assortment size and prices.

The analytical results obtained focus only on best response analysis and do not provide equilibrium

existence or uniqueness results, which may be obtained through our framework. Furthermore, the

present paper also develops theory for the case of assortment-only competition. We also refer the

reader to Draganska and Jain (2006) and Draganska et al. (2009) for empirical investigations of

assortment and pricing strategies in oligopolistic markets.

Additional dimensions of competition as well as alternative consumer choice models have also

been analyzed. See Anderson and de Palma (2006), Symeonidis (2009), Hopp and Xu (2008),

Cachon and Kök (2007), Kök and Xu (2011). The present paper is the first, to the best of our

knowledge, to study assortment-only competition and to provide a framework that applies to both

the latter and joint assortment and pricing competition.

The possibility of offering overlapping assortments has been considered before in the literature.

The challenges introduced by common products are highlighted in Cachon et al. (2008) when

modeling competition with consumers that sequentially search for products (see also Iyer and

Kuksov (2012) for an analysis of the role of search cost in competitive environments), and by

Dukes et al. (2009) in a competitive setting dominated by a retailer. Similarly, Coughlan and

Shaffer (2009) highlights the interaction between common and exclusive products in the context of

price match guarantees when retailers compete in price and assortment.
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The interplay between product introduction and price competition has been studied in Thomad-

sen (2012) to highlight that a rival may benefit from a firm introducing an additional product.

Price-only competition under choice models has been studied and is still an active area of re-

search. Anderson et al. (1992) study oligopoly pricing for single-product firms under Logit demand

and study pricing and assortment depth for multi-product firms in a duopoly with a nested Logit

demand, restricting attention to symmetric equilibria. When firms offer a single product and cus-

tomers’ choice is described by an attraction model, Bernstein and Federgruen (2004) establish

existence and uniqueness of an equilibrium for profit maximizing firms and Gallego et al. (2006)

generalize this result for different cost structures. Gallego and Wang (2014) study price competition

under nested the logit model. For the Logit model, Konovalov and Sándor (2009) provide guar-

antees for the existence and uniqueness of an equilibrium for affine cost functions when firms may

have multiple products. Allon et al. (2013) provide conditions that ensure existence and uniqueness

of an equilibrium under MNL demand with latent classes.

While the studies above focus on assortment competition, there is a large body of work that

focuses on monopolistic assortment optimization, and approaches to compute optimal strategies

given the combinatorial nature of the problem. The problem of assortment planning has often

been studied in conjunction with inventory decisions, starting with the work of van Ryzin and

Mahajan (1999), who consider Logit demand and assume customers do not look for a substitute if

their choice is stocked out. They identify a tractable set of candidates that contains the optimal

assortment. Maddah and Bish (2007) study a similar model, where in addition, the retailer could

select prices; see also Aydin and Ryan (2000) for a study in the absence of inventory considerations.

More recently, dynamic multi-period assortment optimization has been analyzed; see, e.g., Caro

et al. (2012). The case of customers looking for substitutes if their choice is stocked out, known as

stock-out based substitution, was studied in Smith and Agrawal (2000), Mahajan and van Ryzin

(2001) and more recently Goyal et al. (2009). We also refer the reader to Rooderkerk et al. (2013)

and references therein for a recent study of attribute-based assortment optimization.

In the present work, we do not consider inventory decisions and assume that products that are

included in a retailer’s assortment are always available when requested; hence stock-out based

substitution does not arise. In particular, we focus on the case in which the retailers face display

constraints. Such a setting with Logit demand and fixed prices in a monopolistic context has been

studied in Chen and Hausman (2000), where the authors analyze mathematical properties of the

problem, and in Rusmevichientong et al. (2010), where the authors provide an efficient algorithm for

finding an optimal assortment. Fisher and Vaidyanathan (2009) also study assortment optimization

under display constraints and highlight how such constraints arise in practice. When demand is
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generated by a mixture of Logit, Miranda Bront et al. (2009) show that when the number of classes

is sufficiently high, the assortment optimization problem is NP-Hard (see also Rusmevichientong

et al. (2014)). A review of the literature on monopolistic assortment optimization and of industry

practices can be found in Kök et al. (2008).

The remainder of the paper. Section 2 formulates the model of competition. Sections 3 and

4 present our analysis of the assortment only and joint assortment and price competition settings,

respectively. Section 5 presents our concluding remarks. Proofs are relegated to Appendix A.

2 Model of Assortment and Price Competition

We next describe the setting in which retailers compete and the demand model considered, and

then present two competitive settings: one where retailers compete on assortments in which prices

are predetermined and one in which retailers compete on both assortments and prices.

Setting. We consider duopolistic retailers that compete in product assortment and pricing deci-

sions. We index retailers by 1 and 2, and whenever we use n to denote a retailer’s index, we use m

to denote her/his competitor’s index (e.g., if n = 1, then m = 2).

We assume retailer n has access to a subset Sn of products, from which she or he must select her

or his product assortment. In addition, we assume that, due to display space constraints, retailer

n can offer at most Cn ≥ 1 products. Such display constraints have been used and motivated for

various settings in previous studies (see, e.g., Rusmevichientong et al. (2010), Misra (2008), and

Fisher and Vaidyanathan (2009)). Without loss of generality, we assume that Cn ≤ |Sn|, where |A|

denotes the cardinality of a set A. We let S denote the set of all products, i.e., S := S1 ∪ S2, and

denote its elements by {1, . . . , S}. For each product i ∈ S and n = 1, 2, we let cn,i ≥ 0 denote

the marginal cost to retailer n resulting from acquiring a unit of the product, which is assumed

constant.

We say that product i is exclusive to retailer n if it belongs to Sn but not to Sm; we denote

the set of exclusive products for retailer n by Sn \ Sm, where A \ B := A ∩ Bc stands for the set

difference between sets A and B, and the complement of a set is taken relative to S. Similarly, we

say that product i is common if it is available to both retailers, i.e., if i belongs to S1 ∩ S2. An

example of exclusive products would be private labels and of common products would be national

brands.

For n ∈ {1, 2}, we define An to be the set of feasible assortment selections for retailer n, i.e.,

An := {A ⊆ Sn : |A| ≤ Cn} .
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We let An denote the assortment selection and pn := (pn,1, . . . , pn,S) the vector of prices offered

by retailer n. Note that pn specifies a price for all products in S, for notational convenience: it

should be clear that only prices that correspond to the assortment selection of the retailer matter.

In addition, we will omit the dependence of various quantities on the price decisions when possible,

making them explicit only when deemed necessary.

Demand model and retailers’ objective. We assume that customers have perfect information

about product assortments and prices offered by both retailers. (Here, we ignore search costs as,

e.g., in Thomadsen (2012); see, e.g., Kuksov and Villas-Boas (2010) for a study that accounts for

such costs.) We assume that customer t assigns a utility Un,i(t) to buying product i from retailer

n, and utility Un,0(t) to not purchasing any product, where

Un,i(t) := µn,i − αn,i pn,i + ξti , n = 1, 2

Un,0(t) := µ0 + ξt0.

In the above, µn,i represents the adjusted mean utility associated with buying product i from retailer

n. Similarly, αn,i > 0 is a parameter of price sensitivity. To obtain MNL demand, we assume that{
ξti : i ∈ S ∪ {0}

}
are i.i.d. random variables following a standard Gumbel distribution. Note

that these random variables, which represent idiosyncratic shocks to utility, are independent of

the retailer n and hence consumers identify common products as such. (Considering idiosyncratic

shocks of the form ξti,n would lead to MNL demand with exclusive only products, a special case of

analysis. We discuss a setting with Nested Logit demand in Section 5).

Without loss of generality, we set µ0 := 0. Customers are utility maximizers; customer t computes

the best option from each retailer, in ∈ argmax {Un,i(t) : i ∈ An ∪ {0}}, for n ∈ {1, 2}, and then

selects option i that belongs to argmax {U1,i1(t), U2,i2(t)}. Note that the assumption above implies

that utility maximization may be attained simultaneously at a common product offered by both

retailers with positive probability (e.g., when µ1,i − α1,i p1,i = µ2,i − α2,i p2,i). In such a case, we

assume customers select any of the retailers, with equal probability.

Remark 1. Note that in our model, if customers do not prefer any retailer, a retailer offering a

lower price for a common product will capture the whole market for that product. Thus, we have

assumed customers have perfect information and are rational. An alternative interpretation of the

model is that products are sold at an intermediary, which remains unknown to the final customer,

and the demand is fulfilled by the cheaper supplier. Section 5 explores a demand model in which

market share is not fully captured by a single retailer).
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For n = 1, 2 define the attraction factor of product i ∈ Sn when offered by retailer n as follows

νn,i := eµn,i−αn,i pn,i .

The above setup leads to MNL demand where the customers’ consideration set is obtained after

eliminating options that are strictly dominated. These are product-retailer pairs such that the same

product is offered by the competitor and provides a higher utility when bought from the competitor.

In particular, one can show that for given assortment and price decisions {(An, pn) : n = 1, 2}, the

probability that a customer elects to purchase product i ∈ An from retailer n, qn,i, is given by

qn,i(An, pn, Am, pm) :=
νn,i

(
1 {i /∈ Am}+ δn,i 1{i ∈ Am}

)
1 +

∑
i∈An\Am

νn,i +
∑

i∈An∩Am
(δn,i νn,i + δm,i νm,i) +

∑
i∈Am\An

νm,i
,

where 1{·} denotes the indicator function and

δn,i := 1 {νn,i > νm,i}+
1

2
1 {νn,i = νm,i}

defines the split of product i’s market share between the retailers (when offered by both). The

expected profit per customer for retailer n, is then written as

πn(An, pn, Am, pm) =
∑
i∈An

(pn,i − cn,i) qn,i(An, pn, Am, pm).

Each retailer’s objective is to maximize her expected profit per customer, given the competitor’s

decision.

3 Assortment-only Competition: Main Results

In this section, prices are assumed to be predetermined and not under the control of retailers. We

further assume that all products have a positive profit margin (i.e. pn,i > cn,i). This accommodates

settings where, e.g., prices are set by the manufacturers/service providers and not the retailers. Here

and throughout the paper, we will abstract away from strategic interactions between retailers and

manufacturers.

Given retailer m’s assortment decision, retailer n selects an assortment so as to maximize her/his

expected profit per customer subject to the display constraint on the number of products that can

be offered. Mathematically, the problem that retailer n solves can be written as follows

max
An∈An

{πn(An, Am)} , (1)
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where we have omitted the dependence of the expected profit on prices. In problem (1) the retailer

attempts to find the best set of products to offer among a combinatorial number of possibilities in

An. We say that a feasible assortment An is a best response to Am if An maximizes the profit per

customer for retailer n, i.e., if An solves problem (1). Given that there is a finite number of feasible

assortments, there always exists at least one best response to each assortment Am ∈ Am. We say

that an assortment pair (A1, A2) is an equilibrium if An is a best response to Am for n = 1, 2.

Formally, this corresponds to the concept of a pure strategy Nash equilibrium.

3.1 Best response correspondence

Our analysis of the best response correspondence relies on a simple equivalent formulation of the

profit maximization problem. This idea of focusing on such an equivalent formulation when faced

with a combinatorial problem with an objective function in the form of a ratio has previously been

used in various settings as mentioned in the introduction. The reader is in particular referred to

Gallego et al. (2004) and Rusmevichientong et al. (2010) for applications to monopolistic assortment

optimization with Logit demand. The treatment that follows develops the appropriate modifications

for the competitive setting we study. Consider the following problem

max λ (2a)

s.t. max
A∈An

{ ∑
i∈A\Am

(pn,i − cn,i − λ) νn,i

+
∑

i∈A∩Am

(
δn,i(pn,i − cn,i)− λ

)
(δn,i νn,i + δm,i νm,i)− λ

∑
i∈Am\A

νm,i

}
≥ λ. (2b)

Lemma 1. Problems (1) and (2) are equivalent in the following sense: the optimal values for both

problems are equal and an assortment is optimal for problem (1) if and only if it maximizes the

left-hand-side of (2b) when λ = λ∗, where λ∗ corresponds to the optimal objective function of (2).

Lemma 1 exploits the rational form of the profit function, by first finding any assortment that

surpasses a given profit level, and then looking for the highest profit level attainable. Hence, in

theory, one could solve for the best response to Am by solving the maximization in (2b) for all

possible values of λ, and then selecting any assortment maximizing the left-hand-side of (2b) for

λ∗. This way of envisioning solving (2) will prove useful in the equilibrium analysis we conduct

for this setting, as well as throughout the rest of the paper. We now outline how to solve the

maximization in (2b). To that end, for i ∈ Sn, define

θn,i(λ) :=

 (pn,i − cn,i − λ) νn,i if i /∈ Am,

δn,i ((pn,i − cn,i − λ) νn,i + λ νm,i) if i ∈ Am.
(3)
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Given this, formulation (2) can be rewritten as

max

{
λ ∈ R : max

A∈An

{∑
i∈A

θn,i(λ)

}
≥ λ

(
1 + Em(Am)

)}
, (4)

where Em(A), referred to as the attractiveness of an assortment A, is defined as follows

Em(A) :=
∑
i∈A

νm,i, m = 1, 2.

For given non-overlapping assortment offerings, A1 and A2, this quantity is related to an aggregate

measure of the market share of retailer n, En(An)/(1 +E1(A1) +E2(A2)). One can solve the inner

maximization in (4) by ordering the products in Sn according to the corresponding values of θn,i(λ),

from highest to lowest, and selecting the maximum number of products in the assortment (up to

Cn) with positive values of θn,i(λ).

Product ranking. As already highlighted in the monopolistic setting by Rusmevichientong et al.

(2010), the θn,i(λ)-ranking for an optimal value of λ need not to coincide with the ranking of

the profit margins (the latter does appear in the absence of capacity constraints: see van Ryzin

and Mahajan (1999)). In addition, note that in the competitive setting under analysis, the product

ranking according to the θn,i’s (and hence the selected assortment) will vary depending on the value

of λ and on which products are included in the competitor’s assortment Am. This last observation

implies that, for a fixed value of λ, a product that is not “appealing” (i.e., a product that is not

included in a best response) if not offered by the competitor might become appealing when the

latter offers it. This can be seen from the second case in (3) where θn,i(λ) might increase by λ νm,i

when product i is offered by retailer m. This gain can be interpreted as the value of profiting from

product i without having to expand the consideration set of products.

3.2 The Case of Exclusive Products

This section studies the case of retailers having only exclusive products, i.e., S1 ∩S2 = ∅. We begin

by specializing the best response computation to this setting, and then study equilibrium behavior.

In this setting, one has that for each product i ∈ Sn

θn,i(λ) = (pn,i − cn,i − λ)νn,i,

independent of Am, thus the solution to the inner maximization in (4) depends on Am only through

Em(Am). Define λn(e) as retailer n’s expected profit per customer when retailer m offers assortment

Am with attractiveness e. That is

λn(e) := max

{
λ ∈ R : max

A∈An

{∑
i∈A

θn,i(λ)

}
≥ λ(1 + e)

}
. (5)
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Similarly, let an(e) denote retailer n’s best response correspondence to assortments with attractive-

ness e, i.e.,

an(e) := argmax
A∈An

{∑
i∈A

θn,i(λn(e))

}
. (6)

The next result establishes monotonicity properties of the best response correspondence in terms

of attractiveness and profit level.

Proposition 1 (best response properties). Suppose that S1 ∩ S2 = ∅.

i.) Retailer n’s best response profit is decreasing in the attractiveness of its competitor’s assort-

ment, i.e., λn(e) is decreasing in e.

ii.) The attractiveness of retailer n’s best response assortments is non-decreasing in the attrac-

tiveness of the competitor’s assortment, e, in the following sense: for any e > e′ ≥ 0,

En(a′) ≤ En(a) for all a ∈ an(e) and a′ ∈ an(e′).

Proposition 1.i.) states that a retailer’s (optimized) profits will decrease if the competitor increases

the attractiveness/breadth of its offerings, which is in line with intuition. Proposition 1.ii.) provides

an important qualitative insight: if one retailer increases the attractiveness of the products it is

offering, then so will the other one.

The conclusions of Proposition 1 are usually obtained in the context of supermodular games.

However, it is worth noting that, in general, it is not clear whether one could obtain a supermodular

representation of the assortment game with the exception of the case where margins are equal across

products. (In the latter case, the game can be seen to be log-supermodular on the discrete lattice

of possible attractiveness levels induced by all feasible assortments.) However, once properties

outlined in Proposition 1 are at hand, one can establish existence and ordering of equilibria in a

similar fashion as is usually performed for supermodular games (see e.g. Vives (2000)), which we

do next. The following result guarantees that an equilibrium exists.

Theorem 1 (equilibrium existence). Suppose that S1 ∩ S2 = ∅. Then there always exists an

equilibrium in assortment decisions.

The proof of this result rests on the fact that assortments with higher attractiveness levels lead

the competitor to also offer assortments with higher attractiveness. Since there is a finite number

of possible attractiveness levels to offer, attractiveness of best responses will necessarily settle at a

certain level, with the corresponding assortments forming an equilibrium.
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Theorem 1 establishes the existence of an equilibrium, but leaves open the possibility of having

multiple equilibria. While there might indeed exist multiple equilibria, we show next that if such a

case occurs, both retailers will prefer the same equilibrium.

Proposition 2 (best equilibrium). Suppose that S1∩S2 = ∅ and that multiple equilibria exist. Then,

one equilibrium pareto dominates all equilibria, and such an equilibrium minimizes the attractiveness

of the offerings of each retailer among all equilibria.

In other words, when multiple equilibria exist, retailers would prefer to select one with the least

breadth of offerings. The result is a direct consequence of the relationship between profit level and

attractiveness of the offering, established in Proposition 1.i.).

Remark 2 ( arbitrary number of firms). Proposition 1, Theorem 1 and Proposition 2 can be

generalized to an arbitrary number of retailers and we briefly indicate how one might do so in the

proofs of those results.

The next example illustrates the possibility of multiple equilibria.

Example 1 (multiple equilibria). Let Sn := {in1 , in2 , . . .} be such that νn,inj > νn,inj+1
for all j < Cn,

n = 1, 2, and suppose that for all i in Sn \ {in1}, pn,i − cn,i = rn, where

r1 :=

(
p1,i11 − c1,i11

)
ν1,i11

1 + ν1,i11 +
∑

j≤C2
ν2,i2j

, r2 :=

(
p2,i21 − c2,i21

)
ν2,i21

1 + ν2,i21 + ν1,i11
.

In other words, for each retailer, all products except the one with the highest attraction factor have

the same profit margin, and the latter is strictly lower than that of the former. The construction

above is such that when retailer 1 selects the assortment
{
i11
}

, retailer 2’s best response is any

assortment of the type
{
i21, . . . i

2
j

}
for j ≤ C2. Similarly, when retailer 2 selects the assortment{

i1j : j ≤ C2

}
, retailer 1’s best response is any assortment of the type

{
i11, . . . i

1
j

}
for j ≤ C1. This,

in conjunction with Proposition 1 ii.) implies that

(
{
i11
}
,
{
i21, . . . i

2
j

}
), j ≤ C2, (

{
i11, . . . i

1
j

}
,
{
i21, . . . i

2
C2

}
), j ≤ C1,

are all equilibria.

Note that the number of equilibria in Example 1 is C1 + C2 − 1, and that on each of these

equilibria, retailers offer different total attractiveness, thus they are not trivially equivalent. The

following result shows that such a number is the highest possible in the setting.
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Theorem 2 (bound on the number of equilibria). Suppose that S1 ∩ S2 = ∅ and let En denote all

possible attraction levels offered in a best response by retailer n, i.e.,

En := {En(a) ∈ R+ : a ∈ an(e) , e ≥ 0} , for n = 1, 2.

There are at most |E1|+ |E2| − 1 equilibria in which retailers offer different attraction levels.

A priori, a trivial bound on the number of fundamentally different equilibria is the number of

combinations of best response attractiveness levels, |E1| |E2|. Theorem 2 provides a significantly

sharper bound. The proof of Theorem 2 relies on the strong monotonicity property established in

Proposition 1 ii.), which enables one to eliminate a large set of equilibrium candidates. Back to

Example 1, we see that En = Cn, n = 1, 2, thus we conclude that the bound in Theorem 2 is tight.

The next result, which we state without proof, illustrates the use of Theorem 2.

Corollary 1 (Sufficient condition for a unique equilibrium). Suppose that all products offered by a

given retailer have the same margin, i.e., pn,i − cn,i = rn for all i ∈ Sn, n = 1, 2, where r1 and r2

are given positive constants. Then, retailers offered the same attraction level in all equilibria.

3.2.1 Tatônement stability

Proposition 1 has strong implications for stability. Consider the following discrete-time interaction

dynamics: suppose that initially one of the retailers operates as a monopolist until a competitor

enters the market, and that retailers adjust their assortment decisions on a periodic basis by taking

turns, always reacting optimally to their competitors’ last observed offering (that is, retailers behave

myopically, and adjust their decisions periodically without anticipating the competitors’ reaction).

Formally, starting with offerings A0
1 ∈ a1(0) and A0

2 = ∅, retailer n offers in period t the assortment

Atn ∈ an
(
Em

(
At−1m

))
. (7)

One can show that such a best-response process will converge to an equilibrium that pareto domi-

nates all others, as described in Proposition 2. We formalize this next.

Corollary 2. Let (A1, A2) denote a pareto-dominant equilibrium. The tatônement process
{

(At1, A
t
2) : t ≥ 1

}
is such that En(Atn) = En(An) for all t ≥ t̃ for some t̃ <∞, n = 1, 2.

The result above, which we state without proof, follows directly from Proposition 1.i.), the fact

that the attraction offered by a monopolist is below that offered by a pareto-dominant equilibrium,

and that a pareto-dominant equilibrium minimizes (among equilibria) the attraction offered by

both retailers.

13



From above, one can envision a pareto-dominant equilibrium as arising naturally as the outcome

of an iterative best-response process that starts in the absence of competition. If one starts the

best-response iteration process from arbitrary assortments, then convergence to an equilibrium is

guaranteed but not necessarily to one that pareto dominates all others. To see this, suppose

we start with A0
2 arbitrary: if E2(A

0
2) > E2(A

1
2), then the recursive application of Proposition 1

ii) implies that the sequences of total attractiveness of the assortments offered by both retailers

(excluding that of A1
0) will be non-increasing, i.e. En(Akn) ≥ En(Ak+1

n ), k ≥ 1, n = 1, 2. Similarly,

if E2(A
0
2) < E2(A

1
2) then the sequences of attractiveness will non-decreasing. This observation,

together with the finiteness of the product sets, imply convergence to an equilibrium. (The fact

that convergence to the pareto-dominant equilibrium is not guaranteed follows directly from the

(possible) existence of multiple equilibria.)

3.2.2 Competitive outcome versus monopolist and centralized solutions

Let (Acompn , Acompm ) denote an equilibrium that pareto dominates all others. Let (Acentn , Acentm ) denote

the optimal pair of assortments to offer by a central planner, i.e.,

(Acentn , Acentm ) ∈ argmax
(An,Am)∈An×Am

{πn(An, Am) + πm(Am, An)} .

Finally, let A∗n an optimal assortment for a monopolist that does not face any competition, i.e.,

A∗n ∈ argmax
An∈An

{πn(An, ∅)} .

We have the following result, which we state without proof.

Corollary 3. Suppose that S1 ∩ S2 = ∅.

i.) En (A∗n) ≤ En (Acompn ).

ii.) En
(
Acentn

)
+ Em

(
Acentm

)
≤ En (Acompn ) + Em (Acompm ).

In particular, i.), which follows from Proposition 1, implies that a retailer operating as a monop-

olist with some fixed capacity (i.e. with its competitor offering no products) will increase her/his

offerings in terms of attractiveness when a competitor enters the market. ii.) establishes that com-

peting retailers will jointly offer a broader offering, resulting in a higher probability of purchase,

relative to a setting in which decisions are coordinated by a central planner aiming to maximize

total profits, and facing similar capacity constraints. To see this, note that the central planner

achieves higher profits than those achieved by any of the retailers in a potential equilibrium; a close
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inspection of the proof of Proposition 1.ii.) reveals that the attractiveness of the solution to the

assortment maximization in (2b) is non-increasing in the level λ; this implies that the attractiveness

of the products offered by the central planner would never be higher than the joint attractiveness

of the products offered by the competing retailers in equilibrium.

3.3 The Case of both Exclusive and Common Products

We now turn to the case when retailers may offer the same products in their respective assortments,

i.e., when S1 ∩ S2 is not empty. Our next result shows that an equilibrium is guaranteed to exist

when retailers do not face display constraints.

Theorem 3 (equilibrium existence with ample capacity). Suppose that Cn = |Sn| for n = 1, 2.

Then an equilibrium always exists.

The proof of this result is constructive: we establish that the tatônement process described in

Section 3.2 converges to an equilibrium provided that initially both retailers offer all common

products. In addition, it is possible to establish that the tatonement process (7) with A0
1 ∈ a1(0)

and A0
2 = ∅ is guaranteed to converge to an equilibrium. Thus, as in section 3.2.1, one can envision

such a limit equilibrium as arising naturally as the outcome of an iterative best-response process

that starts in the absence of competition. However, in this setting, such an equilibrium does not

necessarily pareto dominate all others.

It is possible to find alternative conditions that will ensure the existence of an equilibrium. For

example, it is possible show that conditions 1 and 2 below each ensure existence of an equilibrium.

Condition 1. Monotonic margins: νn,i ≥ νn,i+1, and pn,i− cn,i ≥ pn,i+1− cn,i+1 for all i ∈ Sn,

n = 1, 2, and νn,i > νm,i for all i ∈ Bn ∩ Sm, for some Bn ∈ Pn(Cn), n = 1, 2. Here, Pn(Cn)

is the set of “popular assortments” defined as (see, e.g., Kök et al. (2008)):

Pn(C) :=
{
{σn(1), · · · , σn(C)} : σn is a permutation of Sn s.t. νn,σn(1) ≥ νn,σn(2) ≥ · · · ≥ νn,σn(|Sn|)

}
.

Condition 2. Equal margins: pn,i − cn,i = rn, for all i ∈ Sn, n = 1, 2, where r1 and r2 are

given positive constants, and S1 = S2, C1 = C2, and ν1,i = ν2,i for all i ∈ S1.

The impact of display constraints. In general, when common products are available and display

constraints are present, the structural results of the previous section fail to hold, as we illustrate

through the following example.
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Example 2 (non-existence of equilibrium in pure strategies.). Consider a setting with two retailers,

each having access to the same three products S1 = S2 = {1, 2, 3}, and with display capacities

C1 = 2, C2 = 1. Suppose that prices and costs are uniform across products and retailers and given

by pn,1 = pn,2 = pn,3 = p > 1 and cn,1 = cn,2 = cn,3 = p − 1 for n = 1, 2, and that the remaining

parameters are such that νn,1 = 1.1, νn,2 = 1.01, νn,3 = 1. Table 1 depicts the rewards for each

retailer for feasible pairs of assortment decisions (A1, A2).

A1

{1} {2} {3} {1, 2} {1, 3} {2, 3}

A
2

{1} (0.262, 0.262) (0.354, 0.325) (0.355, 0.323) (0.177, 0.502) (0.177, 0.500) (0.268, 0.489)

{2} (0.325, 0.354) (0.251, 0.251) (0.336, 0.332) (0.162, 0.516) (0.246, 0.511) (0.168, 0.500)

{3} (0.323, 0.355) (0.332, 0.336) (0.250, 0.250) (0.243, 0.513) (0.161, 0.516) (0.166, 0.502)

Table 1: Illustration of non-existence of equilibrium. Each entry in the table corresponds the profit

of retailer 1 and retailer 2 as a function of the assortments selected for the setup in Example 2.

One can verify that no equilibrium exists. Intuitively, the latter stems from the fact that retailer

1, with a capacity of 2, will always prefer to incorporate in its assortment the product that retailer

2 is offering, while retailer 2 prefers to offer a product not offered by the competitor. Recalling the

discussion following the definition of θn,i(λ) in (3), the current example illustrates how a product

gains in appeal (measured by θn,i(λ)) when offered by the competitor. In this setting, this prevents

the possibility of an equilibrium.

The focus above was on equilibria in pure strategies. Since each retailer has a finite number of

alternatives the assortment game will always admit a mixed-strategy equilibrium (see, e.g., Fuden-

berg and Tirole (1991, §1.3.1)): in the setting of Example 2, one can check that retailer 1 offering

A1 = {1, 2} with probability 0.51 and A1 = {1, 3} with probability 0.49, and retailer 2 offering

A2 = {2} with probability 0.35 and A2 = {3} with probability 0.65 constitutes a mixed-strategy

Nash equilibrium.

In addition to the above, even when an equilibrium in pure strategies exists, the presence of

common products may also preclude the existence of a pareto dominant equilibrium, as highlighted

by the following example.

Example 3 (exponential number of non-pareto dominated equilibria). Consider the following
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setup. Suppose that the set of available products is common to both retailers (S1 = S2) and has

S = 2C elements, where C1 = C2 = C, that all products are priced at the same price p, that their

marginal cost is zero, and that other parameters are such that ν1,i = ν2,i for all i ∈ S, and

νn,1 > νn,2 > . . . > νn,S , and νn,1 <
3

2
νn,S .

Define A∗ := P1(C1) and suppose that 3 E1(A
∗) ≤ 1. This condition corresponds to assuming that

the maximum share any retailer can achieve (under any scenario) is below 25%. Under the setup

above, we show that if retailer 2 offers an arbitrary selection of products A2, then the best response

of retailer 1 is to offer the set of C products with the highest νn,i’s in S1 \A2. Recalling (2), retailer

1 solves for the maximal λ such that

max
A1⊆S

{
E1(A1 \A2) (p− λ) + E1(A1 ∩A2) (

p

2
− λ)− λE2(A2 \A1)

}
≥ λ.

Given any assortment offered by retailer 2, A2, the revenue of retailer 1, λ, is bounded by the

revenue of a monopolist (with display capacity C), i.e., λ ≤ p(E1(A
∗))(1 + E1(A

∗))−1. This, in

conjunction with the market share condition above, implies that λ ≤ p/4.

For any products j ∈ S1 \ A2 and j′ ∈ A2, given that ν2,j′ < (3/2)ν2,j , it will always be the

case that ν2,j(p − λ) ≥ (3/4)ν2,jp > ν2,j′ p/2. Hence θ2,j(λ) > θ2,j′(λ) and the best response of

retailer 1 to A2 will never include any product in A2. In addition, since λ ≤ p/4, retailer 1 will

always include C products in S1 not offered by the competitor.

Given the above, one can verify that any pair of assortments (A1, A2) that belongs to the set

{A1 ⊆ S, A2 = S \A1 : |A1| = C}

is an equilibrium. It is also possible to see that one can choose the νn,i’s so that all equilibria yield

different profits to the retailers and are non-pareto dominated. The cardinality of the set above is(
2C
C

)
. This illustrates that in general, even when prices are uniform across products, the number

of non-pareto dominated equilibria may be exponential in the capacities of the retailers in contrast

with what was observed in the case of exclusive products.

4 Joint Assortment and Price Competition: Main Results

We now turn attention to the case where in addition to assortment decisions, retailers also set

prices for the products they offer. We follow a parallel exposition to that of Section 3 by separating

the analysis for the case of exclusive products and that of both exclusive and common products.
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We assume throughout this section that prices are restricted to be greater or equal than cn,i +

rn,i for any product i and retailer n, where rn,i is a minimal margin imposed by the product

manufacturer. This assumption reflects the fact that minimal prices are commonly imposed directly

or indirectly by manufacturers through, e.g., a Manufacturer’s Suggested Retail Price (MSRP).

When price is an additional lever, various forms of competition may arise. We focus on the case

in which assortments and prices are selected simultaneously by the firms. Thus, best responses are

computed as unilateral deviations in both assortment and prices.

4.1 The Case of Exclusive Products

We start with the case of retailers having only exclusive products, i.e., S1 ∩ S2 = ∅. It turns out

that equilibrium prices can be related to assortment selections through the profit attained by each

retailer. This is, given fixed assortment selections, each firm solves a classical multi-product pricing

problem with constraints on the prices. In particular, one can show that retailer n will set the price

of product i (if offered) to

p∗n,i = cn,i + max

{
1

αn,i
+ λn, rn,i

}
, (8)

where λn is the equilibrium profit retailer n achieves (which will be shown to be well defined in

the proof of Theorem 4). Relationship (8) can be seen to be an expression of equal margins across

offered products, with the modifications to account for the differentiated minimal margins imposed.

Margins, adjusted to differences in price sensitivities, will be equal provided that the retailer’s profit

is relatively large compared to the minimum margins. Variants of such a property have previously

appeared in various related settings; see, e.g., Anderson et al. (1992).

Following the analysis in Section 3.2, and using the observation above, one can show that the

best response of a retailer still depends only on the competitor’s offered attractiveness (which now

depends on the competing assortment and prices). In particular, retailer n’s expected profit per

customer as a function of the competing attractiveness level e is given by (5), but considering that

θn,i(λ) =
(
p∗n,i(λ)− cn,i − λ

)
exp

{
µn,i − αn,i p∗n,i(λ)

}
.

Thus, one has that the best response correspondence an(e), whose elements are now assortment

and price vector pairs, is given by

an(e) := argmax
A∈An

{∑
i∈A

θn,i(λn(e))

}
× {p∗n(λn(e))} .

In such a setting, in which prices are set by the firms, one may establish parallel results to Propo-

sition 1 and Theorem 1, which were established when prices were exogenously fixed.
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Theorem 4 (equilibrium existence and pareto dominance). Suppose that S1 ∩S2 = ∅. Then, there

always exists a pure-strategy Nash equilibrium in assortments and prices. Moreover, there is always

one equilibrium that pareto dominates all others.

To establish this result, we first establish that prices are uniquely defined by assortment selections.

We then show that similar monotonicity properties as those established in Proposition 1 hold in the

current setting in which prices may be adjusted. These properties in turn imply the existence of a

pure strategy Nash equilibrium and that one equilibrium pareto dominates all others. Moreover,

such properties can be used to extend the comparison of outcomes under competitive versus a

monopolist or a centralized setting to obtain a result similar to that in Corollary 3. We also note

that the analysis of tatônement stability presented in Corollary 2 generalizes to this setting.

From (3) and (8) one observes that θi > 0 for every product i ∈ Sn. This, in turn, implies that

retailers will always use their full capacity in any equilibrium. This stands in contrast with the

case in which prices were exogenously set. In particular, in the absence of display constraints, all

products are offered and the equilibrium is unique. The next result, which we state without proof,

formalizes this.

Corollary 4. Suppose that S1 ∩ S2 = ∅. In equilibrium, retailers always use their full capacity. In

particular, in the absence of display constraints, there exists a unique equilibrium in which firm n

offers all products in Sn, n = 1, 2.

When no minimum margins are imposed by the manufacturers and price sensitivity is the same

across products and retailers, it is possible to establish the existence of a unique equilibrium. The

analysis of best responses in such a setting has already appeared in the literature (see, e.g., Misra

(2008)); however, no equilibrium results were provided. The present approach establishes existence

and uniqueness of an equilibrium, but also illustrates along the way the general applicability of the

framework we use to, e.g., assortment-only competition.

4.2 The Case of both Exclusive and Common Products

When retailers may offer the same products, equilibrium prices depend not only on the profit

obtained by each retailer, but also on the competitor’s offering.

As in the case of competition with exclusive only products, one can show that for given fixed

assortment selections and competitor’s prices, retailer n will set the price of an exclusive product

following (8). Now, for a common product i offered by both retailers, it is possible to show that one

can, without loss of generality for the equilibrium outcome in terms of profits, restrict attention to
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the following candidate equilibrium prices

p∗n,i = max

{
min

{
µn,i − µm,i

αn,i
+
αm,i
αn,i

(cm,i + rm,i), cn,i +
1

αn,i
+ λn

}
, cn,i + rn,i

}
,

where λn is the equilibrium profit retailer n achieves. The difference between the expression above

and that in (8) follows from the fact whenever possible, retailers will undercut the competitor’s

prices so as to capture the full market for a product. In this regard, it is implicit in the formula

above that retailers price marginally below the price that makes a customer indifferent between

buying from either retailer as long as it yields a positive profit.

We note that if the minimal margins are sufficiently high, then the retailers will face a problem

where prices are effectively fixed. Thus, the results in Section 3.3 imply that it is not possible to

ensure existence of an equilibrium under when common products are available in conjunction with

display constraints. We show, however, that as in the analysis of assortment competition with fixed

prices, a equilibrium is guaranteed to exist when retailers do not face display constraints.

The next result ensures equilibria existence is guaranteed in the absence of display constraints

Proposition 3. In the assortment and price competition setting with common products, suppose

retailers do not face display constraints. Then, there always exists a pure-strategy Nash equilibrium.

As in the case of simultaneous competition with exclusive only products, the result above rests on

the fact that a best response to any offering involves offering all products. Thus, any equilibrium in

the pricing game where all products are offered is also an equilibrium in the simultaneous assortment

and pricing competition setting.

5 Extensions and Additional Challenges

The present paper has analyzed an assortment game in which firms face display constraints and

consumer demand is driven by a multinomial Logit model. We have characterized equilibrium

behavior, showing that significant structure is present in such a problem. The approach taken to

analyze the game is fairly general and has been extended to cases in which prices are endogenous.

The need for a better understanding/modeling of the case of common products. The

current study has highlighted that the presence of common products may lead to significant differ-

ences in equilibrium behavior. The possibility of common products has been assumed away in most

of the literature. For example, when the choice model is a nested Logit in which customers first

select a retailer, the product utility shocks are assumed to be independent once a retailer has been

chosen. While such assumptions are appropriate for settings in which consumers do not search

20



across retailers due to loyalty or costs of search, it becomes inappropriate if consumers perform

some data collection before selecting a product to purchase. In particular, it appears that common

products ought to be treated differently than exclusive products.

The present paper has analyzed one case in this spectrum in which the product utility shock

is identical across retailers. Nonetheless, the proposed framework provides enough flexibility

to incorporate many variations of the base setting. For example, one could accommodate the

hypothesis that products that are offered by more than one retailer become more attractive to

consumers. For that, we would consider a formulation in which

δn,i := 1 {νn,i > νm,i}+ β1 {νn,i = νm,i} ,

where 0.5 ≤ β ≤ 1 reflects the potential increase in product attractiveness when it is offered by

multiple firms. In such a setting, β = 0.5 corresponds to the setting analyzed in this paper, and

β = 1 reduces to the case of exclusive-only products. One can show that the results in Sections 3.3

and 4.2 continue to hold in such a setting, after minor modifications to their proofs. (Note that

cases with exclusive-only products are not affected by this modification.)

An important avenue for future research is to further one’s understanding of customer choice

behavior in the face of both common and exclusive products and to understand the implications of

such behavior on equilibrium outcomes.

Other forms of competition or operational constraints. In the present paper, we have

studied simultaneous assortment and price competition. Another interesting direction to analyze

the impact of the type of competition (simultaneous versus sequential) on the type of outcomes one

observes. Similarly, one might test the flexibility of the approach to incorporate new operational

constrains. For example, one can show that most results in our analysis hold when the display

constraint is replaced by a similar constraint of the type An ≥ Cn, that might arise in setting in

which managers must fulfill minimum assortment diversity requirements.

General choice models. In the case of assortment-only competition, our analysis relies on the

attraction form of the demand model and the particular Logit assumption plays a key role in the

joint assortment and pricing analysis. One should highlight the challenges one faces under more

general models. Next, we examine how the analysis in this paper changes under popular variations

of MNL demand.
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5.1 The Case of Nested Logit Demand

As pointed out in Remark 1, our demand model is such that it is possible for a retailer to capture

the whole market for a product offered by both retailers. This feature follows from the fact that

idiosyncratic shocks to utility are independent of the retailer. Let us analyze the case where such

shocks depend on the retailer as well, i.e.

Un,i(t) := µn,i − αn,i pn,i + ξtn,i, n = 1, 2.

(We assume that ξt0 does not depend of the retailer, as it represents an outside alternative). As

mentioned in Section 2, assuming that
{
ξtn,i : n = 1, 2, i ∈ Sn, t ≥ 1

}
are i.i.d. random variables a

standard Gumbel distribution would recover MNL demand at the expense of eliminating common

products. Let us consider then the case of nested demand, where consumers first select the product

to buy, and then the retailer to buy from. In terms of the utility specification above, assume that(
ξtn,i : n = 1, 2, i ∈ S

)
has a GEV distribution of the form

P
{
ξtn,i ≤ xn,i, n = 1, 2, i ∈ S

}
= exp

{
−
∑
i∈S

(
e−x1,i/γi + e−x2,i/γi

)γi}
,

where γi ∈ [0, 1] relate to the importance of a product choice over retailer choice. This gives

rise to a Nested Logit demand (see e.g. Train (2002)), where in a first stage customers choose

a product according to an aggregate measure of the utility they perceive from buying from the

retailers offering such a product, and in a second stage they choose the retailer according to a

traditional MNL model. In particular, the probability that a customer elects to purchase product

i ∈ An from retailer n, qn,i is

qn,i(An, pn, Am, pm) = q1i (An, pn, Am, pm) · q2n,i,

where

q1i (An, pn, Am, pm) :=
ν̃i

1 +
∑

j∈An∪Am
ν̃j
, q2n,i :=

ν
1/γi
n,i

ν
1/γi
n,i + ν

1/γi
m,i

,

where ν̃i :=
(
ν
1/γi
1,i + ν

1/γi
1,i

)γi
. In this model, products capture a larger market share when offered

by both retailers, however the split between the retailers depends on the value of γi (the case of

γi = 0 corresponds to our base definition of common products, and the case of γi = 1 corresponds to

the case of exclusive products). Note that the modification above only affects settings with common

products: for a exclusive product i ∈ Sn, one has that ν̃i = νn,i and q2n,i = 1, thus recovering the

models of Sections 3.2 and 4.1.
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One can show that the setting above corresponds to an extension of our base model in which

δn,i = ν
1/γi−1
n,i

(
ν
1/γi
1,i + ν

1/γi
2,i

)γi−1
.

With this equivalence at hand, one can show that the results in Section 3.3 for assortment-only

competition continue to hold under Nested Logit demand, and only minor modifications to their

proofs are required. For the case of assortment and price competition in Section 4.2, while the

results continue to hold, a different set of proving techniques is required. In particular, while a

closed-form expression for the optimal price p∗n,i is not available, the discontinuities in the payoff

functions introduced by the original definition of δn,i now disappear, allowing to prove Proposition

3 using standard fixed-point results.

5.2 The Case of Mixed Logit Demand

While it has been shown that under mixed Logit demand, under some conditions and for given

assortments, existence and uniqueness of an equilibrium in prices can be guaranteed (see Allon

et al. (2013)), the assortment problem becomes (theoretically) intractable, as highlighted in Rus-

mevichientong et al. (2014) where it is shown that the monopolist’s problem is in general NP-Hard,

even in the absence of display capacities. One may also show that structural properties presented

here will not continue to hold for such models.

Consider, for example, a setting with assortment-only competition and exclusive products, where

a fraction ρn of the consumers are loyal to retailer n, meaning that they only consider products

offered by retailer n when making the purchase decision, n = 1, 2. In this setting the expected

profit per customer for retailer n, π̃n(An, Am), is given by

π̃n(An, Am) = ρn πn(An, ∅) + (1− ρn − ρm) πn(An, Am).

This is a special instance of mixed logit demand. We provide below an example with exclusive

products in which an equilibrium fails to exist for the assortment competition game. Consider a

setting with two retailers, each with a capacity of C1 = C2 = 1; retailer 1 has access to S1 = {1, 2}

while retailer 2 has access to S2 = {3, 4}. Parameters are set such that ν1,1 = 9.8, ν1,2 = 4.6, ν2,3 =

9.1, ν2,4 = 6.5, p1,1− c1,1 = 0.4, p1,2− c1,2 = 0.2, p2,3− c2,3 = 0.9 and p2,4− c2,4 = 0.8. In addition,

consider ρ1 = ρ2 = 0.3 and β1 = β2 = 0. Table 2 depicts the rewards for each retailer for feasible

pairs of assortment decisions (A1, A2). One can verify that no equilibrium exists.

We have shown that the analysis in our paper extend to the case of Nested Logit demand, and

that it does not for the case of mixed Logit demand. Generalizing the class of models for which
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A2

{3} {4}

A
1 {1} (0.897, 0.575) (0.985, 0.571)

{2} (0.900, 0.657) (0.977, 0.680)

Table 2: Illustration of non-existence of equilibrium for the case of multiple segments. Each entry

in the table corresponds the profit of retailer 1 (row) and retailer 2 (column) as a function of the

assortments selected.

assortment games are amenable to analysis is an important theoretical direction of research.
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A Proofs

Proof of Lemma 1. Problem (1) is equivalent to finding the maximal value of λ such that

max
A∈An

{ ∑
i∈A νn,i (1 {i /∈ Am}+ δn,i1 {i ∈ Am}) (pn,i − cn,i)

1 +
∑

i∈A\Am
νn,i +

∑
i∈A∩Am

(δn,i νn,i + δm,i νm,i) +
∑

i∈Am\A νm,i

}
≥ λ,

and the quantity on the left-hand-side above is exactly the expected profit per customer associated

with a best response from retailer n to retailer m’s assortment selection of Am. One obtains (2) from

rearranging the terms in the above. Hence the value of problems (2) and (1) are equal. Moreover,

any assortment that maximizes the left-hand-side in (2b) for a given λ leads to an expected profit

of at least λ, hence such an assortment is a best response to Am when computed for λ equal to the

solution to (2).

Proof of Proposition 1. For any e ≥ 0, by the definition of an(e) and λn(e), one has that for

any assortment a ∈ an(e), ∑
i∈a

νn,i(pn,i − cn,i − λn(e)) = λn(e)(1 + e).

Proof of part 1. Consider now any e, e′ such that 0 ≤ e′ < e. It is necessarily the case that

max
An∈An

{∑
i∈An

νn,i(pn,i − cn,i − λn(e))

}
> λn(e)(1 + e′).
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Since both λ 7→ maxAn∈An

{∑
i∈An

νn,i(pn,i − cn,i − λ)
}

and λ 7→ λ(1 + e′) are continuous in λ, one

has that

max
An∈An

{∑
i∈An

νn,i(pn,i − cn,i − λ)

}
> λ(1 + e′)

for all λ in a neighborhood of λn(e). Noting that the left-hand-side above is decreasing in λ and

the right-hand-side is increasing in λ, it is necessarily the case that λn(e′) > λn(e). This completes

the proof of part 1.

Proof of part 2. Fix e, e′ such that 0 ≤ e′ < e and define ∆λ := λn(e′)− λn(e), which is positive

by part i.). Let a′ be any best response to an assortment with attractiveness e′, i.e., a′ ∈ an(e′).

Then, recalling the definition of the θn,i’s in (3) and the discussion that followed, it is necessarily

the case that

θn,i(λn(e′)) ≥ θn,j(λn(e′)) for any i ∈ a′, j ∈ Sn \ a′. (A-1)

Also, since θn,i(λ) = νn,i(pn,i − cn,i − λ) in the case of exclusive products, one has that for all

a ∈ an(e), for any i ∈ a, j ∈ Sn \ a,

θn,i(λn(e′)) + νn,i ∆λ = θn,i(λn(e)) ≥ θn,j(λn(e)) = θn,j(λn(e′)) + νn,j ∆λ. (A-2)

Combining (A-1) and (A-2), we conclude that for any pair (a, a′) ∈ an(e)× an(e′),

νn,i ≥ νn,j , ∀ i ∈ a \ a′, j ∈ a′ \ a. (A-3)

For any given λ ∈ R+, all assortments a solving the maximization in (4) consist only of products

with non-negative values of θn,i(λ). Since θn,i(λ) is strictly decreasing in λ for all products, higher

values of λ translate into fewer products with non-negative θn,i(λ). Thus, the cardinality of the

assortments solving the maximization in (4) is non-increasing in λ. Since λn(e′) > λn(e), one has

that |a′| ≤ |a|, for any a′ ∈ an(e′) and a ∈ an(e). This in turns implies that∣∣a′ \ a∣∣ =
∣∣a′∣∣− ∣∣a ∩ a′∣∣ ≤ |a| − ∣∣a ∩ a′∣∣ =

∣∣a \ a′∣∣ .
Observing that νn,i > 0 for all i ∈ Sn, one has that

∑
i∈a\a′

νn,i ≥
∣∣a \ a′∣∣min

{
νn,i : i ∈ a \ a′

} (a)

≥
∣∣a′ \ a∣∣max

{
νn,i : i ∈ a′ \ a

}
≥
∑
i∈a′\a

νn,i,

where (a) follows from (A-3). This, in turn, implies that

En(a) =
∑
i∈a∩a′

νn,i +
∑
i∈a\a′

νn,i ≥
∑
i∈a∩a′

νn,i +
∑
i∈a′\a

νn,i = En(a′),

for all a ∈ an(e) and a′ ∈ an(e′). This concludes the proof.
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Proof of Theorem 1. For any retailer n, consider the set {En(A) : A ∈ An} of all possible at-

traction levels corresponding to assortments, and denote those levels by e1 < e2 < ... < ekn .

Let Zn := {e1, ..., ekn} denote the ordered set of those levels. In addition, for any attraction

level em offered by firm m, let Yn(em) = {En(a) : a ∈ an(em)} denote the set attractiveness levels

corresponding to best responses to em. Finally, let Y (e1, e2) = (Y1(e
2), Y2(e

1)) denote the corre-

spondence from Z1×Z2 into Z1×Z2. Now, note that Z1×Z2 is a non-empty complete lattice and

that Proposition 1 ii.) implies that Y (e1, e2) is a non-decreasing correspondence. These two facts,

in conjunction with the fixed point result of Topkis (1998, Theorem 2.5.1), imply that Y (e1, e2)

admits a fixed point in Z1 × Z2. Selecting the assortments that correspond to the attractiveness

levels associated with this fixed points yields an equilibrium in assortment decisions and the proof

is complete.

We now comment on the fact that the reasoning above extends to the case of an arbitrary

number of retailers. Indeed, when there are N ≥ 2 retailers, one can define Y (e1, . . . , eN ) =

(Y1(e − e1), . . . , YN (e − eN )), with e :=
∑N

i=1 e
i. By using Proposition 1 one can prove that

Y (e1, . . . , eN ) is a non-decreasing correspondence from Z1× . . .×ZN into itself, where Zn is defined

as in the two-retailer case. Since Z1 × . . .× ZN is a non-empty complete lattice one can again use

the fixed point result of Topkis (1998, Theorem 2.5.1) to establish existence of an equilibrium in

assortment decisions.

Proof of Proposition 2. Following the argument in the proof of Theorem 1, Topkis (1998, The-

orem 2.5.1) also yields that the set of fixed points of Y (·) is a nonempty complete lattice relative

to ≤ (component-wise). Hence there exist a fixed point (e1, e2) such that en ≤ gn, n = 1, 2, for all

fixed points (g1, g2) of Y (·). From proposition 1 i.) and noticing that fixed points of Y (·) map to

assortment equilibria, retailer n prefers an equilibrium involving the attractiveness pair (e1, e2) as

it minimizes em. This applies for both n, thus both retailers prefer the same equilibrium.

We now comment on the fact that the reasoning above extends to the case of an arbitrary number

of retailers. Indeed, following the reasoning on the proof of Theorem 1, Topkis (1998, Theorem

2.5.1) establishes the existence of a fixed point (e1, . . . , eN ) such that en ≤ gn, n = {1 . . . , N}, for

all fixed points (g1, . . . , gN ) of Y (·), where N is the number of retailers. The result would then

follow from the fact that
∑

k 6=n e
k ≤

∑
k 6=n g

k for all fixed points (g1, . . . , gN ) of Y (·), hence retailer

n prefers (e1, . . . , eN ) and this applies to all n.

Proof of Theorem 2. For n = 1, 2 and e ≥ 0, let Rn(e) denote the set of attractiveness lev-

els corresponding to best responses of retailer n when retailer m offers an assortment with an
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attractiveness of e. That is,

Rn(e) := {En(a) : a ∈ an(e)} .

We observe that the number of different equilibria (in which retailers offer different total attrac-

tiveness) is bounded above by
∑

e∈E2 |R1(e)|. We next provide a bound on this sum. Define

E2 := {e ∈ E2 : |R1(e)| > 1}. Let k denote the cardinality of E2 and let us denote the elements of

E2 by e1 < ... < ek. One has that∑
e∈E2

|R1(e)| =
∑
e∈E2

|R1(e)|+
∑

e∈E2\E2

|R1(e)|

=
k∑
j=1

|R1(ej)|+ |E2 \ E2| .

Note that for any pair (ei, ej) with i 6= j, part ii.) of Lemma 1 implies that

|Rn(ei) ∩Rn(ej)| ≤ 1.

In addition, the latter result, in conjunction with the fact that |R1(ej)| > 1 for all j ∈ {1, ..., k}

implies that |R1(ej) ∩R1(ei)| = 0 for any j < i + 1 and i, j in {1, ..., k}. Hence
∑k

j=1 |R1(ej)| ≤

|E1|+ |E2| − 1. We deduce that∑
e∈E2

|R1(e)| ≤ |E1|+ |E2| − 1 + |E2 \ E2| = |E1|+ |E2| − 1.

This completes the proof.

Proof of Theorem 3. We prove the result by constructing a sequence of assortment pairs that

yields an equilibrium. Let Sen denote the set of products that are exclusive to retailer n, i.e.

Sen := Sn \ Sm, n = 1, 2. Also, let Sc12 denote the set of common products for which no retailer has

an advantage in terms of attractiveness, i.e. Sc12 := {i ∈ S1 ∩ S2 : ν1,i = ν2,i}. Similarly, define Scn
as the set of common products for which retailer n has an advantage in terms of attractiveness.

That is Scn := {i ∈ S1 ∩ S2 : νn,i > νm,i}.

Define the sequence of assortments pairs
{

(Ak1, A
k
2) : k = 1, 2, . . .

}
as follows. Set A1

1 = A1
2 = Sc12,

and for k > 1, let

λkn := max

λ ∈ R : max
A∈Sn

∑
i∈A

θn,i(λ,A
k−1
m ) ≥ λ

1 +
∑

i∈Ak−1
m

νm,i


Akn ∈ argmax

{
|B| : B ∈ argmax

A∈Sn

{∑
i∈A

θn,i(λ
k
n, A

k−1
m )

}}
,
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for n = 1, 2, where with a slight abuse of notation we make the dependence of θn,i(·) on the

assortment offered by retailer m explicit. This process is one in which Akn is a best response to

Ak−1m , where the best response assortment is selected to have the maximal cardinality.

Next, we show by mathematical induction that for n = 1, 2, Akn ⊆ Ak+1
n for all k ≥ 1.

For k = 1 and n ∈ {1, 2}, equation (3) implies that θn,i(λ,A
1
m) > 0 for all i ∈ Sc12 and for

all λ > 0. This, in conjunction with the fact that display constraints are absent, implies that

A2
n ⊇ Sc12 = A1

n.

Suppose now that Ajn ⊆ Aj+1
n for j =, 1, ..., k − 1. We first prove the following claim.

Claim: For n ∈ {1, 2} and k > 1, when retailer m offers Akm,

∑
i∈A

θn,i(λ
k
n, A

k
m) ≤ λkn

1 +
∑
i∈Ak

m

νm,i

 (A-4)

for any assortment A ⊆ Sn.

To prove the claim first observe that, by the arguments above one has that Ajn ⊇ Sc1,2 for all

j ≤ k. For any λ ≥ 0, when retailer m offers Akm, one has that∑
i∈Ak

n

θn,i(λ,A
k
m)

=
∑

i∈Ak
n∩Sen

νn,i (pn,i − cn,i − λ) +
∑

i∈Ak
n∩Scm\Ak

m

νn,i(pn,i − cn,i − λ)

+
∑

i∈Ak
n∩Scn∩Ak

m

νn,i

(
pn,i − cn,i − λ

(
1− νm,i

νn,i

))
+

∑
i∈Ak

n∩Scn\Ak
m

νn,i(pn,i − cn,i − λ) +
∑
i∈Sc12

1

2
νn,i(pn,i − cn,i)

=
∑

i∈Ak
n∩Sen

νn,i (pn,i − cn,i − λ) +
∑

i∈Ak
n∩Scm\A

k−1
m

νn,i(pn,i − cn,i − λ)−
∑

i∈Ak
n∩Scm∩Ak

m\A
k−1
m

νn,i(pn,i − cn,i − λ)

+
∑

i∈Ak
n∩Scn∩A

k−1
m

νn,i

(
pn,i − cn,i − λ

(
1− νm,i

νn,i

))
+

∑
i∈Ak

n∩Scn\A
k−1
m

νn,i(pn,i − cn,i − λ)

+
∑

i∈Ak
n∩Scn∩Ak

m\A
k−1
m

νm,iλ+
∑
i∈Sc12

1

2
νn,i(pn,i − cn,i),

where the first equality follows by definition and the second equality follows from basic simplifica-

tions. Note that for λ = λkn, using the optimality conditions that define λkn, the above becomes

∑
i∈Ak

n

θn,i(λ
k
n, A

k
m) = λkn

1 +
∑

i∈Ak−1
m

νm,i +
∑

Ak
n∩Scn∩Ak

m\A
k−1
m

νm,i

− ∑
i∈Ak

n∩Scm∩Ak
m\A

k−1
m

νn,i(pn,i − cn,i − λkn)

≤ λkn

1 +
∑

i∈Ak−1
m

νm,i +
∑

Ak
n∩Scn∩Ak

m\A
k−1
m

νm,i

 , (A-5)
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where for the inequality, we have used the fact that νn,i(pn,i − cn,i − λkn) = θn,i(λ
k
n, A

k−1
m ) ≥ 0 for

all i ∈ Akn \Ak−1m .

Now, for an arbitrary assortment A ⊆ Sn, when retailer m offers Akm, one has that∑
i∈A

θn,i(λ
k
n, A

k
m) =

∑
i∈Ak

n∩A

θn,i(λ
k
n, A

k
m) +

∑
i∈A\Ak

n

θn,i(λ
k
n, A

k
m)

(a)

≤
∑
i∈Ak

n

θn,i(λ
k
n, A

k
m) +

∑
i∈(A\Ak

n)∩(Ak
m\A

k−1
m )∩Scn

(
θn,i(λ

k
n, A

k−1
m ) + λknνm,i

)
+

∑
i∈(A\Ak

n)∩A
k−1
m

θn,i(λ
k
n, A

k−1
m ) +

∑
i∈(A\Ak

n)∩(Scn\Ak
m)

θn,i(λ
k
n, A

k−1
m )

(b)

≤ λkn

1 +
∑

i∈Ak−1
m

νm,i +
∑

Ak
n∩Scn∩Ak

m\A
k−1
m

νm,i +
∑

i∈(A\Ak
n)∩(Ak

m\A
k−1
m )∩Scn

νm,i


≤ λkn

1 +
∑
i∈Ak

m

νm,i

 ,

where (a) follows from noting that θn,i(λ
k
n, A

k
m) ≥ 0 for all i ∈ Akn,1, the fact that Akn contains Sc12

and the fact that θn,i(λ
k
n, A

k
m) = 0 for i ∈ (A \Akn) ∩ (Akm \Ak−1m ) ∩ Scm; and (b) follows from (A-5)

and from noting that θn,i(λ
k
n, A

k−1
m ) < 0 for all i ∈ Sn \ Akn (since Akn was optimal when Ak−1m was

offered by retailer m). This completes the proof of the claim.

Since the claim holds for any assortment, it also holds for the assortment that maximizes the

left-hand side of (A-4), which implies that λk+1
n ≤ λkn. In addition, the fact that θn,i(λ

k
n, A

k
m) ≥ 0

for all i ∈ Akn together with the fact that θn,i(·, A) is non-increasing implies that θn,i(λ
k+1
n , Akm) ≥ 0

for all i ∈ Akn. We deduce that Ak+1
n ⊇ Akn. This concludes the induction.

Now, fix n and note that {Akn : k ≥ 1} is a sequence of sets such that Akn ⊆ Ak+1
n and Akn ⊆ Sn.

Hence, it must be that after a finite number of iterations, jn, Akn = Ajnn for all k ≥ jn. The result

now follows from noting that for all k ≥ max{j1, j2}, each assortment is a best response to the

other assortment and such a pair constitutes an equilibrium.

Proof of Theorem 4. Fix an assortment Am and a price vector pm. One can show that retailer

n’s best response to such actions is given by the solution to

max

{
λ ∈ R : max

A∈An, pn∈P

{∑
i∈A

νn,i(pn,i)(pn,i − cn,i − λ)

}
≥ λ

(
1 +

∑
i∈Am

νm,i(pm,i)

)}
,

1Indeed, θn,i(λ
k
n, A

k
m) = θn,i(λ

k
n, A

k−1
m ) ≥ 0 for i ∈ Ak

n ∩ Ak−1
m ; θn,i(λ

k
n, A

k
m) = θn,i(λ

k
n, A

k−1
m ) + λk

nνm,i ≥ 0 for

i ∈ Ak
n ∩ (Ak

m \Ak−1
m ) ∩ Sc

n; and θn,i(λ
k
n, A

k
m) = 0 for i ∈ Ak

n ∩ (Ak
m \Ak−1

m ) ∩ Sc
m.
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where P denotes the set of feasible price vectors, i.e., those that satisfy the minimum margin

constraint. Note that with some abuse of notation, we now make the price dependence of νn,i

explicit. For a given λ ∈ R one can show that the inner maximization above is solved by p∗n,i(λ),

defined in (8), for all i in the optimal assortment, independent of Am. Note that the best response

depends on (Am, pm) only through the attraction of the offered assortment/prices. With this in

mind, let λn(e) denote the profit attained by retailer n on a best response when retailer m offers

assortment/prices with attractiveness e > 0. Also, let an(e) denote retailer n’s set of best responses

(in assortments) when retailer m offers an attractiveness e > 0.

Step 1. We first establish that a retailer’s profit is decreasing in the competitor’s offered attrac-

tiveness. By construction one has that∑
i∈a

θ̃n,i(λn(e)) = λn(e) (1 + e) ,

for any a ∈ an(e), where, for any λ ∈ R,

θ̃n,i(λ) := νn,i(p
∗
n,i(λ))(p∗n,i(λ)− cn,i − λ). (A-6)

Fix e, e′ such that 0 ≤ e′ < e. One has that

max
a∈An

{∑
i∈a

θ̃n,i(λn(e))

}
> λn(e)(1 + e′).

Since both λ→ maxa∈An

{∑
i∈a θ̃n,i(λ)

}
and λ→ λ(1 + e′) are continuous in λ, one obtains that

max
a∈An

{∑
i∈a

θ̃n,i(λ)

}
> λ(1 + e′)

for all λ in a neighborhood of λn(e). The left-hand-side (right-hand-side) above is decreasing

(increasing) in λ, thus it must be the case that λn(e′) > λn(e). We conclude that a retailer’s profit

is decreasing in the competitor’s offered attractiveness.

Step 2. We now establish that the assortment attractiveness of a retailer’s optimal decisions is

increasing in the attractiveness of the competitor’s assortment. Fix e, e′ such that 0 ≤ e′ < e and

define ∆ = λn(e′)− λn(e) > 0. Consider a ∈ an(e) and a′ ∈ an(e′); it must be the case that

θ̃n,i(λn(e′)) ≥ θ̃n,j(λn(e′)) for any i ∈ a′ \ a, j ∈ a \ a′,

θ̃n,i(λn(e)) ≥ θ̃n,j(λn(e)) for any i ∈ a \ a′, j ∈ a′ \ a.

The above implies that

θ̃n,i(λn(e))− θ̃n,i(λn(e′)) ≥ θ̃n,j(λn(e))− θ̃n,j(λn(e′))
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for all (i, j) ∈ (a \ a′)× (a′ \ a). Note that θ̃n,i(λ) is differentiable. In particular, one has that

∂θ̃n,i(λ)

∂λ
= −νn,i(p∗n,i(λ)) < 0, ∀λ ∈ R+,

and that νn,i(p
∗
n,i(·)) is a continuous and non-increasing function of λ, for all i ∈ Sn. The above

implies that

νn,i(p
∗
n,i(λn(e)))∆ ≥ θ̃n,i(λn(e))− θ̃n,i(λn(e′)) ≥ θ̃n,j(λn(e))− θ̃n,j(λn(e′)) ≥ νn,j(p∗n,j(λn(e′))∆,

for any (i, j) ∈ (a \ a′) × (a′ \ a). One concludes that, for any pair (a, a′) ∈ an(e) × an(e′),

νn,i(p
∗
n,i(λn(e))) ≥ νn,i(p

∗
n,i(λn(e′))) for all (i, j) ∈ (a \ a′)× (a′ \ a). Note now that θ̃n,i(λ) > 0 for

all λ ∈ R+, hence it must be the case that |a| = Cn for any a ∈ an(ε), for all ε ∈ R+. One deduces

that ∑
i∈a

νn,i(p
∗(λn(e))) =

∑
i∈a\a′

νn,i(p
∗(λn(e))) +

∑
i∈a∩a′

νn,i(p
∗(λn(e)))

≥
∑
i∈a′\a

νn,i(p
∗(λn(e′))) +

∑
i∈a∩a′

νn,i(p
∗(λn(e)))

≥
∑
i∈a′

νn,i(p
∗(λn(e′))),

for all (a, a′) ∈ an(e)×an(e′), where the first inequality follows from the fact that |a′ \ a| = |a \ a′|,

and the second from noting that νn,i(p
∗
n,i(·)) is non-increasing, for all i ∈ Sn.

From steps 1 and 2, we conclude that a similar result to that of Proposition 1 holds when prices

are endogenously determined. Now the result follows arguments similar to those in the proofs of

Theorems 1 and Proposition 2.

Proof of Proposition 3. We prove that retailer n’s best response to any pair (Am, pm) involves

offering all products, i.e. setting An = Sn. Computing the best response to an assortment-price

pair, retailer n solves the following problem.

max

{
λ ∈ R : max

A∈An, pn∈P

{∑
i∈A

θn,i(λ, pn, Am, pm)

}
≥ λ

(
1 +

∑
i∈Am

νm,i(pm,i)

)}
,

where P denotes the set of prices that are consistent with the minimum margin requirement, and

θn,i(λ, pn, Am, pm) :=

 (pn,i − cn,i − λ) νn,i(pn,i) if i /∈ Am,

δn,i ((pn,i − cn,i − λ) νn,i(pn,i) + λ νm,i(pm,i)) if i ∈ Am.

Define θ∗n,i(λ,Am, pm) := max {θn,i(λ, pn, Am, pm) : pn ∈ P}: one can see that θ∗n,i(·) ≥ 0, thus

the best response to any assortment-price vector pair (Am, pm) can be chosen so that all products
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in Sn are offered. Thus, assuming both retailers offer all products, one can rewrite the formulation

above as

max

{
λ ∈ R :

∑
i∈Sn

θ∗n,i(λ,Sm, pm) ≥ λ

(
1 +

∑
i∈Sm

νm,i(pm,i)

)}
.

If follows that if profit levels (λ1, λ2) are attained in equilibrium, then exclusive products are priced

as in (8), and common product i’s price is given by

p∗n,i(λ) =

 min
{
µn,i−µm,i

αn,i
+

αm,i

αn,i
(cm,i + rm,i) , cn,i + max

{
1

αn,i
+ λ, rn,i

}}
i ∈ S̃n

cn,i + rn,i otherwise,
(A-7)

where S̃n := {i ∈ S1 ∩ S2 : µn,i − αn,i(rn,i + cn,i) > µm,i − αm,i(rm,i + cm,i)}, n = 1, 2. Thus, any

solution to the system of equations

∑
i∈Sn

θ∗n,i(λn,Sm, p∗m(λm)) = λn

(
1 +

∑
i∈Sm

νm,i(p
∗
m,i(λm))

)
,

can be mapped to an equilibrium. The result follows from the existence of a solution to this system

of equations, which we prove next.

Let Yn(λm) denote the unique solution to

∑
i∈Sn

θ̂n,i(λ, λm) = λ

(
1 +

∑
i∈Sm

νm,i(p
∗
m,i(λm))

)
. (A-8)

where we define θ̂n,i(λ, λm) := θ∗n,i(λn,Sm, p∗m(λm)). Note that, for a fixed λm, θ̂n,i(λ, λm) is

decreasing and positive for λ ∈ [0,Λn], where Λn denotes retailer n’s monopolist profit. On the

other hand, the right hand side above increases linearly with λ and equals 0 for λ = 0. We

conclude Yn(λm) is well defined. Similarly, note that
∑

i∈Sn θ̂n,i(λ, λm) does not vary with λm, but

the right hand side is non-increasing in λm. We conclude Yn is non-decreasing. This implies that

Ym(0) ≤ Ym(Λn), thus we have that

0 ≤ Yn(Ym(0)) ≤ Yn(Ym(Λn)) ≤ Λn. (A-9)

Note that equilibrium prices in (8) and (A-7) are continuous with respect to λn and λm, thus so are

Yn(·) and Ym(·). Existence of a λ∗ ∈ [0,Λn] such that Yn(Ym(λ∗)) = λ∗ follows from the continuity

of Yn(Ym(·)) and (A-9). The result follows from noting that (λ∗, Ym(λ∗)) solves (A-8).
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Letter to the review team and response to the reports on: Product
Assortment and Price Competition with Informed Consumers

(POM-May-14-OA-0266).

We are in receipt of the reports by the review team regarding submission POM-May-14-OA-0266

entitled “Product Assortment and Price Competition with Informed Consumers.” We are very

grateful to the review team for the effort invested in the reviews and the very detailed and con-

structive feedback that resulted. We have followed the suggestions of the review team and revised

the manuscript accordingly. To facilitate the revision, changes to the manuscript are highlighted

in blue. Below, we first summarize the changes to the paper in this revision, and then produce

detailed responses to all major comments raised by the AE and the referees. We reproduce the AE

and referees’ reports in full in brown text.

Summary of main changes. Following the review team’s feedback, we have significantly strength-

ened our results along various dimensions:

• We provide an analysis of the setting suggested by R1, in which products offered by both

retailers are more attractive to consumers than when offered by only one retailer. Our analysis

indicates that most results in the original setting continue to hold in the suggested setting.

• As part of the extensions, we now consider settings with nested Logit demand and mixed Logit

demand. We provide an analysis of equilibrium behavior based on the framework studied.

The results are mixed: for the case of the nested logit demand, we show most results continue

to hold; for the case of mixed logit demand, we show that equilibrium may fail to exists, even

in the case of exclusive-only products under assortment-only competition.

• We expanded our discussion on the possibility of multiple equilibria. In particular, we now

provide an example with multiple equilibria, and develop an upper bound on the number of

equilibria that might arise in each setting, which we show is tight. We illustrate the use of

such a result to provide sufficient conditions for the uniqueness of equilibrium.

• We have also followed the recommendations of the review team to improve and clarify the

results throughout the paper.

1



Response to Comments of Associate Editor

“Product Assortment and Price Competition under Multinomial Logit Demand”

The paper consider the problem of assortment and price competition among retailers, when the

underlying demand model is the multinomial logit. Let me briefly review the setup for the case of 2

retailers. The authors use n to denote the retailer, and m to denote its competitor. For n ∈ {1, 2},

the set of available assortments for firm n is denoted by An = {A ⊆ Sn : |A| ≤ Cn} where Sn denote

the set of products that firm n can offer. Let pn be the prices offered by firm n. If (An,pn) denote

the assortment and price offered by firm n and (Am,pm) denote the decision by its competitor,

then the profit for the firm n is given by:

πn(An,pn, Am,pm) =
∑
i∈An

(pn,i − cn,i) qn,i(An,pn, Am,pm).

where cn,i is the unit cost of product i for firm n, and qn,i(An,pn, Am,pm) is the probability that a

customer will purchase product i from firm n where the authors assume that the customer follows

a multinomial logit model; that is,

qn,i(An, pn, Am, pm) :=
νn,i

(
1 {i /∈ Am}+ δn,i 1{i ∈ Am}

)
1 +

∑
i∈An\Am

νn,i +
∑

i∈An∩Am
max {νn,i, νm,i}+

∑
i∈Am\An

νm,i
,

where νn,i denote the preference weight (aka attraction factor) associated with product i offered by

firm n, and δn,i := 1 {νn,i > νm,i} + 0.51 {νn,i = νm,i} determines the splits of product i’s market

share when the product is offered by both retailers.

In this paper, the authors consider two typos of competition models: 1) assortment-only compe-

tition and 2) joint-assortment-and-price competition. In the assortment-only competition (Section

3), the product prices are exogenous and fixed, and the firms compete on the assortments. In

the joint-assortment-and-price competition (Section 4), the firms can adjust both assortments and

prices. The analysis for each type of competition is divided into 2 cases: a) the firms do not share

any common products (S1 ∩ S2 = ∅) and b) there are common products that both firms can offer

(S1 ∩ S2 6= ∅).

Summary of Results: When the firms do not share common products with S1 ∩ S2 = ∅,

also referred to as the exclusive products case, the result are very crisp and complete. For both

types of competition, the authors show that there is a pure-strategy Nash equilibrium that pareto

dominates all of other equilibria. Also, you can compute the pareto-dominated equilibrium using
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the tatonement process. Unfortunately, when S ∩ S2 6= ∅, the results are extremely limited. The

only main result for the setting with common products appears to be the existence of pure-strategy

equilibrium, when there is no capacity constraint for both firms; that is, Cn = |Sn| for all n. The

authors provide some examples that demonstrate the pathological behaviors that can occur when

there are display constraints. I sent the paper to two experts in this area. R1 recommends a major

revision, but is optimistic that the paper may be publishable. R2 recommends a minor revision.

I read the paper myself, and personally, I like the paper very much. It’s well written, and the

analysis for the exclusive-product competition is beautiful, crisp, and complete. In my opinion, the

paper offers the following contributions to the literature:

• A complete and compelling analysis in the case of exclusive products (Sections 3.1 and 4.1).

This analysis extends the price-competition analysis of Misra (2008) and Wang (2012) (see

Chapter 2 of the dissertation). The clean and rigorous analysis also yields important insights

about the structure of the equilibrium. The sentiment is also shared by R2. I am very

impressed with the sharp characterization of the equilibrium obtained by the authors in

Section 3.1 and 4.1.

• The situation of exclusive products is not entirely realistic because firms often share some

common products. So, I commend the authors for considering the case of common products

and providing preliminary, albeit limited, results in this case.

Overall, I am quite positive about the paper, and I can see a potential path for the paper to be

published in POM. However, there are still a lot of work that remains to be done, so I would

characterize this as a major revision. Below is a list of major concerns that the authors should

address when revising their paper.

Major Concerns

1. Demand model: R1 raised an important point about the split of the demand when a

product is offered by both firms, which can make the product more popular. Thus, R1 has

suggested that the authors modify δn,i so that

δn,i := 1 {νn,i > νm,i}+ β1 {νn,i = νm,i} ,

where 0.5 ≤ β ≤ 1 reflects the potential increase in product popularity when it is offered by

multiple firms. I agree with this point, and the authors should address this issue. Would
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the existing results in Sections 3.3 and 4.2 continue to hold? This modification of δn,i will

not affect the analysis of the exclusive product case. So, any new results obtained here will

strengthened the paper’s contributions in the common-product case.

A: Let us begin interpreting R1’s suggestion: in the paper δn,i represents the split of product

i’s market between the retailers, thus it is fundamental that δ1,i + δ2,i = 1. R1 suggests to

consider β ∈ [12 , 1] to reflect the potential increase in product popularity. Because demand

is driven by consumer choice, such an increment in popularity should affect the demand of

other products as well. Thus, our interpretation of R1’s suggestion is to consider a model in

which the probability of purchase qn,i(An, pn, Am, pm) is given by

qn,i :=
νn,i

(
1 {i /∈ Am}+ δn,i 1{i ∈ Am}

)
1 +

∑
i∈An\Am

νn,i +
∑

i∈An∩Am
(νn,i δn,i + νm,i δm,i) +

∑
i∈Am\An

νm,i
,

where 1{·} denotes the indicator function and

δn,i := 1 {νn,i > νm,i}+ β1 {νn,i = νm,i} ,

for β ∈ [12 , 1]. As mentioned by the AE, this modification does not affect the analysis of the

exclusive product case. Let us examine how this affects the results in Sections 3.3 and 4.2.

Theorem 3: the proof of this result is constructive. It begins with both retailers offering the

products in Sc12, the set of common products for which no retailer has an advantage. Then it

is shown that the sequence of best responses converges because Akn ⊆ Ak+1
n . A key element

of the proof is that Sc12 ⊆ Akn always.

This might be the case in the new setting: for i ∈ Sn, we will have that

θn,i(λ) :=

 (pn,i − cn,i − λ) νn,i if i /∈ Am,

δn,i (pn,i − cn,i − λ) νn,i + λ (1− δm,i)νm,i if i ∈ Am.

For i ∈ Sc12 we have that δn,i = β, so for i ∈ Sc12 ∩Am one has that

θn,i(λ) = (β(pn,i − cn,i)− λ(2β − 1)) νn,i

thus it is no longer the case that θn,i(λ) ≥ 0 for all λ, so despite the absence of a display

capacity, it might not be optimal to include some products in Sc12 on a best response. (Note

that the case when β = 1 reduces to the exclusive products only setting.)
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Nonetheless, the arguments in the proof hold with a minor modification: set A1
n = ∅ for

n = 1, 2. Here it is an sketch of how to retrace the steps in the proof:

• We show that Akn ⊆ Ak+1
n via mathematical induction. The base case follows because

A1
n = ∅.

• Equation (A-4) holds because when a product i ∈ Ak−1n ∩ Sc12 is introduced in Akm (by

the induction hypothesis Ak−1m ⊆ Akm), one has that

θn,i(λ
k
n, A

k−1
m ) ≥ βθn,i(λkn, Ak−1m ) = θn,i(λ

k
n, A

k
m)−λknνm,i(1−β) ≥ θn,i(λkn, Akm)−λknνm,i.

Now, we know that i ∈ Ak−1n , thus θn,i(λ
k
n, A

k−1
m ) ≥ 0, thus one has that

0 ≤ βθn,i(λkn, Ak−1m ) = θn,i(λ
k
n, A

k
m)− λknνm,i(1− β) ≤ θn,i(λkn, Akm).

• From the above, one concludes that λk+1
n ≤ λkn, thus implying that a product i ∈

Ak−1n ∩ Sc12 in Akm \ Ak−1m is such that θn,i(λ
k
n, A

k
m) ≥ 0, thus it is in Ak+1

n . This proves

the hypothesis (the argument for other products is as in the proof of Theorem 3).

• The result follows from the monotonicity of Akn.

Condition 1 guarantying the existence of an equilibrium is not affected when β is introduced.

Condition 2 still guarantees the existence of an equilibrium when β is introduced, however

the arguments in the proof (which were not disclosed in the previous manuscript) no longer

hold. The proof of the result for β = 1/2 showed that (A1, A2) is an equilibrium, where A1

is the popular set of size C and A2 is the best response to A1. The proof goes through with

the additional condition that if profits are not the same, then (2β − 1)νi ≤ νj , where i is the

least popular product included in A2 ∩A1 and j the most popular in Ac2 ∩Ac1.

Omar: the actual condition is (assume r = 1 w.l.o.g.)

βνi − λ2(2β − 1)νi − (1− λ2)νj + (λ1 − λ2) (νj − (2β − 1)νi) ≥ 0.

The first portion is positive because retailer 2 included i in A2 over j. The second portion is

problematic: it works for β close to 0.5. I tested the result numerically. I always found that

(A1, A2) was an equilibrium.

Examples 2 and 3 are not affected by the modification as they refer to the special cases

when β = 0.5.
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Proposition 4 holds true as it is still the case that the best response to any offering by a

retailer involves offering all products. The proof of the result needs the following adjustment:

• Define

θn,i(λ, pn, Am, pm) :=

 (pn,i − cn,i − λ) νn,i(pn,i) if i /∈ Am,

δn,i (pn,i − cn,i − λ) νn,i(pn,i) + λ (1− δm,i)νm,i(pm,i) if i ∈ Am.

One can see that with this definition it is still the case that θ∗(λ,Am, pm) ≥ 0, thus best

responses always include all products. Assuming that both retailers offer all products one

can check that equilibrium prices in (A-7) remain valid, and the equilibrium is the unique

solution to (A-8). The proof follows by noting that the value of β does not affect whether

(A-8) has a solution or not.

An alternative way of seeing the above, is that when retailers compete in prices, a setting

with β 6= 1
2 is equivalent to one in which market splits equally (β = 1

2) but the attractiveness

of products in S̃c1 ∩ S̃c2 are multiplied by β.

In the current manuscript, we include a summary of the analysis above in Section 5, when

discussing possible extensions and directions of future research. We prefer this option, as

said analysis heavily relies in the intuition developed with the original model for common

products. We would of course consider accommodating this extension into earlier sections of

the paper, were the review team strongly in favor of that option.

2. Distribution of the random terms in the MNL: R1 raises a question of why the authors

assume that random term ξit in the utility of product i assigned by customer t is independent

of the firm, while the authors allow the deterministic component µn,i and the price-sensitivity

parameter αn,i to be firm-dependent. What would happen if the random term depends on

the firm; that is, we have ξtn,i with a dependence on the firm n? Would this simplify the prob-

lem? Again, this extension only affects the case where firms offer common products, which

would enhance the contributions of the paper. Also, this issue seems to be related to R1’s

comment about customers not knowing their suppliers (if the customers knows their suppli-

ers, the distribution of their utilities might be different, depending on the supplier attributes).

A: In our model, a common product is recognized as such by consumers. This is represented

by the fact that a customer assigns equal idiosyncratic shocks to utility to a common product,
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independent of the retailer. A common interpretation of such a shock is that it represents

the effect of heterogeneous preferences for unobserved (by the researcher) product’s features,

thus equal products should result in equal shocks.

Depending on how retailer-dependent shocks to utility are introduced in our model, one might

eliminate common products: Suppose that the random term ξti depends on n, i.e. consumer

t assigns utility Un,i(t) to buying product i from retailer n, with

Un,i(t) := µn,i − αn,i pn,i + ξtn,i, n = 1, 2.

(We assume that ξt0 does not depend of the retailer, as it represents an outside alternative).

• If we assume that
{
ξtn,i : n = 1, 2, i ∈ Sn, t ≥ 1

}
are i.i.d. random variables a standard

Gumbel distribution, then we would recover the MNL preferences, i.e. the setting would

correspond to that with exclusive only products, and the analysis in Sections 3.2 and 4.1

would apply. Hence, such an assumption greatly simplifies the analysis at the expense

of eliminating common products.

• An alternative approach would be to assume that
(
ξtn,i : n = 1, 2, i ∈ S

)
has a GEV

distribution of the form

P
{
ξtn,i ≤ xn,i, n = 1, 2, i ∈ S

}
= exp

{
−
∑
i∈S

(
e−x1,i/γi + e−x2,i/γi

)γi}
,

where γi ∈ [0, 1] relate to the importance of a product choice over retailer choice. This

gives rise to a Nested Logit choice model, where in a first stage customers choose a

product to buy according to an aggregate measure of the utility they perceive from

buying from the retailers offering such a product, and in a second stage they choose the

retailer according to a traditional MNL model.

Suppose that retailers compete only in assortments: this model can be seen as an ex-

tension of the base model in which

δn,i = ν
1/γi−1
n,i

(
ν
1/γi
1,i + ν

1/γi
2,i

)γi−1
.

In this model, products capture a larger market share when offered by both retailers

(pretty much in the spirit of the first extension suggested by R1), however the split

between the retailers depends on the value of γi (the case of γi = 0 corresponds to our

base definition of common products, and the case of γi = 1 corresponds to the case of

exclusive products).
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It is not clear whether the results in Sections 3.3 and 4.2 hold in such a setting:

Theorem 3: consider the corrected proof for the case of β 6= 1/2. The key step in the

proof is to show that once a common product is offered by a retailer, it is never taken

away from the offering. We have that

θn,i(λ) :=

 (pn,i − cn,i − λ) νn,i if i /∈ Am,

ν
1/γi
n,i

(
ν
1/γi
1,i + ν

1/γi
2,i

)γi−1
(pn,i − cn,i) + λ νm,i − λ

(
ν
1/γi
1,i + ν

1/γi
2,i

)γi
if i ∈ Am.

As we showed previsouly, the arguments in the proof hold with a minor modification:

set A1
n = ∅ for n = 1, 2. Here it is an sketch of how to retrace the steps in the proof:

– We show that Akn ⊆ Ak+1
n via mathematical induction. The base case follows because

A1
n = ∅.

– Equation (A-4) holds because when a product i ∈ Ak−1n ∩ S1 ∩ S2 is introduced in

Akm (by the induction hypothesis Ak−1m ⊆ Akm), one has that

θn,i(λ
k
n, A

k−1
m ) ≥ δn,iθn,i(λ

k
n, A

k−1
m )

= θn,i(λ
k
n, A

k
m) + λkn

((
ν
1/γi
1,i + ν

1/γi
2,i

)γi
− νn,iδn,i − νm,i

)
≥ θn,i(λ

k
n, A

k
m)− λknνm,i.

Now, we know that i ∈ Ak−1n , thus θn,i(λ
k
n, A

k−1
m ) ≥ 0, thus one has that

0 ≤ δn,i θn,i(λkn, Ak−1m ) = θn,i(λ
k
n, A

k
m)− λkn (νm,i(1− δm,i)) ≤ θn,i(λkn, Akm),

as it can be shown that δn,i ∈ [0, 1].

– From the above, one concludes that λk+1
n ≤ λkn, thus implying that a product i ∈

Ak−1n ∩ S1 ∩ S2 in Akm \Ak−1m is such that θn,i(λ
k
n, A

k
m) ≥ 0, thus it is in Ak+1

n . This

proves the hypothesis.

– The result follows from the monotonicity of Akn.

Condition 1, Examples 2 and 3 are not affected.

Condition 2 requires an additional assumption, as for the case of β 6= 0.5.

Proposition 4: first, note that in equilibrium all products are offered. Thus, the result

follows from proving the existence of an equilibrium in prices. In this setting, however,

profit are continuous functions of the price vectors, thus equilibrium existence would

follow from the application of a fixed-point theorem (after, e.g. bounding the set of

prices worthy of consideration).
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In the current manuscript, we include a summary of the analysis above in Section 5, when

discussing possible extensions and directions of future research. We prefer this option, as

said analysis heavily relies in the intuition developed with the original model for common

products. We would of course consider accommodating this extension into earlier sections of

the paper, were the review team strongly in favor of that option.

3. Heterogenous customer types: R2 has asked that the authors consider the case where

there are 2 customer types, and each type only purchase from one of the firms, and possibly

other variations. I think this is an interesting and important extension of the paper. More-

over, the authors may be able to leverage their existing results in the case of the exclusive

product setting.

A: Following R2’s suggestion, in Section 5 we analyze a setting where a fraction of consumers

are loyal to a retailer in the sense that they only consider buying products offered by said

retailer. (Note that this partitions customers into three groups - the case of only loyal con-

sumers reduces to that of two monopolists). There, we show that equilibrium existence is not

guaranteed even for the case of assortment-only competition with exclusive products. Note

that this is a special case of latent-class logit demand, thus it establishes a non-existence re-

sult for such a model, which is the direct extension of MNL demand to the case of consumer

heterogeneity. As mentioned in Section 5, under mixed Logit demand, while under some

conditions, for given assortments, existence and uniqueness of an equilibrium in prices can be

guaranteed, the assortment problem becomes theoretically intractable (even the monopolist’s

problem is in general NP-Hard).

In addition to the above list of major concerns, I strongly encourage the authors to carefully address

all of the other issues that are listed in the referee reports. I am cautiously optimistic, and I look

forward to reviewing the paper’s revision.

Minor Comments:

• Literature review should be updated. Some papers have already been published.

A: We have update the list of references to reflect our best current information.

• Page 6, Line -5, “For n in {1, 2}” should be “For n = 1, 2” or “For n ∈ {1, 2}”,

A: We have corrected this inconsistency throughout the paper. Thank you.
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• Page 7, Line -10, There should not be a space between the parenthesis and “e.g.”

A: We have corrected the typo. Thank you.

• Page 9, Lines 9 - 14: Perhaps, a bit of explanation here would be helpful to the reader.

A: We now formalize the correspondence between formulations (1) and (2) in Lemma 1, whose

proof can be found in the appendix. We thank the AE for ponting this issue out.

• Page 10, Line -1: Would it make sense to re-phrase the last line as En(a′) ≤ En(a) for all

a′ ∈ an(e′) and a ∈ an(e)?

A: We have re-phrases the result along the lines suggested by the AE.

• Page 11, Line -3: “( Arbitrary number...” should be “(arbitrary number ...” so that it’s

consistent with the rest of the paper.

A: We have corrected such an inconsistency. Thank you.

• Page 23, Line -13: Should the authors mention that the second inequality follows from the

fact that min {νn,i : i ∈ a \ a′} ≤ max {νn,i : i ∈ a′ \ a} from lines 7-8 of the same page?

A: We have modified the proof along the lines suggested by the AE. Thank you.

• Page 31: Would it make sense to put Table 1 in the main paper, instead of on page 31?

A: We have followed your advice and put Table 1 in the main paper. Thank you.

References:

Misra, K. 2008. Understanding retail assortments in competitive markets. Working Paper, Ross

School of Business.

Wang, R. 2012. Multiproduct pricing management and design of new service products. Ph. D.

thesis, Columbia University, New York, NY.
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Response to Comments of Referee 1

Referee Report: Product Assortment and Price Competition under

Multinomial Logit Model

This paper studies assortment and price competition under the multinomial logit (MNL) model

with the cardinality constraint, which is an increasingly popular topic in marketing, economics

and operations management. The authors show that there always exists one equilibrium when the

products do not overlap. They also characterize the equilibria when some products are available

to multiple retailers. Comparing to the literature, the most important contribution of this paper

is to investigate the effect of the common products in the competitive settings. Under the current

model, when a product is offered by two firms, the market share of this product is still the same

and is equally distributed between the two firms. This demand model lacks justification. When a

product is available in multiple retailers, it is more popular from the customers’ perspective and

the total market share should be higher, comparing to the scenario offered by only a single retailer.

The total demand of the product offered in two retailers (charging the same price) may be between

the demands corresponding to the two scenarios treated as one product or two separate products.

More specifically, it makes more sense if the δn,i function on the top of page 8 generalizes to

δn,i := 1 {νn,i > νm,i}+ β1 {νn,i = νm,i}

where 1/2 ≤ β ≤ 1. It is worthy to investigate whether all the analysis can still hold in generalized

models, e.g., the above one or else.

A: Let us begin interpreting R1’s suggestion: in the paper δn,i represents the split of product i’s

market between the retailers, thus it is fundamental that δ1,i + δ2,i = 1. R1 suggests to consider

β ∈ [12 , 1] to reflect the potential increase in product popularity. Because demand is driven by

consumer choice, such an increment in popularity should affect the demand of other products as

well. Thus, our interpretation of R1’s suggestion is to consider a model in which the probability of

purchase qn,i(An, pn, Am, pm) is given by

qn,i :=
νn,i

(
1 {i /∈ Am}+ δn,i 1{i ∈ Am}

)
1 +

∑
i∈An\Am

νn,i +
∑

i∈An∩Am
(νn,i δn,i + νm,i δm,i) +

∑
i∈Am\An

νm,i
,

where 1{·} denotes the indicator function and

δn,i := 1 {νn,i > νm,i}+ β1 {νn,i = νm,i} ,
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for β ∈ [12 , 1]. As mentioned by the AE, this modification does not affect the analysis of the

exclusive product case. Let us examine how this affects the results in Sections 3.3 and 4.2.

Theorem 3: the proof of this result is constructive. It begins with both retailers offering the

products in Sc12, the set of common products for which no retailer has an advantage. Then it is

shown that the sequence of best responses converges because Akn ⊆ Ak+1
n . A key element of the

proof is that Sc12 ⊆ Akn always.

This might be the case in the new setting: for i ∈ Sn, we will have that

θn,i(λ) :=

 (pn,i − cn,i − λ) νn,i if i /∈ Am,

δn,i (pn,i − cn,i − λ) νn,i + λ (1− δm,i)νm,i if i ∈ Am.

For i ∈ Sc12 we have that δn,i = β, so for i ∈ Sc12 ∩Am one has that

θn,i(λ) = (β(pn,i − cn,i)− λ(2β − 1)) νn,i

thus it is no longer the case that θn,i(λ) ≥ 0 for all λ, so despite the absence of a display capacity,

it might not be optimal to include some products in Sc12 on a best response. (Note that the case

when β = 1 reduces to the exclusive products only setting.)

Nonetheless, the arguments in the proof hold with a minor modification: set A1
n = ∅ for n = 1, 2.

Here it is an sketch of how to retrace the steps in the proof:

• We show that Akn ⊆ Ak+1
n via mathematical induction. The base case follows because A1

n = ∅.

• Equation (A-4) holds because when a product i ∈ Ak−1n ∩ Sc12 is introduced in Akm (by the

induction hypothesis Ak−1m ⊆ Akm), one has that

θn,i(λ
k
n, A

k−1
m ) ≥ βθn,i(λkn, Ak−1m ) = θn,i(λ

k
n, A

k
m)− λknνm,i(1− β) ≥ θn,i(λkn, Akm)− λknνm,i.

Now, we know that i ∈ Ak−1n , thus θn,i(λ
k
n, A

k−1
m ) ≥ 0, thus one has that

0 ≤ βθn,i(λkn, Ak−1m ) = θn,i(λ
k
n, A

k
m)− λknνm,i(1− β) ≤ θn,i(λkn, Akm).

• From the above, one concludes that λk+1
n ≤ λkn, thus implying that a product i ∈ Ak−1n ∩ Sc12

in Akm \ Ak−1m is such that θn,i(λ
k
n, A

k
m) ≥ 0, thus it is in Ak+1

n . This proves the hypothesis

(the argument for other products is as in the proof of Theorem 3).

• The result follows from the monotonicity of Akn.
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Condition 1 guarantying the existence of an equilibrium is not affected when β is introduced.

Condition 2 still guarantees the existence of an equilibrium when β is introduced, however the

arguments in the proof (which were not disclosed in the previous manuscript) no longer hold. The

proof of the result for β = 1/2 showed that (A1, A2) is an equilibrium, where A1 is the popular set

of size C and A2 is the best response to A1. The proof goes through with the additional condition

that if profits are not the same, then (2β− 1)νi ≤ νj , where i is the least popular product included

in A2 ∩A1 and j the most popular in Ac2 ∩Ac1.

Omar: the actual condition is (assume r = 1 w.l.o.g.)

βνi − λ2(2β − 1)νi − (1− λ2)νj + (λ1 − λ2) (νj − (2β − 1)νi) ≥ 0.

The first portion is positive because retailer 2 included i in A2 over j. The second portion is

problematic: it works for β close to 0.5. I tested the result numerically. I always found that

(A1, A2) was an equilibrium.

Examples 2 and 3 are not affected by the modification as they refer to the special cases when

β = 0.5.

Proposition 4 holds true as it is still the case that the best response to any offering by a retailer

involves offering all products. The proof of the result needs the following adjustment:

• Define

θn,i(λ, pn, Am, pm) :=

 (pn,i − cn,i − λ) νn,i(pn,i) if i /∈ Am,

δn,i (pn,i − cn,i − λ) νn,i(pn,i) + λ (1− δm,i)νm,i(pm,i) if i ∈ Am.

One can see that with this definition it is still the case that θ∗(λ,Am, pm) ≥ 0, thus best responses

always include all products. Assuming that both retailers offer all products one can check that

equilibrium prices in (A-7) remain valid, and the equilibrium is the unique solution to (A-8). The

proof follows by noting that the value of β does not affect whether (A-8) has a solution or not.

An alternative way of seeing the above, is that when retailers compete in prices, a setting with

β 6= 1
2 is equivalent to one in which market splits equally (β = 1

2) but the attractiveness of products

in S̃c1 ∩ S̃c2 are multiplied by β.

In the current manuscript, we include a summary of the analysis above in Section 5, when

discussing possible extensions and directions of future research. We prefer this option, as said
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analysis heavily relies in the intuition developed with the original model for common products. We

would of course consider accommodating this extension into earlier sections of the paper, were the

review team strongly in favor of that option.

There is another concern about the demand model for common products. The product with

higher price will receive zero demand if the same product is offered at a lower price by another

retailer. In reality, it may not be the case and the retailer without any price advantage may still

capture some customers.

A: Effectively, in our model, a common product is recognized as such by consumers, and thus it

is bought from the cheapest retailer (after adjusting for deterministic retailer preferences). This is

represented by the fact that a customer assigns equal idiosyncratic shocks to utility to a common

product, independent of the retailer. A common interpretation of such a shock is that it represents

the effect of heterogeneous preferences for unobserved (by the researcher) product’s features, thus

equal products should result in equal shocks.

To address R1’s concern, we now analyze two modifications where idiosyncratic shocks to utility

are dependent on the retailer, and thus consumers do not always buy products from the cheapest

retailer.

Depending on how retailer-dependent shocks to utility are introduced in our model, one might

eliminate common products: Suppose that the random term ξti depends on n, i.e. consumer t

assigns utility Un,i(t) to buying product i from retailer n, with

Un,i(t) := µn,i − αn,i pn,i + ξtn,i, n = 1, 2.

(We assume that ξt0 does not depend of the retailer, as it represents an outside alternative).

• If we assume that
{
ξtn,i : n = 1, 2, i ∈ Sn, t ≥ 1

}
are i.i.d. random variables a standard Gum-

bel distribution, then we would recover the MNL preferences, i.e. the setting would corre-

spond to that with exclusive only products, and the analysis in Sections 3.2 and 4.1 would

apply. Hence, such an assumption greatly simplifies the analysis at the expense of eliminating

common products.

• An alternative approach would be to assume that
(
ξtn,i : n = 1, 2, i ∈ S

)
has a GEV distri-

bution of the form

P
{
ξtn,i ≤ xn,i, n = 1, 2, i ∈ S

}
= exp

{
−
∑
i∈S

(
e−x1,i/γi + e−x2,i/γi

)γi}
,
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where γi ∈ [0, 1] relate to the importance of a product choice over retailer choice. This gives

rise to a Nested Logit choice model, where in a first stage customers choose a product to

buy according to an aggregate measure of the utility they perceive from buying from the

retailers offering such a product, and in a second stage they choose the retailer according to

a traditional MNL model.

Suppose that retailers compete only in assortments: this model can be seen as an extension

of the base model in which

δn,i = ν
1/γi−1
n,i

(
ν
1/γi
1,i + ν

1/γi
2,i

)γi−1
.

In this model, products capture a larger market share when offered by both retailers (pretty

much in the spirit of the first extension suggested by R1), however the split between the

retailers depends on the value of γi (the case of γi = 0 corresponds to our base definition of

common products, and the case of γi = 1 corresponds to the case of exclusive products).

It is not clear whether the results in Sections 3.3 and 4.2 hold in such a setting:

Theorem 3: consider the corrected proof for the case of β 6= 1/2. The key step in the proof

is to show that once a common product is offered by a retailer, it is never taken away from

the offering. We have that

θn,i(λ) :=

 (pn,i − cn,i − λ) νn,i if i /∈ Am,

ν
1/γi
n,i

(
ν
1/γi
1,i + ν

1/γi
2,i

)γi−1
(pn,i − cn,i) + λ νm,i − λ

(
ν
1/γi
1,i + ν

1/γi
2,i

)γi
if i ∈ Am.

As we showed previsouly, the arguments in the proof hold with a minor modification: set

A1
n = ∅ for n = 1, 2. Here it is an sketch of how to retrace the steps in the proof:

– We show that Akn ⊆ Ak+1
n via mathematical induction. The base case follows because

A1
n = ∅.

– Equation (A-4) holds because when a product i ∈ Ak−1n ∩ S1 ∩ S2 is introduced in Akm

(by the induction hypothesis Ak−1m ⊆ Akm), one has that

θn,i(λ
k
n, A

k−1
m ) ≥ δn,iθn,i(λ

k
n, A

k−1
m )

= θn,i(λ
k
n, A

k
m) + λkn

((
ν
1/γi
1,i + ν

1/γi
2,i

)γi
− νn,iδn,i − νm,i

)
≥ θn,i(λ

k
n, A

k
m)− λknνm,i.

Now, we know that i ∈ Ak−1n , thus θn,i(λ
k
n, A

k−1
m ) ≥ 0, thus one has that

0 ≤ δn,i θn,i(λkn, Ak−1m ) = θn,i(λ
k
n, A

k
m)− λkn (νm,i(1− δm,i)) ≤ θn,i(λkn, Akm),
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as it can be shown that δn,i ∈ [0, 1].

– From the above, one concludes that λk+1
n ≤ λkn, thus implying that a product i ∈

Ak−1n ∩S1∩S2 in Akm \Ak−1m is such that θn,i(λ
k
n, A

k
m) ≥ 0, thus it is in Ak+1

n . This proves

the hypothesis.

– The result follows from the monotonicity of Akn.

Condition 1, Examples 2 and 3 are not affected.

Condition 2 requires an additional assumption, as for the case of β 6= 0.5.

Proposition 4: first, note that in equilibrium all products are offered. Thus, the result

follows from proving the existence of an equilibrium in prices. In this setting, however, profit

are continuous functions of the price vectors, thus equilibrium existence would follow from

the application of a fixed-point theorem (after, e.g. bounding the set of prices worthy of

consideration).

In the current manuscript, we include a summary of the analysis above in Section 5, when

discussing possible extensions and directions of future research. We prefer this option, as said

analysis heavily relies in the intuition developed with the original model for common products. We

would of course consider accommodating this extension into earlier sections of the paper, were the

review team strongly in favor of that option.

The authors may want to argue that all the products are sold at an intermediary and the demand

are fulfilled by cheaper sources. Customers do not know the suppliers; otherwise, suppliers can be

part of the product attributes, which makes the common products impossible in the current model

settings.

A: Following R1’s feedback, we know mention such an interpretation of our model of preferences

in Remark 1 in page 7. Thank you.

Besides the demand model, there remain a few other issues for authors to address, which are

listed below.

(i) The cardinality constraint |A| ≤ Cn, which may result from the space or budget constraints, is

extensively studied in the literature. This paper develops a general approach for assortment

and price competition under the MNL model with the same cardinality constraint. I am

curious whether this approach still goes through in a different cardinality constraint, i.e.,
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|A| ≥ Cn. This constraint may be necessary in practice, e.g., a retailer may require the

minimum product variety to keep market competitiveness.

A: Let us examine how the results in the paper would change in presence of the constraint

|A| ≥ Cn.

• Assortment competition, exclusive products: Proposition 1 is not affected (despite the

fact that θn,i might be negative, the cardinality of the assortment solving (4) is non-

increasing in λ). Thus, Theorem 1, Proposition 2 and Corollaries 2 and 3, which follows

mainly from Theorem 1, are not affected as well.

• Assortment competition, common products: Theorem 3 pertains settings with no capac-

ity constraints. Condition 1 uses the fact that θn,i ≥ 0 to construct an equilibrium, thus

such a construction fails in the new setting. Nonetheless, a new construction would pro-

vide the existence result. Condition 2 holds trivially as the best response to offering all

product is offering all products.

• Assortment and price competition: All results hold true, because when price is endoge-

nous, best responses always include all products.

In Section 5 of the current manuscript, we discuss briefly how our results extend to the case

of the display constraints suggested by R1. Thank you.

(ii) For a common product i, in the current model, the deterministic utility can be different,

i.e., µn,i 6= µm,i; the price sensitivity can be different as well, i.e., αn,i 6= αm,i; but the

random part is the same, i.e., ξi is the same for retailers n and m. Why do you make these

assumptions? If they are all the same, the problem can be significantly simplified, especially

the joint assortment and price competition.

A: As mentioned above, core to our modeling of common products is that consumers assign

equal idiosyncratic shocks to utility to a common product, independent of the retailer. A

common interpretation of such a shock is that it represents the effect of heterogeneous prefer-

ences for unobserved (by the researcher) product’s features, thus equal products should result

in equal shocks.

Earlier in this response, we addressed the issue of retailer-dependent idiosyncratic shocks to

utility. Portion of that discussion is in the current manuscript (Section 5). As for the setting

when the deterministic portion of the utility is independent of the retailer (µn,i = µm,i and
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αn,i = αm,i), our results certainly apply to such a special case. More importantly, Examples

2 and 3 correspond to such a setting, hence we conclude that despite its simplified features,

equilibrium still might fail to exists in this setting, or there might be a combinatorial number

of equilibria.

(iii) Proposition 2 says that there may indeed exist multiple equilibria in the case of exclusive

products. Some examples will help readers to better understand this result.

A: Following R1’s feedback, we now include Example 1 (immediately after Proposition 2),

which shows the possibility of having multiple equilibria. Motivated by such an example,

we have now developed a bound (Theorem 2) on the number of possible equilibria in which

retailers offer different attractiveness levels. We illustrate the use of such result in Corollary

1, which provides sufficient conditions for uniqueness of an equilibrium. We thank R1’s for

pointing us in this direction.

(iv) Tatonement process converges to a pareto-dominant equilibrium if starting with A0
1 ∈ a1(0)

and A0
2 = ∅; otherwise, it may converge to other equilibriums. More explanation, examples

or references are needed to increase the readership here because the results are not trivial.

A: Following R1’s feedback, we now include a detailed explanation of the statement. In partic-

ular, following the discussion of the tatônement process, we include the following justification:

If one starts the best-response iteration process from arbitrary assortments, then

convergence to an equilibrium is guaranteed but not necessarily to one that pareto

dominates all others. To see this, suppose we start with A0
2 arbitrary: if E2(A

0
2) >

E2(A
1
2), then the recursive application of Proposition 1 ii) implies that the sequences

of total attractiveness of the assortments offered by both retailers (excluding that

of A1
0) will be non-increasing, i.e. En(Akn) ≥ En(Ak+1

n ), k ≥ 1, n = 1, 2. Similarly,

if E2(A
0
2) < E2(A

1
2) then the sequences of attractiveness will non-decreasing. This

observation, together with the finiteness of the product sets, imply convergence to

an equilibrium. (The fact that convergence to the pareto-dominant equilibrium is

not guaranteed follows directly from the (possible) existence of multiple equilibria.)

(v) Minor issue: use article “an” other than “a” in front of “MNL”.

A: We have corrected the paper. Thank you.
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Again, the novel part of this paper is to consider the common products in the assortment and

price competition. Unfortunately, there are no enough exciting analytical results in the current

version. Only limited results are derived in some special cases, e.g., without display constraints

as shown in Theorem 2 and Proposition 3. The contribution is weak at this point although I

understand that the problem with common products may be technically challenging. This paper

investigates assortment and price competition with common products offered by multiple retailers.

The technical merits are highly appreciated although there are some remaining issues. It may be

publishable in the journal Production and Operations Management after revision, so I recommend

Major Revision.

A: We sincerely appreciate your feedback, which as helped us improve the paper in various fronts.

We hope the current manuscript as well as this response address your concerns satisfactorily.
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Response to Comments of Referee 2

The authors study the problem of assortment competition between two retailers where customers’

choice model is represented by MNL. They show that when the products offered by each retailer is

exclusive to that retailer, an equilibrium in pure strategies always exists for both assortment-only

and joint assortment and price competition.

They also show that best-response dynamics leads to a Pareto dominant equilibrium. The tech-

niques here are based on super-modular games. On the other hand, when retailers have access

to exclusive and common products, an equilibrium in pure strategies may not exists if the set of

feasible assortments is constrained (e.g., by size).

One of the insights obtained from this paper is that the retailers would offer a broader set of

products compared with the monopoly case. Another is that when the retailers optimize over both

the prices and the assortments, all the products in the offered set have “equal margins”. These are

obtained for the “exclusive” case.

In short, the authors’ study of the assortment planning — when products offered by each retailer

are exclusive — is interesting and comprehensive. For the more general setting, they have obtained

preliminary results, but a complete analysis of the general case appears to be quite complicated.

In my opinion, this paper makes a nice contribution to the assortment planing literature and POM

journal. I recommend a minor revision and ask the authors to explore the case of heterogeneous

customer types.

A: We sincerely appreciate your feedback. Our objective here is to advance the assortment literature

by incorporating the realistic feature of common products. We hope that this first step motivates

further research on the subject.

Major comment: Please discuss what happens in a setting with heterogeneous customer types.

For instance, under what conditions there exist an equilibrium where the customers are partitioned

into two groups and in each group the customers purchase products only from one of the retailers?

A: Following your suggestion, in Section 5 we analyze a setting where a fraction of consumers are

loyal to a retailer in the sense that they only consider buying products offered by said retailer.

(Note that this partitions customers into three groups - the case of only loyal consumers reduces

to that of two monopolists). There, we show that equilibrium existence is not guaranteed even
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for the case of assortment-only competition with exclusive products. Note that this is a special

case of latent-class logit demand, thus it establishes a non-existence result for such a model, which

is the direct extension of MNL demand to the case of consumer heterogeneity. As mentioned in

Section 5, under mixed Logit demand, while under some conditions, for given assortments, existence

and uniqueness of an equilibrium in prices can be guaranteed, the assortment problem becomes

theoretically intractable (even the monopolist’s problem is in general NP-Hard).

As a side note, we would like to mention that in the current manuscript we extend our results

to the case when demand is driven by a Nested Logit model. The details of such a setting can be

found in our response to the AE. While such a demand model does not incorporate heterogeneity,

it does advance in addressing some of the deficiencies of MNL demand.

We hope that this extension, together with the analysis of the case of latent-class logit address

your concerns satisfactorily.

Minor Comments:

* p6, l18: “Competitive setting” → “Setting”

* p11, l11: Add references for “supermodular games”

* The following paper seems related:

[Immorlica, Kalai, Lucier, Moitra, Postlewaite, Tennenholtz, “Dueling Algorithms”, STOC, 2011]

A: We have implemented all comments in the paper. Thank you.

21


	Introduction
	Model of Assortment and Price Competition
	Assortment-only Competition: Main Results
	Best response correspondence
	The Case of Exclusive Products
	Tatônement stability
	Competitive outcome versus monopolist and centralized solutions

	The Case of both Exclusive and Common Products

	Joint Assortment and Price Competition: Main Results
	The Case of Exclusive Products
	The Case of both Exclusive and Common Products

	Extensions and Additional Challenges
	The Case of Nested Logit Demand
	The Case of Mixed Logit Demand

	Proofs

